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We study the heavy-heavy-light quark (QQq) potential in SU(3) quenched lattice QCD, and discuss one

of the roles of the finite-mass valence quark in the interquark potential. Monte Carlo simulations are

performed with the standard gauge action on the 164 lattice at � ¼ 6:0 and the OðaÞ-improved Wilson

fermion action at four hopping parameters. For statistical improvement, the gauge configuration is fixed

with the Coulomb gauge. We calculate the potential energy of QQq systems as a function of the inter-

heavy-quark distance R in the range of R � 0:8 fm. The QQq potential is well described with a Coulomb

plus linear potential, and the effective string tension between the two heavy quarks is significantly smaller

than the string tension � ’ 0:89 GeV=fm. It would generally hold that the effect of the finite-mass valence

quark reduces the inter-two-quark confinement force in baryons.
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I. INTRODUCTION

In hadron physics, the interquark interaction is one of
the fundamental and essential properties. In particular, the
quark confinement is not only an important property of
hadrons but also an important problem of modern phys-
ics. The non-Abelian and strong coupling nature of QCD
makes it difficult to treat the interquark interaction and
many other nonperturbative phenomena analytically. Lat-
tice QCD is the first-principle calculation based on the
QCD Lagrangian, and is one of the most useful approaches
for such nonperturbative phenomena [1,2].

The quark confinement in hadrons is well described by
the picture of the gluonic ‘‘flux-tube’’ or ‘‘string.’’[3]. This
means that the confinement potential is a linear function
of the flux-tube length. For example, the quark-antiquark
(Q �Q) potential is written as the one-gluon-exchange
Coulomb potential plus the linear confinement potential,

VQ �QðRÞ ¼ �Q �QR� AQ �Q

R
þ CQ �Q; (1)

which is called the Cornell potential [4]. Here R is the
distance between the quark and the antiquark, and it is
equal to the gluonic flux-tube length of the Q �Q system.
Lattice QCD also reproduces this functional form of the
Q �Q potential [5,6].

In addition, the lattice QCD calculations reveal that this
picture holds in three-quark (3Q) systems and multiquark
systems. The 3Q potential is obtained from quenched
lattice QCD as

V3Qð ~r1; ~r2; ~r3Þ ¼ �3QLmin �
X
i<j

A3Q

j~ri � ~rjj þ C3Q; (2)

where ð~r1; ~r2; ~r3Þ are the coordinates of three quarks and
Lmin is the flux-tube length [7]. The 3Q flux tube has the

geometry minimally connecting the three quarks, and
forms the Y-type structure [7–10]. The similar potentials
are obtained in multiquark systems [11]. In the flux-tube
picture of 3Q and multiquark systems, the confining force
is a many-body force, reflecting the complicated gluonic
dynamics based on the SU(3) gauge symmetry. The
strength of the confinement by these flux tubes, i.e., the
string tension, is the universal value in hadrons, about
0.89 GeV/fm.
These interquark interactions are mainly constructed

from the gluon dynamics. In particular, as most of previous
lattice works, the static and quenched calculation strictly
gives only the gluonic potential. However, since not only
gluons but also quarks exist in hadrons, the realistic inter-
quark potential would include quark effects. The quark
effects can be categorized into two types.
One is the unquenched effect, or the sea quark effect. As

is already known, the sea quark causes ‘‘string breaking’’
and flattens the potential slope in long range. This phe-
nomenon is convinced also in lattice QCD [12].
The other is the finite-mass valence quark effect. An

example of this effect is the relativistic correction to the
Coulomb interaction, i.e., the Fermi-Breit interaction [13].
As well as the Coulomb potential, we can also expect the
finite-mass quark effects on the confinement potential. In
3Q or multiquark systems, there would exist nontrivial
effects reflecting the characteristic flux-tube structure. In
this paper, we investigate this ‘‘motional’’ effect of finite-
mass valence quarks.
To investigate such quark motional effects, we define the

heavy-heavy-light-quark (QQq) potential [14]. Consider
the QQq system which is constructed with two static
quarks and one finite-mass quark. The QQq potential
VQQqðRÞ is defined as the energy of the QQq system in

terms of the inter-heavy-quark distance R. It is the inter-
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two-quark potential in baryons which effectively includes
the light-quark effects. We calculate the QQq potential in
lattice QCD, and study the nontrivial light-quark effect by
comparing it with the static Q �Q or 3Q potential.

