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Abstract

In this thesis, we look for theories of interacting multiple gravitational fields. In general,
interaction among gravitational fields generates extra degrees of freedom, which turn out to
have negative kinetic energy and are called BD-ghosts. Thus, for a long time, it had been
thought that healthy theories are impossible. However, recent progress in non-linear massive
gravity has opened a way. A generalization of massive gravity leads to a theory of interacting
two gravitational fields. Interaction models which contain more gravitational fields are also
proposed, but whether or not they contain BD-ghosts is not completely resolved. Hence, in
this thesis, we determine when a system of multiple interacting gravitational fields becomes
ghost-free.
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Chapter 1

Introduction

It is widely known that we have four kinds of forces, electromagnetic force, weak and strong
nuclear forces, and gravitational force. They are mediated by particles named by photon, W, Z
bosons, gluon and graviton. In general, particles are classified by the notion of mass and spin.
(See Appendix A for details.) Except for graviton, the above particles have spin-1. Graviton
is a massless particle with spin-2. Non-linearly self-interacting theories for massless spin-1 and
spin-2 particles are uniquely determined. Respectively, they are Yang-Mills theory and general
relativity. These two theories are central concern of modern theoretical physics, but compared
to Yang-Mills theory, general relativity contains more complicated interactions and difficult to
study. Thus, even now, a lot of properties are hidden in a veil of mystery. One may think that a
theory with spin-3 would be more difficult, but it is not the case. A spin-3 particle cannot have
self interactions [1] and drops out from our arguments. Then, properties of a spin-2 particle
may be one of the most challenging theories to study.

In this thesis, we investigate non-linear interactions among multiple kinds of gravitons, not
a single graviton. For spin-1 particles, we can consider interactions among them. However, for
spin-2 fields, such an example had not been discovered until very recently [2]. For a long time, it
had been thought that non-linear interactions of gravitons are impossible because they generate
extra degrees of freedom with negative kinetic energy. These modes are unphysical and must
be removed, which had bothered us for long. However, the authors of [2] have succeeded in
eliminating such an unphysical state and discovered a healthy theory of non-linearly interacting
two gravitational fields. After that, two prominent researches have been published. One of them
is an extension to a system containing three gravitational fields [3], but whether or not it retains
unphysical states is left unresolved in [3]. The other is a research on multiple interacting spin-2
fields written in terms of vielbeins, not metrics [4]. In general, gravitational fields are expressed
by metrics, but theories in [4] are written only by vielbeins. Though these vielbein theories
do not contain unphysical states, they do not necessarily overlap with metric theories. For
instance, in the case of three spin-2 fields, only a special type of metric interaction can be
rewritten in a vielbein formulation. Therefore, the purpose of this thesis is to seek healthy
theories for interacting multiple spin-2 fields expressed in terms of metrics, not vielbeins. More
precisely, we firstly settle the problem of the theory with three metrics, and then determine
when theories of multiple metrics exclude unphysical states.

Prior to directly consider interactions among fields, it is convenient to investigate a massive
one. This is because, in general, massless fields become massive when interaction among them is
switched on. This fact is related to breaking of symmetries due to introducing interactions. As is
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well known, a massive field has more physical degrees of freedom than its massless counterpart.
In four-dimensional cases, a massive spin-s (s = 1, 2, ...etc) field has 2s + 1 dynamical degrees
of freedom corresponding to the helicity 0, ±1,...,±s states while massless one has only two
degrees of freedom coming from the helicity ±s modes. These increased degrees of freedom
are supplied via breaking of a symmetry. A theory of a free massless spin-s field contains a
gauge symmetry, which reduces physical degrees of freedom to two. On the other hand, when
we introduce a mass term, the symmetry is broken and we cannot remove degree of freedom.
Thus, we have more physical degrees of freedom. A mass term is a special case of more general
interaction terms where we include not only one but also two or more fields. If there are free
massless fields with no interaction, we should have symmetries which eliminate right number of
degrees of freedom. However, interaction terms generally breaks some of these symmetries. As
a result, more physical degrees of freedom are left, which should correspond to massive modes.
Hence, we see that interactions generally makes massless fields massive.

This discussion suggests that understanding of massive gravity, where a graviton becomes
massive, should help us to construct a theory of interacting spin-2 fields. Thus, our first
step is focused on massive gravity. We usually introduce a mass term for a scalar or vector
field as a quadratic term of the field. The action for them is quadratic and the equation of
motion becomes linear when they are free. However, general relativity is a complicated non-
linear theory even in the vacuum, and does not seem similar to these simple cases. Hence, we
start with linearized general relativity and make the graviton field massive, which is a topic
in Chapter 2. Afterward, we consider its non-linear extension in Chapter 3 and 4. At the
same time, a healthy theory of interacting two gravitational fields is introduced. In Chapter
5, we consider interacting multiple spin-2 fields written in terms of vielbeins. We also consider
their relationship to a metric formulation. Then, based on the result of these chapters, we
investigate conditions to construct a metric theory of non-linearly interacting multiple spin-2
fields in Chapter 6. This chapter is based on our original work [5]. Finally, Chapter 7 is devoted
to an application of interacting gravitational fields. Especially, we attempt an application to
the AdS/CFT correspondence, which is based on our unpublished work [6].
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Chapter 2

Linear massive gravity

We begin our long journey toward a theory of interacting gravitational fields. Our first step is
to consider linear massive gravity. In this chapter, we linearize general relativity and attempt
to introduce a mass term. Linearized general relativity is very similar to electromagnetic field,
and it seems easy to make the gravitational field massive. However, even in the linear level,
introducing graviton’s mass is not so trivial.

As usual, a mass term is introduced simply as a quadratic term of the field. For example,
in the four-dimensional flat space-time, a massless real scalar (spin-0) field ϕ has the action

S =

∫
d4x

{
− 1

2
(∂µϕ)(∂

µϕ)
}
, (2.1)

and the equation of motion is given by

δL
δϕ

= 0 ⇒ ∂µ∂
µϕ = 0. (2.2)

We introduce a mass term by adding a quadratic term with a coefficient m2

S =

∫
d4x

{
− 1

2
(∂µϕ)(∂

µϕ)− 1

2
m2ϕ2

}
. (2.3)

Then, we obtain the equation of motion

δS

δϕ
= 0 ⇒ (∂µ∂

µ −m2)ϕ = 0, (2.4)

and we interpret m as mass of the scalar field. In the case of a vector (spin-1) field Aµ, the
situation is almost the same. We have the action and the equation of motion for a massless
vector field

S =

∫
d4x − 1

4
F µνFµν , Fµν := ∂µAν − ∂νAµ, (2.5)

δS

δAν
= 0 ⇒ ∂µF

µν = 0. (2.6)

As is well known, this system is invariant under a gauge transformation Aµ → Aµ+∂µΛ, where
Λ is an arbitrary function. Thus, some modes are unphysical. In order to extract true degrees of
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freedom, we can impose gauge fixing conditions ∂µA
µ = 0 and A0 = 0. Therefore, the number

of remaining degrees of freedom is two, which corresponds to the helicity ±1 modes. We make
the vector field massive by introducing a quadratic term

S =

∫
d4x

{
− 1

4
F µνFµν −

1

2
m2AµA

µ
}
, (2.7)

which leads to the equation of motion

δS

δAν
= 0 ⇒ ∂µF

µν −m2Aν = 0. (2.8)

Taking the divergence of the equation of motion, we find ∂νA
ν = 0 to conclude that the missive

vector obeys

(∂µ∂
µ −m2)Aν = 0, ∂νA

ν = 0. (2.9)

Since the mass term breaks the gauge invariance, we cannot impose gauge fixing conditions.
Instead, the transverse constraint ∂νA

ν = 0 reduces one degree of freedom. Hence, the total
number of degrees of freedom is three, which corresponds to the helicity ±1 and 0 states.

In the above examples, giving mass to a field is straightforward. There is no difficulty. A
naive extension of a free vector (spin-1) field is linearized general relativity where we have a
tensor (spin-2) field called graviton. However, the situation becomes rather complicated. A
massive spin-2 field should have five degrees of freedom corresponding to the helicity 0, ±1 and
±2 states. On the contrary, an extra sixth degree of freedom emerges along with introducing a
quadratic term, and what is worse, this sixth mode turns out to have negative kinetic energy.
Such an unphysical mode has to be excluded, which leads to the so called Fierz-Pauli mass term
[7]. This chapter is devoted to investigating the Fierz-Pauli tuning from several viewpoints:
the equation of motion, the Stückelberg trick and the Hamiltonian analysis. These tools play
an important role also in later chapters. Prior to more complicated non-linear theories, we
demonstrate how they work in a simple linear model. The Stückelberg trick is useful to trace
the behavior of the extra unphysical degree of freedom which is mixed with other regular ones.
It also gives us a key idea for the non-linear extension of linear massive gravity. However, it
is difficult to prove the absence of an extra degree of freedom by only the Stückelberg trick.
Thus, we need to rely on the Hamiltonian analysis. It gives us a systematic way to count the
total number of degrees of freedom contained in the system. When we succeed in constructing
a consistent theory of a massive spin-2 field, the Hamiltonian analysis must show five degrees
of freedom are left. For more details or a historical overview, review articles [8, 9] are helpful.

2.1 Linearized general relativity

In this section, we derive the action of a graviton or spin-2 field in the linear level. We start
with the action of general relativity which is well-known as the Einstein-Hilbert action

SEH [g] =
1

16πG

∫
dDx

√
− det g(R[g]− 2Λ). (2.10)

We set the dimension of the space-time to be D composed of one time and D − 1 spatial
directions. In the action, we have a metric gµν (µ, ν = 0, 1, .., D − 1) and the scalar curvature
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R[g] for gµν . Λ represents a cosmological constant and G is the gravitational constant. The
equation of motion is given by

δSEH
δgµν

= 0 ⇒ Rµν −
1

2
gµνR = 0. (2.11)

This system is invariant under a diffeomorphism

xµ → fµ(x), gµν(x) →
∂fα

∂xµ
∂fβ

∂xν
gαβ
(
f(x)

)
(2.12)

with an arbitrary function fµ(x), and the invariance is responsible to extract true degrees of
freedom. The discussion of a non-linear case is postponed to Section 3.1.1.

Here, we consider a perturbation around a fixed background metric and expand the action
up to the second order. Thus, the metric gµν is decomposed as

gµν = ḡµν + hµν , (2.13)

where ḡµν is a background metric obeying (2.11) and hµν represents a fluctuation. The detailed
calculation is found in Appendix B. The result is

SEH =
1

16πG

∫
dDxL(2)

EH , (2.14)

with the Lagrangian density

L(2)
EH√

− det ḡ
=

2

D
R̄ + ∇̄µ

(
∇̄λh

µλ − ∇̄µhλλ
)

− 1

4
(∇̄αhµν)(∇̄αhµν) +

1

2
(∇̄αhµν)(∇̄νhαµ)− 1

2
(∇̄µhαα)(∇̄λhµλ) +

1

4
(∇̄µhαα)(∇̄µh

β
β)

+
R̄

2D

(
hαβh

β
α −

1

2
hααh

β
β

)
+ ∇̄µ

(
hαβ∇̄µhαβ − hµα∇̄βhαβ + hµα∇̄αh

β
β − hαβ∇̄αh

µ
β +

1

2
hββ∇̄αhµα −

1

2
hαα∇̄µhββ

)
,

(2.15)

where ∇̄µ stands for the covariant derivative constructed from the background metric ḡµν . The
space-time indices are raised or lowered by ḡµν and its inverse ḡµν . When we neglect total
derivatives, the Lagrangian density is simplified to be

L(2)
EH√

− det ḡ
=− 1

4
(∇̄αhµν)(∇̄αhµν) +

1

2
(∇̄αhµν)(∇̄νhαµ)− 1

2
(∇̄µhαα)(∇̄λhµλ) +

1

4
(∇̄µhαα)(∇̄µh

β
β)

+
R̄

2D

(
hαβh

β
α −

1

2
hααh

β
β

)
+

2

D
R̄. (2.16)

The invariance under (2.12) is translated to a gauge symmetry

hµν → hµν + ∇̄µξν + ∇̄νξµ (2.17)

with an arbitrary vector ξµ, which has a role to extract true degrees of freedom in the linear
theory.
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2.2 The Fierz-Pauli mass term

In this section, we attempt to introduce graviton’s mass to linearized general relativity. We add
a quadratic term with no derivative as a mass term. However, the choice of a quadratic term
is not unique. We start with a general mass term because we do not have a guiding principle.
Then, we see that an extra degree of freedom emerges due to the introduced quadratic term,
and what is worse, it has negative kinetic energy. In order to exclude it, we have to tune the
mass term, which uniquely picks up the so called Fierz-Pauli mass term [7].

In this chapter, we mainly rely on the flat space-time as a background. We denote the
Mankowski metric as ηµν := diag(−1, 1, 1, ..., 1), and thus we set ḡµν = ηµν . We put Λ = 0 and
R̄ = 0, and total derivatives are discarded. For notational simplicity, we abbreviate the trace
part of hµν as h = hµµ, and write down the linearized Einstein-Hilbert action

SEH =
1

16πG

∫
dDxLEH , (2.18)

with

LEH = −1

4
(∂αhµν)(∂

αhµν) +
1

2
(∂αhµν)(∂

νhαµ)− 1

2
(∂µh)(∂νh

µν) +
1

4
(∂µh)(∂

µh). (2.19)

For the purpose to make a graviton massive, we add a quadratic term to the above action.
Since we have two kinds of quadratic terms hµνhµν and h2, we try to add a linear combination
of them

Lm = ah2 + bhµνhµν , (2.20)

where a and b are some constants. Then, we have the action

S =
1

16πG

∫
dDx(LEH + Lm), (2.21)

and the equation of motion δS/δhµν = 0 is found to be

1

2
□hµν −

1

2
∂α∂νhαµ −

1

2
∂α∂µhνα +

1

2
∂µ∂νh+

1

2
ηµν∂α∂βh

αβ − 1

2
ηµν□h

+2aηµνh+ 2bhµν = 0, (2.22)

where we have defined □ := ∂µ∂µ. We take divergence and trace on (2.22), and obtain

a∂νh+ b∂µhµν = 0, (2.23)

−
(D
2
− 1
)
□h+

(D
2
− 1
)
∂α∂βh

αβ + 2(aD + b)h = 0. (2.24)

It is easy to see that two equations (2.23) and (2.24) lead to the equation of motion for the
trace part (D

2
− 1
)(

1 +
a

b

)
□h− 2(Da+ b)h = 0. (2.25)

Here, we notice that something interesting happens when we set a + b = 0. The dynamics of
the trace h is lost, and a constraint

h = 0 (2.26)
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is left. Substituting this constraint (2.26) back into the equation (2.23), we get another con-
straint

∂µhµν = 0. (2.27)

We insert these traceless transverse conditions (2.26) and (2.27) into the original equation of
motion (2.22), and obtain a simple equation

(□+ 4b)hµν = 0. (2.28)

In this case, the total number of degrees of freedom is easy to count. The symmetric tensor hµν
has 1

2
D(D+1) components, but we have constraints (2.26) and (2.27). Thus, the total number

of degrees of freedom is 1
2
D(D + 1)− 1−D = 1

2
(D − 2)(D + 1). In the four dimensional case

(D = 4), we have five degrees of freedom, which should be nothing but spin (2,1,0,-1,-2) modes
for a massive spin-2 field. Therefore, it seems natural to put a + b = 0 and set 4b = −m2,
where m is interpreted as graviton’s mass. This mass term is the Fierz-Pauli mass term [7]

LFP := −1

4
m2(hµνhµν − h2). (2.29)

In the case of a+ b ̸= 0, the trace part becomes dynamical and an extra degree of freedom
is included. In fact, this extra mode turns out to have negative kinetic energy. Such a particle
is called ghost, and must be excluded from the system. In order to focus on the trace part,
we assume that hµν is diagonal. We decompose the space-time indices into the time and
spatial components. The time component is denoted as 0 while spatial ones are represented
as i, j, k, ...etc. We set h00 = h00(t), h0i = 0 and hij = ϕ(t)δij, where all non-zero components
depend only on t and the time derivative is abbreviated as ϕ̇ = ∂0ϕ. Then, the Lagrangian
density is simplified to be

L = −1

4
(D − 1)(D − 2)ϕ̇2 + (D − 1)

(
a(D − 1) + b

)
ϕ2 + (a+ b)h200 − 2a(D − 1)h00ϕ. (2.30)

We see that h00 is merely an auxiliary field. The equation of motion for h00 is

h00 =
a(D − 1)

a+ b
ϕ, (2.31)

which is substituted into the Lagrangian density (2.30) to give

L = −1

4
(D − 1)(D − 2)ϕ̇2 +

(D + 1)b

a+ b
(Da+ b)ϕ2. (2.32)

Hence, there is a field with negative kinetic energy. On the other hand, if we put a+ b = 0, the
equation of motion for h00 reads ϕ = 0. The ghost field ϕ is eliminated. Thus, we conclude that
the extra mode we have encountered from the trace part is a ghost. The Fierz-Pauli tuning is
necessary to exclude this ghost mode.

2.3 The Stückelberg trick

In Section 2.2, we have seen how a ghost degree of freedom emerges. From the equation of
motion, we suspected that the trace part contains an extra degree of freedom which should
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be absent in a healthy massive theory. Then, we have extracted diagonal components to show
that the trace part actually has negative kinetic energy. However, this method is rather ad
hoc and difficult to apply to more complicated theories such as non-linear massive gravity
which we discuss in Chapter 3. A more powerful and widely applicable method is known as
the Stückelberg trick, where we introduce new degrees of freedom along with additional gauge
symmetries. These newly introduced degrees of freedom trace a ghost hidden in the original
variables.

In this section, we explain the Stückelberg trick in the context of the ghost problem in linear
massive gravity. We show that when the Fierz-Pauli tuning is violated, higher order derivatives
with respect to the time coordinate emerge on the newly introduced field, which leads to a
ghost degree of freedom.

Even outside this chapter, the Stückelberg trick plays an important role. When we inves-
tigate the non-linear extension of the linear Fierz-Pauli theory, we heavily rely on it. The
Stückelberg trick is also helpful in considering the vDVZ discontinuity in Section 2.5. More
details about the Stückelberg trick is found in [8].

We begin by the Lagrangian density L = LEH+Lm, where LEH and Lm are given by (2.19)
and (2.20) respectively. We left constants a and b in (2.20) undetermined to know the role of
the Fierz-Pauli tuning. The Stückelberg trick starts with introducing a new field Aµ through
the following replacement

hµν → hµν + ∂µAν + ∂νAµ (2.33)

which imitates the invariance broken by the mass term Lm. Because the massless part of
the Lagrangian LEH has a gauge symmetry δhµν = ∂µξν + ∂νξµ, LEH is invariant under the
replacement (2.33). On the other hand, the mass term Lm breaks this gauge symmetry and
picks up a change. Thus, the Lagrangian density after the replacement is found to be

L(h,A) =LEH(h) + Lm(h)
+ 4ah(∂µAµ) + 4bhµν(∂µAν) + 2b(∂µAν)(∂

µAν) + (2b+ 4a)(∂µAν)(∂
νAµ), (2.34)

where LEH(h) and Lm(h) do not contain the field Aµ, and are the same as (2.19) and (2.20).
The introduction of the new field Aµ comes along with a gauge symmetry

δhµν = ∂µξν + ∂νξµ, δAµ = −ξµ. (2.35)

The original Lagrangian before the replacement (2.33) can be recovered by fixing this gauge as
Aµ = 0. Hence, the theory itself is not changed before and after the operation (2.33). The next
step is to introduce one more extra field ϕ via the replacement

Aµ → Aµ + ∂µϕ. (2.36)

Then, we obtain

L(h,A, ϕ) =LEH(h) + Lm(h)
+ 4ah(∂µAµ) + 4bhµν(∂µAν) + 2b(∂µAν)(∂

µAν) + (2b+ 4a)(∂µAν)(∂
νAµ)

+ 4ah(∂µ∂µϕ) + 4bhµν(∂µ∂νϕ)

+ 8(a+ b)(∂µAν)(∂
µ∂νϕ) + 4(a+ b)(∂µ∂νϕ)(∂

µ∂νϕ). (2.37)
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Along with the introduction of ϕ, one more gauge symmetry comes. In total, we have two kinds
of gauge symmetry

δhµν = ∂µξν + ∂νξµ, δAµ = −ξµ, (2.38)

δAµ = ∂µΛ, δϕ = −Λ. (2.39)

By fixing the gauge as Aµ = 0 and ϕ = 0, we can restore the original Lagrangian. Therefore,
we can investigate L(h,A, ϕ) instead of the original LEH(h) + Lm(h).

Now, we see that the Lagrangian density (2.37) contains higher order derivative terms such
as (∂µ∂νϕ)(∂

µ∂νϕ). In general, a higher order derivative with respect to the time coordinate
carries an extra degree of freedom which is ghost-like [10, 11]. Here, we do not develop the
abstract proof. Instead, we show the emergence of a ghost mode through an explicit calculation.
In order to simplify the formula, we partially fix the gauge freedom by the conditions ∂µhµν = 0
and ∂µA

µ = 0.
Actually, our gauge fixing is not complete, and fictitious modes may be contained. However,

the role of the Stückelberg trick is to guess whether or not a ghost mode is contained, and it is
not expected to completely determine the problem. By using the Stückelberg trick, we speculate
a appropriate form of a mass term. Then, its validity is proved in another way, which we discuss
in the next section.

