Fluorescent characteristics of dissolved organic matter produced by bloom-forming coastal phytoplankton

Fukuzaki, K.; Imai, I.; Fukushima, K.; Ishii, K.-I.; Sawayama, S.; Yoshioka, T.

This is a pre-copyedited, author-produced PDF of an article accepted for publication in “J. Plankton Res.” following peer review. The version of record [Koji Fukuzaki, Ichiro Imai, Keitaro Fukushima, Ken-Ichiro Ishii, Shigeki Sawayama, and Takahito Yoshioka. Fluorescent characteristics of dissolved organic matter produced by bloom-forming coastal phytoplankton. J. Plankton Res. (May/June 2014) 36(3): 685-694 first published online March 3, 2014 doi:10.1093/plankt/fbu015] is available online at: http://plankt.oxfordjournals.org/content/36/3/685.; This is not the published version. Please cite only the published version.

この論文は出版社版ではありません。引用の際には出版社版をご確認ご利用ください。
Fluorescent characteristics of dissolved organic matter produced by bloom-forming coastal phytoplankton

Koji Fukuzakia, Ichiro Imaib, Keitaro Fukushimac, Ken-Ichiro Ishiid, Shigeki Sawayamad and Takahito Yoshiokaa,e**

aLaboratory of Forest Information, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan

bPlankton Laboratory of Marine Biology, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan

cDivision of Research Project Promotion, Field Science Education and Research Center, Kyoto University, Kitashirakawa Oiwake-cho, Sakyoku, Kyoto 606-8502, Japan

dLaboratory of Marine Environmental Microbiology, Division of Applied Bioscience, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyoku, Kyoto 606-8502, Japan

eDivision of Forest Ecosystem, Field Science Education and Research Center, Kyoto University, Kitashirakawa Oiwake-cho, Sakyoku, Kyoto 606-8502, Japan
Abstract

Dynamics and sources of fluorescent dissolved organic matter (FDOM) are important for understanding the biogeochemical process in aquatic ecosystems. This study aimed to analyse direct production of FDOM by marine phytoplankton cultures and reveal fluorescent characteristics of exuded FDOM. Axenic cultures of eight species of bloom-forming marine phytoplankton, including two diatoms; a raphidophyte; two dinoflagellates; a chlorophyte; a cryptophyte and a haptophyte, were incubated in an artificial medium. Excitation emission matrices (EEMs) of FDOM in the culture
medium were spectrofluorometrically measured. FDOM production was observed in all species, and fluorescent characteristics of the exudates varied considerably among species. Measured EEMs had peaks at 350 nm/450 nm (excitation/emission) for the diatom *Ditylum brightwellii* and 370 nm/450–470 nm for the raphidophyte *Heterosigma akashiwo* and the chlorophyte *Oltmansiellopsis viridis*, which were previously regarded as the peaks of terrestrially derived humic-like substances. Direct production of FDOM by marine phytoplankton should be considered in future studies of FDOM dynamics in marine systems. Species-specific features of FDOM might be used for early detection of noxious bloom because this method is simple, rapid, and suitable for monitoring.

Introduction

Marine dissolved organic matter (DOM) is one of the major factors affecting the global carbon cycles and is the largest ocean reservoir of reduced carbon (Hansell et al., 2009). DOM also affects various biological processes such as bacterial respiration and microalgal primary production by serving as a substrate for bacterial populations (Findlay et al., 2003; Findlay and Sinsabaugh, 2003), controlling the transport and availability of trace elements (van den Berg et al., 1986; Shiller et al., 2006; Laglera et
al., 2007; Laglera and van den Berg, 2009) and absorbing photosynthetic effective sunlight (Sulzberger and Durisch-Kaiser, 2009) and harmful ultraviolet (UV) light (Nielsen et al., 1995; Nielsen and Ekelund, 1995). The quality and quantity of DOM are thought to influence these ecological functions of DOM and should be taken into account when evaluating the biogeochemical processes in aquatic ecosystems.

The fluorescent spectroscopic characterisation of chromophoric DOM (CDOM), which is a coloured fraction of DOM, is an excellent method for evaluating the source and quality of DOM (Coble, 1996, 2007; Coble et al., 1990, 1993; Stedmon et al., 2003; Jaffé et al., 2008). This method compiles individual fluorescent spectra at each excitation (Ex) wavelength to generate three-dimensional excitation emission matrices (EEMs). EEMs of DOM can be highly variable and are controlled by different physical, chemical and biological processes; therefore, they can have important ecological consequences (Maie et al., 2006; Jaffé et al., 2008). In aquatic systems, fluorescent CDOM (FDOM) is assumed to be derived from biological processes in the system (autochthonous) as well as from the transport of terrestrial organic matter from rivers and the surrounding environment (allochthonous) (Jaffé et al., 2008; Yamashita and Tanoue, 2008). Autochthonous production is thought to be mainly derived from bacterial metabolic by-products (Nieto-Cid et al., 2006; Shimotori et al., 2009;
Yamashita and Tanoue, 2008).