As an example of experimental QQq baryons, the dou-
bly charmed baryon is recently observed by the SELEX
Collaboration at Fermilab. In 2002, they observed the
doubly charmed baryon �þ

ccðdccÞ through a decay process
�þ

cc ! �þ
c K

��þ [15]. They also confirmed another decay
process �þ

cc ! pDþK� [16]. However, there is also the
negative result, for example, by the BABAR Collaboration
[17]. The experimental discovery of the doubly charmed
baryons is still under debate, and more experimental infor-
mation is desired. The doubly charmed baryons are also
theoretically investigated in lattice QCD [18] and other
approaches [13,19,20].

In this paper, we calculate the QQq potential in SU(3)
lattice QCD, and investigate the finite-mass valence quark
effect in the interquark potential in baryons. In Sec. II, we
formulate the potential calculation using the QQq Wilson
loop. In Sec. III, we introduce the Coulomb gauge fixing
for the statistical error reduction, and consider its effect on
the interquark potential. In Sec. IV, we show the lattice
QCD data and the resulting QQq potential, and discuss the
finite-mass valence quark effect on the QQq potential.
Section V is devoted to the summary.

II. LATTICE QCD FORMALISM

A. QQq Wilson loop

As the basic potential calculations in lattice QCD, we
define the QQq Wilson loop for the QQq potential calcu-
lation. As shown in Fig. 1(a), the QQq Wilson loop is
constructed from two ‘‘staples’’ of static-quark trajectories
and one light-quark propagator. The two staplesUI andUII

are the path-ordered product of link variables, as the static
interquark potential calculation. The major difference from
the usual potential calculation is that theQQqWilson loop
includes the quark propagator K�1, which represents the
light quark moving around. They are written as

WQQqðR; TÞ � 1

3!
�abc�defU

I
adU

II
beK

�1
cf ; (3)

Uk ¼ Pe
ig
R

�k
dx�A� ðk ¼ I; IIÞ; (4)

K�1
ab ¼

Z
D �qDqqa �qbe

� �qKq; (5)

where the subscripts a; b; . . . ; f are color indices. When T
is large enough, the expectation value of the QQq Wilson
loop should depend only on the spatial size R and the
temporal size T, not on the position of the source and
sink junction points [RI and RII in Fig. 1(a)]. The resulting
QQq potential is written with one parameter R, which is
the distance between the two heavy quarks.
The QQq potential is obtained from the expectation

value of the QQq Wilson loop as

VQQqðRÞ ¼ � lim
T!1

1

T
lnhWQQqðR; TÞi: (6)

The symbol h imeans the expectation value integrated over
the gauge field. In practical analysis, the expectation value
is fitted with a single exponential form Ce�VQQqT in large
but finite range of T. To estimate the suitable fit range of T,
the effective mass is defined as

vðR; TÞ � ln
hWQQqðR; TÞi

hWQQqðR; T þ 1Þi : (7)

If the state is dominated by a single component of the
potentials, the effective mass is independent of T. The
plateau region of the effective mass is the indication to
determine the fit range of T. We calculate the expectation
value in lattice QCD for several values of R, and explore a
suitable functional form of VQQqðRÞ.
In Eq. (3) and Fig. 1(a), the QQqWilson loop is defined

as a single gauge-invariant loop. For the reduction of the
statistical error, we actually use the ‘‘wall-to-wall QQq
Wilson loop.’’ We define the wall-to-wall quark propaga-
tor as

K�1
wallðTÞ �

1

V2

X
nsrc

X
nsink

K�1ðnsrc; nsink; TÞ; (8)

where nsrc and nsink are the spatial sites of the source and
sink, respectively, and V is the number of the spatial lattice
sites. This wall-to-wall propagator is the averaged propa-
gator from the whole space at one time to that at another
time. (The ‘‘wall’’ means the average over all spatial sites.)
The wall-to-wall QQq Wilson loop is constructed by re-
placing the single quark propagator in the QQq Wilson
loop with this wall-to-wall quark propagator. The sche-
matic figure is depicted in Fig. 1(b). Because such a prop-
agator is independent of the spatial position, we can easily
sum up the parallel translated wall-to-wall QQq Wilson
loops in the whole space. This summing up drastically
suppresses the statistical error owing to the large statistics.

R RIII

R

+

++

T

(a) (b)

FIG. 1. (a) The QQq Wilson loop. The wavy line represents
the light-quark propagator and the straight line the heavy-quark
trajectory. (b) The ‘‘wall-to-wall QQq Wilson loop.’’ The gray
wavy lines represent the wall-to-wall quark propagator, which is
the average of all propagators at a fixed time separation.
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Without gauge fixing, the disconnected components in the
wall-to-wall QQq Wilson loops automatically vanish by
Elitzur’s theorem and only the gauge-invariant components
remain, and therefore the resulting QQq potential is gauge
invariant.