Integrating by parts and using the gauge conditions, we simplify the Lagrangian density

L =LMG(h) + 2b(∂µAν)(∂
µAν) + 4ah(□ϕ) + 4(a+ b)(□ϕ)(□ϕ) + λν(∂µhµν) + λ(∂µA

µ),

LMG(h) := −1

4
(∂αhµν)(∂

αhµν) +
1

4
(∂µh)(∂

µh) + ah2 + bhµνhµν . (2.40)

The last two terms represent constraints coming from the gauge fixing, and λν and λ are
corresponding Lagrange multipliers. For the purpose to eliminate the coupling between h and
□ϕ, we introduce a shifted graviton field lµν

hµν = lµν +
8a

D − 1
ϕηµν . (2.41)

Then, we obtain

L =LMG(l) + 2b(∂µAν)(∂
µAν) + λν(∂µlµν + 8a∂νϕ/(D − 1)) + λ(∂µA

µ)

+ 4(a+ b)(□ϕ)(□ϕ) + 16a2D

D − 1
ϕ(□ϕ) + 64a2D(aD + b)

(D − 1)2
ϕ2 +

16a(aD + b)

D − 1
lϕ. (2.42)

We extract the property of the ϕ part and define

Lϕ := (□ϕ)(□ϕ) + Aϕ(□ϕ) +Bϕ2, (2.43)

where A and B are some constants. This Lagrangian is physically equivalent to the following
two-field Lagrangian

Lϕ,ψ :=
(
□ϕ+

A

2
ϕ
)
ψ − 1

4
ψ2 +

(
B − 1

4
A2
)
ϕ2. (2.44)

In the Lagrangian (2.44), ψ is merely an auxiliary field and the equation of motion for it can
be solved in terms of ϕ

δLϕ,ψ
δψ

= □ϕ+
A

2
ϕ− 1

2
ψ = 0 ⇒ ψ = 2

(
□ϕ+

A

2
ϕ
)
. (2.45)
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The above solution is plugged back into the original Lagrangian (2.44), and we can find the
equivalence

Lϕ,ψ|ψ=ψ(ϕ) = Lϕ. (2.46)

Hence, we can investigate Lϕ,ψ instead of Lϕ. In order to diagonalize the cross derivative term
in (2.44), we rename the fields ϕ and ψ in the following way

ϕ = σ + χ, ψ = σ − χ, (2.47)

and obtain

Lϕ,ψ = −(∂µσ)(∂
µσ) + (∂µχ)(∂

µχ) + · · · , (2.48)

where the remaining terms represented as “· · · ” are composed of no-derivative couplings be-
tween σ and χ. Thus, we find that one of σ and χ always behaves as a ghost. This discussion
can be applied to the Lagrangian density (2.42). Therefore, we conclude that a ghost degree of
freedom is contained in (2.42). To exclude this unphysical mode, we have to set a+ b = 0 and
eliminate the higher order derivative. Here, it should be noticed that we discarded the term
(∂µAν)(∂

µ∂νϕ) in (2.37) by the gauge fixing, but this term also disappears under the tuning
a + b = 0. The Fierz-Pauli tuning eliminates all of the higher order derivatives in (2.37) and
the system becomes ghost-free.

2.4 The Hamiltonian analysis

In Section 2.3, we have used the Stückelberg trick to investigate the existence of a ghost degree
of freedom. In general, the Stückelberg trick is useful in detecting a ghost, but it is extremely
difficult to directly prove the absence of a ghost. If the extra mode is eliminated, we should
have the right number of degrees of freedom. Especially, five degrees of freedom must be left
in the case of a four-dimensional massive spin-2 field. Thus, we have only to count the total
number of degrees of freedom to finish the proof of the absence of a ghost. In Section 2.2, we
have counted the total number of degrees of freedom from the equation of motion. However,
this method is possible only when the equation of motion is not so complicated. The most
systematic way to count the number of degrees of freedom is the Hamiltonian analysis, which
we use as a main tool throughout this thesis. In this section, we reconsider linear massive
gravity from the view point of the Hamiltonian analysis.

As in Section 2.3, we start with the Lagrangian density L = LEH + Lm, where LEH and
Lm are given by (2.19) and (2.20) with the constants a and b undetermined. The first step
of the Hamiltonian analysis is to find the dynamical variables and construct the Hamiltonian.
Hence, we decompose the space-time indices into the time and spatial ones, which we denote
µ = (0, i). We also abbreviate the time derivative as ∂0ϕ = ϕ̇. Then, the Lagrangian density is

13



written down:

L =
1

4
ḣijḣij −

1

4
ḣiiḣjj −

1

2
ḣij(∂jh0i + ∂ihj0) + ḣii(∂jh0j)

− 1

4
(∂ihjk)(∂ihjk) +

1

2
(∂ihjk)(∂khij)−

1

2
(∂ihkk)(∂jhij) +

1

4
(∂ihjj)(∂ihkk)

− 1

2
(∂ih0j)(∂jhi0) +

1

2
(∂ihj0)(∂ihj0) +

1

2
h00(∂i∂ihkk − ∂i∂jhij)

+ (a+ b)h00h00 − 2ah00hii − 2bh0ih0i + ahiihjj + bhijhij, (2.49)

where we have performed integrations by parts on h00, and lowered all of the indices. From
this decomposition, we find that only hij (i, j = 1, 2, ..., D − 1) are dynamical, and define the
canonical momenta

πij :=
∂L
∂ḣij

=
1

2
ḣij −

1

2
δijḣkk −

1

2
(∂jhi0 + ∂ihj0) + δij∂kh0k, (2.50)

which can be inverted for ḣij

1

2
ḣij = πij −

1

D − 2
δijπkk +

1

2
(∂jhi0 + ∂ihj0). (2.51)

The Hamiltonian density is constructed through the Legendre transformation

H :=πijḣij − L

=πijπij −
1

D − 2
πiiπjj

+
1

4
(∂ihjk)(∂ihjk)−

1

2
(∂ihjk)(∂khij) +

1

2
(∂ihkk)(∂jhij)−

1

4
(∂ihjj)(∂ihkk)

− ahiihjj − bhijhij

− 1

2
h00

(
∂i∂ihjj − ∂i∂jhij − 4ahii + 2(a+ b)h00

)
− 2hj0(∂iπij − bhj0). (2.52)

In the following analysis, we often use a short hand notation

h = hii, π = πii, (2.53)

which we must be careful not to confuse with the trace with respect to the space-time indices
hµµ = −h00 + hii. The space-time dimension D is sometimes omitted:∫

dx =

∫
dD−1x, δ(x) = δ(D−1)(x), (2.54)

and we also abbreviate the derivative and integration symbols:

∂2 = ∂i∂i,

∫
f + g =

∫
dx[f(x) + g(x)]. (2.55)
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2.4.1 the massless case

Prior to the analysis of massive gravity, we consider the massless case where the constants a
and b are set to be zero, a = b = 0. The Hamiltonian density is given by

H = K − 1

2
h00C − h0iCi, (2.56)

where the each element is defined as

K :=πijπij −
1

D − 2
πiiπjj

+
1

4
(∂ihjk)(∂ihjk)−

1

2
(∂ihjk)(∂khij) +

1

2
(∂ihkk)(∂jhij)−

1

4
(∂ihjj)(∂ihkk), (2.57)

C :=∂i∂ihjj − ∂i∂jhij, (2.58)

Ci :=2∂iπij. (2.59)

In the above formulae, we notice that h00 and hi0 appear only linearly and can be interpreted
as Lagrange multipliers. Variation of the action with respect to these multipliers leads to
constraints

C = 0, Ci = 0. (2.60)

In general, constraints must be preserved along the time evolution which is represented as the
Poisson bracket with the Hamiltonian. Thus, the following consistency conditions must be
satisfied

Ċ = {C, H}PB ≈ 0, Ċi = {Ci, H}PB ≈ 0, (2.61)

where the Hamiltonian H is given by

H :=

∫
dD−1xH(x), (2.62)

and the Poisson bracket is determined by{
F (x), G(y)

}
PB

=

∫
dD−1z

(
δF (x)

δhij(z)

δG(y)

δπij(z)
− δF (x)

δπij(z)

δG(y)

δhij(z)

)
. (2.63)

In the Poisson bracket, all the time coordinates are set to be equal. Since the action is now
written as S = 1

16πG

∫
ḣπ + · · · , we should define {F,G}PB = 16πG

∫
δF
δh

δG
δπ

+ · · · . However,
the constant 1

16πG
is merely an overall factor, and we omit it. The symbol “≈” represents the

equality on the hypersurface determined by the constraints C = 0 and Ci = 0.
To begin with, we investigate the Poisson brackets between C and Ci. Variation of C with

respect to the variable hij is calculated as

δhC = ∂i∂iδhkk − ∂i∂jδhij = δij∂k∂kδhij − ∂i∂jδhij. (2.64)

This formula suggests that the Poisson bracket contains derivatives on the delta function.
Hence, it is convenient to introduce an integrated form

⟨⟨fC⟩⟩ :=
∫
dD−1xf(x)C(x) (2.65)
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with an arbitrary function f(x). Then, discarding total derivatives, the variation is given by

δh⟨⟨fC⟩⟩ =
∫
dD−1x

[
δij(∂k∂kf)− (∂i∂jf)

]
δhij. (2.66)

Because C does not contain the canonical momenta πij, the variation with respect to πij is zero.
We also notice that Ci does not contain hij. Thus, we find

δπC = 0, δhCi = 0. (2.67)

On the other hand, variation of Ci with respect to πij is found to be

δπCi = 2∂jδπij. (2.68)

We define its integrated form

⟨⟨fiCi⟩⟩ :=
∫
dD−1xfi(x)Ci(x) (2.69)

with any vector valued function fi(x), and obtain the variation

δπ⟨⟨fiCi⟩⟩ =
∫
dD−1x

[
− ∂ifj − ∂jfi

]
δπij, (2.70)

where we have symmetrized the coefficient of δπij. Using these formulae, we calculate the
Poisson brackets between C and Ci. Following two types are immediate from the definition of
the Poisson bracket {

C(x), C(y)
}
PB

= 0,
{
Ci(x), Cj(y)

}
PB

= 0. (2.71)

The remaining type is calculated as follows{
⟨⟨fC⟩⟩, ⟨⟨giCi⟩⟩

}
PB

=

∫
dx

∫
dy

∫
dz
[
δij(∂k∂kf)− (∂i∂jf)

]
(x)δ(x− z)

[
− ∂igj − ∂jgi

]
(y)δ(y − z)

=

∫
dx
[
δij(∂

2f)− (∂i∂jf)
][

− ∂igj − ∂jgi
]

=− 2

∫
(∂2f)(∂igi)− (∂i∂jf)(∂igj) = 0. (2.72)

In the last line, we have discarded total derivatives. This Poisson bracket can also be expressed
in the following form{

⟨⟨fC⟩⟩, ⟨⟨giCi⟩⟩
}
PB

=

∫
dx

∫
dyf(x)gi(y)

{
C(x), Ci(y)

}
PB
, (2.73)

and the functions f and gi are arbitrary. Therefore, we know that{
C(x), Ci(y)

}
PB

= 0. (2.74)

All of the Poisson brackets between C and Ci are zero.
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Now, we consider the Poisson bracket with the Hamiltonian. The remaining task is to
calculate variation of K. The variation with respect to hij is given by

δhK =
1

2
(∂khij)∂kδhij −

1

2
(∂ihjk)∂kδhij −

1

2
(∂jhik)∂kδhij

+
1

2
δij(∂khkl)∂lδhij +

1

2
(∂ihkk)∂jδhij −

1

2
δij(∂lhkk)∂lδhij. (2.75)

In the Hamiltonian H, K is contained in the integrand. Thus, we define

K :=

∫
dD−1xK(x), (2.76)

and represent the variation in the following form

δhK =
1

2

∫
dx
(
− ∂2hij + ∂k∂ihjk + ∂k∂jhik − δij∂k∂lhkl − ∂i∂jh+ δij∂

2h
)
· δhij. (2.77)

We can also obtain the variation with respect to πij

δπK = 2
(
πij −

1

D − 2
πδij

)
δπij, (2.78)

δπK =

∫
dx 2

(
πij −

1

D − 2
πδij

)
δπij. (2.79)

Then, we calculate the Poisson bracket between C and the Hamiltonian H{
⟨⟨fC⟩⟩, H

}
PB

≈
{
⟨⟨fC⟩⟩, K

}
PB

=

∫
dx

∫
dy

∫
dz
[
δij(∂

2f)− (∂i∂jf)
]
(x)δ(x− z)

× 2
(
πij −

1

D − 2
πδij

)
(y)δ(y − z)

=

∫
dx2(∂jπij)(∂if)

=

∫
dxCi∂if. (2.80)

The symbol “≈” means the equality under the constraints C = 0 and Ci = 0 imposed. In general,
we have {F, h00C} = {F, h00}C + {F, C}h00. Here, we express f(x) as f(x) =

∫
dyf(y)δ(x− y),

and rewrite the above formula∫
dxCi(x)∂if(x) =

∫
dx

∫
dyCi(x)∂(x)i f(y)δ(x− y) =

∫
dx

∫
dyf(x)Ci(y)∂(y)i δ(x− y),

(2.81)

where we have exchanged names of the integration variables x↔ y. Hence, we conclude that{
C(x), H

}
PB

≈
∫
dy Ci(y)

∂

∂yi
δ(x− y). (2.82)

The consistency condition Ċ ≈ 0 is satisfied when we set Ci = 0. The other Poisson bracket is
calculated in the same way{

⟨⟨fiCi⟩⟩, H
}
PB

≈
{
⟨⟨fiCi⟩⟩, K

}
PB

=−
∫
dx

1

2

[
− ∂2hij + ∂k∂ihjk + ∂k∂jhik − δij∂k∂lhkl − ∂i∂jh+ δij∂

2h
][

− ∂ifj − ∂jfi
]
= 0,

(2.83)
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and we obtain {
Ci(x), H

}
PB

≈ 0. (2.84)

Therefore, two consistency conditions (2.61) are automatically satisfied on the constraint surface
determined by C = 0 and Ci = 0, and all of the Lagrange multipliers h00 and h0i are left un-
determined. These remaining Lagrange multipliers correspond to the gauge freedom contained
in the system. Therefore, we can count the total number of degrees of freedom in the following
way. In configuration space, the number of the original dynamical variables is 1

2
D(D− 1) com-

ing from the symmetric tensor hij (i, j = 1, 2, ..., D). In phase space, the canonical momenta πij

are added, and the number of the dynamical variables is doubled 2× 1
2
D(D− 1). However, all

of these dynamical variables are not independent. We have constraints C = 0 and Ci = 0, which
reduces D degrees of freedom. Besides, the remaining Lagrange multipliers h00 and hi0 mean
the existence of the gauge freedom. Thus, D degrees of freedom are further eliminated by gauge
fixing. Then, the total number of degrees of freedom is D(D−1)−D−D = (D−1)(D−2)−2
in phase space. Divided by two, we conclude that we have

1

2
(D − 1)(D − 2)− 1 (2.85)

physical degrees of freedom in the configuration space. In the four dimensional case (D = 4),
only two degrees of freedom is left which is nothing but the helicity ±2 modes.

2.4.2 the massive case

We proceed to the Hamiltonian analysis of massive gravity (a ̸= 0 and b ̸= 0). The Hamiltonian
density is given by (2.52). In the case of a + b ̸= 0 and b ̸= 0, h00 and hj0 become auxiliary
fields. We can solve the equation of motion for them by other fields as h00 = h00(hij, πij)
and h0k = h0k(hij, πij), and substitute these solutions back into the original action. Then,
the auxiliary fields disappear while the variables hij and πij are left. Because we have no
constraint, the total number of degrees of freedom is 1

2
D(D − 1). In the four dimensional case

(D = 4), we have six degrees of freedom. One extra component remains, which is known to be
a ghost. The emergence of this extra degree of freedom comes from quadratic terms of h00 and
hi0. In the massless case, these quadratic terms disappear and h00 and hi0 become Lagrange
multipliers, which leads to the reduction of the degrees of freedom. When the field becomes
massive, the number of physical degrees of freedom must increase. Thus, it seems needed to
partially eliminate the quadratic terms of the non-dynamical variables h00 and hi0.

Now, we focus on the Fierz-Pauli tuning and set a = −b. Then, the quadratic term of h00
disappears while hi0 remains as an auxiliary field. The equation of motion for hi0 reads

δL
δhj0

= 2(∂iπij − 2bhj0) = 0. (2.86)

We can easily solve the above equation

hj0 =
1

2b
(∂iπij), (2.87)
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which is plugged back into the Hamiltonian density (2.52) to give

H =πijπij −
1

D − 2
πiiπjj −

1

2b
(∂iπik)(∂jπjk)

+
1

4
(∂ihjk)(∂ihjk)−

1

2
(∂ihjk)(∂khij) +

1

2
(∂ihkk)(∂jhij)−

1

4
(∂ihjj)(∂ihkk)

+ bhiihjj − bhijhij −
1

2
h00C1. (2.88)

Then, we obtain the Hamiltonian density

H = K − 1

2
h00C, (2.89)

where

K :=πijπij −
1

D − 2
πiiπjj −

1

2b
(∂iπik)(∂jπjk) + bhiihjj − bhijhij

+
1

4
(∂ihjk)(∂ihjk)−

1

2
(∂ihjk)(∂khij) +

1

2
(∂ihkk)(∂jhij)−

1

4
(∂ihjj)(∂ihkk), (2.90)

C :=∂i∂ihjj − ∂i∂jhij + 4bhii. (2.91)

Variation of the action with respect to h00 leads to a primary constraint C = 0. The constraint
C = 0 must be preserved along the time evolution. Thus, we must imposed the following
consistency condition

Ċ =
{
C, H

}
PB

≈ 0, H :=

∫
dD−1xH(x), (2.92)

where the symbol “≈” represents the equality on the hypersurface determined by the constraint
C ≈ 0. Since C does not contain the canonical momenta πij, we immediately find{

C(x), C(y)
}
PB

= 0. (2.93)

As in the massless case, it is convenient to consider integrated formulae

⟨⟨fC⟩⟩ :=
∫
dD−1xf(x)C(x), K :=

∫
dD−1xK(x), (2.94)

and prepare their variation

δhK =
1

2

∫
dx
(
− ∂2hij + ∂k∂ihjk + ∂k∂jhik

− δij∂k∂lhkl − ∂i∂jh+ δij∂
2h+ 4bδijh− 4bhij

)
δhij, (2.95)

δπK =

∫
dx
[
2πij −

2

D − 2
πδij +

1

2b
(∂l∂jπil) +

1

2b
(∂l∂iπjl)

]
δπij, (2.96)

δh⟨⟨fC⟩⟩ =
∫
dx
[
δij(∂

2f)− (∂i∂jf) + 4bδijf
]
δhij, δπ⟨⟨fC⟩⟩ = 0, (2.97)
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where δh and δπ represent variation with respect to hij and πij.
Then, we calculate the Poisson bracket with the Hamiltonian H = K − 1

2
⟨⟨h00C⟩⟩{

⟨⟨fC⟩⟩, H
}
PB

≈
{
⟨⟨fC⟩⟩, K

}
PB

=

∫
dx
[
δij(∂

2f)− (∂i∂jf) + 4bδijf
][
2πij −

2

D − 2
πδij +

1

b
∂l∂jπil

]
=

∫
dx f · 2

[
∂i∂jπij −

4b

D − 2
π
]
, (2.98)

from which we read the consistency condition

Ċ =
{
C, H

}
PB

≈ 2
(
∂i∂jπij −

4b

D − 2
π
)
≈ 0. (2.99)

Obviously, the consistency condition (2.99) is not satisfied automatically, which leads to a
secondary constraint

C(2) := ∂i∂jπij −
4b

D − 2
πii = 0. (2.100)

The constraint C(2) = 0 must also be preserved along the time evolution, which means that we
need one more consistency condition

Ċ(2) =
{
C(2), H

}
PB

≈ 0. (2.101)

Here, we have two constraints C = 0 and C(2) = 0. Thus, the symbol “≈” should be reinterpreted
as “=” on the constraint surface determined by both of the two constraints.

We immediately find that variation of C(2) with respect to hij is zero δhC(2) = 0. We prepare
the variation with respect to πij

δπ⟨⟨fC(2)⟩⟩ =
∫
dx
[
(∂i∂jf)−

4b

D − 2
fδij

]
δπij, (2.102)

and calculate the Poisson bracket with the Hamiltonian{
⟨⟨fC(2)⟩⟩, H

}
PB

=
{
⟨⟨fC(2)⟩⟩, K

}
PB

− 1

2

{
⟨⟨fC(2)⟩⟩, ⟨⟨h00C⟩⟩

}
PB
. (2.103)

The first term is{
⟨⟨fC(2)⟩⟩, K

}
PB

=−
∫
dx

1

2

[
− ∂2hij + ∂k∂ihjk + ∂k∂jhik − δij∂k∂lhkl − ∂i∂jh+ δij∂

2h+ 4bδijh− 4bhij

]
×
[
(∂i∂jf)−

4b

D − 2
fδij

]
=

∫
dx f

[ 2b

D − 2

(
∂i∂jhij − ∂2h

)
+ 8b2h

]
= −

∫
dx f

[ 2b

D − 2
C − D − 1

D − 2
(8b2h)

]
, (2.104)

and the second term is{
⟨⟨fC(2)⟩⟩, ⟨⟨h00C⟩⟩

}
PB

≈ −
∫
dx
[
δij(∂

2h00)− (∂i∂jh00) + 4bδijh00
][
(∂i∂jf)−

4b

D − 2
fδij

]
=

∫
dx
D − 1

D − 2
(16b2fh00). (2.105)
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Hence, we obtain{
⟨⟨fC(2)⟩⟩, H

}
PB

≈ −
∫
dx f

2b

D − 2

[
C + 4b(D − 1)(h00 − hii)

]
, (2.106)

and conclude that{
C(2), H

}
PB

≈ − 2b

D − 2

[
C + 4b(D − 1)(h00 − hii)

]
≈ −8b2(D − 1)

D − 2
(h00 − hii). (2.107)

Therefore, we can satisfy the consistency condition (2.101) by determining the Lagrange mul-
tiplier h00 to be

h00 = hii, (2.108)

which finishes the Hamiltonian analysis. On the constraint surface C = C(2) = 0, we have the
traceless condition hµµ = −h00 + hii = 0.

