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Abstract: Hydrostatic pressure is one of the physical stimuli that characterize the 

environment of living matter. Many microorganisms thrive under high pressure and may 

even physically or geochemically require this extreme environmental condition. In 

contrast, application of pressure is detrimental to most life on Earth; especially to living 

organisms under ambient pressure conditions. To study the mechanism of how living 

things adapt to high-pressure conditions, it is necessary to monitor directly the organism of 

interest under various pressure conditions. Here, we report a miniature chamber for  

high-pressure microscopy. The chamber was equipped with a built-in separator, in which 

water pressure was properly transduced to that of the sample solution. The apparatus 

developed could apply pressure up to 150 MPa, and enabled us to acquire bright-field and 

epifluorescence images at various pressures and temperatures. We demonstrated that the 

application of pressure acted directly and reversibly on the swimming motility of 

Escherichia coli cells. The present technique should be applicable to a wide range of 

dynamic biological processes that depend on applied pressures.  
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1. Introduction 

Hydrostatic pressure is one of the physical stimuli that characterize the environment of living 

matter. The deep sea is an environment with particularly high hydrostatic pressure, and life may have 

originated there about four billion years ago. Hydrostatic pressure is considered to be one of the 

important stimuli for early forms of life [1,2]. Even at present, many microorganisms thrive in, and 

may even require, physically or geochemically, high hydrostatic pressure conditions [3,4]. However, 

application of high pressures is detrimental to most forms of life on Earth, and especially to organisms 

under ambient pressure conditions. In general, applied pressures change the structure and function of 

biomolecules in vivo, so that it can induce significant changes in the morphology and activity of living 

cells, such as microorganisms [5,6], sea urchin eggs [7], tissue cells [8], and muscle fibers [9,10]. 

Escherichia coli is a representative research target for studying the mechanism of how hydrostatic 

pressure affects the activities of biological systems. In previous studies, the major interest in E. coli has 

been on the effects of pressure on cell growth and morphological deformation. At <25 MPa, E. coli 

cells continue to grow and divide [11]. At 30–50 MPa, cell division is inhibited, leading to filamentous 

elongation of the cell body [12–14]. Cell growth is abolished at >60 MPa [11–13], and cell death 

results at >150 MPa [15–17]. These results suggest that application of pressure inhibits the activities of 

living in E. coli cells. To study the mechanism of how living organisms adapt to high-pressure 

conditions, it is necessary to monitor directly the organism of interest under various pressure 

conditions. Previously, a lot of high-pressure chambers have been developed for not only conventional 

spectroscopy [18–24], but also optical microscopy [14,25–29]. 

Here, we report a miniature chamber for high-pressure microscopy. The apparatus developed has 

two major advantages for microscopic observations. The chamber was equipped with a built-in 

separator, in which water pressure was properly transduced to that of the sample solution. This 

mechanism enabled us to drastically reduce the dead volume of buffer solution in the pressure line. 

Next, the chamber could be settled to a slide glass holder on a commercially available microscope, and 

allowed us to acquire bright-field and epifluorescence images at various pressures and temperatures. 

Using this system, we characterized the pressure dependence of the motility of swimming E. coli cells 

and single flagellar motors. 

2. Results and Discussion 

2.1. Pressure Dependence of Motility of Swimming E. coli 

E. coli cells sense their environment and swim towards favorable conditions using rotating flagella, 

a phenomenon known as chemotaxis [30,31], aerotaxis [32], phototaxis [33] or thermotaxis [34–40] 

depending on the nature of the stimulus. Each flagellum consists of a long (~10 µm), thin (~20 nm), 

helical filament [41,42] and turns like a screw using a rotary motor at its base [43–47]. The motor can 

rotate its flagellum in either counterclockwise (CCW, viewed from filament to motor) or clockwise (CW) 

direction [48]. CCW rotation allows several filaments on a cell to join in a bundle and propel the cell 

smoothly in solution (a “run”). In contrast, CW rotation forces a filament out of a bundle and leads to a 

change in swimming direction (a “tumble”) [43]. The switching between CCW and CW rotation 
enables bacteria to navigate to more favorable environments. Flagellar motility is thought to be one of 
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the most pressure-sensitive cellular processes [49,50]. Recently, we have reported that the swimming 

fraction and speed of E. coli cells decrease with increased pressure [29]. In the present study, we 

measured the motility of E. coli cells under high-pressure conditions and evaluated the performance of 

the current system.  