It has been well documented that phytoplankton is one of the main sources of organic matter in the sea, because it releases organic compounds such as carbohydrates and polysaccharides (Biddanda and Benner, 1997). Recently, the exudates from marine phytoplankton have also been shown to have fluorescent properties, and they may contribute as a source of marine autochthonous FDOM (Romera-Castillo et al., 2010).

In coastal and estuarine environments, various phytoplankton species occasionally grow massively and attain high cell densities. These algal blooms are thought to have substantial impacts on DOM dynamics of a region.

To understand direct FDOM production by marine phytoplankton, it is essential to conduct experiments using axenic cultures. However, the maintenance of axenic cultures is difficult, and very few studies have analysed FDOM production by axenic cultures of marine phytoplankton. Indeed, direct production of FDOM has been tested in only four species in the genera Chaetoceros, Skeletonema, Prorocentrum and Micromonas (Romera-Castillo et al., 2010). The optical properties of DOM varied considerably among these four species (Romera-Castillo et al., 2010).

We aimed to evaluate direct production of FDOM by eight major bloom-forming coastal phytoplankton species from diverse taxonomic groups of six classes and to
reveal the fluorescent characteristics of the exuded FDOM.

Methods

Phytoplankton cultures

Axenic cultures of the following species were used in the incubation experiments: the diatoms *Ditylum brightwellii* and *Chaetoceros curvisetus*, the raphidophyte *Heterosigma akashiwo*, the dinoflagellates *Heterocapsa circularisquama* and *Alexandrium catenella*, the chlorophyte *Oltmansiellopsis viridis*, the cryptophyte *Rhodomonas ovalis* and the haptophyte *Pleurochrysis roscoffensis* (Table I). These are commonly found bloom-forming species in the Western Pacific (Omura et al., 2012).

Culture of *C. curvisetus* was obtained from sea bottom sediment and made axenic (Ishii, personal communication). Axenic cultures of the other seven species were made by the methods described elsewhere (Imai and Yamaguchi, 1994; Nagai et al., 1998). All the cultures were axenically maintained in the modified IHN medium (Imai et al., 2004). The axenic conditions of each culture were confirmed by DAPI staining and epifluorescence microscopy before the incubation experiments (Imai, 1987).
Incubation experiment

Modified IHN medium (Imai et al., 2004) was prepared using Milli-Q water and dispensed into 50 mL conical glass flasks (30 mL in each) with autoclavable plastic caps (Iwaki, Tokyo, Japan). The prepared culture medium was sterilised by autoclaving at 121°C for 15 min. To prevent contamination with organic compounds, the glass flasks were pre-combusted at 450°C for 4 h. Well-grown strains of maintenance cultures were inoculated (600 µL) into each flask in a clean bench. The inoculated cultures were incubated under cool-white fluorescent light at 93–145 µmol photons m⁻² s⁻¹ with 14:10-h light:dark cycle until they reached the stationary phase, which was 6 days for *C. curvisetus*, 14 days for *H. akashiwo*, 27 days for *A. catenella* and 12 days for the other species. Incubation temperature was set at 25°C for *H. circularisquama* and 20°C for the other species, because only the maintenance culture of *H. circularisquama* indicated the better growth at 25°C while the other species showed the better growth at 20°C. An autoclaved culture medium without plankton inoculation was also kept in the same conditions as a control. A small amount of each culture was taken to measure the *in vivo* fluorescence using a fluorometer (Model 10-AU 005, Turner Designs, Sunnyvale,
California, USA) at the start, middle and end of the culture experiments. The cell densities of the cultures were determined by microscopic counting at the end of the incubation. All the culture experiments were conducted in triplicate.

Analysis

After reaching the stationary phase, the cultures were filtered into pre-combusted brown glass bottles using radiation-sterilised disposable syringes (Terumo Corp., Tokyo, Japan) and GF/F filters (Whatman, Tokyo, Japan). The glass bottles and glass filters were pre-combusted at 450°C for 4 h. The three-dimensional EEM spectra of the culture filtrates were measured using a spectrofluorometer (Model F-7000, Hitachi High-Technologies, Tokyo, Japan), which was equipped with a 150 W xenon lamp. The corrections of the spectra were performed with Rhodamine B solution, according to the instructions in the instrument operation manual and the method described by Yoshioka et al. (2007). The scanning ranges were 250–400 nm for Ex and 280–480 nm for emission (Em). Fluorescence intensity (FI) was measured at 5-nm intervals for Ex and 1-nm intervals for Em, with a scanning speed of 1200 nm min⁻¹. The bandwidths were 5 nm for both Ex and Em. The EEM spectrum of the control medium was subtracted from
each sample EEM spectrum to obtain the net increase in FDOM as a result of the
microalgal activities. All the sample data of FI were standardised using quinine sulphate
units (QSU), where 10 QSU correspond to the FI at 350 nm/450 nm of a 10 µg L\(^{-1}\)
quinine sulphate solution in 0.1 N H\(_2\)SO\(_4\). Solutions of quinine sulphate (Nacalai
Tesque, Inc., Kyoto, Japan) were measured with each set of samples. The FI data of
each species were averaged for triplicates.