We can count the total number of degrees of freedom in the following way. In phase space,
the number of the original dynamical variables is 2 × 1

2
D(D − 1) = D2 − D. We have two

constraints C = 0 and C(2) = 0, which reduces the number of the degrees of freedom toD2−D−2.
In configuration space, we divide it by two and have

1

2
D(D − 1)− 1 (2.109)

physical degrees of freedom. In the four-dimensional case (D = 4), we have 5 degrees of freedom
corresponding to the helicity (0,±1,±2) states. In conclusion, we find that the absence of
quadratic terms in h00 has eliminated the right number of degrees of freedom. This structure
is expected to be generalized to non-linear massive gravity.

2.5 The vDVZ discontinuity

Thus far, we have focused only on the ghost problem and concluded that the Fierz-Pauli tuning
is the solution. In this section, we change the subject and consider the massless limit of linear
massive gravity with the Fierz-Pauli mass term. Because we know that general relativity has
strong predictive power on observations, we expect that the massless limit should coincide with
general relativity. However, in the linear level, there is a gap between predictions from general
relativity and massive gravity in the massless limit. This phenomenon is called the vDVZ (van
Dam, Veltman and Zakharov) discontinuity [12, 13], which we now discuss. Resolution of this
issue is one of motivations to extend massive gravity from the linear level to the non-linear
level. Non-linear effects are expected to remove this pathology. Thus, in this section, we briefly
sketch how this problem emerges.

We consider the four dimensional case including a matter energy momentum tensor

S =M2
p

∫
d4x(LEH + LFP )−

1

2

∫
d4xhµνT

µν , (2.110)

where LEH and LFP are given by (2.19) and (2.29), and we have defined the Plank mass
M2

p := 1/16πG. If we take directly the massless limit in the above action, we recover pure
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general relativity, but massive modes are lost. For our purpose, we need to take the massless
limit with all of massive modes retained. Thus, we rely on the Stückelberg trick which we have
used in Section 2.3. After introducing two new fields Aµ and ϕ as in (2.33) and (2.36), we
obtain the action

S =M2
p

∫
d4xLEH(h) + LFP (h)−

m2

4
F µνFµν

−m2
(
hµν∂

µAν − h∂µA
µ
)
−m2

(
hµν∂

µ∂νϕ− h∂µ∂
µϕ
)

− 1

2

∫
d4x

(
hµν + ∂µAν + ∂νAµ + 2∂µ∂νϕ

)
T µν , (2.111)

where we have defined Fµν := ∂µAν − ∂νAµ. Then, we assume conservation of the energy

momentum tensor ∂µT
µν = 0, and normalize Aµ and ϕ as Âµ := mAµ and ϕ̂ := m2ϕ, which

leads to the action

S =M2
p

∫
d4xLEH(h) + LFP (h)−

1

4
F̂ µνF̂µν

−m
(
hµν∂

µÂν − h∂µÂ
µ
)
−
(
hµν∂

µ∂νϕ̂− h∂µ∂
µϕ̂
)

− 1

2

∫
d4xhµνT

µν . (2.112)

We also note the gauge symmetries corresponding to (2.38) and (2.39)

δhµν = ∂µξν + ∂νξµ, δÂµ = −mξµ, (2.113)

δÂµ = ∂µΛ, δϕ̂ = −mΛ. (2.114)

Now, we take the massless limit m→ 0, and obtain the action

S =M2
p

∫
d4xLEH(h)−

1

4
F̂ µνF̂µν −

(
hµν∂

µ∂νϕ̂− h∂µ∂
µϕ̂
)
− 1

2

∫
d4xhµνT

µν . (2.115)

Here, we shift the graviton field hµν as hµν = h′µν+
2

D−2
ϕηµν to diagonalize the coupling between

hµν and ϕ. The result is

S =M2
p

∫
d4x

(
LEH(h′)−

1

4
F̂ µνF̂µν −

3

2
∂µϕ̂∂

µϕ̂
)
− 1

2

∫
d4x

(
h′µνT

µν + ϕT
)
, (2.116)

and the remaining symmetries are

δh′µν = ∂µξν + ∂νξµ, δÂµ = ∂µΛ. (2.117)

Thus, we have one massless spin-2, one massless spin-1 and one spin-0 fields, which contains
2+2+1 = 5 degrees of freedom. Since no degree of freedom is lost, the action (2.116) describes
exactly the massless limit of massive gravity.

The important point is that not only h′µν but also ϕ couples to matter. Schematically, the
equation of motion for them is given by

∂2h′ =
1

M2
p

T, ∂2ϕ =
1

M2
p

T. (2.118)
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We can find that h and ϕ contribute in the same order h ∼ ϕ to the original graviton field
hµν = h′µν + ϕηµν . Since pure general relativity corresponds to the field h′µν , the massless limit
of massive gravity deviates from general relativity. This is the origin of the vDVZ-discontinuity.
However, if we introduce some non-linear term Ξ[ϕ] to the equation of motion for ϕ

∂2h′ =
1

M2
p

T, ∂2ϕ+ Ξ[ϕ] =
1

M2
p

T, (2.119)

there is a possibility that the nonlinear term becomes dominant in some regime, and the con-
tribution from ϕ gets small, h′ ≫ ϕ. In this situation, general relativity is restored h ∼ h′,
which is called the Vainshtein mechanism. Therefore, the non-linear extension of linear-massive
gravity is expected to resolve the vDVZ discontinuity.

2.6 The Fierz-Pauli mass term on curved space-times

We finish this chapter with a note about the Fierz-Pauli mass term on curved background
space-times. Throughout this chapter, we have considered how to exclude an extra degree of
freedom which is ghost like, and have not taken care of the possibility that ghosts are contained
in the remaining degrees of freedom. On the Minkowski background, the remaining ones are
guaranteed to be “regular” particles, which comes from the property of the Poincare-group.
However, when a background is curved, the above argument is not applicable. Ghost like
modes may be contained even if we exclude the extra degrees of freedom. For example, on the
de-Sitter background, we have a ghost when graviton’s mass is small compared to the Hubble
parameter [14]. In this section, we attempt to detect this type of ghost degrees of freedom. We
rely on the Stückelberg trick which we have introduced in section 2.3.

On a curved background, the massless part of the Lagrangian density is given by (2.15).
We add the Fierz-Pauli mass term to obtain the action S = 1

16πG

∫
dDxL(h) and

L(h)√
− det ḡ

=− 1

4
(∇̄αhµν)(∇̄αhµν) +

1

2
(∇̄αhµν)(∇̄νhαµ)− 1

2
(∇̄µh)(∇̄νh

µν) +
1

4
(∇̄µh)(∇̄µh)

+
R̄

2D

(
hµνhµν −

1

2
h2
)
− 1

4
m2(hµνhµν − h2), (2.120)

where we have neglected total derivatives and the zeroth order term. We perform index ma-
nipulations by the background metric ḡµν and its inverse ḡµν .

We introduce a Stückelberg field Aµ

hµν → hµν +∇µAν +∇νAµ, (2.121)

and one more Stückelberg field ϕ

Aµ → Aµ +∇µϕ. (2.122)

Then, we have the Lagrangian density

L(h,A, ϕ)√
− det ḡ

=
L(h)√
− det ḡ

− 1

4
m2F µνFµν +

1

D
m2R̄AµAµ −m2(hµν∇µAν − h∇µA

µ) +
2m2R̄

D
Aµ∇µϕ

+
m2R̄

D
(∇µϕ)(∇µϕ)−m2(hµν∇µ∇νϕ− h□ϕ), (2.123)
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where Fµν := ∇µAν −∇νAµ and a relation ∇µAν∇νAµ = (∇µA
µ)2 − R̄µνA

µAν has been used.
Along with the two Stückelberg fields, two gauge symmetries are introduced

δhµν = ∇µξν +∇νξµ, δAµ = −ξµ, (2.124)

δAµ = ∇µλ, δϕ = −λ. (2.125)

Here, we notice that the Fierz-Pauli tuning eliminates higher order derivatives which is the
source of the extra ghost like degrees of freedom. Now, we define the shifted graviton field h′µν
as

hµν = h′µν +
2m2

D − 2
ϕgµν . (2.126)

The role of this redefinition is to eliminate terms like hµν∇µ∇νϕ or h□ϕ. Then, the Lagrangian
density written by h′µν is

L(h′, A, ϕ)√
− det ḡ

=
L(h′)√
− det ḡ

− 1

4
m2F µνFµν +

1

D
m2R̄AµAµ

−m2(h′µν∇µAν − h′∇µA
µ) +m2

(D − 1

D − 2
m2 − R̄

D

)
(2ϕ∇µA

µ + h′ϕ)

−m2
(D − 1

D − 2
m2 − R̄

D

)(
(∇µϕ)(∇µϕ)−m2 2D

D − 2
ϕ2
)
. (2.127)

In the above formula, the coefficient of the kinetic term of the scalar field ϕ is D−1
D−2

m2− R̄
D
which

can be positive or negative due to the value of the background curvature R̄. This fact suggests
the possibility that we have ghosts in the remaining degrees of freedom. There is no generic
prescription to eliminate this type of ghosts, which must be handled case by case. In general,
the term “ghost-free” massive gravity means only the absence of ghost-like extra degrees of
freedom. Other types of ghost may be contained, depending on the background, solutions or
matter couplings. They are not considered in this thesis.

24



Chapter 3

Non-linear massive gravity

Chapter 2 has been devoted to the problem of how to construct a consistent theory of massive
gravity in the linear level. We have achieved the Fierz-Pauli mass term which contains the right
number of degrees of freedom. However, we have encountered a pathology called the vDVZ
discontinuity, where predictions from massless limit of massive gravity deviates from those of
general relativity. One of motivations for non-linear massive gravity is to resolve this problem
by means of non-linear effects. Non-linear effects are also expected to explain observations such
as accelerated expansion of the universe or dark energy, but we do not treat these topics in this
thesis.

In this chapter, we extend linear massive gravity and construct a theory of non-linear massive
gravity. Firstly, we make only the kinetic term (the Einstein-Hilbert term) non-linear while the
Fierz-Pauli mass term is left in the linear level. In this setting, we see that an extra degree of
freedom is recovered via non-linearity and it behaves as a ghost. Thus, we try to remove it by
making the Fierz-Pauli mass term non-linear. For this purpose, the Stückelberg trick is useful.
We use the Stückelberg trick in the non-linear context and find the emergence of higher order
derivatives which turns out to carry a ghost. Then, we add non-linear terms to the mass term
to cancel potentially dangerous higher order derivatives. These newly introduced non-linear
terms are combined to become a non-linear mass term. We also attempt further extensions to
bi or tri-metric gravity.

As in the linear level, the final step is to count the total number of degrees of freedom, where
we rely on the Hamiltonian analysis. The Hamiltonian analysis of fully non-linear massive
gravity contains rather lengthy calculations. Hence, the Hamiltonian analysis is postponed to
the next chapter.

For more details and related topics, we can consult [8, 9].

3.1 The Fierz-Pauli mass term with the non-linear ki-

netic term

As a first step toward fully non-linear massive gravity, we attempt to make only the kinetic
term non-linear while we leave the Fierz-Pauli mass term in the linear level. Then, we consider
the action

S =
1

16πG

∫
dDx

[√
− det gR− 1

4
m2ηµαηνβ(hµνhαβ − hµαhνβ)

]
. (3.1)
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A full metric gµν is composed of the background Minkowski metric ηµν and a fluctuation hµν

gµν = ηµν + hµν . (3.2)

The mass term explicitly contains the background metric. Thus, the diffeomorphism invariance
is broken. To begin with, we count the total number of degrees of freedom by the Hamiltonian
analysis, and find that there is an extra degree of freedom.

3.1.1 The Hamiltonian analysis

The Hamiltonian analysis containing the non-linear Einstein-Hilbert term is performed based
on the ADM (d+1) decomposition [15, 16].

the ADM decomposition

We regard a space-time as a foliation of spatial slices which have the unit normal vector nµ

and the tangent vector eµi, where we write indices on the spatial slices as i, j, k = 1, 2, ..., d. If
we denote general coordinates as Xµ and coordinates on the spatial slices as xi, the tangent
vector can be expressed as eµi = ∂Xµ

∂xi
. Since the slicing is spatial, the normal vector is time-like,

namely nµnµ = −1. A time coordinate t is combined with the spatial coordinates xi to form
space-time coordinates. However, there is no natural choice of the time on general space-times.
Thus, we define a vector

T µ := Nnµ +N ieµi, (3.3)

and regard it as the tangent vector of the time direction T µ = ∂Xµ

∂t
. Coefficients N and N i

determine the direction of the time evolution, and is called the shift and the lapse respectively.
Then, the line element is given by

ds2 =gµνdX
µdXν

=gµν
(
T µdt+ eµidx

i)(T νdt+ eνjdx
j
)

=gµν

(
Nnµdt+

(
N idt+ dxi

)
eµi

)(
Nnνdt+

(
N jdt+ dxj

)
eνj

)
=−N2dt2 + γij

(
N idt+ dxi

)(
N jdt+ dxj

)
, (3.4)

where we have introduced the spatial metric γij := gµνe
µ
ie
ν
j. Equivalently in a matrix form,

we can write it as

gµν =

(
−N2 + γijN

iN j γjkN
k

γikN
k γij

)
. (3.5)

In the following, we denote the inverse of γij as γij, namely γikγkj = δij. We also denote the
covariant derivative constructed only from the spatial metric γij and γ

ij as Di.
The Gauss-Codazzi relation represents the relation between the curvature of a (d + 1)-

dimensional space-time and that of d-dimensional spatial subspace

(d+1)R = (d)R +
(
KµνK

µν −K2
)
− 2∇µ

(
nν∇νn

µ − nµ∇νn
ν
)
, (3.6)
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where Kµν is the extrinsic curvature and K = Kµ
µ. We neglect total derivatives and rewrite

the Einstein-Hilbert action as

SEH =
1

16πG

∫
dd+1x

√
− det g (d+1)R

=
1

16πG

∫
dt ddxN

√
det γ

(
(d)R +KijK

ij −K2
)
. (3.7)

In the above formula, the extrinsic curvature can be expressed as

Kij =
1

2N

(
γ̇ij −DiNj −DjNi

)
, (3.8)

K = γijKij. (3.9)

the massless case

Prior to analyze massive gravity, we consider the case of general relativity. In the ADM for-
malism, the action is given by

S =
1

16πG

∫
dt ddxL, L = N

√
det γ

(
(d)R +KijK

ij −K2
)
. (3.10)

It is obvious that the dynamical variables are the spatial metric γij. Hence, we define the
canonical momenta

πij :=
∂L
∂γ̇ij

=
√
det γ

(
Kij − γijK

)
. (3.11)

If we invert (3.11), we have

γ̇ij =
N√
det γ

(
2πij − πγij

)
+DiNj +DjNi. (3.12)

Instead of (3.12), we use the formula for the extrinsic curvature (3.8)

γ̇ij = 2NKij +DiNj +DjNi, (3.13)

from which we obtain

γ̇ijπ
ij = (DiNj +DjNi)π

ij + 2N
√
det γ

(
KijK

ij −K2
)
. (3.14)

We also calculate

πijπ
ij = (det γ)

(
KijK

ij + (d− 2)K2
)
, (3.15)

π2 = (det γ)(d− 1)2K2, (3.16)

and find

K2 =
1

(d− 1)2 det γ
π2, (3.17)

KijK
ij =

1

det γ
πijπ

ij − d− 2

(d− 1)2 det γ
π2, (3.18)
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which lead to

KijK
ij −K2 =

1

det γ

(
πijπ

ij − 1

d− 1
π2
)
. (3.19)

Then, the action can be read as

S =
1

16πG

∫
dt ddx

[
γ̇ijπ

ij +NR0 +N iRi

]
, (3.20)

where each element is defined by

R0 :=
√

det γ (d)R− 1√
det γ

(
πijπ

ij − 1

d− 1
π2
)

=
√

det γ (d)R− 1√
det γ

(
γikγjl −

1

d− 1
γijγkl

)
πijπkl, (3.21)

Ri :=2Djπ
j
i = 2γikDjπ

jk. (3.22)

Hence, N and N i are interpreted as Lagrange multipliers and variation with respect to them
leads to constraints

R0 = 0, Ri = 0. (3.23)

These constraints must be preserved along the time evolution, which is represented as consis-
tency conditions

d

dt
R0 =

{
R0, H

}
PB

≈ 0,
d

dt
Ri =

{
Ri, H

}
PB

≈ 0. (3.24)

The symbol “≈” stands for the equality on the hypersurface determined by the constraints,
and the Hamiltonian H is give by

H =

∫
ddx
(
−NR0 −N iRi

)
. (3.25)

The Poisson bracket is determined by the following formula

{
F (x), G(y)

}
PB

=

∫
ddz

[
δF (x)

δγij(z)

δG(y)

δπij(z)
− δF (x)

δπij(z)

δG(y)

δγij(z)

]
, (3.26)

where the integration is only on the spatial coordinates and the time component is set to be
equal on each factor. Here, it should be noted that we are neglecting the overall factor 16πG
for notational simplicity.

We explicitly calculate the Poisson brackets between R0 and Ri in Appendix C, and the
result is {

R0(x),R0(y)
}
PB

= Ri(y)Di
(y)δ

(d)(x− y)−Ri(x)Di
(x)δ

(d)(x− y) ≈ 0, (3.27){
R0(x),Ri(y)

}
PB

= −R0(y)D(x)
i δ(x− y) ≈ 0, (3.28){

Ri(x),Rj(y)
}
PB

= Ri(y)D(y)
j δ(d)(x− y)−Rj(x)D(x)

i δ(d)(x− y) ≈ 0. (3.29)
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Therefore, we see that the consistency conditions (3.24) are automatically satisfied, and the
Lagrange multipliers N and N i are left undetermined. These remaining Lagrange multipliers
correspond to the diffeomorphism invariance contained in general relativity.

The total number of degrees of freedom can be counted. In phase space, the number of
the original dynamical variables is 2 × 1

2
d(d + 1) coming from symmetric tensors hij and πij

(i, j = 1, 2, .., d). The constraints R0 and Ri eliminate d + 1 degrees of freedom. The gauge
freedom corresponding to the remaining Lagrange multipliers reduce further d + 1 degrees of
freedom. Then, divided by two, the total number of degrees of freedom is

1

2
d(d+ 1)− (d+ 1). (3.30)

In the case of a four dimensional space-time (d = 3), we have two degrees of freedom, which is
compatible with the analysis in linearized general relativity.

the massive case

In the massive case m ̸= 0, the action is given by (3.1). Obviously, it is convenient to regard
the full metric gµν as a basic variable. Thus, hµν is interpreted as hµν = gµν − ηµν . Since the
mass term contains no derivative, the definition of the canonical momenta is not changed. We
apply the ADM decomposition (3.5) for the full metric gµν , and obtain the action

S =
1

16πG

∫
dt ddx

[
γ̇ijπ

ij +NR0 +N iRi

− 1

4
m2
(
δikδjl(hijhkl − hikhjl) + 2δijhij − 2N2δijhij + 2NiNj(γ

ij − δij)
)]
, (3.31)

where hij := γij− δij. We notice that the crucial point is the break down of linearity for N and
N i. They become auxiliary fields and the equation of motion for them can be solved as

N =
R0

m2δijhij
, Ni =

1

m2
(γij − δij)−1Rj. (3.32)

These formulae are plugged back into the original action, and we have no constraint and no
Lagrange multiplier. Therefore, all the dynamical variables hij (i, j = 1, 2, ..., d) remain. The
total number of degrees of freedom is counted to be

1

2
d(d+ 1). (3.33)

In the case of a four dimensional space-time (d = 3), we have six degrees of freedom. One extra
degree of freedom is recovered via the non-linear extension of the kinetic term. This extra one
is called the BD (Boulware and Deser) ghost [17].

