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A simple and stable subgrid scheme is derived from the space-time finite integration method, where staircase-shaped edges can be 
used to construct a rectangle-based grid. Comparison with classical subgrid methods shows that the proposed method suppresses 
unphysical wave reflection without interpolation of field values for the subgrid connection. No numerical instability was observed even 
after 106 time steps. The proposed method was applied to the computation of a photonic band gap.  
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I. INTRODUCTION 

HE ANALYSIS of metamaterial or photonic crystal often has 
a large computational cost because their properties are 

controlled by the fine structure on a sub-wavelength scale. 
Such analysis thus requires the generation of an adaptive grid.  

The subgrid method [1]–[5] can be used to construct an 
adaptive Yee grid for the FDTD method. However, the 
subgrid method often suffers numerical instabilities and 
unphysical wave reflections due to nonconformal grid 
connections unless sophisticated techniques [1] are used. The 
finite integration (FI) method [5]–[7] allows the time-domain 
computation of electromagnetic field using unstructured 
spatial grids. A space-time FI method that realizes non-
uniform time steps on 3D and 4D space-time grids obeying the 
Courant–Friedrichs–Lewy condition has been developed [8], 
[9]. Additionally, a local refinement of the 3D space-time grid 
has been realized [10], but it is not easily applied to 4D space-
time because of its complex dual grid construction. 

Using the space-time FI method, this study proposes a 
simple and stable subgrid method that realizes local 
refinement of the 4D space-time grid.  

II. SPACE-TIME FINITE INTEGRATION METHOD 

The coordinate system is denoted (ct, x, y, z) = (x0, x1, x2, x3), 
where c = 1 / √(ε0μ0) and ε0 and μ0 are respectively the 
permittivity and permeability of a vacuum. The integral forms 
of the Maxwell equations [8] without source terms are 
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where (j, k, l) is a cyclic permutation of (1, 2, 3), and Ωp and 
Ωd are hypersurfaces in space-time. The electromagnetic 
variables are defined in the FI method as 
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where Sp and Sd are the faces of the primal and dual grids that 
constitute Ωp and Ωd. To express the constitutive equation 
simply, the Hodge dual grid [8] is introduced as 
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Fig. 1 Space-time subgrid. 
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where cr = 1 / √(εrμr); a is a constant determined for each pair 
of Sp and Sd; and εr and μr are respectively the relative 
permittivity and permeability. From (3) and (4), it follows that 
f = Zg / a, where Z = √(μrμ0/εrε0) is the impedance.  

III. 3D SPACE-TIME SUBGRID 

A. Space-time grid and time-marching scheme 

This study examines the subgrid shown in Fig. 1, where the 
primal grid (solid lines) is orthogonal to its dual grid (dashed 
lines) according to the Lorentzian metric [8], [9] obtained 
from (4). The spatial cell size and the temporal step of the 
coarse grid (main grid) are Δx and Δw = cΔt, respectively, 
whereas those of the fine grid (subgrid) are Δx/2 and Δw/2.  

This section examines the propagation of (Ex, Ey, Bz) on the 
(x0, x1, x2) 3D space-time grid.  

The variables are allocated to primal faces and dual edges 
as in Fig. 2 in the domain connecting the coarse and fine grids. 
According to the integration (3), b and d are the magnetic and 
electric fluxes multiplied by c, and e and h are the temporally 
integrated electromotive and magnetomotive forces. Variables 
e and d assigned to the edges slanted with respect to the x0-
direction contain components of magnetic flux and 
magnetomotive force. The subscripts are spatial indexes for 
the x and y directions, and the superscripts are the temporal 
indexes. The time-marching scheme is given as  
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Face areas in (7), (8), (11) and (12) are given as  
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where δ is a free parameter shown in Fig. 2.  
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Fig. 2 Assignment of variables.  
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Fig. 3  Transformation of edges without changing node positions (). 
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Fig. 4  Alternative transformations of edges. 
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Fig. 5. Magnetic-field variables for subgrid connection: (a) the subgrid in [5] 
and (b) the proposed subgrid. 
 