B. Simulation details

We perform SU(3) lattice QCD calculation at the
quenched level. Simulation parameters are summarized
in Table I. The gauge action is the standard isotropic
plaquette action and � ¼ 6:0. The corresponding lattice
spacing a ’ 0:10 fm is determined so as to reproduce the
string tension �Q �Q of the Q �Q potential to be 0.89 GeV/fm.

We use this lattice unit for most part of the paper. Lattice
volume is 164, and periodic boundary conditions are im-
posed on the space-time boundaries. For generating the
gauge configurations, we use the pseudo-heat-bath algo-
rithm and take 10 000 sweeps for the thermalization, and
500 sweeps for the separation of each configuration.

For the ground-state component enhancement, we apply
the smearing method [7,21] to the spatial link variables of
the QQq Wilson loop. In the smearing method for SU(3)
link variables, we iteratively replace the link variableUiðnÞ
ði ¼ 1; 2; 3Þ with ~UiðnÞð2 SUð3ÞÞ which maximizes

ReTr

�
~Uy
i ðnÞ

�
�UiðnÞ þ

X
j�i

ðUjðnÞUiðnþ ĵÞUy
j ðnþ îÞ

þUy
j ðn� ĵÞUiðn� ĵÞUjðnþ î� ĵÞÞ

��
: (9)

Such a replacement does not change the gauge transforma-
tion property of the link variable, and this smearing method
is a gauge-invariant manner. Physically, the gauge-
invariant smearing method changes a stringy link to a
spatially-extended flux tube. It does not change the physi-

cal content such as the potential, and enhances the ground-
state component so that the statistical error is suppressed.
The method has two parameters, a real parameter� and the
iteration number Nsmr of the replacements, and our choice
of � and Nsmr is based on the static 3Q case [7].
As for the fermion action for the light-quark propagator,

we adopt the OðaÞ-improved Wilson fermion action, i.e.,
the clover fermion action [22]

Squark ¼
X
n;m

�qnKnmqm; (10)

Knm ¼ �n;m � �
X
�

fð1� 	�ÞU�ðnÞ�nþ�̂;m

þ ð1þ 	�ÞUy
�ðn� �̂Þ�n��̂;mg

� �c
X
�<


��
F�
�n;m; (11)

where n and m are the space-time site indices, and other
indices are omitted. The clover coefficient c in this action
is given from the mean field value u0 of the link variable
for the tadpole improvement. We determine c and u0 from
the plaquette value P�
ðnÞ as

c ¼ 1

u30
; u0 ¼

�
1

3
ReTrP�
ðnÞ

�
1=4

: (12)

Here h i means the average of all plaquettes in the gauge
configurations as the ensemble average. The measured
mean field value u0 is 0.87779(2) in our gauge configura-
tions. To investigate the light-quark-mass dependence, we
take different four light-quark hopping parameters, � ¼
0:1200, 0.1300, 0.1340, and 0.1380. In Table II, we list the
results of the meson correlator calculations using these
hopping parameters. The constituent quark mass Mq is

roughly estimated with the half of the � meson mass m�.

Our calculations cover the mass region of 0:5 GeV �
Mq � 1:5 GeV.

The Monte Carlo simulations are performed on NEC
SX-8R at Osaka University.

III. COULOMB GAUGE FIXING

A. Statistical error reduction

In principle, the QQq potential can be calculated with
the formalism which is mentioned in the Sec. II. However,
since the statistical error is severely large, some improve-
ments are necessary for statistical error reduction. We have

TABLE I. Simulation parameters. The list shows � ¼ 2Nc=g
2 and the corresponding lattice

spacing a, the sweep numbers ðNtherm; NsepÞ of the thermalization and separation for updating

the gauge fields, the smearing parameters ð�;NsmrÞ, and the clover coefficient c.

� a [fm] lattice size Ntherm Nsep � Nsmr c

6.0 0.10 164 10 000 500 2.3 40 1.479

TABLE II. The correspondence between � and the meson
masses. The list shows the used gauge configuration number
Nconf , the pion mass m�, the � meson mass m�, and the

approximate constituent quark mass Mq ’ m�=2. The statistical

error is estimated with the jackknife method.

� Nconf m� m� Mq

0.1200 1000 1.446(1) 1.472(2) 1.5 GeV

0.1300 300 0.900(2) 0.949(1) 1 GeV

0.1340 300 0.643(1) 0.716(1) 700 MeV

0.1380 1000 0.304(1) 0.467(2) 500 MeV
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tried several methods for the error reduction, and adopted
the Coulomb gauge fixing procedure. In this procedure, the
light-quark propagator and the heavy-quark trajectories in
the wall-to-wall QQq Wilson loop is calculated after the
Coulomb gauge fixing. The Coulomb gauge fixing proce-
dure surprisingly suppresses the statistical error in this
study.