3.1.2 The Stückelberg trick

We have seen that the combination of the non-linear Einstein-Hilbert term and the linear
Fierz-Pauli mass term leads to an extra degree of freedom. Then, we show that it is actually a
ghost. For this purpose, the Stückelberg trick is useful. In Section 2.3, we have introduced the
Stückelberg trick in the linear level. Hence, we need to extend it to the non-linear level [18].
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The essence of the Stückelberg trick is to introduce a new field imitating the broken symmetry.
In the action (3.1), the invariance broken by the mass term is the diffeomorphism invariance of
the Einstein-Hilbert term. Therefore, we introduce a new field Y µ and perform the following
replacement

gµν(x) → Gµν(x) :=
∂Y α

∂xµ
∂Y β

∂xν
gαβ
(
Y (x)

)
. (3.34)

Since the Einstein-Hilbert term retains the diffeomorphism invariance, it is not changed. Only
the mass term picks up a change. Thus, We have only to focus on hµν = gµν − ηµν in the
Fierz-Pauli mass term, and replace it by Hµν := Gµν − ηµν . Then, the action is given by

S =
1

16πG

∫
dDx

[√
− det gR− 1

4
m2ηµαηνβ(HµνHαβ −HµαHνβ)

]
− 1

2

∫
dDxhµνT

µν . (3.35)

For later convenience, we have added a matter coupling. T µν represents its energy momentum
tensor. Along with the new field Y α, a gauge symmetry is introduced

gµν(x) →
∂fα

∂xµ
∂fβ

∂xν
gαβ
(
f(x)

)
, Y µ(x) → f−1

(
Y (x)

)µ
, (3.36)

where f is a function corresponding to the gauge freedom. This is because the transformation
for Y α after that for gµν can be expressed as

∂Y α

∂xµ
∂Y β

∂xν
gαβ
(
Y (x)

)
→∂Y α

∂xµ
∂Y β

∂xν
∂fλ

∂Y α
(Y )

∂fρ

∂Y β
(Y )gλρ

(
f(Y (x))

)
=
∂fλ(Y (x))

∂xµ
∂fρ(Y (x))

∂xν
gλρ
(
f(Y (x))

)
→∂Y λ

∂xµ
∂Y ρ

∂xν
gλρ
(
Y (x)

)
, (3.37)

and Gµν itself is invariant. The gauge fixing Y α = xα returns the original action (3.1).
Now, we shift Y α to define Aα

Y α(x) =: xα + Aα(x), (3.38)

and expand the invariant tensor Gµν

Gµν =
(
δαµ + ∂µA

α
)(
δβν + ∂νA

β
)(
gαβ + Aλ∂λgαβ +

1

2
AλAρ∂λ∂ρgαβ

)
=gµν + (∂µA

α)gαν + (∂νA
β)gβµ + (∂µA

α)(∂νA
β)gαβ + (terms containing ∂n≥1g). (3.39)

We perform index manipulations by the background metric ηµν and obtain

Hµν =hµν + ∂µAν + ∂νAµ + (∂µA
α)(∂νAα)

+ (∂µA
α)hαν + (∂νA

β)hβµ + (∂µA
α)(∂νA

β)hαβ + (terms containing ∂n≥1h). (3.40)

Here, we introduce one more Stückelberg field ϕ through the replacement

Aµ → Aµ + ∂µϕ, (3.41)
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and find

Hµν = hµν+∂µAν + ∂νAµ + (∂µA
α)(∂νAα)

+2∂µ∂νϕ+ (∂µ∂
αϕ)(∂ν∂αϕ)

+(terms containing hn≥1). (3.42)

Gauge symmetries are found from the transformation law for Y α (3.36).
Our present purpose is to expand the action (3.35) by hµν , Aµ and ϕ and see whether a

ghost degree of freedom appears. In the following, we treat the four dimensional case D = 4
and put M2

p := 1
16πG

. Firstly, we focus on the Einstein-Hilbert part. The expansion is

SEH =M2
p

∫
d4x
√
− det gR

=

∫
d4x

{
−
M2

p

4
(∂λhµν)(∂

λhµν) + · · ·+M2
p × (terms of hn≥3)

}
, (3.43)

which contains the kinetic part for hµν . In order to eliminate the dimensional coefficient at-
tached to the kinetic term, we normalize hµν as

ĥµν :=Mphµν . (3.44)

Then, the Einstein-Hilbert action is rewritten as

SEH =

∫
d4x

{
− 1

4
(∂λĥµν)(∂

λĥµν) + · · ·+ 1

Mp

(terms of ĥ3) +
1

M2
p

(terms of ĥ4) + · · ·
}
.

(3.45)

On the other hand, the Fierz-Pauli mass term is expanded as

SFP :=−M2
p

m2

4

∫
d4x
(
HµνH

µν −H2
)

=

∫
d4x

{
−M2

p

m2

4
(hµνh

µν − h2)−M2
p

m2

4
FµνF

µν

−M2
pm

2(hµν∂
µAν − h∂µA

µ)−M2
pm

2(hµν∂
µ∂νϕ− h∂µ∂

µϕ)

}
+M2

pm
2(higher than third order terms of h,A, ϕ)

}
. (3.46)

We normalize Aµ and ϕ in the same way as hµν

Âµ := mMpAµ, ϕ̂ := m2Mpϕ, (3.47)

and obtain

SFP =

∫
d4x

{
− m2

4
(ĥµν ĥ

µν − ĥ2)− 1

4
F̂µνF̂

µν −m(ĥµν∂
µÂν − ĥ∂µÂ

µ)− (ĥµν∂
µ∂νϕ̂− ĥ∂µ∂

µϕ̂)

+ (higher than third order terms of ĥ, Â, ϕ̂)

}
. (3.48)
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We also consider the matter coupling term

Scoup :=− 1

2

∫
d4xHµνT

µν

=−
∫
d4x
{1
2
hµνT

µν + (∂νAµ)T
µν + (∂µ∂νϕ)T

µν

+ T × (higher than second order terms of h,A, ϕ)
}
. (3.49)

We assume that the energy momentum tensor T µν is conserved ∂µT
µν = 0, and find

Scoup = −
∫
d4x
{ 1

2Mp

ĥµνT
µν + T × (higher than second order terms of h,A, ϕ)

}
. (3.50)

Now, we have various interaction terms, but important ones are coming from the expansion of
SFP . They are expressed as

m2M2
p h

n(h)(∂A)n(A)(∂2ϕ)n(ϕ) = Λ
4−n(h)−2n(A)−3n(ϕ)
λ (ĥ)n(h)(∂Â)n(A)(∂2ϕ̂)n(ϕ), (3.51)

where

Λλ := m

(
Mp

m

) 1
λ

, λ :=
3n(ϕ) + 2n(A) + n(h)− 4

n(ϕ) + n(A) + n(h)− 2
= 2 +

n(ϕ)− n(h)

n(ϕ) + n(A) + n(h)− 2
. (3.52)

In general, it is natural to think that the Planck mass Mp is larger than graviton’s mass m.
Thus, we assume Mp > m and find that Λλ decreases when λ increases. Focusing on higher
than third order interactions (n(ϕ) + n(A) + n(h) ≥ 3), the maximum value of λ is 5 when we

have n(A) = 0, n(h) = 0, n(ϕ) = 3. Hence, the minimum value of Λλ is Λ5 = (Mpm
4)

1
5 . On the

other hand, a condition 4− n(h)− 2n(A)− 3n(ϕ) < 0 always holds because we do not have a
term with n(h) = 3, n(A) = 0, n(ϕ) = 0. Therefore, the interaction terms (3.51) have negative
mass dimension and non-renormalizable. Λ5 is the cut-off scale as an effective field theory.

Since the expanded action contains a lot of interaction terms, it seems difficult to detect
a ghost degree of freedom. Then, we focus on the cut off scale, and take a limit called Λ5

decoupling limit

m→ 0, Mp → ∞, T → ∞, Λ5,
T

Mp

: fixed. (3.53)

In this limit, we have

Λλ<5 = m

(
Mp

m

) 1
λ

= Λ5

(
Mp

m

) 1
λ
− 1

5

→ ∞. (3.54)

Therefore, among higher than third order interaction terms, only the term with n(ϕ) =
3, n(A) = 0, n(h) = 0 remains, whose explicit formula is given by

−M2
p

m2

4

{
4(∂µ∂νϕ)(∂µ∂

αϕ)(∂ν∂αϕ)− 4(□ϕ)(∂µ∂αϕ)(∂µ∂αϕ)
}

=
1

2Λ5
5

{
(□ϕ̂)3 − (□ϕ̂)(∂µ∂νϕ̂)(∂µ∂νϕ̂)

}
. (3.55)
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In order to diagonalize the coupling between hµν and ϕ, we shift the graviton field ĥµν as

ĥµν = ĥ′µν + ϕ̂ηµν , and obtain the action

S =

∫
d4x
{
− 1

4
(∂αĥ

′
µν)(∂

αĥ′µν) +
1

2
(∂αĥ

′
µν)(∂

ν ĥ′αµ)− 1

2
(∂µĥ

′)(∂ν ĥ
′µν) +

1

4
(∂µĥ

′)(∂µĥ′)

− 1

2Mp

ĥ′µνT
µν − 1

4
F̂µνF̂

µν

− 3

2
(∂µϕ̂)(∂

µϕ̂) +
1

2Λ5
5

[
(□ϕ̂)3 − (□ϕ̂)(∂µ∂νϕ̂)(∂µ∂νϕ̂)

]
− 1

2Mp

ϕ̂T
}
. (3.56)

We can see that non-linearity has lead to higher order derivatives with respect to time which
operate on ϕ. This fact suggests the emergence of a ghost degree of freedom [10, 11]. For
simplicity, we consider such a Lagrangian density below (More details are found in [19].):

Lϕ̂ := −(∂µϕ̂)(∂
µϕ̂) +

1

Λ5
5

(□ϕ̂)3 − 1

Mp

ϕ̂T. (3.57)

This is a simplified version of the scalar part in (3.56). The point is that an non-linear term
(□ϕ)3 is not a total derivative combination, and it cannot exclude a higher order derivative
with respect to the time coordinate. In addition, we introduce one more Lagrangian density

Lϕ̂,ψ := −(∂µϕ̂)(∂
µϕ̂)− 2(∂µϕ̂)(∂

µψ) +
4

3

√
2

3
Λ

5/2
5 ψ

3
2 − 1

Mp

ϕ̂T (3.58)

The field ψ is an auxiliary field. The equation of motion for ψ is given by

δLϕ̂,ψ
δψ

= 2□ϕ̂+ 2

√
2

3
Λ

5/2
5 ψ

1
2 = 0, (3.59)

which is solved as a function of ϕ

ψ
1
2 = −

√
2

3
Λ

−5/2
5 □ϕ̂. (3.60)

Substituting this solution back into Lϕ̂,ψ, we find

Lϕ̂,ψ
∣∣∣
ψ

1
2=−

√
2
3
Λ
−5/2
5 □ϕ̂

= −(∂µϕ̂)(∂
µϕ̂) +

1

Λ5
5

(□ϕ̂)3 + 1

Mp

ϕ̂T = Lϕ̂. (3.61)

Thus, two Lagrangian densities Lϕ̂ and Lϕ̂,ψ are physically equivalent. We can investigate Lϕ̂,ψ
instead of Lϕ̂. Here, we put

ϕ̂ = φ− ψ, (3.62)

and obtain

Lχ,ψ = Lϕ̂=φ−ψ,ψ = −(∂µφ)(∂
µφ) + (∂µψ)(∂

µψ) +
4

3

√
2

3
Λ

5/2
5 ψ

3
2 − 1

Mp

φT +
1

Mp

ψT. (3.63)

In the above formula, ψ behaves as a ghost. Therefore, we conclude that the 6th extra degree
of freedom is a ghost mode. This is called the BD (Boulware and Deser) ghost [17].
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3.2 How to eliminate the BD-ghost

In Section 3.1, we have considered the half non-linearization, where the non-linear Einstein-
Hilbert term and the linear Fierz-Pauli mass term are combined. Effects of the half non-
linearization has been investigated by the Stückelberg trick. Then, we have found that the half
non-linearity leads to higher order derivatives which carry a ghost degree of freedom called the
BD-ghost. At first sight, this fact seems catastrophic. However, we should notice that this
theory is not fully non-linear. There is room to cancel these dangerous higher order derivatives
by non-linearly extending the Fierz-Pauli mass term. Thus, we add non-linear terms constructed
from a fluctuation hµν such as h3, h4, ... with no derivative. We adjust them to cancel higher
order derivatives when we expand the action by the Stückelberg fields. In this section, we try
to describe how this program works. The purpose of this section is not to explicitly construct
a theory of non-linear massive gravity. However, the calculation below gives us an important
clue to determine a non-linear and ghost-free mass term. More details are found in [20, 21].

Following [20, 21], we start with the action

S =M2
p

∫
d4x

[√
− det gR− m2

4

√
− det g gµαgνβ(hµνhαβ − hµαhνβ)

]
, (3.64)

where hµν = gµν − ηµν is understood. Compared to the action (3.1), the above action (3.64)
already contains some non-linearity in the mass term . This is merely for our convenience.

Our main tool is the Stückelberg trick, but we introduce it in a rather different way from
that in Section 3.1.2. We bring in a field Y µ through the following replacement

hµν = gµν − ηµν → Hµν = gµν − Ḡµν , (3.65)

where

Ḡµν(x) :=
∂Y α

∂xµ
(x)

∂Y β

∂xν
(x)ηαβ. (3.66)

The replacement is done only on hµν in the mass term. Then, the action is given by

S =M2
p

∫
d4x

[√
− det gR− m2

4

√
− det g gµαgνβ(HµνHαβ −HµαHνβ)

]
. (3.67)

Along with Y α, a gauge symmetry is introduced

gµν(x) →
∂fα

∂xµ
∂fβ

∂xν
gαβ
(
f(x)

)
, Y µ(x) → Y µ(f(x))), (3.68)

where f is a function corresponding to the gauge freedom. This is because Ḡµν transforms as
a tensor field

∂Y α

∂xµ
(x)

∂Y β

∂xν
(x)ηαβ →∂Y α

∂xµ
(f(x))

∂Y β

∂xν
(f(x))ηαβ

=
∂fλ

∂xµ
∂Y α

∂fλ
(f(x))

∂fρ

∂xν
∂Y β

∂fρ
(f(x))ηαβ =

∂fλ

∂xµ
∂fρ

∂xν
∂Y α

∂fλ
(f(x))

∂Y β

∂fρ
(f(x))ηαβ.

(3.69)
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Thus, Hµν also obeys the transformation law for a tensor field. The gauge fixing Y α = xα

restores the original action (3.64).
Now, we shift Y α to define Aα

Y α = xα − Aα. (3.70)

Then, Hµν is expanded as

Hµν =gµν − (δαµ − ∂µA
α)(δβν − ∂νA

β)ηαβ

=hµν + (∂µA
α)ηαν + (∂νA

β)ηβµ − (∂µA
α)(∂νA

β)ηαβ

=hµν + ∂µAν + ∂νAµ − (∂µA
α)(∂νAα), (3.71)

where index manipulations are done by the background metric ηµν . We introduce one more
Stückelberg field ϕ through the replacement

Aα → Aα + ∂αϕ, (3.72)

and the expansion of Hµν reads

Hµν =hµν + ∂µAν + ∂νAµ − (∂µA
α)(∂νAα)

+ 2∂µ∂νϕ− (∂µ∂
αϕ)(∂ν∂αϕ)

− (∂µA
α)(∂ν∂αϕ)− (∂νA

β)(∂µ∂βϕ). (3.73)

As in Section 3.1.2, we expand the action (3.67) by hµν , Aµ and ϕ. We remember (3.51) and
write down the general form of interaction terms coming from the mass term

m2M2
p h

n(h)(∂A)n(A)(∂2ϕ)n(ϕ) = Λ
4−n(h)−2n(A)−3n(ϕ)
λ (ĥ)n(h)(∂Â)n(A)(∂2ϕ̂)n(ϕ), (3.74)

with

Λλ = m

(
Mp

m

) 1
λ

, λ =
3n(ϕ) + 2n(A) + n(h)− 4

n(ϕ) + n(A) + n(h)− 2
= 2 +

n(ϕ)− n(h)

n(ϕ) + n(A) + n(h)− 2
. (3.75)

Hat symbols represent normalized fields ĥµν = Mphµν , Âµ = mMpAµ and ϕ̂ = m2Mpϕ. Since
our main interest is in higher order derivatives, we focus on higher than third order n(ϕ) +
n(A) + n(h) ≥ 3 terms. We can classify them according to the value of λ

· λ > 5 :

2n(ϕ) + 3n(A) + 4n(h) < 6 ⇒ no solution

· λ = 5 :

2n(ϕ) + 3n(A) + 4n(h) = 6 ⇒ (n(ϕ), n(A), n(h)) = (3, 0, 0)

· 4 < λ < 5 :

n(ϕ) + 2n(A) + 3n(h) < 4, 2n(ϕ) + 3n(A) + 4n(h) > 6 ⇒ no solution

· λ = 4 :

n(ϕ) + 2n(A) + 3n(h) = 4 ⇒ (n(ϕ), n(A), n(h)) = (2, 1, 0), (4, 0, 0)

· 3 < λ < 4 :

n(A) + 2n(h) < 2, n(ϕ) + 2n(A) + 3n(h) > 4,

⇒ (n(ϕ), n(A), n(h)) = (n ≥ 5, 0, 0)λ=3+ 2
n−2

, (n ≥ 3, 1, 0)λ=3+ 1
n−1

· λ = 3 :

n(A) + 2n(h) = 2 ⇒ (n(ϕ), n(A), n(h)) = (n ≥ 2, 0, 1), (n ≥ 1, 2, 0), (3.76)
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which is summarized in the following table.

scale Λ5 Λ4 Λ3+ 2
n−2

Λ3+ 1
n−1

Λ3 Λn>3

interaction (∂2ϕ̂)3 (∂2ϕ̂)4 (∂2ϕ̂)n≥5 ĥ(∂2ϕ̂)n≥2 · · ·
(∂Â)(∂2ϕ̂)2 (∂Â)(∂2ϕ̂)n≥3 (∂Â)2(∂2ϕ̂)n≥1

All of these interaction terms can have potentially dangerous higher order derivatives. Our
present purpose is to cancel out them by adding non-linear terms of Hµν . In the following
calculations, we abbreviate ϕµν = ∂µ∂νϕ and Aµν = ∂µAν for notational simplicity. Besides,
we denote the trace with respect to gµν as

⟨
·
⟩
and the trace with respect to ηµν as [·]. For

example, we write ⟨
ϕ
⟩
= gµνϕµν ,

⟨
hϕ
⟩
= gναgµβhµνϕαβ, (3.77)

[ϕ] = ηµνϕµν , [hϕ] = ηναηµβhµνϕαβ. (3.78)

Now, we start the program with the action (3.67)

S =M2
p

∫
d4x
[√

−gR− m2

4
L2

]
, L2 :=

√
−g
(⟨
H2
⟩
−
⟨
H
⟩2)

. (3.79)

We know that L2 contains higher order derivative terms which lead to the appearance of a
extra ghost degree of freedom. One of them is (∂2ϕ)3. We add a third order term of Hµν , which
we denote L3, to cancel this (∂2ϕ)3 term. The explicit form of L3 is completely fixed to cancel
the potentially dangerous (∂2ϕ)3 term coming from L2. Here, we have another freedom. We
can also add a third order term LTD3 which returns a total derivative about the (∂2ϕ)3 part.
Thus, we get a mass term L2 + L3 + α3LTD3 , where α3 is a constant. The coefficient α3 is
adjusted to cancel other third order dangerous terms such as h(∂2ϕ)2. From the third order
mass term L2+L3+α3LTD3 , we encounter further higher order derivative terms such as (∂2ϕ)4.
Thus, we add a fourth order term L4 to cancel the (∂2ϕ)4 term. Also, we can add another
fourth order term LTD4 which returns a total derivative combination about (∂2ϕ)4. We make
use of LTD4 to eliminate other fourth order ghost like terms. Whether this program works or
not is a non-trivial problem. We consider up to the fourth order cancellation for (∂2ϕ)2, (∂2ϕ)3,
(∂2ϕ)4, (∂A)(∂2ϕ)2, (∂A)(∂2ϕ)3, h(∂2ϕ)2 and h(∂2ϕ)3. Such a term (∂A)2(∂2ϕ) is difficult to
investigate. The details are found in [22], but we do not consider it here.