The bulk dissolved organic carbon (DOC) concentration of the culture filtrate was
measured using a Shimadzu TOC-V\(_{CSH}\) total organic carbon analyzer (Shimadzu, Kyoto,
Japan). The DOC content of each sample was determined using a calibration method
based on a potassium hydrogen phthalate standard for each measurement. Each sample
was injected five times, and the three values that yielded the minimum standard
deviation were used to calculate the average DOC value for a sample. The net increase
in DOC was determined by subtracting the control DOC from DOC of each sample.

Calculation of the index

The biomass of the cultures at the final point was estimated using previously reported
models and equations (Sun and Liu, 2003; Menden-Deuer and Lessard, 2000) because
we did not directly measure the cell biomass. The cell volume was calculated by approximating the complex cell shapes as simple three-dimensional geometric models (Sun and Liu, 2003) based on the cell sizes obtained from microscopic measurements. *D. brightwellii* was approximated as a prism with a triangle-based girdle view shape (30-H), and *C. curvisetus* was approximated as a prism with an elliptic-based girdle view shape (29-H). *H. akashiwo* and *H. circularisquama* were approximated as a cone + hail sphere shape (9-H) (Sun and Liu, 2003). *A. catenella* was approximated as an ellipsoid (3-H). *O. viridis, R. ovalis* and *C. roscoffensis* were approximated as prolate spheroids (2-H) (Sun and Liu, 2003). The calculated cell volumes were converted into the cell biomass using the equations described by Menden-Deuer and Lessard (2000).

As an indicator of the percentage of extracellular carbon released during total photosynthetic production, the apparent percentage of photosynthetic extracellular release (APER) values (Romera-Castillo et al., 2010) were calculated using the following formula:

\[
\text{APER} (%) = \frac{\text{DOC}}{\text{DOC} + \text{Biomass}} \times 100,
\]

where DOC and Biomass represent the net increase in DOC in the culture medium (mg
Results

Growth of the cultures and cell density attained

The cell densities of the stationary phase cultures varied from $11 \pm 1 \times 10^3$ (cells mL$^{-1}$) for *D. brightwellii* to $253 \pm 45 \times 10^3$ (cells mL$^{-1}$) for *R. ovalis*. *H. circularisquama* produced the highest biomass of 33.1 ± 7.9 mg C L$^{-1}$ among the eight species examined, and *R. ovalis* produced the lowest biomass of 3.5 ± 0.6 mg C L$^{-1}$. The average growth rate in the exponential growth phase, which was calculated on the basis of the *in vivo* fluorescence values, varied from 0.35 ± 0.03 day$^{-1}$ for *H. akashiwo* to 0.97 ± 0.07 day$^{-1}$ for *C. curvisetus* (Table II). The growth rates of these species in modified IHN medium were previously reported as $0.39–1.27$ day$^{-1}$ (Naito et al. 2008), which are comparable with the values obtained in the present study.

DOC and APER
The increased DOC concentrations and APER values are summarised in Table III. Net increase in DOC concentrations ranged from 19.3 ± 5.1 mg C L$^{-1}$ for *H. akashiwo* to 49.4 ± 7.5 mg C L$^{-1}$ for *P. roscoffensis* during incubation periods (Table III). APER values were estimated to be between 46.1% for *A. catenella* and 80.2% for *P. roscoffensis*, with rather wide variations. There were no significant differences in APER values among the eight species (one-way ANOVA, $p = 0.198$).

Optical properties of DOM exudates from phytoplankton

Figure 1 shows the average EEMs of the net FDOM increases for each triplicate culture filtrate sample. In all the cultures, EEMs had fluorescence peaks in the protein-like and humic-like regions (Table IV, Fig. 1). In the protein-like region, as described by Coble (1996) at Ex/Em 275 nm/340 nm (peak T) and Ex/Em 275 nm/310 nm (peak B), the most prominent peaks were at 280 nm/349–357 nm (Ex/Em) for the cultures of *C. curvisetus, H. circularisquama* and *A. catenella*. In the corresponding region, *H. akashiwo, O. viridis* and *R. ovalis* had slightly shorter Em wavelengths in the range 280 nm/324–337 nm. *D. brightwellii* and *P. roscoffensis* had peaks at 255 nm/316 nm and 250 nm/350 nm, respectively, although these peaks were rather uniform (Fig. 1).
The protein-like peaks were broad toward the longer Em wavelengths. In particular, *H. circularisquama* had a considerably broad peak toward longer Ex/Em wavelengths in the region and appeared to have an overlapping peak at 290 nm/410 nm (Fig. 1), which corresponded to peak M, i.e. marine humic-like substances, as defined by Coble et al. (1998). Peak M was only observed with *H. circularisquama* in the present study, whereas peak M was observed with all the marine phytoplankton axenic cultures examined by Romera-Castillo et al. (2010). *O. viridis* has the most prominent peak among the eight species in the protein-like fluorescent region, at 280 nm/337 nm, with an intensity of 2.22 ± 0.36 QSU (Fig. 1, Table IV).