E. coli RP4979 cells were diluted in motility medium, and then introduced into the high-pressure 

chamber (Figure 1A). RP4979 cells lack the switch-inducing CheY protein; therefore, their flagellar 

motors rotate exclusively in the CCW direction, and cells swim smoothly without tumbling. Under 

ambient conditions (0.1 MPa and 23 °C), RP4979 cells swam smoothly in solution with a speed of  

22 ± 6 µm·s−1 (mean ± SD, n = 31). The pressure of the chamber was increased up to 80 MPa, and then 

decreased to 0.1 MPa. At 40 MPa, most cells still swam smoothly, but the average speed decreased to 

60% of the initial value at 0.1 MPa. At 60 MPa, many cells still swam, but the swimming speed 

drastically decreased, and the others just jiggled without showing any translational motion. At 80 MPa, 

most cells stopped directional swimming and diffused freely in translational and rotational directions. 

A limited number of cells seemed to show a rolling motion of their cell bodies. The trajectories of the 

cells at each pressure are similar to our previous results [29].  

Figure 1. High-pressure microscope. (A) Photograph of the high-pressure chamber (HPC) 

mounted on an upright microscope without any modifications. (B) Cross section of HPC. 

MB, main body; FP; U-shaped flow path; WS, window support; OW, observation window; 

MW, medium window; RW, rear window; O1, O2 and O3, O-rings. The orange and green 

areas were filled with assay buffer and distilled water, respectively.  

 

The fraction and speed of the swimming cells during the pressurization and depressurization 

processes were analyzed. We selected the cells that swam with a speed of >2 µm·s−1 in the focal plane, 

and calculated their fraction among all cells, and their average speed. Figure 2A,B show that these two 

parameters decreased with increased pressure and reached zero at 80 MPa. Both the swimming fraction 

and speed showed significant hysteresis between the pressurization and depressurization processes, 
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although the cells eventually recovered their initial motility sometime after the pressure  

was released. 

Figure 2. Motility of smooth-swimming cells. The motility assay was performed by two 

different systems. The current high-pressure chamber was equipped with a “built-in” 

separator, in which water pressure was properly transduced to that of the sample solution 

(See Section 3.1). On the other hand, the previous one was equipped with an “external”  

separator [29]. (A and B) Swimming fraction and speed during the pressurization  

(closed circles) and depressurization processes (open squares). Swimming fractions,  

Fbuilt-in, were based on the number of cells that swam with a speed of > 2 µm s−1 at each 

pressure. The speed, Sbuilt-in, was the average value of the swimming cells in A. Error bars 

are the SD. (C and D) Correlations between the results measured by “built-in” and 

“external” separator systems. The swimming fraction (C) and speed (D) at 0.1 (blue),  

20 (green), 40 (yellow), 60 (pink) and 80 MPa (red). The plots in C and D were fitted to lines 

with slopes of 1.02 ± 0.01 and 1.07 ± 0.02 (± fitting error), respectively. 

 

Next, we repeated the motility assay of RP4979 cells derived from the same cultures by using a 

previous high-pressure microscope [29]. The previous system was equipped with a large external 

separator [cylindrical tube; Ф = 60 mm, L = 94 mm, stainless steel (SUS630)] [27], in which the pump 

pressure was transduced to that of the buffer solution. Similar results were obtained as with the 

previous system (data not shown). Figure 2C,D summarize the correlations between the results 

measured by the current and previous systems. The plots of the swimming fraction and speed were 

fitted to lines with slopes of 1.02 ± 0.01 and 1.07 ± 0.02 (mean ± fitting error), respectively. Thus, the 

results clearly demonstrated that the current system properly transduced the pump pressure to that of 

the buffer solution, and then inhibited the motility of swimming cells.  
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In summary, we performed a motility assay of swimming E. coli cells at high pressure, and 

evaluated the performance of the developed system. We analyzed the swimming fraction and speed of 

E. coli cells, but these parameters largely depended on the experimental conditions, such as the strain, 

cultivation conditions, or solution viscosity [29,49,50]. To examine the performance of the system in 

more detail, we will develop a novel probe responding sensitively to the applied pressure. 

2.2. Torque Generation of Single Flagellar Motors in Tethered Cells 

The bacterial flagellar motor is a reversible molecular motor that converts a specific ion flux to the 

rotation of a flagellum [43–47]. The rotational motion is composed of regular 26 steps per single  

turn [51,52]. The coupling ion differs according to the type of motor and/or bacterial species. E. coli 

and Salmonella enterica motors use H+ [53], and those of the alkalophilic Bacillus and marine Vibrio 

species utilize Na+ [54,55]. The flagellar motor consists of a rotor and multiple stator units. The rotor 

spins relative to the cell body and its rotation transduces to the flagellum, whereas the stator units are 

anchored to the cell wall. The rotational speed is affected by physical and chemical conditions, such as 

viscous load [55–58], temperature [59–62], pH [63,64] and solvation [61]. The application of pressure 

is also expected to modulate the torque generation processes. Here, we studied the motility of bacterial 

flagellar motors under high-pressure conditions. 