From the expansion of L2, we find

(∂2ϕ)2 : total derivative (3.80)

(∂2ϕ)3 : − 4[ϕ3] + 4[ϕ][ϕ2] (3.81)

(∂2ϕ)4 : [ϕ4]− [ϕ2]2 (3.82)

h(∂2ϕ)2 : 4[h][ϕ2]− 2[h][ϕ]2 + 8[hϕ][ϕ]− 10[hϕ2] (3.83)

h(∂2ϕ)3 : − 2[h][ϕ3] + 2[h][ϕ][ϕ2] + 8[hϕ3]− 4[hϕ][ϕ2]− 4[hϕ2][ϕ] (3.84)

(∂A)(∂2ϕ)2 : − 12[Aϕ2] + 4[A][ϕ2] + 8[Aϕ][ϕ] (3.85)

(∂A)(∂2ϕ)3 : 4[Aϕ3]− 4[Aϕ][ϕ2]. (3.86)

The next order term L3 is determined to cancel the (∂2ϕ)3 term (3.81)

L3 := −1

2

√
−g
(⟨
H
⟩⟨
H2
⟩
−
⟨
H3
⟩)
, (3.87)
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and the expansion is

(∂2ϕ)3 : − 4[ϕ][ϕ2] + 4[ϕ3] (3.88)

(∂2ϕ)4 : 2[ϕ2]2 + 4[ϕ][ϕ3]− 6[ϕ4] (3.89)

h(∂2ϕ)2 : − 2[h][ϕ2]− 4[hϕ][ϕ] + 6[hϕ2] (3.90)

h(∂2ϕ)3 : 4[h][ϕ3]− 2[h][ϕ][ϕ2] + 6[hϕ][ϕ2] + 10[hϕ2][ϕ]− 18[hϕ3] (3.91)

(∂A)(∂2ϕ)2 : − 4[A][ϕ2]− 8[Aϕ][ϕ] + 12[Aϕ2] (3.92)

(∂A)(∂2ϕ)3 : 4[A][ϕ3] + 12[Aϕ2][ϕ] + 8[Aϕ][ϕ2]− 24[Aϕ3]. (3.93)

Also, we add a total derivative term

LTD3 := −
√
−g
(
3
⟨
H
⟩⟨
H2
⟩
− 2
⟨
H3
⟩
−
⟨
H
⟩3)

, (3.94)

which contains

(∂2ϕ)3 : total derivative (3.95)

(∂2ϕ)4 : 12[ϕ2]2 + 24[ϕ][ϕ3]− 24[ϕ4]− 12[ϕ]2[ϕ2] (3.96)

h(∂2ϕ)2 : − 12[h][ϕ2] + 12[h][ϕ]2 − 24[hϕ][ϕ] + 24[hϕ2] (3.97)

h(∂2ϕ)3 : − 24[h][ϕ][ϕ2] + 20[h][ϕ3] + 4[h][ϕ]3

+ 36[hϕ][ϕ2]− 72[hϕ3] + 60[hϕ2][ϕ]− 24[hϕ][ϕ]2 (3.98)

(∂A)(∂2ϕ)2 : 24
(
[A][ϕ]2 − [A][ϕ2] + 2[Aϕ2]− 2[Aϕ][ϕ]

)
= total derivative (3.99)

(∂A)(∂2ϕ)3 : 24[A][ϕ3]− 24[A][ϕ][ϕ2]− 96[Aϕ3] + 48[Aϕ][ϕ2] + 72[Aϕ2][ϕ]− 24[Aϕ][ϕ]2.
(3.100)

How to construct total derivatives is a topic in Appendix D. Then, we obtain the mass term
L2 + L3 + α3LTD3 , whose third order terms are

(∂2ϕ)2 : total derivative (3.101)

(∂2ϕ)3 : total derivative (3.102)

h(∂2ϕ)2 : (2− 12α3)
(
[h][ϕ2]− [h][ϕ]2

)
+ (4− 24α3)([hϕ][ϕ]− [hϕ2]) (3.103)

(∂A)(∂2ϕ)2 : total derivative. (3.104)

The h(∂2ϕ)2 term (3.103) seems to contain higher order derivatives. However, if we decompose
the coordinates into the time and the spatial components µ = (0, i), we can see that higher
order derivatives with respect to the time coordinate is not contained

[h][ϕ2]− [h][ϕ]2 =h
(
2∂20ϕ△ϕ− 2(∂0∂iϕ)

2 − (△ϕ)2 + (∂i∂jϕ)
2
)

(3.105)

[hϕ][ϕ]− [hϕ2] =h00
(
∂20ϕ△ϕ− (∂0∂iϕ)

2
)
+ 2h0i

(
∂0∂iϕ△ϕ− ∂0∂jϕ∂i∂jϕ

)
+ hij

(
∂i∂jϕ□ϕ− ∂i∂µϕ∂j∂

µϕ
)
, (3.106)

where we have defined△ := ∂i∂i. More simply, we can find [ϕ2]−[ϕ]2 ∝ LTD2 (∂∂ϕ) and [hϕ][ϕ]−
[hϕ2] ∝ hµνX

(2)
µν (∂∂ϕ) from Appendix D to conclude there is no higher order derivative. Anyway,

no ghost emerges from (3.103). The fourth order (∂2ϕ)4 term coming from L2 +L3 +α3LTD3 is

(∂2ϕ)4 : − (5 + 24α3)[ϕ
4] + (1 + 12α3)[ϕ

2]2 + (4 + 24α3)[ϕ][ϕ
3]− 12α3[ϕ]

2[ϕ2]. (3.107)
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This should be canceled by L4. Hence, we determine

L4 :=

√
−g
16

(
(5 + 24α3)

⟨
H4
⟩
− (1 + 12α3)

⟨
H2
⟩2 − (4 + 24α3)

⟨
H
⟩⟨
H3
⟩
+ 12α3

⟨
H2
⟩⟨
H
⟩2)

,

(3.108)

which contains

(∂2ϕ)4 : (5 + 24α3)[ϕ
4]− (1 + 12α3)[ϕ

2]2 − (4 + 24α3)[ϕ][ϕ
3] + 12α3[ϕ]

2[ϕ2] (3.109)

h(∂2ϕ)3 : − (2 + 12α3)[h][ϕ
3] + 12α3[h][ϕ][ϕ

2] + (10 + 48α3)[hϕ
3]

− (2 + 24α3)[hϕ][ϕ
2]− (6 + 36α3)[hϕ

2][ϕ] + 12α3[hϕ][ϕ]
2 (3.110)

(∂A)(∂2ϕ)3 : (20 + 96α3)[Aϕ
3]− (4 + 48α3)[Aϕ][ϕ

2]− (4 + 24α3)[A][ϕ
3]

− (12 + 72α3)[Aϕ
2][ϕ] + 24α3[Aϕ][ϕ]

2 + 24α3[A][ϕ
2][ϕ]. (3.111)

We also add a total derivative combination

LTD4 =
√
−g
(⟨
H
⟩4 − 6

⟨
H2
⟩⟨
H
⟩2

+ 8
⟨
H3
⟩⟨
H
⟩
+ 3
⟨
H2
⟩2 − 6

⟨
H4
⟩)
, (3.112)

which is expanded to give

(∂2ϕ)4 : total derivative (3.113)

h(∂2ϕ)3 : 32[h][ϕ]3 − 96[h][ϕ][ϕ2] + 64[h][ϕ3]

− 192[hϕ3] + 96[hϕ][ϕ2] + 192[hϕ2][ϕ]− 96[hϕ][ϕ]2 (3.114)

(∂A)(∂2ϕ)3 : total derivative. (3.115)

Then, we obtain the fourth order mass term L2 + L3 + α3LTD3 + L4 + α4LTD4 , from which we
have

(∂2ϕ)4 : total derivative (3.116)

(∂A)(∂2ϕ)3 : total derivative (3.117)

h(∂2ϕ)3 : (4α3 + 32α4)
(
2[h][ϕ3]− 3[h][ϕ][ϕ2] + [h][ϕ]3

− 6[hϕ3] + 3[hϕ][ϕ2] + 6[hϕ2][ϕ]− 3[hϕ][ϕ]2
)
. (3.118)

The h(∂2ϕ)3 term (3.118) seems to contain a ghost, but we can show the absence of higher

order derivatives with respect to time. It is merely a combination hµνX
(3)
µν defined in Appendix

D. Hence, we do not encounter a ghost degree of freedom.
Thus far, our program works well. Here, we should notice that the condition to eliminate

higher order derivatives on ϕ seems to be enough. In the above calculation, we have determined
non-linear terms L3 and L4 in order to cancel the (∂2ϕ)3 and (∂2ϕ)4 terms. Other conditions
have not been used. We have also added total derivative combinations LTD3 and LTD4 to cancel
remaining higher order derivatives, but they have not played any role in this purpose. Other
ghost like terms in h(∂2ϕ)2 or h(∂2ϕ)3 have been canceled automatically, and the constants α3

and α4 have been left undetermined. Therefore, it seems that the condition which makes the ϕ
part total derivative eliminates all of dangerous higher order derivatives. Actually, the explicit
construction of non-linear massive gravity has been succeeded in this line [23].
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3.3 dRGT massive gravity

Now, we are in the position to construct a theory of fully non-linear massive gravity, which is
called dRGT (de-Rham, Gabadadze and Tolley) massive gravity [23]. In Section 3.2, we have
obtained a suggestion that total derivative combinations for the scalar field ϕ introduced via the
Stückelberg trick may lead to a ghost-free and non-linear mass term. In this section, we carry
out this strategy. We remember that the Stückelberg fields Aµ and ϕ have been introduced via
Hµν in (3.73). In order to focus only on the ϕ part, we put hµν = 0 and Aµ = 0, and see

Hµν

∣∣
h=0,A=0

= 2∂µ∂νϕ− (∂µ∂αϕ)(∂
α∂νϕ), (3.119)

which we write H = 2∂∂ϕ− (∂∂ϕ)2 in a matrix form.
Here, we define

Kµ
ν := δµν −

√
δµν −Hµ

ν =
∞∑
n=1

dn(H
n)µν , dn :=

(2n)!

(2n− 1)(n!)24n
. (3.120)

The upper index on Hµ
ν is raised by gµν , namely Hµ

ν := gµλHλν . The square root of a matrix
X is denoted as

√
X, and defined as (

√
X)µλ(

√
X)λν = Xµ

ν . The purpose to bring in the
tensor Kµν is to make the ϕ dependence in (3.119) simple. Setting hµν = 0 and Aµ = 0, we find

K
∣∣
h=0,A=0

=1−
√
1−H

∣∣
h=0,A=0

= 1−
√
1− 2∂∂ϕ+ (∂∂ϕ)2

= 1−
√
|1− ∂∂ϕ|2

= 1− |1− ∂∂ϕ|
= ∂∂ϕ, (3.121)

which is a matrix form of Kµ
ν

∣∣
h=0,A=0

= ∂µ∂νϕ. In the last step, we have used a condition

1−∂∂ϕ > 0. We can read it as 1− ϕ̂
m2Mpr2

> 0. In the next section, we consider some solutions

for ϕ̂ (3.140) or (3.143). Under the cut off scale r < Λ−1
3 , these solutions are estimated to be

ϕ̂ < 1
r
and 1− ϕ̂

m2Mpr2
> 0 is satisfied.

Then, we propose the following action

S =
1

16πG

∫
dDx

√
− det g

[
R− m2

4
W (g,K)

]
, W (g,K) :=

D∑
n=0

αnLTDn (K), (3.122)

where LTDn is the total derivative combination defined in (D.2) at appendix D, and αn is a
constant. If we insist that constant and linear terms of hµν should not appear, we have to set
α0 = α1 = 0. Besides, α2 = −4 restores the Fierz-Pauli mass term. When we set hµν = 0 and
Aµ = 0, the mass term becomes

W (η, ∂∂ϕ) = total derivative. (3.123)

Therefore, we expect that we have succeeded in constructing a theory of non-linear and ghost-
free massive gravity. This theory is called dRGT massive gravity. We postpone the proof of
the absence of a ghost to Section 4, and proceed related topics.
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The action (3.122) is often used in a rather different formulation. We remember (3.66) in
which the Stückelberg field Y µ has been originally introduced

Hµν = gµν −
∂Y α

∂xµ
∂Y β

∂xν
ηαβ and Hµ

ν = δµν − gµλ
∂Y α

∂xλ
∂Y β

∂xν
ηαβ, (3.124)

and express the tensor Kµ
ν as

Kµ
ν = δµν −

√
gµλfλν , fµν :=

∂Y α

∂xµ
∂Y β

∂xν
ηαβ. (3.125)

Then, the mass term is represented as

D∑
n=0

αnLTDn (K) =
D∑
n=0

α′
nLTDn

(√
g−1f

)
, (3.126)

where α′
n is a constant written by a linear combination of αn (n = 0, 1, ..., D). Thus far, we

assumed that the background metric is the Minkowski metric ηµν = diag(−1, 1, .., 1). However,
we can remove this assumption. The absence of a ghost can be proved on general background
metrics. Hence, we forget the origin of fµν and regard fµν as another non-dynamical metric.

In conclusion, the action of non-linear massive gravity is generally given in the form [24]

SMG =
1

16πG

∫
dDx

√
− det g

[
R + 2m2

D∑
n=0

βnen
(√

g−1f
)]
, (3.127)

where βn is a constant and en is defined in Appendix D.

3.4 The Vainshtein mechanism

In this section, we consider the Vainshtein mechanism, namely a resolution of the vDVZ dis-
continuity discussed in Section 2.5. Here, we consider only the simplest setting. More detailed
or general discussions are found in [25] and references therein.

We focus on the four dimensional case (D = 4) with the Minkowski background, and return
to the expansion by the Stückelberg fields. We remember the action (3.122) and add a matter
coupling

S =M2
p

∫
dDx

√
− det g

[
R− m2

4
W (g,K)

]
− 1

2

∫
d4xHµνT

µν . (3.128)

Here, conservation of the energy momentum tensor ∂µT
µν = 0 is assumed. We expand the

action by the Stückelberg fields through gµν = ηµν + hµν and (3.73)

Hµν =hµν + ∂µAν + ∂νAµ − (∂µA
α)(∂νAα)

+ 2∂µ∂νϕ− (∂µ∂
αϕ)(∂ν∂αϕ)

− (∂µA
α)(∂ν∂αϕ)− (∂νA

β)(∂µ∂βϕ). (3.129)

We also remember the table

scale Λ5 Λ4 Λ3+ 2
n−2

Λ3+ 1
n−1

Λ3 Λn>3

interaction (∂2ϕ̂)3 (∂2ϕ̂)4 (∂2ϕ̂)n≥5 ĥ(∂2ϕ̂)n≥2 · · ·
(∂Â)(∂2ϕ̂)2 (∂Â)(∂2ϕ̂)n≥3 (∂Â)2(∂2ϕ̂)n≥1
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where the normalization ĥµν = Mphµν , Âµ = mMpAµ and ϕ̂ = m2Mpϕ is understood. We

already know that (∂2ϕ̂)n≥3 terms are combined to become total derivatives. Now, we as-
sume that we encounter an interaction term such as (∂A)(· · · ∂2ϕ · · · ), where the second term
(· · · ∂2ϕ · · · ) does not contain hµν and Aµ. Originally, Aµ has been introduced via the replace-
ment Aµ → Aµ + ∂µϕ. Thus, we should also have a term (∂2ϕ)(· · · ∂2ϕ · · · ), which is a total
derivative. Then, from the argument in Appendix D, we notice that (∂µAν)(· · · ∂2ϕ · · · ) must
be a total derivative. Therefore, interaction terms between the scale Λ5 and Λ3+ 1

n−1
are all

total derivatives. This fact means that the cut off scale of dRGT massive gravity is raised to
Λ3. We focus on this scale to investigate the Vainshtein mechanism.

We take a limit called Λ3 decoupling limit

m→ 0, Mp → ∞, T → ∞, Λ3,
T

Mp

: fixed. (3.130)

Interaction terms with scale Λn>3 disappear, and only those with Λ3 remain. They are ĥ(∂2ϕ̂)n≥2

and (∂Â)2(∂2ϕ̂)n≥1. Here, we notice that Aµ is quadratic in the action. Hence, the equation
of motion for Aµ reads (· · · )Aµ = 0, which means that Aµ = 0 is a solution. In the following,
we consistently set Aµ = 0. Therefore, in this situation, the mass term in the action (3.128)
becomes

−M2
p

m2

4

∫
d4xhµνX̄µν , (3.131)

where we have defined

X̄µν :=
δ

δhµν

(√
− det gW (g,K)

)∣∣∣
A=0,h=0

. (3.132)

We recall the definition of W (g,K) in (3.122)

W (g,K) =
4∑

n=0

αnLTDn (K), (3.133)

and apply the formula (D.29). In order to restore the Fierz-Pauli mass term at the linear level,
we set α0 = α1 = 0 and α2 = −4. Then, we find

X̄µν =
1

2

4∑
n=2

αn
(
X(n)
µν + nX(n−1)

µν

)
=

1

2

(
2α2X

(1)
µν + (α2 + 3α3)X

(2)
µν + (α3 + 4α4)X

(3)
µν

)
. (3.134)

As we mention in Appendix D, X
(n)
µν is a linear combination of (∂∂ϕ)n terms, and note that

hµνX̄µν contains no higher order derivative with respect to the time coordinate. Taking the

normalization ĥµν , Âµ and ϕ̂ into account, we obtain the action

S =

∫
d4x ĥµνΥ

µνλρĥµν −
1

8
ĥµν
(
− 8X̂(1)

µν +
3α3 − 4

Λ3
3

X̂(2)
µν +

α3 + 4α4

Λ6
3

X̂(3)
µν

)
− 1

2Mp

ĥµνT
µν ,

(3.135)
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where hµνΥ
µνλρhλρ represents the kinetic term coming from the Einstein-Hilbert action found

in (2.19). In order to diagonalize a coupling ĥµνX̂
(1)
µν , we shift ĥµν as ĥµν = h′µν + ϕ̂ηµν . Using

a relation Υµν
λρ
(
ϕηλρ

)
= − (D−2)

4
X

(1)
µν , the action can be written as

S =

∫
d4xh′µνΥ

µνλρh′λρ − h′µν
(3α3 − 4

8Λ3
3

X̂(2)
µν +

α3 + 4α4

8Λ6
3

X̂(3)
µν

)
− 1

2Mp

h′µνT
µν

+
1

2
ϕ̂X̂(1)µ

µ − 3α3 − 4

8Λ3
3

ϕ̂X̂(2)µ
µ − α3 + 4α4

8Λ6
3

ϕ̂X̂(3)µ
µ − 1

2Mp

ϕ̂T. (3.136)

We can diagonalize one more coupling h′µνX̂
(2)
µν by shifting h′µν as

h′µν = h′′µν +
3α3 − 4

4Λ3
3

(∂µϕ̂)(∂νϕ̂). (3.137)

We employ relations (D.31), (D.32) and Υµν
λρ
(
∂λϕ∂ρϕ

)
= 1

4
X

(2)
µν to obtain the action

S =

∫
d4xh′′µνΥ

µνλρh′′λρ −
α3 + 4α4

8Λ6
3

h′′µνX̂(3)
µν − 1

2Mp

h′′µνT
µν

− 3

2
(∂ϕ̂)2 +

3(3α3 − 4)

8Λ3
3

(∂ϕ̂)2[ϕ̂]− (3α3 − 4)2 − 8(α3 + 4α4)

32Λ6
3

(∂ϕ̂)2
(
[ϕ̂]2 − [ϕ̂2]

)
− 5(3α3 − 4)(α3 + 4α4)

64Λ9
3

(∂ϕ̂)2
(
[ϕ̂]3 − 3[ϕ̂][ϕ̂2] + 2[ϕ̂3]

)
− 1

2Mp

ϕ̂T, (3.138)

where we have abbreviated (∂ϕ)2 = (∂µϕ)(∂
µϕ), and the notation [·] is found in (3.78). At

first glance, the action (3.138) seems to contain higher order derivatives with respect to time.
However, from (D.32), we see that such terms can be discarded via total derivative combina-
tions. This fact means that we cannot apply the argument in Section 3.1.2, with which we have
detected a ghost.

Now, we set α3 + 4α4 = 0 to eliminate the remaining coupling between h′′µν and ϕ̂. Notice
that the tensor field h′′µν corresponds to the gravitational field in pure general relativity while

that in massive gravity is ĥ ∼ h′′ + ϕ. Schematically, the equation of motion for h′′µν and ϕ̂ is
given by

∂2h′′ =
1

Mp

T, ∂2ϕ̂± 1

Λ3
3

∂4ϕ̂2 +
1

Λ6
3

∂6ϕ̂3 =
1

Mp

T. (3.139)

Here, we consider a point source T ∼ Mδ(3)(x) with mass M , and assume static solutions. At
large distances, non-linear terms are negligible. Then, we have solutions

h′′ ∼ M

Mp

1

r
, ϕ̂ ∼ M

Mp

1

r
. (3.140)

The scale where non-linear terms start to contribute is estimated from the above solution and

ϕ̂

r2
∼ ϕ̂2

Λ3
3r

4
. (3.141)
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The result is called the Vainshtein radius

rV :=
1

Λ3

(M
Mp

) 1
3
. (3.142)

Inside the Vainshtein radius, the solution for ϕ̂ can be estimated to be

ϕ̂ ∼
(M
Mp

) 1
2
Λ

3
2
3 r

1
2 , ϕ̂ ∼

(M
Mp

) 1
3
Λ2

3r. (3.143)

The second one comes when the cubic term in (3.139) dominates. Thus, we can find

ϕ̂

h′′
∼
( r
rV

) 1
2
,
( r
rV

)2
≪ 1. (3.144)

Therefore, in small scales, the gravitational field in massive gravity ĥ ∼ h′′+ϕ does not deviate
from that in general relativity ĥ ∼ h′′. The vDVZ discontinuity is resolved at least in this
simple setting.

3.5 Extension to bimetric gravity

dRGT massive gravity has one peculiar feature. It contains a non-dynamical metric, which
breaks the diffeomorphism invariance. Thus, it seems natural to promote the non-dynamical
metric to dynamical one. This theory contains interacting two metrics and is called bimetric
gravity [2]. We give the dynamics to the non-dynamical metric in dRGT massive gravity, and
obtain the action

SBG =
1

16πGg

∫
dDx

√
− det gR[g] +

1

16πGf

∫
dDx

√
− det gR[f ]

+ 2
(
16πGg + 16πGf

)−1

m2

∫
dDx

√
− det g

D∑
n=0

βnen
(√

g−1f
)
, (3.145)

where R[g] and R[f ] represents the curvatures for two metrics gµν and fµν respectively. Gg and
Gf are two kinds of gravitational constants. We can also include cosmological constants, but
we do not consider them here. In the action (3.145), we can rewrite the interaction term in a
rather different form. We recall a property (D.12) to find

en
(√

g−1f
)
= det

√
g−1f eD−n

(
(
√
g−1f)−1

)
. (3.146)

For a matrix X with the inverse X−1, we know that det
√
X =

√
detX and (

√
X)−1 =

√
(X−1)

hold. Then, we notice a relation√
− det g en

(√
g−1f

)
=
√
− det f eD−n

(√
f−1g

)
, (3.147)

and see that the metric gµν has no special meaning compared to the other metric fµν .
In general relativity, we have a diffeomorphism invariance which guarantees the massless

degrees of freedom. When the invariance is broken, degrees of freedom increases and the
graviton becomes massive. If the interaction in bimetric gravity (3.145) is switched off (m = 0),
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we have two independent general relativity and two diffeomorphism invariances are contained.
These symmetries extract a couple of true massless degrees of freedom. However, the interaction
term breaks one of them, and only one overall diffeomorphism invariance is left. We expect that
this remaining invariance reduces degrees of freedom corresponding to one massless graviton.
Thus, if the theory is consistent, namely we have no extra ghost mode, bimetric gravity should
have one massless and one massive graviton. In this section, we see this fact in the linear level.
Non-linear analysis is a topic in Chapter 4.