D. brightwellii, *H. circularisquama*, *H. akashiwo* and *O. viridis* had the maxima of humic-like fluorescence at 355 nm/454 nm, 340 nm/461 nm, 375 nm/473 nm and 375 nm/462 nm, respectively (humic-like peak 1 in Table IV, Fig. 1). *O. viridis* had the most conspicuous peak in the fluorescent area, with an FI of 0.86 ± 0.24 QSU. *C. curvisetus*, *A. catenella*, *R. ovalis* and *P. roscoffensis* did not have defined peaks in this area (Fig. 1). Coble (1996) referred to the peaks in the region of 350 nm/420–480 nm as peak C and identified them as humic-like DOM components. The peaks observed in the cultures of *D. brightwellii* and *H. circularisquama* were assumed to correspond to peak C. Furthermore, the peaks resembled the peak produced by a *M. pusilla* culture at 348
nm/434 nm and 348 nm/436 nm, as reported by Romera-Castillo et al. (2010). *H.
akashiwo* and *O. viridis* had peaks at longer Em wavelengths, i.e. 370 nm/450–470 nm (Ex/Em), and these peaks were very close to the C1 peak reported to be related to terrestrial humic substances by Yamashita et al. (2008).

Humic-like peaks were also detected in all the samples at 250–255 nm/446–471 nm (humic-like peak 2), which corresponded to peak A (260 nm/458 nm), as defined by Coble (1996). The FI of humic-like peak 2 ranged from 0.54 ± 0.04 QSU for *C. curvisetus* to 1.20 ± 0.16 QSU for *O. viridis*.

DOC-specific FIs of humic like peak 1 and 2 and protein like peak considerably varied among species (Table IV). The DOC-specific FI of humic-like peak 1 was highest for *O. viridis* (Table IV). The DOC-specific FI of humic-like peak 2 ranged from 0.011 ± 0.003 QSU L mg C\(^{-1}\) for *P. roscoffensis* to 0.046 ± 0.016 QSU L mg C\(^{-1}\) for *H. akashiwo* (Table IV). The DOC-specific FI of protein-like peak ranged from 0.011 ± 0.002 QSU L mg C\(^{-1}\) for *P. roscoffensis* to 0.080 ± 0.018 QSU L mg C\(^{-1}\) for *O. viridis* (Table IV). The cell density-specific FDOM production rates were the highest for *D. brightwellii* in terms of both the protein-like and humic-like peaks (Table V). In terms of the biomass-specific FDOM production rates (data not shown), *R. ovalis* had the highest values for both fluorescent peaks.
Discussion

DOC and APER

Sharp et al. (1977) reported that photosynthetic extracellular release (PER) values obtained using the 14C method reached up to 70%. APER values obtained in the present study were 46%–80%, which were comparable with the previously reported values. In contrast, Lancelot and Billen (1985) reported that the PER value using the culture method was 0%–20%. Compared with APER values of 10%–18% obtained in a previous study using axenic cultures of microalgae (Romera-Castillo et al., 2010), the present study obtained rather high APER values (46%–80%). In the present study, the incubation period was 6–14 days, with the exception of 27 days for *A. catenella* (Table II), which was longer than the incubation period (3–6 days) used previously (Romera-Castillo et al., 2010). It was previously reported that PER values of the diatom *Chaetoceros affinis* increased by up to 58% during the phase of decreasing photosynthetic activity because of nutrient depletion (Myklestad et al., 1989). Thus, APER values appear to be affected in nutrient-limited environments (Lancelot and
Billen, 1985). The longer incubation period probably resulted in larger release of DOC from the phytoplankton cells, although we did not measure the nutrient concentration.

The influence of light and nutrient stress on DOC secretion should be tested in future studies because phytoplankton are likely to experience light and nutrient stresses in natural environments.