Since the wall-to-wall propagator is a spatial average of
all propagators, the wall-to-wall QQq Wilson loop in-
cludes disconnected loops, where the two staples and the
light-quark propagator are not connected at the source and
sink junction points. The expectation values of such dis-
connected loops vanish in gauge-invariant formalism, but
do not vanish with the Coulomb gauge. Such contribu-
tions are gauge-variant artifacts by the nonlocal nature of
the Coulomb gauge, and can give the different result from
the gauge-invariant potential. However, empirically, the
gauge-variant components at the Coulomb gauge rapidly
decrease and do not affect the resulting potential [23].

In this section, we show several numerical results ofQ �Q
and 3Q potentials with the Coulomb gauge, and check that
its influence is small enough for interquark potential cal-
culations. Other statistical improvement methods which
we have tried are added to Appendix A.

B. Q �Q potential with the Coulomb gauge

First, we consider the Q �Q potential with the Coulomb
gauge [23]. We set the correlator of two Wilson lines

WCoul
Q �Q

ðR; TÞ � 1
3 TrfLð~r1; TÞLyð ~r2; TÞg; (13)

where Lð ~r; TÞ is a Wilson line with temporal length T and
R ¼ j~r1 � ~r2j. The expectation value of this correlator is
nonzero with the Coulomb gauge. The Q �Q potential VCoul

Q �Q
with the Coulomb gauge is extracted by fitting with
hWCoul

Q �Q
i ¼ C expð�VCoul

Q �Q
TÞ. The best-fit result of the on-

axis data with VCoul
Q �Q

ðRÞ ¼ �Coul
Q �Q

R� ACoul
Q �Q

=Rþ CCoul
Q �Q

is

listed in Table III. Although the potential seems to include
some gauge-dependent contributions in small T, when the
fit range of T is large enough, gauge artifacts dump and the
potential approaches the physicalQ �Q potential. Compared
to the gauge-invariant result in SU(3) lattice QCD with
� ¼ 6:0 [6], the string tension �Coul

Q �Q
is close to or slightly

higher than the physical value �Q �Q ¼ 0:0534ð18Þ, and the

Coulomb coefficient ACoul
Q �Q

is almost the same as the physi-

cal value AQ �Q ¼ 0:267ð6Þ.

C. 3Q potential with the Coulomb gauge

Next, we turn to the 3Q case, which is more relevant for
ourQQq potential calculation. As for the 3Q potential with
the Coulomb gauge, we consider two types of correlators.
One is the simple correlator of three Wilson lines

WCoul
3QA � 1

3!
�abc�defLadð ~r1; TÞLbeð ~r2; TÞLcfð ~r3; TÞ; (14)

and the other is the correlator of one Wilson line and two
staples UI and UII

WCoul
3QB � 1

3!
�abc�defU

I
adU

II
beLcfð ~r3; TÞ; (15)

which is a closer geometry to the QQq Wilson loop. The
schematic figures are shown in Fig. 2. There is not an
essential difference between the results from these corre-
lators, but WCoul

3QB has an advantage in accuracy since the

smearing method is available.
The numerical results extracted fromWCoul

3QB are shown in

Table IV. The total number of geometries of WCoul
3QB is 96:

0 � RI � 4, 0 � RII � 4, and 1 � RIII � 4, except for
RI ¼ RII ¼ 0. The 3Q potential with the Coulomb gauge
can be written with the same form as the physical 3Q
potential,

TABLE III. The best-fit parameters of the on-axis Q �Q potential with the Coulomb gauge. The
list has different fit ranges of T for fitting with hWCoul

Q �Q
i ¼ C expð�VCoul

Q �Q
TÞ. Ndof is the degree of

freedom.

fit-range �Coul
Q �Q

ACoul
Q �Q

CCoul
Q �Q

�2=Ndof

T ¼ ½1; 8� 0.062(3) 0.258(10) 0.609(1) 3.13

T ¼ ½2; 8� 0.060(2) 0.254(7) 0.606(9) 2.86

T ¼ ½3; 8� 0.058(2) 0.256(7) 0.609(2) 2.69

T ¼ ½4; 8� 0.059(1) 0.253(5) 0.605(3) 0.41

RI

RII

RII I

T

RI II

T

(b)(a)

x

y
t

FIG. 2. The correctors WCoul
3QA (left) and WCoul

3QB (right) for the
3Q potential with the Coulomb gauge. RI and RII are the same
in Fig. 1(a), and RIII is the distance between the two staples and
the Wilson line.
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VCoul
3Q ¼ �Coul