We consider a perturbation

gµν = ḡµν + hµν , fµν = ḡµν + lµν , (3.148)

where ḡµν is a background metric for both two metrics, and hµν and lµν stand for fluctuations.
We expand the action (3.145) up to the second order in hµν and lµν . For notational simplicity,
we write the trace with respect to the background metric as

[h] = ḡµλhλµ, [l] = ḡµλlλµ. (3.149)

In the following, index manipulations are performed by the background metric ḡµν and its
inverse ḡµν .

Using expansion formulae (B.18) and (B.20), we find the result in Appendix E. In the four
dimensional case (D = 4), we find

√
− det g

4∑
n=0

βnen
(√

g−1f
)

=(β0 + 4β1 + 6β2 + 4β3 + β4) +
(1
2
β0 +

3

2
β1 +

3

2
β2 +

1

2
β3

)
[h] +

(1
2
β1 +

3

2
β2 +

3

2
β3 +

1

2
β4

)
[l]

+
(
− 1

4
β0 −

5

8
β1 −

1

2
β2 −

1

8
β3

)
[h2] +

(
− 1

4
β1 −

1

2
β2 −

1

4
β3

)
[hl] +

(
− 1

8
β1 −

1

2
β2 −

5

8
β3 −

1

4
β4

)
[l2]

+
(1
8
β0 +

1

4
β1 +

1

8
β2

)
[h]2 +

(1
4
β1 +

1

2
β2 +

1

4
β3

)
[h][l] +

(1
8
β2 +

1

4
β3 +

1

8
β4

)
[l]2. (3.150)

If we imposing the condition that linear terms should disappear

β0 + 3β1 + 3β2 + β3 = 0, β1 + 3β2 + 3β3 + β4 = 0, (3.151)

we obtain

√
− det g

4∑
n=0

βnen
(√

g−1f
)
=

1

8
(β1 + 2β2 + β3)

([
(h− l)2

]
−
[
h− l

]2)
, (3.152)

where we have eliminated β0 and β4 via (3.151). Therefore, the Fierz-Pauli tuning has been
restored. Notice that the condition (3.151) also removes the zeroth order term, which means
that

∑
n en
(√

g−1g
)
= 0 holds even in the non-linear level. The simplest setting is said to be

minimal, which is defined as

β0 = 3, β1 = −1, β2 = 0, β3 = 0, β4 = 1. (3.153)
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Anyway, when we adjust the parameters to recover the Fierz-Pauli tuning, the linearized
action of bimetric gravity becomes

SBG =
1

16πGg

∫
dDxhµνΥ

µνλρ hλρ +
1

16πGf

∫
dDx lµνΥ

µνλρ lλρ

+
m2

4

1

16πGg + 16πGf

∫
dDx

([
(h− l)2

]
−
[
h− l

]2)
, (3.154)

where hµνΥ
µνλρhλρ represents the kinetic term coming from the Einstein-Hilbert action found in

(2.16). In order to simplify the kinetic terms, we define normalized variables hµν =:
√

16πGg ĥµν
and lµν =:

√
16πGf l̂µν . Then, the action (3.154) can be read as

SBG =

∫
dDx ĥµνΥ

µνλρ ĥλρ +

∫
dDx l̂µνΥ

µνλρ l̂λρ

+
m2

4

1

16πGg + 16πGf

∫
dDx

([
(
√

16πGg ĥ−
√
16πGf l̂ )

2
]
−
[√

16πGg ĥ−
√
16πGf l̂

]2)
.

(3.155)

Here, we introduce new variables

uµν :=

√
16πGg ĥµν −

√
16πGf l̂µν

16πGg + 16πGf

, vµν :=

√
16πGf ĥµν +

√
16πGg l̂µν

16πGg + 16πGf

(3.156)

and rewrite the action. The result is

SBG =

∫
dDx vµνΥ

µνλρvλρ +

∫
dDxuµνΥ

µνλρuλρ +
m2

4

∫
dDx

(
[u2]− [u]2

)
. (3.157)

Thus, we have one massless and one massive graviton, and no ghost degree of freedom is
contained at least in the linear level.

3.6 Further extension to trimetric gravity ?

A naive extension of bimetric gravity has been originally proposed in [3], where we have three
metrics gµν , fµν and hµν , and the action is given by

STG =M2
g

∫
d4x
√
− det gR[g] +M2

f

∫
d4x
√

− det fR[f ] +M2
h

∫
d4x

√
− dethR[h]

+ 2m2
1M

2
gf

∫
d4x
√
− det g

4∑
n=0

βnen
(√

g−1f
)

+ 2m2
2M

2
fh

∫
d4x
√

− det f
4∑

n=0

β′
nen
(√

f−1h
)

+ 2m2
3M

2
hg

∫
d4x

√
− deth

4∑
n=0

β′′
nen
(√

h−1g
)
. (3.158)

A lot of constants are introduced to adjust dimensions.
Bimetric gravity has been actually proved to be ghost-free [26, 27], which is a topic in the

next chapter, but the same method is not applicable to trimetric gravity. Thus, the ghost
problem in non-linear trimetric gravity has not been solved in [3]. We resolve this problem in
Chapter 6.
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Chapter 4

The Hamiltonian analysis of dRGT
massive/bimetric gravity

In this chapter we prove the absence of the BD-ghost in dRGT massive gravity. At the same
time, we also prove the fact that bimetric gravity contains the right number of degrees of
freedom, namely that of one massless and one massive graviton [26, 27]. Our tool is the
Hamiltonian analysis, with which we directly count the total number of degrees of freedom.
Actually, no-ghost proof in dRGT massive gravity is carried out by the Stückelberg trick [28,
29, 30, 31], but it is extremely difficult and we do not know how to extend it to bimetric gravity.
Thus, we employ the ADM decomposition and rely on the Hamiltonian analysis. The essential
point of the proof is common for dRGT massive/bimetric gravity though it is not applicable
to trimetric gravity. We focus on the four dimensional case D = 4, but the dimensionality is
expected not to be crucial in this proof.

The action is now given by

SMG =M2
p

∫
d4x
√
− det g

[
R + 2m2

4∑
n=0

βn
(√

g−1f
)]

(4.1)

for dRGT massive gravity, and

SBG =M2
g

∫
d4x
√

− det gR[g] +M2
f

∫
d4x
√
− det gR[f ]

+ 2M2
effm

2

∫
d4x
√

− det g
4∑

n=0

βnen
(√

g−1f
)

(4.2)

for bimetric gravity. We have several kinds of the Planck mass Mp, Mg and Mf , and effective
mass Meff is defined as

M2
eff :=

( 1

M2
f

+
1

M2
g

)−1

. (4.3)

Prior to the actual proof, we remember the discussion in Section 2.4, where we have per-
formed the Hamiltonian analysis on the linear massive gravity with the Fierz-Pauli mass term.
There, we have found that the difference of degrees of freedom between massless and massive
gravitons comes from the break down of linearity for non-dynamical variables. In the massless
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case, all of the non-dynamical variables appear linearly in the action and are interpreted as
Lagrange multipliers. Their existence reduces the number of physical degrees of freedom to
two. On the other hand, in the massive case, some of these variables become quadratic. If we
do not have the Fierz-Pauli tuning, all of them get quadratic to become auxiliary fields. These
auxiliary fields are removed from the action via the equation of motion for them. Thus, we
cannot eliminate any dynamical degrees of freedom, and an extra sixth mode remains which is
ghost like. When we apply the Fierz-Pauli tuning, one of the non-dynamical variables recovers
linearity while the others are left quadratic. This structure reduces the extra ghost mode and
gives the right number of degrees of freedom to a massive graviton, which we know five.

Therefore, it seems natural to think that the same situation should occur also in non-linear
massive gravity. In Section 3.1.1, we have attempted the non-linear extension of linear massive
gravity with the Fierz-Pauli mass term. Then, we have seen the break down of linearity for all
non-dynamical variables, which fails to reduce the number of degrees of freedom. The result is
the emergence of the BD-ghost. Hence, we expect that, in dRGT massive gravity, only one of
the non-dynamical variables appear linearly and the others remain non-linear. Our expectation
is actually correct, but this fact is not so easy to see. Non-dynamical variables in the ADM
formalism is the lapse function N and the shift vector N i. By comparing to the analysis in
linear massive gravity, it seems reasonable to expect that N becomes linear while N i remains
non-linear. However, we cannot see it even if we directly write down the action in terms of
the ADM variables. The non-linear mass term is composed of the square root

√
g−1f , which

carries non-linear combinations of N,N2, N3, .... and N i, (N i)2, (N i)3, .... Hence, we need to
mix the lapse N and the shift N i to define a new variable ni through a transformation

(N,N i) → (N, ni = ni(N,Nk)). (4.4)

The role of the new function ni(N,N i) is to absorb higher order terms of N and to make N
appear linearly. This is the essential point of the following no-ghost proof.

4.1 The ADM decomposition

4.1.1 The decomposition of metrics

The Hamiltonian analysis is based on the ADM decomposition. Thus, we start with decompos-
ing the mass/interaction term. The (3+1) decomposition of the Einstein-Hilbert part is found
in Section 3.1.1. Notations for the ADM decomposition is the same as those in Section 3.1.1.
One metric gµν is decomposed as

gµν =

(
g00 g0j
gi0 gij

)
=

(
−N2 + γlkN

lNk γijN
i

γijN
j γij

)
, (4.5)

and its inverse is

gµν =

(
g00 g0j

gi0 gij

)
=

1

N2

(
−1 N j

N i N2γij −N iN j

)
, (4.6)

where γij is the inverse of the spatial metric γij. In the original definition, the shift vector
N i is upper indexed. For notational simplicity, we also use the lower indexed shift defined as
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Ni := γijN
j.

Along with gµν , we decompose the other metric fµν

fµν =

(
f00 f0j
fi0 fij

)
=

(
−L2 + ωlkN

lNk ωijL
i

ωijL
j ωij

)
, (4.7)

and its inverse

fµν =

(
f 00 f 0j

f i0 f ij

)
=

1

L2

(
−1 Lj

Li L2ωij − LiLj

)
. (4.8)

We denote the spatial part fij as ωij, and ω
ij means the inverse of ωij. L and Li are interpreted

as the lapse and the shift for fµν , where L
i is defined with an upper index. In the following,

we often use the lower indexed shift defined as Li := ωijL
j. Here, it should be noted that we

never lower an index on Li by γij and N
i by ωij.

4.1.2 The new shift vector

Under the decomposition in Section 4.1.1, we write down the basic element g−1f

N2(g−1f)µν =

(
( 0

0) ( 0
j)

( i0) ( ij)

)

=

(
−f00 +N lfl0 −f0j +N lflj

N2γilfl0 −N i(−f00 +N lfl0) N2γilflj −N i(−f0j +N lflj)

)

=

(
−L2 + LkL

k +N lLl −Lj +N lωlj
N2γilLl −N i(L2 − LkL

k +N lLl) N2γilωlj −N i(−Lj +N lωlj)

)
. (4.9)

We can see the complicated dependence on the Lapse and the shift. Thus, the mass/interaction
term necessarily contains higher order terms for them, which makes the absence of a ghost degree
of freedom extremely unclear. Our strategy is now to ensure the linearity of the lapse N through
a variable change (N,N i) → (N, ni(N,Nk)). If we express N i by the transformed variables as
N i = N i(N, nk), the function N i(N,nk) should be linear in N . Otherwise, we encounter an
non-linear term of N from N iRi which is contained in the Einstein-Hilbert action. Hence, we
set

N i = ci +Ndi, (4.10)

where ci and di are some functions of ni and independent of N . We can determine a transfor-
mation (N,N i) → (N, ni(N,Nk)) by fixing these functions ci and di. We realize the linearity
of N through a proper choice of them. Then, we write down (4.9) via (4.10) as

N2g−1f = E0 +NE1 +N2E2, (4.11)

where E0,1,2 are matrices independent of N and given by

E0 =

 −f00 + clfl0
:::::::::::

−f0j + clflj
:::::::::::

−(−f00 + clfl0)
:::::::::::::

ci −ci(−f0j + clflj
:::::::::::

)

 (4.12)

=

(
L2 − LkL

k + clLl −Lj + clωlj
−(L2 − LkL

k + clLl)c
i −ci(−Lj + clωlj)

)
, (4.13)
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E1 =

(
dlfl0 dlflj

−dlfl0ci − (−f00 + clfl0
:::::::::::

)di −cidlflj − di(−f0j + clflj
:::::::::::

)

)
(4.14)

=

(
dlLl dlωlj

−dlLlci − (L2 − LkL
k + clLl)d

i −cidlωlj − di(−Lj + clωlj)

)
, (4.15)

E2 =

(
0 0

(γil − didl)fl0 (γil − didl)flj

)
=

(
0 0

(γil − didl)Ll (γil − didl)ωlj

)
. (4.16)

In the wavy underlines, we set

aµ := −f0µ + clflµ (4.17)

for notational simplicity.
Since N is expected to appear linearly after a variable change (N,N i) → (N,ni(N,N i)), we

have to seek the condition that all of Nen
(√

g−1f
)
become linear in N . In fact, this condition

is satisfied when we have

N
√
g−1f = A+NB, (4.18)

where A and B are some matrices independent of N . We take the square

N2g−1f = A2 +N(AB +BA) +N2B2, (4.19)

and compare to (4.11), from which we obtain

A2 = E0, B2 = E2, AB +BA = E1. (4.20)

We can easily find the matrices A and B obeying (4.20). Because the square of E0 satisfies a
relation

E2
0 =

(
a0 aj

−a0ci −ciaj

)2

=

(
a20 − a0c

lal a0aj − alc
laj

−a20ci + a0c
ialc

l −a0ciaj + cialc
laj

)
=(a0 − clal)

(
a0 aj

−a0ci −ciaj

)
=(a0 − clal)E0, (4.21)

the solution for A is given by

A =
1√
x

(
a0 aj

−a0ci −ciaj

)
, x := a0 − clal = L2 − LkL

k + 2clLl − clckωlk. (4.22)

On the other hand, B2 = E2 can be solved as

B =
√
x

(
0 0

Di
kω

klfl0 Di
j

)
,

√
xDi

j :=
√
(γil − didl)flj, (4.23)
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where we have factored out
√
x for convenience. We have introduced a matrix Di

j, and it
has some properties we use in later calculations. Firstly, we note that D can be expressed
as D =

√
Sω with a symmetric matrix S. Then, we expand it as D =

√
1 + (Sω − 1) =∑

n dn(Sω − 1)n =
∑

n d̃n(Sω)
n with some coefficients dn and d̃n. From this expanded formula

and symmetric properties of S and ω, we can find a relation

ωikD
k
j = ωjkD

k
i. (4.24)

Next, we contract the above formula with ωli. We get ωliωikD
k
j = ωliωjkD

k
i which leads to

Dl
j = ωliωjkD

k
i. Once more contracted with ωmj, we obtain ωmjDl

j = ωmjωjkω
liDk

i = ωliDm
i.

Thus, we can find another relation

ωikDj
k = ωjkDi

k. (4.25)

These two relations are used repeatedly.
Though we have determined A and B, they must also satisfy the remaining relation AB +

BA = E1. We write down the left hand side

AB +BA =

(
aiD

i
kω

klfl0 aiD
i
j

−ciajDj
kω

klfl0 −ciakDk
j

)
+

(
0 0

a0D
i
kω

klfl0 − a0D
i
kc
k Di

kω
klfl0aj −Di

kc
kaj

)
, (4.26)

and read equations

aiD
i
kω

klfl0 = dlfl0, (4.27)

aiD
i
j = dlflj, (4.28)

ciajD
j
kω

klfl0 − a0D
i
kω

klfl0 + a0D
i
kc
k = dlfl0c

i + a0d
i, (4.29)

ciakD
k
j −Di

kω
klfl0aj +Di

kc
kaj = cidlflj + diaj. (4.30)

From Eq.(4.27), we have

(dl − aiD
i
kω

kl)fl0 = 0. (4.31)

Using the definition of ai (4.17), fij = ωij and relations (4.24) and (4.25), Eq.(4.28) leads to

dl =ωljaiD
i
j (4.32)

=ωlj(−f0i + ckfki)D
i
j = −f0iωijDl

j + ωljckfjiD
i
k = −f0iωijDl

j +Dl
kc
k. (4.33)

We also obtain from Eq.(4.29)

a0(d
i −Di

kc
k +Di

kω
klfl0) + (dl − ajD

j
kω

kl)cifl0 = 0, (4.34)

and from Eq.(4.30)

aj(d
i −Di

kc
k +Di

kω
klfl0) + flj(d

l − ωlmakD
k
m)c

i = 0. (4.35)

These equations (4.31), (4.33), (4.34) and (4.35) lead to one condition

di = Di
k(c

k − ωklfl0), (4.36)
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which connects two functions ci and di introduced in changing variables (4.10). Note that Di
k

depends on ci and di. Thus far, we have not specified how ci and di actually depends on ni.
Therefore, we can determine ci and di as functions of ni by introducing a relation among ci, di

and ni. For our purpose, the following relation works well

ni =: ci − ωikfk0, (4.37)

from which we have

ci = ni + Li, (4.38)

di = Di
kn

k. (4.39)

We can determine Di
k by ni in the following way. We substitute (4.38) and (4.39) into the

definition of Di
j which says

√
xDi

j :=
√
(γil − didl)ωlj, x := a0 − clal = L2 − LkL

k + 2clLl − clckωlk, (4.40)

and obtain

√
xDi

j =
√

(γil −Di
mnmDl

knk)ωlj =
√

(γil −Di
mnmnkDl

k)ωlj, (4.41)

x = L2 − ninkωki. (4.42)

In a matrix form, it can be expressed as

√
xD =

√
(γ−1 −DnnTDT )ω, x = L2 − nTωn, (4.43)

where the subscript “T” stand for the transposed matrix. This equation determines Di
j as a

function of ni. We take the square of both sides of (4.43)

xDi
lD

l
j = (γil −Di

mn
mnkDl

k)ωlj = γilωlj −Di
ln
lnmDk

jωkm, (4.44)

which can be read as

Di
lQ

l
kD

k
j = γilωlj, Ql

k := xδlk + nlnmωmk (4.45)

⇔DQD = γ−1ω, Q := x1+ nTωn. (4.46)

Then, we get DQDQ = γ−1ωQ and read DQ =
√
γ−1ωQ. Hence, we find the solution

D =
(√

γ−1ωQ
)
Q−1, (4.47)

where the inverse of Q is given by

Q−1 =
1

x
(1− L−2nnTω). (4.48)

Therefore, we have the solution D = D(γ, ω, ni, L), and obtain di = di(γ, ω, nk, L) via (4.39).
Here, we have one point to notice. In the Hamiltonian analysis of dRGT massive gravity,

we do not need to take care of the lapse L and the shift Li for the non-dynamical metric fµν .
However, in analyzing bimetric gravity, they must also be traced. Hence, we have to simplify
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the complicated dependence on L in Di
j. We recall that D is determined by the equation (4.43)

and define normalized quantities n̂i and x̂ as

ni =: Ln̂i, x = L2(1− n̂Tωn̂) =: L2x̂. (4.49)

Then, (4.43) can be written as

L
√
x̂D =

√
(γ−1 − L2Dn̂n̂TDT )ω. (4.50)

In order to eliminate the L dependence, we normalize Di
j as

D̂i
j := LDi

j (4.51)

and obtain the equation

√
x̂D̂ =

√
(γ−1 − D̂n̂n̂T D̂T )ω, x̂ = 1− n̂Tωn̂. (4.52)

The solution for D̂ can be found as before

D̂ =
(√

γ−1ωQ̂
)
Q̂−1, (4.53)

where

Q̂ = x̂+ n̂Tωn̂, Q̂−1 =
1

x̂
(1− n̂n̂Tω). (4.54)

Thus, we have the solution D̂ = D̂(γ, ω, n̂i), and the complicated dependence on L is removed.

In this “hat” quantities, (4.38) and (4.39) read ci = Ln̂i + Li and di = D̂i
kn̂

k, and we obtain
di = di(γ, ω, n̂k). The transformation law is give by

N i = ci +Ndi = Ln̂i + Li +ND̂i
k(γ, ω, n̂)n̂

k. (4.55)

In the following, we use this “hat” formulae. Sometimes, a relation
√
xD =

√
x̂D̂ is useful.