To monitor the rotation of single flagellar motors, we performed a rotating tethered-cell assay [48], 

using strain RP4979. A single flagellar filament protruding from each cell was attached to the surface 

of the observation window, OW, in the chamber via antibody of its flagellum (Figure 3A). We tracked 

the rotation of the same cells under various pressure conditions. Under ambient conditions (0.1 MPa 

and 23 °C), motors rotated smoothly (Figure 3B). Even at 80 MPa, most cells remained anchored to 

the OW, and then the motor still rotated in a CCW direction (Figure 3C). 

Systematic analysis was performed to characterize the pressure dependence of the rotational speed 

of the motor in tethered cells. We selected the motors that rotated smoothly after the release of 

pressures again. The rotational speed of the same motors was tracked, when the pressure was increased 

and then decreased in a stepwise manner. Figure 3D summarizes the pressure-speed relation of single 

flagellar motors in the pressurization and depressurization processes. At ambient pressure (0.1 MPa), 

the motor rotated with a speed of 5.5 ± 0.5 s−1 (mean ± SE, n = 52). The rotational speed decreased 

with increased pressure, but even at 80 MPa, about 90% of motors still rotated at 3.4 ± 0.5 Hz  

(mean ± SE, n = 47). The pressure-speed curve showed an upper concave relation. After the pressure 

was released, the motors eventually recovered the initial motility. The pressure-speed relation did not 

show significant hysteresis between pressurization and depressurization processes. These experimental 

results are consistent with our previous studies, in which we analyzed the pressure dependence of the 

rotational speed of the cells that express FliC-sticky filaments [46]. 

Our results showed that the motility of swimming E. coli cells was very sensitive to hydrostatic 

pressure (Figure 2); however, the motor function was relatively robust to pressure (Figure 3). What 

causes these differences? The robustness of the motor function against pressure is thought to be 

because torque is generated by the limited numbers of protein units in the motor via relatively simple 

mechanisms, although a flagellar motor is composed of a large number of protein molecules [43–47]. 

The flagellar motor consists of a rotor and multiple stator units. Four copies of MotA and two of MotB 
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form a proton channel complex and function as a component of a stator unit [65–68]. FliG forms a 

series of rings in the rotor [69–71] and interacts with the MotA/B complex to generate torque for  

rotation [72,73]. Analyses of site-directed mutagenesis have shown that the replacement of charged 

residues in MotA/B or FliG proteins causes defective torque generation, suggesting that the 

electrostatic interaction is crucial for proton translation and intermolecular interaction between 

MotA/B and FliG [73–75]. Our previous studies have suggested that the applied pressure decreases the 

rate of proton translocation in the mechanochemical energy conversion, but does not dissociate 

MotA/B from FliG [46]. The detailed mechanism could be elucidated by measuring the torque–speed 

relation of a single flagellar motor at high pressure [55–57,76,77].  

Figure 3. Rotational speed of single flagellar motors. (A) Schematic drawing of the 

experimental system (not to scale). (B and C) Sequential bright-field images of the same 

rotating tethered cell at 33 ms intervals at 0.1 MPa (B) and 80 MPa (C). The images are 

displayed after processing contrast enhancement and brightness offset. Blue arrowheads 

indicate completion of a turn. Scale bar, 2 µm. (D) The plots are mean values (n = 52) of 

the rotational speed in the pressurization (circles) and depressurization processes 

(diamonds). Each speed was obtained from the rotation number during 10 s. Data for the 

motors that were in the stop state were excluded from calculations of the speed. 