Peak assignments and possible functions of the fluorescent DOM

Significant peaks were observed at approximately 275 nm/340 nm (Ex/Em) in the culture filtrates of all the species. This peak was considered to be related to protein-like substances and was previously reported as peak T (Coble 1996). Romera-Castillo et al. (2010) also reported a corresponding peak in cultures of Chaetoceros, Skeletonema, Prorocentrum and Micromonas. Phytoplankton are known to release extracellular nitrogenous compounds such as proteins, peptides and amino acids as well as carbohydrates such as polysaccharides (Goldman et al., 1992; Myklestad, 1995). Some of these substances with proteinaceous aromatic structures were probably detected as peak T. Similar peaks were detected in EEM measurements of coastal seawaters (Para et al., 2010; Yamashita et al., 2008; Maie et al., 2007). Yamashita et al. (2008) suggested...
that a tryptophan-like fluorescent peak in a seawater sample from Mikawa Bay, Japan
was derived from relatively fresh long-chain peptides, which were readily degradable.
Maie et al. (2007) suggested that the origin of peak T in a temperate coastal seawater
was a mixture of proteinaceous compounds and the phenolic structures contained in
humic substances.

H. circularisquama had a peak at 290 nm/410 nm, which was similar to peak M
designated by Coble (1996). Peak M is found at 290–310 nm/370–410 nm (Ex/Em) and
was first reported in seawater collected during a phytoplankton bloom in the Gulf of
Maine (Coble, 1996) and thereafter in samples from an upwelling region in the Arabian
Sea (Coble et al., 1998). This peak is considered to be related to marine humic-like
substances (Coble, 1996). In a recent study, peak M was detected in the culture filtrates
of four marine algal species: *Chaetoceros* sp., *S. costatum*, *P. minimum* and *M. pusilla*
(Romera-Castillo et al., 2010). These findings are consistent with FDOM produced by
H. circularisquama, which showed peak M in the present study. The absence of peak M
in the cultures of other species examined in the present study have been possibly due to
differences in the metabolic processes among the species, such as different
photosynthetic pigments.

Coble (1996, 2007) suggested that terrestrial humic-like materials produce two peaks
at 240–260 nm/400–460 nm (Ex/Em) (peak A) and 320–360 nm/420–460 nm (Ex/Em) (peak C). All the species produced peaks at 250–255 nm/446–471 nm (humic-like peak 2), which were very close to peak A. Humic-like peak 2 is also similar to Component 1 (<260/458 nm) in a study that used the EEM-PARAFAC method in Ise Bay, Japan (Yamashita et al., 2008). In other studies, this peak was also reported to be attributable to land-derived components, e.g. Q2 (Cory and Mcknight, 2005) and Component 1 (Stedmon and Markager, 2005).

D. brightwellii had a peak at 350 nm/450 nm (Ex/Em), which corresponded to the region of peak C (Coble, 1996). *H. akashiwo* and *O. viridis* had peaks at a slightly longer wavelength of 370 nm/450–470 nm (Ex/Em), and these peaks were very close to the peak attributed to terrestrial humic substances (Yoshioka et al., 2007; Yamashita et al., 2008, 2011). These findings suggest that FDOM produced by phytoplankton occasionally have a peak in the region previously assigned to terrestrial humic substances. Thus, we should be cautious when investigating the dynamics and sources of DOM in coastal areas using fluorescent analysis.

It is not known how and why phytoplankton release humic-like substances. Bjørnsen (1988) suggested that DOM exudates are caused by the passive diffusion of metabolic by-products. The low-molecular-weight compounds produced by photosynthetic
metabolism and by-products of the decomposition of cellular polymers are assumed to be released extracellularly (Myklestad, 1995). However, it is possible that phytoplankton exude FDOM with ecological functions. Many species of microbial prokaryotes, fungi and some phytoplankton are known to secrete organic iron ligands, known as siderophores, in iron-depleted environments (Naito et al., 2001, 2004; Vraspir and Butler, 2009). Most siderophores appear to have aromatic structures, although the chemical structures of the siderophores secreted by eukaryotic phytoplankton are not clear at present (Naito et al., 2001; Vraspir and Butler, 2009). Humic substances also have aromatic structures and the capacity for metal complexation. Naito et al. (2001) also suggested that *R. ovalis* secretes siderophores; this species had the highest biomass-specific production of FDOM in the present study. Thus, it is possible that siderophores are involved with the release of humic-like fluorescence by phytoplankton. Therefore, it is necessary to investigate the biological roles of fluorescent exudates in the future.

Fluorescence in natural environments and bloom formation

To evaluate the contributions of phytoplankton FDOM in natural environments, we
extrapolated the values obtained in this study to a naturally occurring *H. circularisquama* bloom. The cell density of *H. circularisquama* reached >10,000 cells mL\(^{-1}\) during the bloom period in Japanese coastal water (Kamiyama et al., 2001). For this bloom, the FI of humic-like peak 1 was estimated to be 1.6 × 10\(^{-2}\) QSU using the data for the FI per cell density (Table V). The possible FIs of humic-like peak 2 and protein-like peak were also estimated in the same manner. Humic-like peak 2 and protein-like peak would have been approximately 6.60 × 10\(^{-2}\) QSU and 1.72 × 10\(^{-1}\) QSU, respectively. These data suggest that it is possible to detect phytoplankton-derived FDOM in the natural aquatic environment, although these are rough estimates and high intensity FDOM in the same region derived from other sources could mask these peaks.