3Q Lmin �
X
i<j

ACoul
3Q

j~ri � ~rjj þ CCoul
3Q : (16)

The 3Q string tension �Coul
3Q and the Coulomb coefficient

ACoul
3Q are almost the same as the physical values �3Q ¼

0:0460ð4Þ and A3Q ¼ 0:1366ð11Þ [7]. Considering artifacts
from the geometrical asymmetry, we have also tried a more
general fit function

VCoul
3Q ¼ �Coul

3Q Lmin �
X
i<j

ACoul
ij

j~ri � ~rjj þ CCoul
3Q ; (17)

where there are five fit parameters. In this case, we have
found that ACoul

12 ’ ACoul
13 ’ ACoul

23 and the result is un-

changed from the fit function (16).
From above results, the Q �Q and 3Q potentials with the

Coulomb gauge are found to approach the physical poten-
tials if the fit range of T is large enough. This would hold
both in the long-range physics, such as the string tension,
and in the short-range physics, such as the one-gluon-
exchange Coulomb potential. Therefore, we can expect
that the physical QQq potential is approximately obtained
from the wall-to-wall QQqWilson loop with the Coulomb
gauge in the whole region.

IV. LATTICE QCD RESULTS

A. QQq potential

In Fig. 3, we plot typical examples of the effective mass
of the wall-to-wall QQq Wilson loop with the Coulomb

gauge. We show the smallest-quark-mass case, � ¼
0:1380, where the statistical fluctuation is the largest. In
the figure, we compare two kinds of data with and with-
out the gauge-invariant smearing method. The smearing
method enhances the ground-state component of the QQq
potential, especially in the large loop case. Then the effec-
tive mass is almost flat in T � 3 and thus the ground-state
component dominates.
In the region where the effective mass is flat, we

fit hWQQqðR; TÞi with a single exponential form

C expð�VQQqTÞ, and obtain the QQq potential VQQqðRÞ.
The resulting values with � ¼ 0:1380 are listed in Table V,
and � ¼ 0:1200 in Table VI. As mentioned above, VQQq is

almost independent of the fit range of T, and then the
ground-state component dominates. It is also confirmed
that VQQq does not depend on the position of the junction

points RI and RII separately, but depends only on R. Then
we can describe the QQq potential as a function of the
inter-heavy-quark distance R. The same arguments hold
also in other two � cases.
For a functional form of VQQqðRÞ, we consider the

Coulomb plus linear potential,

VQQqðRÞ ¼ �effR� Aeff

R
þ Ceff ; (18)

as the analogy of theQ �Q potential (1). The subscript ‘‘eff’’
means these values effectively including the light-quark
effect. This simple function is surprisingly suitable for
VQQqðRÞ, and the best-fit parameters and the resulting

TABLE IV. The 3Q potential with the Coulomb gauge extracted from WCoul
3QB . The best-fit

parameters are of the function (16) with different fit ranges of T.

fit-range �Coul
3Q ACoul

3Q CCoul
3Q �2=Ndof

T ¼ ½1; 8� 0.0498(3) 0.138(1) 0.957(3) 6.14

T ¼ ½2; 8� 0.0474(3) 0.138(1) 0.959(3) 8.34

T ¼ ½3; 8� 0.0466(7) 0.141(2) 0.968(5) 3.91

T ¼ ½4; 8� 0.0482(15) 0.136(3) 0.950(11) 3.95

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  1  2  3  4  5  6  7  8

v(
R

=
2,

T
)

T

Nsmr =  0 
 Nsmr = 40

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  1  2  3  4  5  6  7  8

v(
R

=
8,

T
)

T

Nsmr =  0 
 Nsmr = 40

FIG. 3. The effective mass of the wall-to-wall QQqWilson loop with the Coulomb gauge and the efficiency of the smearing method.
The lightest quark case, � ¼ 0:1380, is shown. The left graph is the small loop case with R ¼ 2 and ðRI; RIIÞ ¼ ð1; 1Þ and the right is
the large loop case with R ¼ 8 and ðRI; RIIÞ ¼ ð4; 4Þ. In each graph, two kinds of data are the result without the smearing method
(circle) and with the smearing method of ð�;NsmrÞ ¼ ð2:3; 40Þ (square). Thus, the smearing method is found to be effective, especially
for large R.
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potential form are shown in Table VII and Fig. 4, respec-
tively. For comparison, the string tension and the Coulomb
coefficient in the static 3Q potential (2) are

�3Q ’ 0:045; A3Q ’ 0:13 (19)

in the lattice unit at � ¼ 6:0 [7]. The Coulomb coefficient
Aeff is almost the same value as A3Q, which is consistent

with the short-distance behavior of the 3Q potential in
perturbative QCD. In contrast, �eff is about 10%–20%
reduced compared to �3Q at � ¼ 0:1300, 1340, and

1380, as

�eff <�3Q: (20)

In the heaviest case, � ¼ 0:1200, the effective string ten-
sion approximately equals to the string tension. Let us call
this parameter �eff the ‘‘effective string tension.’’ We have
found that the effective string tension is smaller than the
string tension of the static 3Q system. The effective string
tension strongly depends on �, or the light quark mass.