 

In summary, we demonstrated a motility assay of single flagellar motors at high pressure, and 

characterized the pressure dependence of the motor rotation in E. coli cells. The present technique 

could be combined with other advanced microscope techniques [78–85]. High-pressure microscopy 

will be extended to study not only the flagellar rotation, but also other cellular processes [2,86,87]. 
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3. Experimental Section 

3.1. High-Pressure Chamber and Microscope 

Figure 1B shows a cross section of a high-pressure chamber (70 × 43 × 18 mm; Sasahara Giken, 

Kyoto, Japan). The main body (MB) and window support (WS) were made of nickel alloy  

(Hastelloy C276). The MB was equipped with two U-shaped flow paths (FPs) for running the 

temperature-regulated water of the thermostat bath. The WS was screwed into the MB, and the inside 

of the chamber was sealed by an O-ring (O1). The inside of the chamber was separated by a medium 

window (MW; Ф = 8.9 mm, t = 2.0 mm, quartz; Sasahara Kogaku, Kyoto, Japan). The MW was 

supported by two O-rings (O2 and O3) and its support (OS). The gap between the observation window 

(OW) and MW was filled with buffer solution (orange area in Figure 1B) and its volume was 0.1 mL, 

which was 1/100 of the previous pressure apparatus [27]. The remaining cavity was filled with distilled 

water (green area in Figure 1B) and connected to a high-pressure pump (HP-150; Syn Corporation, 

Kyoto, Japan) via a long spring-like 1/16-inch stainless tube. The water pressure was transduced to that 

of the buffer solution through depression of the MW. The water pressure in the pressure line was 

measured with a high-pressure gauge (PG-2TH; Kyowa, Kyoto, Japan). Our apparatus could be used 

for applications of pressure up to 150 MPa, which was constrained by performance of the hand pump. 

The withstanding pressure was 1.5-fold higher than the water pressure in the deepest part of the 

Mariana Trench, Challenger Deep (10,900 m in depth). This level of ability to withstand pressure is 

sufficient for studying almost all biological activities on Earth. 

The chamber was equipped with two more optical windows, that is, OW (Ф = 5 mm, t = 1.5 mm, BK7; 

Sasahara Kogaku) and rear window (RW; Ф = 5 mm, t = 5.5 mm, BK7; Sasahara Kogaku). Two 

windows (OW and RW) were attached to the MB and WS, respectively, by epoxy resin. The OW was 

made of BK7 because this material was found to be suitable for microscopic observation and for 

preparing appropriate surface conditions for our experiments (the numerical index of sapphire or 

quartz is far from that of glass, which means that these materials are not suited for acquiring better 

images). Microscopic observations in the chamber were carried out through an OW. The aperture 

diameter and critical angle were 1.5 mm and 76°, respectively. The numerical aperture (NA) at the 

objective lens side was 0.6. 

The miniature chamber was combined with a commercially available upright microscope  

(BX51; Olympus, Tokyo, Japan) on a vibration-free table (AS-II 1510TM; Nippon Boushin Industry 

Co., Shizuoka, Japan). The chamber was settled on the microscope stage with a conventional slide 

holder (Figure 1A). Microscopic observation was done by a long-working distance objective lens  

(OL; NA 0.6, WD 3 mm, LUCPLFLN40×; Olympus). Bright-field and epifluorescence images were 

acquired without any modifications (data not shown). 

3.2. Bacterial Strains 

Here, we used E. coli strains RP437 [88] and RP4979 [89]. Strain RP437 was a wild-type strain for 

motility and chemotaxis. Strain RP4979 (ΔcheY) was derived from strain RP437. To focus on the 

pressure dependence of the motor function in swimming E. coli cells, strain RP4979, rather than strain 
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RP437, was used for the motility assays. The flagellar motor in RP4979 cells rotates exclusively in the 

CCW direction, and then cells swim smoothly without tumbling. 

3.3. Purification of E. coli Flagellin and Preparation of the Anti-Flagellin Antibody 

To obtain the anti-flagellin antibody, we purified the E. coli flagellin from strain RP437. The cells 

were grown on LB plates overnight at 37 °C. Cells were scraped from the plates and suspended in  

20 mM Tris-HCl (pH 8.0) at the concentration of 10 mL/g wet pellet. The cell suspension was 

intensively blended for 3 min by a homogenizer (Polytron PT3000, 8000 revolution per minute) to 

shear flagella, and then centrifuged at 5000g for 10 min to spin down the cells. After this step, flagellin 

became a major protein in this supernatant (Figure 4A, lane 2). 

The supernatant was ultracentrifuged at 101,500g for 1 h to precipitate flagella (Figure 4A, lane 4). The 

pellet was suspended in 20 mM Tris-HCl (pH 8.0) and heated. When the temperature reached 75 °C, 

the suspension was further incubated for 15 min, then immediately cooled down by ice-cold water. 