Species-specific peaks are considered to be novel indicators that could facilitate better understanding of the contribution of microalgal activities to FDOM production. For example, Suksomjit et al. (2009) observed significant increase of tyrosine-like, tryptophan-like and humic-like fluorescence, which were centred at 225 nm/305 nm, 280 nm/350 nm and 230 nm/395 nm respectively, in coastal seawater during *Heterosigma akashiwo* and *Chaetoceros* sp. bloom. While axenic cultures of *H. akashiwo* and *C. curvisetus* were indicated to produce the corresponding peaks such as protein-like peak and humic-like peak 2 in our study. The absence of humic-like peak 1
in the natural sweater was possibly due to the relatively weak FI of the peak. Moreover, it was suggested that the fluorescent peaks detected in EEM of an axenic *Micromonas* culture, which were centred at 275 nm/345 nm and 348 nm/436 nm, were consistent with the peak detected in natural seawater during a *Micromonas* bloom (Romera-Castillo et al., 2010). We observed species-specific strong peaks such as at 375 nm/462 nm for *O. viridis*, which are likely to be identified in natural environment. It is suggested that the DOC-specific FIs are also indicators, although we should note that photo-degradability of FDOM and DOC were considered to vary (Mostofa et al., 2007). We should also note that heterotrophic bacteria were known to alter the FDOM property. For instance, they consume peak M to produce peak C (Romera-Castillo et al., 2011). The three-dimensional fluorescence method does not require any special techniques during the pre-treatment procedure; therefore, it is suitable for monitoring. It suggests that early detection of noxious algal blooms is possible using the EEM technique. To test this possibility, we need to monitor time-series of fluorescent EEMs in seawater during the course of a bloom event and compare the optical characteristics of seawater samples and those of the axenic culture filtrates of the noxious phytoplankton species. In the present study, we investigated the fluorescence properties of DOM exuded by eight species of axenic phytoplankton using an artificial medium.
Our knowledge about FDOM production by pure cultures of marine phytoplankton is still quite limited. For example, the study does not involve cyanobacterial species, which often form nuisance bloom in coastal areas. Further studies are required to understand the biogeochemical and ecological role of FDOM and its relative abundance in the natural environments.

Acknowledgements

We are grateful to H. Shirasawa and T. Fuji at Kyoto University for their kind support on data analysis and advice during the preparation of this manuscript. We also acknowledge the insightful comments of three anonymous reviewers.

Funding

This work was conducted as part of the research project of the connectivity of hills, humans and oceans on the local society based on ecosystem services in the forested watershed environment, FSERC, Kyoto University. This research was also partly supported by a Sasakawa Scientific Research Grant from The Japan Science Society.
References

Imai, I. (1987) Size distribution, number and biomass of bacteria in intertidal sediments

organic matter (DOM): A prerequisite for understanding UV-induced changes of

Sun, J. and Liu, D. Y. (2003) Geometric models for calculating cell biovolume and

Traganza, E. D. (1969) Fluorescence excitation and emission spectra of dissolved

electrochemical study of the speciation of copper, zinc and iron in two estuaries

dissolved organic matter (DOM) in coastal environments by excitation emission

Yamashita, Y., Panton, A., Mahaffey, C. and Jaffé, R. (2011) Assessing the spatial and
temporal variability of dissolved organic matter in Liverpool Bay using
excitation-emission matrix fluorescence and parallel factor analysis. *Ocean Dyn.*

Table and Figure legends

Table I. Coastal phytoplankton species examined.

Table II. Incubation time, growth rates (µ) during the exponential growth phase, the final cell abundance (C) and biomass (B).

Table III. Net increase in the dissolved organic carbon (DOC) concentration and the apparent percentage of net photosynthetic extracellular release (APER) for each plankton culture. APER was calculated as follows: \(\text{APER} = \frac{\text{DOC}}{\text{DOC} + \text{Biomass}} \times 100 \), where DOC and Biomass are the net increases in DOC and biomass during the incubation period, respectively. The data shown are average values ± standard error (S.E.) (n = 3).

Table IV. Peak position, averaged fluorescence intensity (FI) standardised to quinine sulphate unit (QSU) at each peak position and DOC-specific FI of FDOM (QSU/L mg C\(^{-1}\)) secreted by each species. Mean value ± S.E. (n = 3).
Table V. DOC (µg C 1000 cells⁻¹) and intensity of each fluorescent component (QSU mL 1000 cells⁻¹), which were standardised on the basis of the cell density at the end of the incubation, secreted by the phytoplankton cultures. Mean value ± S.E. (n = 3).