4.1.3 Linearity of the lapse

Now, we show the linearity of N . In fact, the mass/interaction term is linear in not only
N but also L and Li. To begin with, we consider e1(

√
g−1f) = Tr

√
g−1f . From (4.18), we

immediately find

Ne1(
√
g−1f) = TrA+NTrB. (4.56)

Matrices A and B are explicitly given by (4.22) and (4.23). Hence, we can calculate their trace

TrA = Tr
1√
x

(
a0 aj

−a0ci −ciaj

)
=
a0 − ciai√

x
=

√
x = L

√
x̂, (4.57)

TrB =
√
xTrD =

√
x̂TrD̂, (4.58)
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and obtain

Ne1(
√
g−1f) = L

√
x̂+N

√
x̂TrD̂ = L

√
x̂(ω, n̂) +N(

√
x̂TrD̂)(γ, ω, n̂). (4.59)

Therefore, we find the linearity of N and L. This linearity is retained even for e2, e3 and e4.
For a preparation, we notice that E2

0 = xE0 leads to

An = x
1
2
(n−2)E0, (4.60)

and TrAn = xn/2 holds because we know TrE0 = x. On the other hand, we have (TrA)n = xn/2.
Thus, we obtain an important relation

TrAn = (TrA)n. (4.61)

We have one more important relation containing both A andB. We can see Tr(A2B) = Tr(E0B)
and Tr(A)Tr(AB) =

√
xTr(E0B/

√
x) = Tr(E0B), which leads to

Tr(A2B) = Tr(A)Tr(AB). (4.62)

In the following, we use a short hand notation TrnX := (TrX)n for a matrix X.
Using relations (4.61), (4.62) and (4.18), we obtain

Ne2(
√
g−1f) =

1

2
N
(
Tr2
( 1
N
A+B

)
− Tr

( 1
N
A+B

)2)
=(TrA)(TrB)− Tr(AB) +

1

2
N
(
Tr2B − TrB2

)
, (4.63)

Ne3(
√
g−1f) =

N

6

(
Tr3
( 1
N
A+B

)
− 3Tr

( 1
N
A+B

)
Tr
( 1
N
A+B

)2
+ 2Tr

( 1
N
A+B

)3)
=Tr(AB2)− Tr(AB)TrB +

1

2
(TrA)

(
Tr2B − TrB2

)
+

1

6
N
(
Tr3B − 3(TrB)(TrB2) + 2TrB3

)
, (4.64)

and √
det γNe4(

√
g−1f) =

√
− det g det

√
g−1f =

√
− det f = L

√
detω. (4.65)

We can calculate these traces. Using ai = nkωki, c
i = ni +Li, and formulae for A and B (4.22)

and (4.23), we find

TrA =
√
x = L

√
x̂, (4.66)

Tr(AB) = aiD
i
kω

klfl0 − ciakD
k
i = −niωijDj

kn
k = −nTωDn = −Ln̂TωD̂n̂. (4.67)

We apply (4.40) squared xDi
kD

k
j = (γik − didk)ωkj to the trace of AB2, and find

Tr(AB2) =
1√
x

[
ai(γ

il − didl)fl0 − ciak(γ
kl − dkdl)ωli

]
=−

√
xniωijD

j
kD

k
ln
l = −

√
xnTωD2n = −L

√
x̂n̂TωD̂2n̂. (4.68)
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If we employ (4.41) squared xD2 = (γ−1 −DnnTDT )ω, the trace of AB2 is also expressed as

Tr(AB2) = − 1√
x
nTω(γ−1 −DnnTDT )ωn. (4.69)

We proceed to calculate the trace containing only B

TrB =
√
xTrD =

√
x̂TrD̂, (4.70)

TrB2 = xTrD2 = x̂TrD̂2, (4.71)

TrB3 =
√
x
3
TrD3 =

√
x̂
3
TrD̂3. (4.72)

Collecting these trace formulae, we write down the elements of the mass/interaction term

Ne0
(√

g−1f
)
=N, (4.73)

Ne1
(√

g−1f
)
=L

√
x̂+N

√
x̂TrD̂, (4.74)

Ne2
(√

g−1f
)
=L
(
x̂TrD̂ + n̂TωD̂n̂

)
+

1

2
N
(
x̂Tr2D̂ − x̂TrD̂2

)
, (4.75)

Ne3
(√

g−1f
)
=L
[
−

√
x̂n̂TωD̂2n̂+

(
n̂TωD̂n̂

)√
x̂TrD̂ +

1

2

√
x̂
(
x̂Tr2D̂ − x̂TrD̂2

)]
+

1

6
N
[
x̂

3
2Tr3D̂ − 3x̂

3
2 (TrD̂)(TrD̂2) + 2x̂

3
2TrD̂3

]
, (4.76)

Ne4
(√

g−1f
)
=L

√
detω√
det γ

. (4.77)

Therefore, we obtain

N
4∑

n=0

βnen
(√

g−1f
)
= LU(γ, ω, n̂) +NV (γ, ω, n̂), (4.78)

where U and V are defined by

U(γ, ω, n̂) :=β4

√
detω√
det γ

+ β1
√
x̂+ β2

[
x̂TrD̂ + n̂TωD̂n̂

]
+ β3

[√
x̂(TrD̂)

(
n̂TωD̂n̂

)
−

√
x̂n̂TωD̂2n̂+

1

2
x̂

3
2

(
Tr2D̂ − TrD̂2

)]
, (4.79)

V (γ, ω, n̂) :=β0 + β1
√
x̂TrD̂ +

1

2
β2x̂
(
Tr2D̂ − TrD̂2

)
+

1

6
β3x̂

3
2

[
Tr3D̂ − 3(TrD̂)(TrD̂2) + 2TrD̂3

]
. (4.80)

The linearity for N and L, and also that for Li is confirmed.

4.1.4 The Hamiltonian formulation of the action

Since the mass term or the interaction term in (4.1) and (4.2) do not contain derivatives, the
definition of the canonical momenta is not changed from that in Section 3.1.1. We denote the
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canonical momenta for γij and ωij as π
ij and pij respectively. Then, the action S =

∫
d4xL has

the Lagrangian density

LMG/M
2
p =πij γ̇ij +NR0 +Ri

(
Ln̂i + Li +ND̂i

kn̂
k
)
+ 2m2

√
− det g

4∑
n=0

βnen
(√

g−1f
)
(4.81)

=πij γ̇ij + (Ln̂i + Li)Ri + 2m2L
√

det γU(γ, ω, n̂)

+N
[
R0 +RiD̂i

kn̂
k + 2m2

√
det γV (γ, ω, n̂)

]
(4.82)

for dRGT massive gravity, and

LBG =M2
gπ

ij γ̇ij +M2
f p

ijω̇ij
:::::::::

+ Li
[
M2

gR
(g)
i +M2

fR
(f)
i

:::::::

]
+ L

[
M2

fR
(f)
0

:::::::

+M2
g n̂

iR(g)
i + 2m2M2

eff

√
det γU(γ, ω, n̂)

]
+N

[
M2

gR
(g)
0 +M2

gR
(g)
i D̂i

kn̂
k + 2m2M2

eff

√
det γV (γ, ω, n̂)

]
(4.83)

for bimetric gravity. R0 and Ri are defined as (3.21) and (3.22). The subscript (g) and (f)
represent “for gµν” and “for fµν”. The difference comes from terms with the wavy underline,
which do not contain n̂i. Hence, variation with respect to n̂i leads to the same formula.

Now, we see the linearity for N , L and Li, and the non-linear dependence on ni. We expect
that the variation with respect to ni leads to an equation to determine the auxiliary field ni,
and the solution does not break the linearity for N , L and Li when it is substituted back into
the action.

4.2 Variation with respect to the new shift

In this section, we calculate variation with respect n̂i. We often use a formula

δTr
(√

X
)
=
n

2
Tr
(√

X
n−2

δX
)
, (4.84)

where X is a matrix. We also rely on properties ωikD
k
j = ωjkD

k
i and ω

ikDj
k = ωjkDi

k.
Since the mass/interaction term is constructed from the traces of matrices A and B, we

calculate their variation. We start with the simplest one

δTrA = δ
√
x = −x−

1
2niωijδn

j = − 1√
x
nTωδn. (4.85)

Variation of the trace of B needs a little trick. Using (4.41) or its matrix form, we calculate it
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in such a way

δTrB =δTr
√
(γ−1 −DnnTDT )ω

=
1

2
Tr
(√

(γ−1 −DnnTDT )ω
−1
δ(γ−1 −DnnTDT )ω

)
=− 1

2

1√
x
(D−1)ijδ(D

j
ln
lnkDm

k)ωmi

=− 1

2
√
x
(D−1)ij

(
δ(Dj

ln
l)Dm

kn
kωmi +Dj

ln
lδ(Dm

kn
k)ωmi

)
=− 1

2
√
x
(D−1)ij

(
δ(Dj

ln
l)Dm

in
kωmk +Dj

ln
lδ(Dm

kn
k)ωmi

)
=− 1

2
√
x

(
δ(Dj

ln
l)nkωjk + niδ(Dm

kn
k)ωmi

)
=− 1√

x
nTωδ(Dn). (4.86)

Similarly, we also obtain

δTrAB =− δ(nTωDn) = −(δni)ωijD
j
kn

k − niωijδ(D
j
kn

k) = −nTωDδn− nTωδ(Dn), (4.87)

and

δTrAB2 =− δ
(√

xnTωD2n
)

=− δ
(√

xωkjD
j
in
iDk

ln
l
)

=
1√
x

(
nTωD2n

)
nTωδn− 2

√
xnTωDδ(Dn). (4.88)

Here, we can find an important relation from (4.88). We remember that Tr(AB2) can be
expressed in a different way (4.69)

Tr(AB2) = − 1√
x
nTω(γ−1 −DnnTDT )ωn = − 1√

x
niωij(γ

jl −Dj
mn

mnpDl
p)ωlkn

k. (4.89)

In this formula (4.89), variation acting on 1/
√
x leads to

−δ
( 1√

x

)
nTω(γ−1 −DnnTDT )ωn = −x−

3
2 (nTωδn)nTωxD2n = − 1√

x
(nTωD2n)nTωδn,

(4.90)

where we have used xD2 = (γ−1 −DnnTDT )ω after the variation . In the same way, variation
of (4.89) with respect to ni which exists outside the bracket is

−2
1√
x
nTωxD2δn = −2

√
xnTωD2δn, (4.91)

and that within the bracket is

1√
x
niωij

(
δ(Dj

mn
m)Dl

pn
p +Dj

mn
mδ(Dl

pn
p)
)
ωlkn

k =
2√
x
(nTωDn)nTωδ(Dn). (4.92)
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Hence, we have

δTrAB2 = − 1√
x
(nTωD2n)nTωδn− 2

√
xnTωD2δn+

2√
x
(nTωDn)nTωδ(Dn). (4.93)

Comparing (4.88) and (4.93), we obtain[√
xnTωD +

1√
x
(nTωDn)nTω

]
δ(Dn) =

[√
xnTωD2 +

1√
x
(nTωD2n)nTω

]
δn. (4.94)

Equivalently, we can express it as[√
xD +

1√
x
DnnTω

]
δ(Dn) =

[√
xD2 +

1√
x
(nTωD2n)1

]
δn (4.95)

with unit matrix 1. Remaining ones are calculated to be

δTrB2 =δTr(γ−1 −DnnTDT )ω = −2nTωDδ(Dn), (4.96)

δTrB3 =δTr
[
(γ−1 −DnnTDT )ω

] 3
2 = −3

√
xnTωD2δ(Dn). (4.97)

We collect these formulae for variation and obtain

δNe1
(√

g−1f
)
=δTrA+NδTrB = − 1√

x
nTωδ(n+NDn), (4.98)

δNe2
(√

g−1f
)
=δTrA · TrB + TrA · δTrB − δTr(AB) +

N

2

(
2δTrB · TrB − δTrB2

)
=nTω

[
D − 1TrD

]
δ(n+NDn). (4.99)

e3 is rather complicated

δNe3
(√

g−1f
)
=δTr(AB2)− δTr(AB)TrB − Tr(AB)δTrB

+
1

2
δTrA ·

(
Tr2B − TrB2

)
+

1

2
TrA ·

(
2δTrB · TrB − δTrB2

)
+
N

6

(
3Tr2B · δTrB − 3δTrB · TrB2 − 3TrB · δTrB2 + 2δTrB3

)
=
[ 1√

x
(nTωD2n)nTω +

√
x(TrD)nTωD −

√
x

2

(
Tr2D − TrD2

)
nTω

]
δn

−
[√

xnTωD +
1√
x
(nTωDn)nTω

]
δ(Dn)

+

√
x

2

[
−
(
Tr2D − TrD2

)
nTω + 2(TrD)nTωD − 2nTωD2

]
, (4.100)

but we use (4.94) and conclude

δNe3
(√

g−1f
)
= −

√
xnTω

[
D2 −DTrD +

1

2
1
(
Tr2D − TrD2

)]
δ(n+NDn). (4.101)

Thus, variation of the Lagrangian density with respect to ni is given by

1

M2
p

δL =Riδ(n
i +NDi

kn
k) + 2m2

√
det γ

{
− β1√

x
nTω + β2n

Tω
(
D − 1TrD

)
− β3

√
xnTω

[
D2 −DTrD +

1

2
1
(
Tr2D − TrD2

)]}
δ(n+NDn). (4.102)
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In the case of bimetric gravity, we have only to replace m2 by m2M2
eff/M

2
g . The last factor in

(4.102) can be interpreted as

∂

∂nj
(ni +NDi

k) =
∂N i

∂nj
. (4.103)

Since the variable change should be invertible, the transformation matrix ∂N i/∂nj must have
the inverse. Therefore, the variational principle leads to an equation

R(g)
i − 2m2

√
det γ

1√
x
nTω

{
β11+ β2

√
x
(
1TrD −D

)
+ β3x

[
D2 −DTrD +

1

2
1
(
Tr2D − TrD2

)]}
i

= 0, (4.104)

which is equivalently in the hat formula

R(g)
i − 2m2

√
det γ

1√
x̂
n̂Tω

{
β11+ β2

√
x̂
(
1TrD̂ − D̂

)
+ β3x̂

[
D̂2 − D̂TrD̂ +

1

2
1
(
Tr2D̂ − TrD̂2

)]}
i

= 0. (4.105)

For later convenience, we name the left hand side of the above equation as Ci. We solve this
equation as n̂i = n̂i(γ, π, ω) and substitute it back into the original action. Then, we start the
Hamiltonian analysis. Here, the important point is that the solution n̂i(γ, π, ω) is independent
of L, Li and N . We recall that D̂ = D̂

(
γ, ω, n̂

)
also does not depend on L, Li and N . Thus,

non-linear terms of N , L and Li never appear in the action.
In the minimal model where β1 = −1, β2 = 0 and β3 = 0, we can explicitly solve the

equation (4.105). The minimal model drastically simplifies (4.105)
√
x̂Ri + 2m2

√
det γ ωijn̂

j = 0. (4.106)

Squaring this equation with the metric ω, we have(√
x̂Ri + 2m2

√
det γ ωijn̂

j
)
ωil
(√

x̂Rl − 2m2
√
det γ ωlkn̂

k
)
= 0, (4.107)

which is calculated to be

x̂Riω
ilRl − 4m4(det γ)ωjkn̂

jn̂k = 0. (4.108)

We substitute x̂ = 1− n̂Tωn̂, and obtain

n̂iωijn̂
j =

(Rkω
ki)ωij(ω

jlRl)

4m4(det γ) +RiωijRj

. (4.109)

The above equation can be easily solved as

n̂i =
Rjω

ji√
4m4(det γ) +RkωklRl

, (4.110)

and

x̂ =
4m4(det γ)

4m4(det γ) +RTω−1R
. (4.111)
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4.3 The Hamiltonian analysis

In Section 4.2, we have found the equation of motion (4.105) for the auxiliary field n̂i, and
obtained the solution n̂i = n̂i(γ, π, ω). We substitute the solution into the original action,
and eliminate the auxiliary field ni. The action is linear in L, Li and N because n̂i(γ, π, ω)
and D̂

(
γ, ω, n̂

)
does not depend on L, Li and N . Then, we proceed to the main part of the

Hamiltonian analysis. We recall the action S =
∫
d4xL with the Lagrangian density

LMG/M
2
p =πij γ̇ij −Hf +NC, (4.112)

Hf :=− (Ln̂i + Li)Ri − 2m2L
√
det γ U(γ, ω, n̂), (4.113)

C :=R0 +RiD̂i
kn̂

k + 2m2
√

det γ V (γ, ω, n̂), (4.114)

for dRGT massive gravity, and

LBG =M2
gπ

ij γ̇ij +M2
f p

ijω̇ij
:::::::::

−Hf +NC, (4.115)

Hf :=− Li
[
M2

gR
(g)
i +M2

fR
(f)
i

:::::::

]
− L

[
M2

fR
(f)
0

:::::::

+M2
g n̂

iR(g)
i + 2m2M2

eff

√
det γ U(γ, ω, n̂)

]
,

(4.116)

C :=M2
gR

(g)
0 +M2

gR
(g)
i D̂i

kn̂
k + 2m2M2

eff

√
det γ V (γ, ω, n̂), (4.117)

for bimetric gravity. The difference is only in the wavy under lines. We also remember the
explicit formulae of U and V

U(γ, ω, n̂) =β4

√
detω√
det γ

+ β1
√
x̂+ β2

[
x̂TrD̂ + n̂TωD̂n̂

]
+ β3

[√
x̂(TrD̂)

(
n̂TωD̂n̂

)
−

√
x̂n̂TωD̂2n̂+

1

2
x̂

3
2

(
Tr2D̂ − TrD̂2

)]
, (4.118)

V (γ, ω, n̂) =β0 + β1
√
x̂TrD̂ +

1

2
β2x̂
(
Tr2D̂ − TrD̂2

)
+

1

6
β3x̂

3
2

[
Tr3D̂ − 3(TrD̂)(TrD̂2) + 2TrD̂3

]
. (4.119)

In these formulae, n̂i is interpreted as the solution of the equation (4.105), which we denote
n̂i = n̂i(γ, π, ω).

Now, we take variation with respect to N and obtain a primary constraint

C(γ, π, ω, n̂(γ, π, ω)) = 0. (4.120)

This constraint must be preserved along the time evolution, which is generated by the Hamil-
tonian

H :=

∫
d3x(Hf −NC). (4.121)

Hence, the Poisson bracket with the Hamiltonian H must be zero

d

dt
C(x) =

{
C(x), H

}
PB

≈
∫
d3y
{
C(x),Hf (y)

}
PB

−
∫
d3yN(y)

{
C(x), C(y)

}
PB

≈ 0, (4.122)
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where the symbol “≈” means the equality on the hypersurface determined by constraints. The
Poisson bracket is given by

{
F (x), G(y)

}
PB

=

∫
d3z
[ δF (x)
δγmn(z)

δG(y)

δπmn(z)
− δF (x)

δπmn(z)

δG(y)

δγmn(z)
+ (ω and p derivatives)

]
,

(4.123)

and that between C(x) and C(y) is derived in Appendix F. The result is

{
C(x), C(y)

}
PB

= −
[
P i(x)

∂

∂xi
δ(3)(x− y)− P i(y)

∂

∂yi
δ(3)(x− y)

]
, P i := CD̂i

jn
j. (4.124)

Thus, we conclude {
C(x), C(y)

}
PB

≈ 0. (4.125)

Here, notice that this result holds for both of dRGT massive gravity and bimetric gravity.
In the case of dRGT massive gravity, the coefficient of N at (4.122) disappears, and the

Lagrange multiplier N cannot be determined. Therefore, we have a secondary constraint C(2) =
0, which we derive in Appendix F,

C(2) :=
∫
d3y
{
C(x),Hf (y)

}
=m2L

(
γmnπ

k
k − 2πmn

)
Umn + 2m2

√
det γ γimDn(LU

mn)D̂i
kn̂

k + C Di(Ln̂
i + Li)

+
(
D̂i

kn̂
kRj − 2m2

√
det γ V̄ ilγlj

)
Di(Ln̂

j + Lj) +
(
DiR0 + D̂j

kn̂
kDiRj)(Ln̂

i + Li),
(4.126)

where U and V̄ are defined in (F.57) and (F.46). The first term in (4.126) contains πij linearly
without derivatives. Since such a term cannot be found in C and Ci, secondary constraint C(2)
does not automatically vanish even on the constraint surface. If we consider bimetric gravity,
additional terms contribute to the above formula. The consistency condition on C(2) for the
time evolution

dC(2)
dt

=
{
C(2)(x), H

}
PB

≈
∫
d3y
{
C(2)(x),Hf (y)

}
PB

−
∫
d3yN(y)

{
C(2)(x), C(y)

}
PB

≈ 0

(4.127)

have to be further imposed. The explicit calculation seems extremely difficult, but if we are
able to confirm {

C(2)(x),Hf (y)
}
PB

̸≈ 0,
{
C(2)(x), C(y)

}
PB

̸≈ 0, (4.128)

we can find that the consistency condition on C(2) determines the Lagrange multiplier N , and
no additional constraint emerges. At least in the linear level, we know that (4.128) is satisfied,
which we have seen in Section 2.4.2. We also know that dRGT massive gravity reduces to
the Fierz-Pauli mass term in the linear level. Taking into account these facts, we believe that
(4.128) is actually satisfied. Therefore, we have two constraints and no remaining Lagrange
multipliers. The total number of degrees of freedom is (6 × 2 − 2)/2 = 5, which means the
absence of the BD-ghost.
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In the case of bimetric gravity, we have the Hamiltonian density

H = Hf −NC = −LiC(L)
i − LC(L) −NC, (4.129)

C(L)
i :=M2

gR
(g)
i +M2

fR
(f)
i , (4.130)

C(L) :=M2
fR

(f)
0 +M2

g n̂
iR(g)

i + 2m2M2
eff

√
det γ U(γ, ω, n̂). (4.131)

In addition to N , we have other Lagrange multipliers L and Li. Variation with respect to them
leads to primary constraints

C = 0, C(L) = 0, C(L)
i = 0. (4.132)

We can speculate the structure of their Poisson brackets as follows. Firstly, we recall the fact
that bimetric gravity retains one overall diffeomorphism invariance. Thus, it seems reasonable to
think that C(L)

i and C(L) should generate corresponding transformation and {C(L)
i , C(L)

j }PB ≈ 0,

{C(L), C(L)
i }PB ≈ 0 and {C(L), C(L)}PB ≈ 0 hold. In general, one of generators may be a

combination of C and C(L), but the essence of the following argument does not change. Among
these generators, C(L)

i should generate spatial transformation, and on the (spatial) constraint

surface, C = 0 is satisfied on every point. Then, we find {C(L)
i , C}PB ≈ 0. On the other hand,

the result (4.126) suggests {C, CL}PB ̸≈ 0. This is because all of C, C(L) and C(L)
i do not have

a linear and no derivative term of πij. Actually, our speculation is correct, which is explicitly
shown in [32]. Therefore, the consistency condition for the primary constraints can be read as

d

dt
C =

∫
d3y
{
C(x), H(y)

}
PB

≈ −
∫
d3yL(y)

{
C(x), C(L)(y)

}
PB

̸≈ 0, (4.133)

d

dt
C(L)
i =

∫
d3y
{
C(L)
i (x), H(y)

}
PB

≈ 0, (4.134)

d

dt
C(L) =

∫
d3y
{
C(L)(x), H(y)

}
PB

≈ −
∫
d3yN(y)

{
C(L)(x), C(y)

}
PB

̸≈ 0. (4.135)

From (4.133) and (4.135), we have one secondary constraint. The consistency condition on this
secondary constraint determines one of the Lagrange multipliers, and the Hamiltonian analysis
ends. Eventually, we have five primary constraints and one secondary constraint. The number
of the undetermined Lagrange multipliers is four. The total number of degrees of freedom is
counted to be (12× 2− 5− 1− 4)/2 = 7 which means one massless and one massive gravitons.
We have no ghost-like extra degree of freedom.