B. Effective string tension

In the ground state interquark potentials in hadrons, the
confinement potential is the linear function of the flux-tube
length Lmin, and the flux tube forms the shape minimally
connecting the quarks. As depicted in Fig. 5, in the ground
state ofQ �Q systems, the flux-tube length Lmin equals to the
distance R between the quark and the antiquark. The
confinement part of the Q �Q potential can be written as a

linear function of the interquark distance R, and the string
tension �Q �Q is its proportionality coefficient.

In contrast, in 3Q systems or multiquark systems, the
flux tube length Lmin and the interquark distances do not
coincide, and its relation is determined by nontrivial dy-
namics of QCD. Thus, the confinement potential is a linear
function of Lmin but a complicated function of the inter-
quark distances. In addition, the QQq potential effectively
includes the heavy-light Coulomb potential and the light-
quark kinetic energy. Therefore, the R-dependence of the
QQq potential itself, for example, that the QQq confine-
ment potential is linear with R, is a nontrivial result.
The lattice QCD results suggest that the QQq confine-

ment potential is written as the familiar linear potential
form, but the effective string tension �eff is smaller than
the static 3Q string tension �3Q. The string tension is the

proportionality coefficient of the flux-tube length in con-
finement potentials, and characterizes the confining force
by the flux tube. The effective string tension is the propor-
tionality coefficient of the inter-two-quark distance, and
characterizes the confining force between two quarks in
hadrons. The deviation between the string tension and the
effective string tension is considered to originate from such
a difference, i.e., the geometrical difference between the
flux-tube length and the interquark distance.
As mentioned before, the functional form of the QQq

potential is generally nontrivial. Let us consider the more
detail about its functional form. In the large R limit, the
light-quark spreading vertical to the inter-heavy-quark di-
rection is negligible compared with R, and the flux-tube

TABLE V. The lattice QCD results for the QQq potential
VQQq with the Coulomb gauge at � ¼ 0:1380. R and ðRI; RIIÞ
denote the loop size defined in Fig. 1. The results with different
fit ranges of T are also shown. All the values are in lattice unit,
and the statistical error is estimated with the jackknife method.

R ðRI; RIIÞ VQQq VQQq

T ¼ ½4; 8� T ¼ ½5; 8�
1 (0,1) 0.877(2) 0.873(2)

2 (0,2) 0.971(7) 0.959(9)

(1,1) 0.969(8) 0.958(10)

3 (0,3) 1.047(4) 1.045(7)

(1,2) 1.045(4) 1.043(8)

4 (0,4) 1.083(11) 1.067(17)

(1,3) 1.079(10) 1.063(16)

(2,2) 1.078(10) 1.063(15)

5 (0,5) 1.136(6) 1.122(3)

(1,4) 1.131(6) 1.117(4)

(2,3) 1.130(6) 1.116(5)

6 (0,6) 1.170(13) 1.151(24)

(2,4) 1.157(16) 1.136(30)

(3,3) 1.157(16) 1.136(31)

7 (0,7) 1.219(21) 1.220(50)

(3,4) 1.207(24) 1.209(60)

8 (0,8) 1.262(11) 1.283(21)

(4,4) 1.255(6) 1.271(10)

TABLE VI. The lattice QCD results for the QQq potential
VQQq with the Coulomb gauge at � ¼ 0:1200. The notations are

the same as Table V.

R ðRI; RIIÞ VQQq VQQq

T ¼ ½4; 8� T ¼ ½5; 8�
1 (0,1) 1.410(7) 1.398(4)

2 (0,2) 1.512(10) 1.492(6)

(1,1) 1.510(10) 1.491(7)

3 (0,3) 1.593(8) 1.579(8)

(1,2) 1.590(7) 1.577(8)

4 (0,4) 1.637(10) 1.619(10)

(1,3) 1.633(9) 1.624(8)

(2,2) 1.632(9) 1.614(7)

5 (0,5) 1.694(10) 1.671(6)

(1,4) 1.689(10) 1.667(5)

(2,3) 1.688(9) 1.667(3)