Fig. 1. Average excitation emission matrices of fluorescent dissolved organic matter (FDOM) secreted by each plankton culture.
Table I. Coastal phytoplankton species examined

<table>
<thead>
<tr>
<th>Taxonomic Group</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillariophyceae</td>
<td>Ditylum brightwellii (T.West) Grunow, 1885</td>
</tr>
<tr>
<td></td>
<td>Chaetoceros curvisetus P.T. Cleve, 1889</td>
</tr>
<tr>
<td>Dinoflagellata</td>
<td>Heterocapsa circularisquama Horiguchi, 1995</td>
</tr>
<tr>
<td></td>
<td>Alexandrium catenella (Whedon & Kofoid) E.Balech, 1985</td>
</tr>
<tr>
<td>Raphidophyceae</td>
<td>Heterosigma akashiwo (Y.Hada) Y.Hada ex Y.Hara & M.Chihara, 1967</td>
</tr>
<tr>
<td>Cryptomonadacea</td>
<td>Rhodomonas ovalis Nygaard</td>
</tr>
<tr>
<td>Prymnesiophyceae</td>
<td>Pleurochrysis roscoffensis (P. Dangeard) J. Fresnel & C. Billard</td>
</tr>
</tbody>
</table>
Table II. Incubation time, growth rates (μ) during the exponential growth phase, the final cell abundance (C) and biomass (B) for various phytoplankton cultures.

<table>
<thead>
<tr>
<th>Phytoplankton culture</th>
<th>Time (d)</th>
<th>μ (d$^{-1}$)</th>
<th>C (cells ml$^{-1}$)</th>
<th>B (mg C L$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ditylum brightwellii</td>
<td>12</td>
<td>0.76 ± 0.05</td>
<td>$11 \pm 1 \times 10^3$</td>
<td>18.8 ± 1.0</td>
</tr>
<tr>
<td>Chaetoceros curvisetus</td>
<td>6</td>
<td>0.97 ± 0.07</td>
<td>$199 \pm 37 \times 10^3$</td>
<td>5.9 ± 1.1</td>
</tr>
<tr>
<td>Heterocapsa circularisquama</td>
<td>12</td>
<td>0.84 ± 0.01</td>
<td>$93 \pm 22 \times 10^3$</td>
<td>33.1 ± 7.9</td>
</tr>
<tr>
<td>Alexandrium catenella</td>
<td>27</td>
<td>0.48 ± 0.01</td>
<td>$22 \pm 3 \times 10^3$</td>
<td>27.6 ± 4.1</td>
</tr>
<tr>
<td>Heterosigma akashiwo</td>
<td>14</td>
<td>0.35 ± 0.03</td>
<td>$121 \pm 59 \times 10^3$</td>
<td>28.7 ± 13.8</td>
</tr>
<tr>
<td>Oltmannsiellopsis viridis</td>
<td>12</td>
<td>0.55 ± 0.06</td>
<td>$247 \pm 95 \times 10^3$</td>
<td>18.2 ± 7.0</td>
</tr>
<tr>
<td>Rhodomonas ovalis</td>
<td>12</td>
<td>0.40 ± 0.01</td>
<td>$253 \pm 45 \times 10^3$</td>
<td>3.5 ± 0.6</td>
</tr>
<tr>
<td>Pleurochrysis roscoffensis</td>
<td>12</td>
<td>0.45 ± 0.03</td>
<td>$136 \pm 18 \times 10^3$</td>
<td>11.8 ± 1.6</td>
</tr>
</tbody>
</table>
Table III. Net increase in the dissolved organic carbon (DOC) concentration and the apparent percentage of net photosynthetic extracellular release (APER) for each plankton culture. APER was calculated as follows: \(\text{APER} = \frac{\text{DOC}}{\text{DOC} + \text{Biomass}} \times 100 \), where DOC and Biomass are the net increases in DOC and biomass during the incubation period, respectively. The data shown are average values ± standard error (S.E.) (n = 3).

<table>
<thead>
<tr>
<th>Phytoplankton culture</th>
<th>DOC (mg C L(^{-1}))</th>
<th>APER (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ditylum brightwellii</td>
<td>25.1 ± 4.9</td>
<td>55.9 ± 4.5</td>
</tr>
<tr>
<td>Chaetoceros curvisetus</td>
<td>26.6 ± 11.3</td>
<td>71.5 ± 16.0</td>
</tr>
<tr>
<td>Heterocapsa circularisquama</td>
<td>38.6 ± 14.8</td>
<td>51.0 ± 14.6</td>
</tr>
<tr>
<td>Alexandrium catenella</td>
<td>24.1 ± 5.5</td>
<td>46.1 ± 9.4</td>
</tr>
<tr>
<td>Heterosigma akashiwo</td>
<td>19.3 ± 5.1</td>
<td>52.4 ± 19.6</td>
</tr>
<tr>
<td>Oltmannsielopsis viridis</td>
<td>27.8 ± 4.5</td>
<td>63.7 ± 7.7</td>
</tr>
<tr>
<td>Rhodomonas ovalis</td>
<td>26.4 ± 16.6</td>
<td>72.1 ± 18.6</td>
</tr>
<tr>
<td>Pleurochrysis rosoffensis</td>
<td>49.9 ± 7.5</td>
<td>80.2 ± 3.7</td>
</tr>
</tbody>
</table>
Table IV. Peak position, averaged fluorescence intensity (FI) standardised to quinine sulphate unit (QSU) at each peak position and DOC-specific FI of FDOM (QSU L mg C\(^{-1}\)) secreted by each species. Mean value ± S.E. (n = 3).