The definition of variables in the integral form (3) allows 
the slanted edges as in Fig. 3(a) to be curved as in Fig. 3(b), 
where node positions () are unchanged. A further 
transformation leads to staircase-like edges as in Fig. 3(c), 
where rectangular faces provide a simple FI scheme. The edge 
transformation is not unique. For example, staircase-like edges 
shown in Fig. 4(a) are also possible. The edges can be 
transformed along the temporal direction also, as shown Fig. 
4(b) and (c). This section examines the subgrid obtained by 
combining the types of subgrid shown in Figs. 3(c) and 4(c). 
Accordingly, the face areas given as (13), (14) are replaced by 
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The subgrid scheme above requires no interpolation of field 
values, which results in a diagonal impedance matrix that 
allows stable computation. For example, as illustrated in Fig. 
5(a), the subgrid method in Ref. [5] requires an interpolation 
such as h0,−1/4 = (3h0,0 + h0,−1) / 4 to update dy,1/2,−1/4. In contrast, 
the proposed subgrid uses h0,0 directly to update dy,1/2,−1/4 as in 
Fig. 5(b), where the staircase-like edges prevent a reduction in 
the computational accuracy. No interpolation or extrapolation 
is required along the temporal direction either, when 
employing the space-time FI method.  

B. Numerical Examination 

The growth rate of the numerical error during the temporal 
period Δw (= cΔt) is evaluated by numerical eigenvalue 
analysis [11]. A small space-time grid having a spatial domain 
size of 30Δx  30Δx including a subgrid domain of 14Δx   
14Δx is used for the stability analysis while imposing spatially 
periodic boundary conditions with δ = 0. When crΔw /Δx  
0.5, all the eigenvalues are on the unit circle, which implies 
that the time-marching scheme is numerically stable. When 
crΔw /Δx exceeds 0.51, some of the eigenvalues move outside 
the unit circle, causing numerical instability.  

Wave propagation is simulated to compare subgrid schemes 
on the computational domain shown in Fig. 6(a) with δ = 0. 
For simplicity, the permittivity and permeability are set 
uniformly to unity by normalization; Δx and Δw are set to 1 
and 0.5 by normalization. The normalized initial conditions 
are Ex = Ey = 0 and Bz = exp[(x2+y2)/25]. Spatially periodic 
boundary conditions are imposed. Fig. 6(b) depicts the 
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distribution of Bz at ct = 60. 
Fig. 7(a) depicts the distributions of discrepancy ΔB 

between Bz obtained employing the FDTD method and that 
obtained using the proposed subgrid method at ct = 60. The 
FDTD method is executed with Δx = 1 and Δw = 0.5. The 
discrepancy seen for x  16 and y  20 is mainly caused by 
numerical dispersion whereas that for x  16 or y  20 is 
caused by an unphysical wave reflection at the connection 
with the subgrid. Fig. 7(b) and (c) depicts the distribution of 
ΔB obtained employing two classical subgrid techniques [3], 
[5]. The subgrid scheme proposed in [3] gives numerical error 
similar to that in Fig. 7(a). However, this scheme suffers 
numerical instability over long-time simulations. The subgrid 
scheme proposed in [5] is quite stable numerically, but yields 
larger numerical errors (Fig. 7(c)) than the space-time FI 
method. Fig. 8 compares the maximum of |ΔB| / |Bmax| for x  
16 and y  20 at ct = 60 among the three subgrid schemes 
when Δx = 0.25, 0.5, 1, 2, 4; the maximum magnetic flux 
|Bmax| is 0.09 T at ct = 60. The unphysical wave reflection is 
roughly proportional to (Δx)2, with the use of the proposed 
subgrid achieving the smallest error.  
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Fig. 6. Wave propagation computation; (a) computational domain and (b) 
distribution of Bz at x0 = 60.  
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Fig. 7. Discrepancy in Bz relative to Bz obtained employing the FDTD method: 
(a) proposed subgrid, (b) subgrid in Ref. [3], and (c) subgrid in Ref. [5].  
 