After this heat treatment, the depolymerized, soluble flagellin was separated from insoluble materials 

by ultracentrifugation (101,500g for 1 h, Figure 4A lane 5). Flagellin was further purified by using an 

anion-exchange column (HiTrap Q, GE Healthcare Japan, Tokyo, Japan) and eluted with a linear 0 to 

300 mM gradient of NaCl. Peak fractions (Figure 4, lane 7 to 9) were collected and concentrated to  

11 mg/mL by ultrafiltration using an Amicon Ultra device (Millipore, Billerica, MA, USA). At this final 

stage, flagellin was more than 90% pure and appeared as a main single band on the  

SDS-PAGE gel. The band corresponding to flagellin was excised and the protein was extracted from 

the gel by crushing it, then mixed with adjuvant and injected into rabbits for immunization. 

The rabbit anti-flagellin antibody was produced by Keary Co. (Osaka, Japan). We found 

aggregations of RP437 cells by their flagella in the presence of 1:1000 dilution of anti-flagellin 

antibody. Moreover, the antibody can be used for immunoblot, to specifically detect the E. coli 

flagellin (Figure 4B). For immunoblot, the whole cell samples of the non-flagellated strain RP3098 

and wild-type strain RP437 were prepared from the cell culture grown in Tryptone broth (1% Bacto 

tryptone, 0.5% NaCl), and an immunoblot was carried out as described previously [90]. The prepared 

anti-flagellin antibody is available to interested parties upon request. 

3.4. Motility Assays 

Motility of strain RP4979 was measured in this study. Cells were cultured from frozen stocks to the 

late logarithmic phase at 30 °C in Tryptone broth as described in Section 3.3. The grown cells were 

adequately diluted with the motility medium (10 mM Tris, pH 7, 0.1 mM EDTA) and enclosed in the 

current or previous high-pressure chamber. We monitored the cells that swam near the OW in  

the chamber. 

In a tethered-cell assay [91], the flagella of RP4979 cells were sheared as described previously [29]. 

A single flagellum protruding from a cell was attached to the surface of the OW via antibody of its 

flagellum (Figure 3A). We tracked the motor rotation of the same single cells under various  

pressure conditions. 
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Figure 4. Purification of the E. coli flagellin. Protein samples in each purification step are 

resolved on a Coomassie-stained 12% SDS-PAGE gel. (A) Lane 1, whole cell lysate; lane 2, 

supernatant of low speed centrifugation after shearing flagella by a blender; lane 3 and 4, 

supernatant and pellet of the ultracentrifugation of the flagella-containing suspension;  

lane 5 and 6, supernatant and pellet of the ultracentrifugation after heat treatment; lane 7 to 9, 

peak fractions of the HiTrap Q column. (B) Immunoblot detection of flagellin by using the 

antibody raised against the purified E. coli flagellin. A strong flagellin band can be seen for 

the whole cell sample of the wild-type E. coli strain RP437, but not for that of the strain 

RP3098, which does not produce any flagellar proteins. An arrowhead indicates E. coli 

flagellin (51 kDa). 

 

The bright-field image of the swimming or rotating tethered cells near the OW was acquired by a 

CCD camera at 30 frames s−1 and stored in a computer. The hydrostatic pressure within the chamber 

was increased to 80 MPa in increments of 20 MPa and decreased by similar steps. The increment of  

20 MPa of pressure was performed within a few seconds. We readjusted the position of the chamber in 

x- and y-directions, and the objective lens in z-direction, and then acquired the microscopic images 

during about 2 min. Pressure within the chamber could be decreased by opening a pressure-regulating 

valve. The total elapsed time for pressure treatment of a population of cells was about 30 min. The 

pressure was regulated with an accuracy of ± 1 MPa. The experimental temperature was kept at  

23 ± 1 °C. After release of the pressure, all cells were removed from the chamber and the assay was 

repeated using fresh cells. We used two different chambers for high-pressure microscopy, but the 

motility assays were performed by the same procedures. All motility assays were performed within  

2 h, and repeated by using more than two different cultures. All images were analyzed offline, using 

commercial tracking software (G-track; G-Angstrom, Sendai, Japan). 
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4. Conclusions 

Here, we report a miniature chamber for high-pressure microscopy. The chamber was equipped 

with a built-in separator, in which water pressure was properly transduced to that of the sample 

solution. This mechanism enabled us to drastically reduce the dead volume of buffer solution in the 

pressure line. The apparatus developed here can be used with a commercially available microscope, 

and enables us to conveniently acquire microscopic images at high-pressure. Application of pressure is 

a powerful method for modulating intermolecular interactions between protein and water molecules. 

The present technique could be extended to study the mechanisms by which isolated molecular 

machines are affected by the application of high pressure. 
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