6 (0,6) 1.724(15) 1.689(11)

(2,4) 1.712(16) 1.678(16)

(3,3) 1.712(16) 1.678(17)

7 (0,7) 1.782(11) 1.756(10)

(3,4) 1.766(14) 1.741(23)

8 (0,8) 1.843(8) 1.846(19)

(4,4) 1.834(4) 1.835(10)
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length is approximately equal to R. This intuitive consid-
eration suggests that �eff would approach to �3Q at much

larger R, namely, the effective string tension is some
function of R, not a constant. This behavior is rather
natural, since the QQq confinement potential is not neces-
sarily a linear function of R under the nontrivial relation
between the flux tube length and the interquark distance. If
the QQq confinement potential Vconf

QQqðRÞ is a general func-
tion of R, the effective string tension is defined as its
derivative,

�effðRÞ �
@Vconf

QQqðRÞ
@R

; (21)

and can depend on R. In the potential model study of
Ref. [24], by calculating up to R ¼ 2:4 fm, it is confirmed
that the effective string tension slightly depends on R. The
same behavior will be confirmed also in lattice QCD with a
larger-volume calculation.

Next we consider the light-quark-mass dependence of
theQQq potential. When the light-quark mass is larger, the
spatial extension is more compact and the flux-tube length
is closer to the inter-heavy-quark distance. In the infinite
mass limit, the QQq system corresponds to the static 3Q
system, and the effective string tension equals to the string
tension. Then the effective string tension is an increasing

function of the light-quark mass, and approaches asymp-
totically to �3Q in the infinite mass limit. We can confirm

these behaviors in Table VII.
In Ref. [24], the same QQq potential is investigated in a

nonrelativistic potential model, or a quark model. This
potential model reproduces the present lattice QCD result
under the same condition of the quark mass and the range
of R. The potential model can calculate the light-quark
wave function and the expectation value of the QQq flux-
tube length. It enables us to understand the reduction
mechanism of the effective string tension. By investigating
the relation between the flux-tube length and the interquark
distance R quantitatively, we confirm that a geometrical
difference between these is essential for the reduction of
the effective string tension, as conjectured above.
We have found that, in QQq systems, the effect of the

finite-mass valence quark reduces the effective string ten-
sion between the two heavy quarks from the string tension
of static 3Q systems. This reduction originates with the
fact that the interquark distance differs from the flux-tube
length in 3Q systems. This is a simple and general prop-
erty. Our calculation is performed with QQq systems for
simplicity, however, this simple argument would also hold
for ordinary baryons, which include three finite-mass
quarks. Although the finite-mass correction is more com-
plicated, the effective string tension can be reduced in or-
dinary baryons, such as a nucleon. Furthermore, this can
be also applied to the multiquark system including light
quarks [25]. In multiquark systems, the inter-two-quark
potential receives the more complicated effects of other

TABLE VII. The best-fit values of �eff , Aeff , and Ceff in Eq. (18). The list also shows the used
gauge configuration number Nconf and their �2 over the degree of freedom Ndof .

� Nconf �eff Aeff Ceff �2=Ndof

0.1200 1000 0.045(2) 0.12(2) 1.49(2) 1.31

0.1300 300 0.038(4) 0.13(2) 1.23(3) 1.18

0.1340 300 0.037(4) 0.13(2) 1.12(2) 1.11

0.1380 1000 0.037(2) 0.13(1) 0.97(1) 1.16

 0

 0.5

 1

 1.5

 2

 0  1  2  3  4  5  6  7  8  9

V
Q

Q
q(

R
)

R

κ=0.1200
κ=0.1300
κ=0.1340
κ=0.1380

FIG. 4. The lattice QCD data of QQq potential VQQq with the
Coulomb gauge. The results of different four hopping parameters
� are shown. The solid curves are the best-fit functions of
Eq. (18). All the scales are measured in lattice unit.
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FIG. 5. The schematic figure of the flux-tube length Lmin and
the inter-two-quark distance R. These are equal, i.e., Lmin ¼ R,
in the Q �Q system (left), and these are not equal, i.e., Lmin � R,
in the 3Q or QQq system (right).
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valence quarks, and the effective string tension between the
two quarks would be changed from the string tension.

V. SUMMARY

In summary, we have studied the QQq potential in SU
(3) lattice QCD, and investigated the role of the finite-mass
valence quark in the interquark potential. For the error
reduction, we have adopted the Coulomb gauge fixing
and the wall-to-wall quark propagator. From the Q �Q and
3Q potentials with the Coulomb gauge, the Coulomb
gauge calculation approximately gives the physical poten-
tial in the whole region.