C. Application to Photonic Band Computation 

Fig. 9(a) illustrates one spatial period of a 2D photonic 
crystal. The spatial coordinates are normalized so that one 

spatial period is [−1, 1]  [−1, 1]. A cylindrical rod with 
normalized radius of 0.4 and εr = 10 is located in the subgrid. 
The modulated Gaussian pulse source is located in the main 
grid to provide a wide-band excitation. Assuming a fixed 
wave number vector in the first Brillouin zone, a spatial 
periodic boundary condition is imposed to find the 
corresponding normalized angular frequencies and obtain the 
dispersion relation [2]. Several field probes are located 
randomly to obtain frequency spectra corresponding to the 
wave number vector. Variables (Hx, Hy, Dz) are assigned to the 
primal grid and (Bx, By, Ez) are assigned to the dual grid for the 
analysis of transverse-magnetic (TM) modes. 
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Fig. 8. Maximum of discrepancy |ΔB| / |Bmax| relative to values obtained with 
the FDTD method for x1  16 and x2  20 with respect to grid size.   
 

 
 (a)   (b) 
Fig. 9 Analysis of a photonic crystal: (a) one spatial period and (b) first 
Brillouin zone of the wave-number vector space. 
 

 
Fig. 10 Dispersion diagram for the cylindrical rod as in Fig. 9: (i) FDTD 
method with Δx = 1/30, (ii) FDTD method with Δx = 4/30, and (iii) space-
time subgrid method with (Δx, Δx/2) = (4/30, 2/30).  
 

Fig. 10 shows a dispersion diagram of the first several TM 
modes obtained using (i) the FDTD method with Δx = 1/30, 
(ii) the FDTD with Δx = 4/30, and (iii) the proposed subgrid 
with (Δx, Δx/2) = (4/30, 2/30). A photonic bandgap is 
observed between ω = 0.95 and 1.38. The FI method (iii) 
provides a more accurate diagram than the FDTD method (ii) 
because of the local fine grid around the dielectric.  

IV. INTRODUCTION OF A 4D SPACE-TIME SUBGRID  

It is not difficult to extend the proposed simple space-time 
subgrid to 4D space-time. Fig. 11(a) illustrates a 4D 
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connection to the subgrid, where δ is a free parameter. 
Similarly to the case for the 3D subgrid, the edges and faces 
can be bent as in Fig. 11(b) and (c).  

Wave propagation is simulated on the space-time grid 
shown in Fig. 12 under a periodic spatial boundary condition, 
where Δx = 1, Δw = 0.4 and c = 1 by normalization. The 
normalized initial conditions are given as E1 = E2 = E3 = 0, B1 
= exp{[(x2)2+(x3)2]/25}, B2 = exp{[(x3)2+(x1)2]/25}, and B3 
= exp{[(x1)2+(x2)2]/25}. The 4D space-time subgrid does not 
develop numerical instability even after 106Δw when Δw  0.4 
and δ ≥ 0. Fig. 13(a) depicts the discrepancy of |B| from that 
given by the FDTD method at x0 = 60, where δ = 0.07. For 
comparison, Fig. 13(b) depicts the distribution of discrepancy 
|ΔB| obtained using the subgrid technique in [5], where there 
is larger unphysical wave reflection than in Fig. 13(a). Fig. 14 
presents the maximum of |ΔB| / |Bmax| for x1  16, x2  20 and 
x3  24 at x0 = 60 in the comparison of the results for the 
subgrid in [5] and the proposed method with δ = 0, 0.07 and 
|Bmax| = 0.15 T, when Δx = 1, 4/3, 2. The proposed subgrid 
with δ = 0.07 provides small unphysical wave reflection.  
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Fig. 11  4D space-time connection to a subgrid: (a) connection, (b) curved 
edges and faces, and (c) staircase-like edges and faces . 
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Fig. 12  3D spatial grid for the 4D space-time subgrid method. 
 

V. CONCLUDING REMARKS 

Using the space-time FI method with staircase-shaped edges, 
a simple and stable subgrid scheme was developed without 
interpolation of field values. A detailed study of the 4D 
subgrid connection and symmetric correction proposed in [11] 

will be conducted in future work to improve the accuracy of 
the proposed method. 
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Fig. 13  Discrepancy in |B| at x3 = 34 relative to values obtained with the 
FDTD method: (a) proposed subgrid and (b) subgrid in Ref. [5]. 
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Fig. 14  Maximum of discrepancy |ΔB| / |Bmax| relative to values obtained with 
the FDTD method for x1  16, x2  20 and x3  24 with respect to grid size.   