<table>
<thead>
<tr>
<th>Phytoplankton culture</th>
<th>Humic-like peak 1</th>
<th>Humic-like peak 2</th>
<th>Protein-like peak</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ex (nm)</td>
<td>Em (nm)</td>
<td>FI (QSU)</td>
</tr>
<tr>
<td>Ditylum brightwellii</td>
<td>355</td>
<td>454</td>
<td>0.26 ± 0.02</td>
</tr>
<tr>
<td>Chaetoceros curvisetus</td>
<td>250</td>
<td>455</td>
<td>0.54 ± 0.04</td>
</tr>
<tr>
<td>Heterocapsa circularisquama</td>
<td>340</td>
<td>461</td>
<td>0.15 ± 0.01</td>
</tr>
<tr>
<td>Alexandrium catenella</td>
<td>250</td>
<td>471</td>
<td>0.55 ± 0.15</td>
</tr>
<tr>
<td>Heterosigma akashiwo</td>
<td>375</td>
<td>473</td>
<td>0.31 ± 0.10</td>
</tr>
<tr>
<td>Oltmannsiellopsis viridis</td>
<td>375</td>
<td>462</td>
<td>0.86 ± 0.24</td>
</tr>
<tr>
<td>Rhodomonas ovalis</td>
<td>250</td>
<td>446</td>
<td>0.80 ± 0.13</td>
</tr>
<tr>
<td>Pleurochrysis roscoffensis</td>
<td>250</td>
<td>455</td>
<td>0.56 ± 0.11</td>
</tr>
</tbody>
</table>
Table V. DOC (µg C 1000 cells⁻¹) and intensity of each fluorescent component (QSU mL 1000 cells⁻¹), which were standardised on the basis of the cell density at the end of the incubation, secreted by the phytoplankton cultures. Mean value ± S.E. (n = 3).

<table>
<thead>
<tr>
<th>Phytoplankton culture</th>
<th>Time (d)</th>
<th>DOC (µg C 1000 cells⁻¹)</th>
<th>Humic-like peak 1 (QSU mL 1000 cells⁻¹)</th>
<th>Humic-like peak 2 (QSU mL 1000 cells⁻¹)</th>
<th>Protein-like peak (QSU mL 1000 cells⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ditylum brightwellii</td>
<td>12</td>
<td>2.22 ± 0.45</td>
<td>0.023 ± 0.0024</td>
<td>0.058 ± 0.007</td>
<td>0.051 ± 0.004</td>
</tr>
<tr>
<td>Chaetoceros curvisetus</td>
<td>6</td>
<td>0.13 ± 0.06</td>
<td>Not Detected</td>
<td>0.003 ± 0.001</td>
<td>0.003 ± 0.001</td>
</tr>
<tr>
<td>Heterocapsa circularisquama</td>
<td>12</td>
<td>0.42 ± 0.19</td>
<td>0.0016 ± 0.0004</td>
<td>0.007 ± 0.002</td>
<td>0.017 ± 0.004</td>
</tr>
<tr>
<td>Alexandrium catenella</td>
<td>27</td>
<td>1.09 ± 0.29</td>
<td>Not Detected</td>
<td>0.025 ± 0.008</td>
<td>0.034 ± 0.006</td>
</tr>
<tr>
<td>Heterosigma akashiwo</td>
<td>14</td>
<td>0.16 ± 0.09</td>
<td>0.0026 ± 0.0015</td>
<td>0.007 ± 0.004</td>
<td>0.004 ± 0.002</td>
</tr>
<tr>
<td>Oltmannsiellopsis viridis</td>
<td>12</td>
<td>0.11 ± 0.05</td>
<td>0.0035 ± 0.0016</td>
<td>0.005 ± 0.002</td>
<td>0.009 ± 0.004</td>
</tr>
<tr>
<td>Rhodomonas ovalis</td>
<td>12</td>
<td>0.10 ± 0.07</td>
<td>Not Detected</td>
<td>0.003 ± 0.001</td>
<td>0.005 ± 0.003</td>
</tr>
<tr>
<td>Pleurochrysis roscoffensis</td>
<td>12</td>
<td>0.37 ± 0.07</td>
<td>Not Detected</td>
<td>0.004 ± 0.001</td>
<td>0.004 ± 0.001</td>
</tr>
</tbody>
</table>
Fig. 1. Average excitation emission matrices of fluorescent dissolved organic matter (FDOM) secreted by each plankton culture.