We have found that the QQq potential is well described
with a Coulomb plus linear potential, at least in the region
of R � 0:8 fm. The Coulomb coefficient Aeff is almost the
same as the 3Q case A3Q, but interestingly, the effective

string tension �eff is 10%–20% reduced from the string
tension �3Q in the static 3Q case. The light-quark mass

dependence of the potential is also investigated in the range
of 0:5 GeV � Mq � 1:5 GeV.

The effective string tension is the confining force be-
tween two heavy quarks inQQq systems. The reduction of
the effective string tension means that the inter-two-quark
confining force appears to be weakened by the motional
effect of the other finite-mass valence quark. It originates
from the difference between the flux tube length and the
interquark distance, and reflects the characteristic flux-tube
structure of baryons.

This reduction of the inter-two-quark confinement force
is conjectured to be a general property not only for QQq
systems but also for ordinary baryons. Also in multiquark
hadrons, we can expect similar or more complicated effects
on the inter-two-quark potential by the finite-mass valence
quark. The quark confinement is a fundamental property
for hadrons, and its change would be important for broad
fields relating quark-hadron physics.

ACKNOWLEDGMENTS

We thank Dr. T. T. Takahashi, Dr. T. Umeda and Pro-
fessor S. J. Brodsky for useful comments and discussions.
A. Y. and H. S. are supported by a Grant-in-Aid for Sci-
entific Research [(C) No. 20�363 and (C) No. 19540287] in
Japan. H. I. is supported by Yukawa International Program
for Quark-Hadron Sciences (YIPQS). The lattice QCD
calculations are done on NEC SX-8R at Osaka University.

APPENDIX A: OTHER TRIALS ON
STATISTICAL IMPROVEMENT

We have tried several statistical improvement tech-
niques for calculating theQQq potential. These techniques
are useful for error reduction to some extent, but not
enough to calculate the QQq potential in gauge-invariant
manner. The techniques are not used for the final result of

the Coulomb gauge calculation. We introduce them briefly
in this appendix.

1. Multihit procedure

We have applied the multihit procedure [26,27]. The
temporal link variables are replaced with the mean-field
value of the neighboring link variables. It is realized by
replacing the temporal link variable U4ðnÞ in the staples
with ~U4ðnÞð2 SUð3ÞÞ which maximizesX

j

ReTr½ ~Uy
4 ðnÞfUjðnÞU4ðnþ ĵÞUy

j ðnþ 4̂Þ

þUy
j ðn� ĵÞU4ðn� ĵÞUjðnþ 4̂� ĵÞg�: (A1)

2. Average of the junction points

In Fig. 1, the positions ðRI; RIIÞ of the junction points are
the same at the source and sink of the QQq Wilson loop.
We can take ðRI; RIIÞ at the source and sink independently,
and average all the combinations of ðRI; RIIÞ with fixed R.
This improvement increases the statistics by ðRþ 1Þ2
times, and effective in large R, where the statistical error
is severe.

3. More average of the junction points

The positions of the junction points can be taken more
arbitrarily. For example, as depicted in Fig. 6, we have
perpendicularly bent the path of the spatial links in the
staples, and averaged such contributions with fixed R. In
addition, we would be able to take more arbitrary shapes of
staples, or off-axis QQq Wilson loops.

APPENDIX B: GAUGE DEPENDENCE

We show here the results of the QQq potential without
gauge fixing or with another gauge.

x

y
t

FIG. 6. Examples of the junction choices of the QQq Wilson
loop. The wavy line represents the light-quark propagator and
the straight line the heavy-quark trajectory.
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We calculate the gauge-invariant QQq potential in the
large-quark-mass case � ¼ 0:1200 with the large statistics
Nconf ¼ 4000. In the large-quark-mass case, compared to
the small-quark-mass case, the statistical error is relatively
small and the computing time for the quark propagator is
fairly short. For further statistical improvement, the

junction-average procedure explained in Appendix A 2 is
adopted for the gauge-invariant calculation. Nonetheless,
the statistical error is still large, and its data can be taken
only in the region of R � 0:6 fm. The result is shown
in Fig. 7 and Table VIII. Note that the listed error in
Table VIII is only the statistical error, and that the gauge-
invariant calculation involves the systematic error from the
fit-range dependence. The gauge-invariant result seems to
be close to the Coulomb gauge result, but the precise
comparison is difficult by the large statistical and system-
atic error.
In the lighter quark case, the statistical error is severely

large and the potential cannot be extracted at all. Instead,
we show the Landau gauge result at � ¼ 0:1380 in Fig. 7
and Table VIII. The result with the Landau gauge is
roughly coincident to that with the Coulomb gauge, except
for the irrelevant constant shift.
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