The analysis in this chapter has focused only on the four dimensional case. However,
generalization to higher dimensions would be straightforward though the amount of calculations
increases. This expectation is supported by the analysis in chapter 5.
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Chapter 5

Multi-vielbein gravity

In this chapter, we consider a theory introduced in [4]. We have devoted all of Chapter 4 to the
Hamiltonian analysis of dRGT massive/bimetric gravity, where a large amount of calculations
has been carried out. The origin of this complexity is clear. It comes from the fact that the
mass/interaction term is non-linearly dependent on the lapse N as well as the shift N i. We see
N2, N3,..., and (N i)2, (N i)3,..., through the expansion of the square root

√
g−1f . This non-

linearity obscures the absence of the BD-ghost. If the BD-ghost should be eliminated, we must
have a constraint to reduce degrees of freedom. In general, we get a constraint from variation
with respect to a variable appearing linearly in the action. Thus, such a linear variable needs
to be found. We have had a lot of effort to deal with this problem.

Therefore, it seems that the removal of the square root drastically simplifies the analysis.
Then, we focus on a variable called vielbein which is interpreted as a square root of a metric.
We expect that a vielbein opens up the square root in the interaction term and makes the
constraint structure extremely clear.

We begin this chapter with revisiting general relativity from a perspective of a vielbein.
Then, we introduce interactions among multiple kinds of vielbeins. We construct an interaction
term which carries no additional ghost-like degree of freedom. At the end of this chapter, we
consider a relationship between a metric theory and a vielbein theory.

5.1 General relativity in a vielbein formulation

In this section, we bring in a new variable called vielbein, which can be interpreted as a
square root of a metric. We revisit general relativity in a vielbein formulation, and perform
the Hamiltonian analysis. This is a preparation for the next sections, where we introduce
interactions among vielbeins and count the number of degrees of freedom by the Hamiltonian
analysis.

5.1.1 The ADM decomposition

We introduce a vielbein EA
µ as a square root of a metric gµν

gµν =: EA
µE

B
ν ηAB, (5.1)

where ηAB is the Minkowski metric. Subscripts A,B, .. run on indices of the Minkowski space-
time. We also introduce the inverse of the vielbein EA

µ , which we denote by Eµ
A. The inverse
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vielbein Eµ
A is determined by the following relations

EA
µE

µ
B = δAB , EA

µE
ν
A = δνµ. (5.2)

The action of general relativity (2.10) can be rewritten in a vielbein formulation via (5.1)

SEH =
1

16πG

∫
dDx(detE)R[E], (5.3)

where R[E] is the scalar curvature written by the vielbein. In order to proceed to the Hamil-
tonian analysis, we need to apply the ADM decomposition to the vielbein. Here, we fix our
notation about space-time indices. We use Greek letters µ, ν, ... to represent general space-time
indices, and their spatial components are denoted as i, j, .... Index manipulations for them are
performed by the general metric gµν and its spatial metric γij. On the other hand, capital letters
A,B,... run on indices of the Minkowski space-time, and we write their spatial components as
a, b, .... They are manipulated by the Minkowski metric ηµν and its spatial component δab. We
have two kinds of time components, which seems confusing. Hence, we assign the index 0 to
the time component of the general space-time, and assign the index t to that of the Minkowski
space-time.

If we regard EA
µ as the A component of the vector Eµ, vectors E0, Ei=1,2,... are linearly

independent because the determinant of the vielbein should not be zero: detEA
µ ̸= 0. Then,

we rename the vector Ei as Vi, and E0 can be written as a linear combination of Vi plus one
more independent vector M

EA
i =: V A

i , EA
0 =: N iV A

i +NMA, (5.4)

where N and N i represent coefficients. We substitute (5.4) into the definition (5.1), and regard
the coefficients N and N i as the lapse and the shift. We expect that the metric gµν returns the
ADM decomposed form (3.5)

EA
µE

B
ν ηAB =

(
−N2 +N iNi Nj

Ni γij

)
, (5.5)

from which we obtain

MAMBηAB = −1, MAV B
i ηAB = 0, V A

i V
B
j ηAB = γij. (5.6)

This is the general (d+1)-decomposition in a vielbein formulation. If we putMA = (1, 0, 0, 0, ...),
we have V 0

i = 0 and the formula dramatically simplifies. In this case, we denote the remaining
V a
i as eai , and the decomposed vielbein reads

EA
µ =

(
Et

0 Ea
0

Et
i Ea

i

)
=

(
N N jeaj
0 eai

)
. (5.7)

A general vielbein can be recovered through a Lorentz boost

Λ(p)AB :=

(
γ̃ pa

pb δab +
1

γ̃+1
papb

)
, γ̃ :=

√
1 + papa, (5.8)
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which takesMA = (1,0) to (γ̃,p) with p := (p1, p2, ...). Then, a general vielbein is parametrized
by p

EA
µ = Λ(p)AB

(
N N jeaj
0 eai

)B
µ

=

(
Nγ̃ +N jebjpb Npa +N jebj

(
δab +

1
γ̃+1

pbp
a
)

ebipb ebi
(
δab +

1
γ̃+1

pbp
a
) )

. (5.9)

However, the Einstein-Hilbert action is invariant under local Lorentz transformations because
vielbein dependence comes through the relation to the metric (5.1). Hence, p dependence
disappears from the action (5.3), and we have only to consider the upper triangular form (5.7).
Therefore, the spatial component eai plays an important role, which constructs the spatial metric

γij = eai e
b
jδab. (5.10)

The inverse is denoted as eia and satisfies

eai e
i
b = δab , eai e

j
a = δji , γij = eiae

j
bδ
ab. (5.11)

In the following, indices are raised and lowered by the spatial metrics γij, γ
ij, δab and δ

ab.
We can construct a spatial vielbein with two lower or two upper indices, for example ebiδab. We
can write it both eai and eia. The order of the indices a and i is arbitrary, which will never
confuse us.

5.1.2 The Hamiltonian analysis

We proceed to perform the Hamiltonian analysis in a vielbein formulation. We remember
calculations in section 3.1.1. We have written the Einstein-Hilbert action with the phase space
variables (3.20), where the canonical momenta πij has been defined by (3.11). Here, we think
that the action (3.20) is written by the spatial vielbein eai through πij and γij. This is a short
cut treatment, more detailed discussion is found in [33].

We focus on the first term γ̇ijπ
ij in (3.20), and rewrite it with the spatial vielbein

γ̇ijπ
ij = (ėai e

b
jδab + eai ė

b
jδab)π

ij = ėai (π
ij + πji)eja = 2ėai π

ijeja, (5.12)

which means that the canonical momentum conjugate to eai is

Πi
a := 2πijeja. (5.13)

Since we regard πij as a function determined by (3.11), (5.13) defines Πi
a as a function of eai .

From the definition (5.13), we can obtain

πij =
1

2
Πi
ae
aj. (5.14)

Because πij defined by (3.11) is symmetric, we should have the condition

Π[i
ae

j]a = 0 ⇔ Πi
[aeb]i = 0. (5.15)

This condition comes from the fact that we have doubled the number of dynamical variables.
The spatial metric γij is symmetric and contains 1

2
d(d+1) components, while the spatial vielbein

has no symmetric property and has d2 components. The above condition reduces 1
2
d(d − 1)
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variables from the spatial vielbein and no extra degree of freedom is introduced. Thus, we must
impose a constraint

Pab := Πi
[aeb]i = 0. (5.16)

Then, we go to phase space. We have the action

SEH =
1

16πG

∫
dtddx

[
ėaiΠ

i
a +NR0 +N iRi +

1

2
λabPab

]
, (5.17)

where λab is a Lagrange multiplier and antisymmetric in a, b. The canonical variables are eai
and Πi

a. R0 and Ri are given by eai and Πi
a through (5.10) and (5.14). Variation with respect

to N , N i and λab leads to three kinds of constraints

R0 = 0, Ri = 0, Pab = 0. (5.18)

Now, we calculate the Poisson bracket{
F,G

}
PB

=

∫
ddz

[
δF

δeai (z)

δG

δΠi
a(z)

− δG

δeai (z)

δF

δΠi
a(z)

]
(5.19)

among constraints. In R0 and Ri, the dependence on eai and Πi
a comes only through γij and

πij. In such a case, we have

δF

δeai

δG

δΠi
a

=

(
δF

δγkl

δγkl
δeai

+
δF

δπkl
δπkl

δeai

)(
δG

δγmn

δγmn
δΠi

a

+
δG

δπmn
δπmn

δΠi
a

)
. (5.20)

Derivatives operating on γij are calculated from (5.10) and derivatives on πij are obtained from
(5.14). They are given by

δγkl
δeai

= δikela + δileka,
δγmn
δΠi

a

= 0, (5.21)

δπkl

δeai
= −1

2
Πk
ce
l
ae
ic,

δπkl

δΠi
a

=
1

2
δki e

la. (5.22)

In calculating δπ/δe, we have used a property eiae
a
j = δij which leads to a useful relation

δeia = −eib(δebj)eja. From these formulae, we find

δγkl
δeai

δπmn

δΠi
a

=
1

2
(δkmδ

l
n + δknδ

l
m),

δπkl

δeai

δπmn

δΠi
a

= −1

4
Πk
aγ

lnema, (5.23)

and conclude{
F,G

}(e,Π)

PB
=
{
F,G

}(γ,π)
PB

− 1

4

∫
ddz

δF

δπkl(z)

δG

δπmn(z)

(
Πk
ae
ma − Πm

a e
ka
)
γln(z). (5.24)

The subscript (e,Π) stands for the Poisson bracket constructed from functional derivatives with
respect to eai and Πi

a, namely (5.19). Similarly, the subscript (γ, π) represents that of γij and
πij. Their difference vanishes when we impose the constraint

Pab = 0 ⇔ Π[i
ae

j]a = 0. (5.25)
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Thus, we think that the Poisson brackets among R0 and Ri are the same as those in the metric
formulation.

Next, we calculate the Poisson brackets containing Pab. Derivatives of Pab are easy to
calculate

δPab
δeci

=
1

2

(
Πi
aδcb − Πi

bδca
)
,

δPab
δΠi

c

=
1

2

(
δcaebi − δcbeai

)
. (5.26)

It is convenient to use an integrated version for Pab. We introduce P(f) :=
∫
ddxfab(x)Pab(x)

with some antisymmetric tensor fab. When a functional F is dependent on eai and Πi
a only

through (5.10) and (5.14), we can calculate as

{
P(f), F

}
PB

=

∫
δP(f)

δeai

δF

δΠi
a

− δF

δeai

δP(f)

δΠi
a

=

∫
δP(f)

δeai

(
δγkl
δΠi

a

δF

δγkl
+
δπkl

δΠi
a

δF

δπkl

)
−
(
δγkl
δeai

δF

δγkl
+
δπkl

δeai

δF

δπkl

)
δP(f)

δΠi
a

. (5.27)

We neglect delta functions because we always encounter two delta functions and three integra-
tions. They leave overall one integration. Then, recalling δγ/δΠ = 0 and noticing

δγkl
δeai

δP(f)

δΠi
a

= fab
(
ebkeal + ebleak

)
= 0, (5.28)

we find {
P(f), F

}
PB

=

∫ (
δP(f)

δeai

δπkl

δΠi
a

− δP(f)

δΠi
a

δπkl

δeai

)
δF

δπkl
. (5.29)

In fact, the integrand is zero since we can see

δP(f)

δeai

δπkl

δΠi
a

− δP(f)

δΠi
a

δπkl

δeai
=

1

2
fab
(
Πk
ae
l
b +Πk

be
l
a

)
= 0. (5.30)

Hence, we obtain {
P(f), F

}
PB

= 0, (5.31)

and conclude that the Poisson brackets between Pab and R0 or Ri vanish.
The remaining one is the Poisson bracket between Pab. Straightforwardly, we calculate to

find {
P(f), P(q)

}
PB

=

∫ (
fabqcd − f cdqab

)
δcbPad. (5.32)

Therefore, we know that the consistency conditions are automatically satisfied on the constraint
surface

dR0

dt
=
{
R0, H

}
PB

≈ 0,
dRi

dt
=
{
Ri, H

}
PB

≈ 0,
dPab
dt

=
{
Pab, H

}
PB

≈ 0. (5.33)

We need no additional constraint. Besides, all of the Lagrange multipliers are left undetermined.
The total number of degrees of freedom is counted as follows. In phase space, the number of
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the original variables is 2d2. Then, constraints reduce d + 1 + 1
2
d(d − 1) degrees of freedom.

In addition, the remaining Lagrange multipliers mean existence of gauge freedoms. By fixing
them, we further reduce d+1+ 1

2
d(d−1) degrees of freedom. Then, the total number of degrees

of freedom turns out to be

1

2

[
2d2 − 2

(
d+ 1 +

1

2
d(d− 1)

)]
=

1

2
d(d− 1)− 1. (5.34)

In a four-dimensional case (d = 3), we have two degrees of freedom, which is compatible with
the case of general relativity written by the metric language.

5.2 Ghost-free multi-vielbein gravity

In this section, we consider interacting vielbeins and construct a ghost-free model. We assume
that we have N metrics g(I)µν (I = 1, 2, ..,N ) and define corresponding vielbeins E(I)Aµ as

g(I)µν =: E(I)AµE(I)
B
ν ηAB. (5.35)

Now, we introduce an interaction term given by

U
(
E(1), .., E(N )

)
:=

N∑
I1,...,ID

T (I1I2 · · · ID)ϵµ1µ2···µDϵA1A2···AD
E(I1)

A1
µ1
E(I2)

A2
µ2

· · ·E(ID)AD
µD
,

(5.36)

where ϵµ1µ2···µD and ϵA1A2···AD
represent antisymmetrization symbols determined by ϵ012···d = 1

and ϵ012···d = 1. The coefficient T (I1I2 · · · ID) is set to be symmetric. The concept of this
interaction term is to linearize all the lapse and the shift. In the formula for a general vielbein
(5.9), the lapse and the shift appear linearly and are contained only in time components.
Thus, antisymmetrization (5.36) returns only linear terms of them. The above interaction
term clearly breaks each diffeomorphism and local Lorentz invariance, but the overall ones are
retained. Under the overall local Lorentz transformation

E(I)Aµ → ΛABE(I)
B
µ (I = 1, 2, ...,N ), (5.37)

interaction term U transforms as

ϵµ1µ2···µDϵA1A2···AD
E(I1)

A1
µ1
E(I2)

A2
µ2

· · ·E(ID)AD
µD

→ϵµ1µ2···µDϵA1A2···AD
ΛA1

B1E(I1)
B1
µ1
ΛA2

B2E(I2)
B2
µ2

· · ·ΛAD
BD
E(ID)

BD
µD

=
1

D!

(
ϵA1A2···AD

ϵB1B2···BDΛA1
B1Λ

A2
B2 · · ·ΛAD

BD

)
ϵµ1µ2···µDϵC1C2···CD

E(I1)
C1
µ1
E(I2)

C2
µ2

· · ·E(ID)CD
µD

=(detΛ)ϵµ1µ2···µDϵA1A2···AD
E(I1)

A1
µ1
E(I2)

A2
µ2

· · ·E(ID)AD
µD
, (5.38)

where we have used a property

ϵA1A2···ADϵB1B2···BD
= D!δA1

[B1
δA2
B2

· · · δAD

BD]. (5.39)

Under the overall general coordinate transformation

E(I)Aµ
(
x
)
→ ∂f ν

∂xµ
E(I)Aν

(
f(x)

)
(I = 1, 2, ...,N ), (5.40)
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interaction term U becomes

ϵµ1µ2···µDϵA1A2···AD
E(I1)

A1
µ1
E(I2)

A2
µ2

· · ·E(ID)AD
µD

→
(
det

∂f

∂x

)
ϵµ1µ2···µDϵA1A2···AD

E(I1)
A1
µ1
E(I2)

A2
µ2

· · ·E(ID)AD
µD
. (5.41)

Thus, integrated interaction term
∫
dDxU is invariant under the overall local Lorentz and

general coordinate diffeomorphism.
Then, we have the action

S =
N∑
I=1

∫
dDxLEH(E(I)) +

∫
dDxU

(
E(1), ..., E(N )

)
. (5.42)

LEH(E(I)) is the Einstein-Hilbert term for each vielbein E(I) with 1/16πG(I) included. In
order to perform the Hamiltonian analysis, we rely on the ADM decomposition and assume
that vielbeins are parametrized by vectors p(I) as in (5.9) for each I = 1, 2, ...,N :

E(I)Aµ =

(
N(I)γ̃(I) +N(I)je(I)bjp(I)b N(I)p(I)a +N(I)je(I)bj

[
δab +

1
γ̃(I)+1

p(I)bp(I)
a
]

e(I)bip(I)b e(I)bi
[
δab +

1
γ̃(I)+1

p(I)bp(I)
a
] )

.

(5.43)

Each of the Einstein-Hilbert term is invariant under a Local Lorentz transformation E(I)Aµ →
Λ(I)ABE(I)

B
µ . Hence, all of p(I) drop from the Einstein-Hilbert terms. They remain only in the

interaction term U . Besides, we decompose spatial vielbeins as

e(I)ai = [eq(I)]abê(I)
b
i (I = 1, 2, ...,N ), (5.44)

where q(I) is an antisymmetric matrix q(I)acδ
cb = −q(I)bcδca and it generates a spatial rotation

on the Minkowski indices. This matrix q(I) has d(d − 1)/2 components. Thus, remaining
d(d+1)/2 degrees of freedom are left in ê(I). Since the Einstein Hilbert term is invariant under
a spatial rotation (5.44), q(I) drops out from the kinetic term and becomes an auxiliary field.
For instance, we can suppose that ê(I) is chosen to satisfy the following condition

∂U

∂ê(I)ai
ê(I)biδbc =

∂U

∂ê(I)ci
ê(I)biδba, (5.45)

which extracts d(d + 1)/2 degrees of freedom. On the other hand, the equation of motion for
q(I) is given by

∂U

∂q(I)ab
δbc =

∂U

∂q(I)cb
δba. (5.46)

Using (5.44), we can rewrite it as

∂U

∂ê(I)bi
[e−q(I)]baê

e
i [e

q(I)]deδdc =
∂U

∂ê(I)bi
[e−q(I)]bcê

e
i [e

q(I)]deδda. (5.47)

Then, we expand both sides about q(I) and find a solution

q(I)ab = 0. (5.48)
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This is because the zeroth order expansion is nothing but (5.46). Hence, q(I) disappears from
the action. In the following argument, we use êai instead of eai , and assume that auxiliary fields
q(I) (I = 1, 2, ...,N ) are solved as above.

In vielbeins parametrized by vectors p(I), the lapseN(I) and the shiftN(I)i appear only lin-
early. In addition, the interaction term U is constructed by antisymmetrizing vielbeins. Hence,
the interaction term U contains only linear terms of N(I) and N(I)i. Therefore, schematically,
the action can be decomposed as

S =
N∑
I=1

∫
dDx

(
Π̂(I)ia

˙̂e(I)ai +N(I)
[
R(I)0(ê, Π̂) +Q(I)0(ê, p)

]
+N(I)i

[
R(I)i(ê, Π̂) +Q(I)i(ê, p)

])
, (5.49)

where Q(I)0 and Q(I)i represent contributions from the interaction term U . We do not have
constraints P(I)ab (I = 1, 2, ...,N ) because we have already fixed spatial rotations on the
Minkowski indices before going to phase space.

Now, we count the total number of degrees of freedom. To begin with, we remember that
we have the overall local Lorentz invariance, especially overall boost invariance with which
we set p(1) = 0. Then, using constraints obtained from variation with respect to N(I)i for
I = 2, 3, ..,N , we solve the remaining p(I) as

R(I)i(ê, Π̂) +Q(I)i(ê, p) = 0 ⇒ p(I)a = p(I)a(ê, Π̂) (I = 2, 3, ...,N ). (5.50)

We substitute the above solution p(I)(ê, Π̂) into the action, and obtain

S =

∫
dDx

{
N∑
I=1

(
Π̂(I)ia

˙̂e(I)ai +N(I)
[
R(I)0(ê, Π̂) +Q(I)0

(
ê, p(ê, Π̂)

)])

+N(1)i
[
R(1)i(ê, Π̂) +Q(1)i

(
ê, p(ê, Π̂)

)]}
. (5.51)

Variation with respect to N(I) and N(1)i leads to constraints R0(I) +Q0(I) = 0 and Ri(1) +
Qi(1) = 0. Among R0(1) + Q0(1) , ..., R0(N ) + Q0(N ), one of them is combined with
Ri(1) +Qi(1) to generate the overall general coordinate transformation. The remaining N − 1
constraints are related to broken invariances of coordinate changes.

Actually, we have to calculate the Poisson bracket with the Hamiltonian, but it seems ex-
tremely troublesome to complete this task. Only the bi-vielbein case is completed [34, 35]. For
more general cases, the following rule is expected to hold. A constraint generating a transfor-
mation under which the invariance is retained gives rise to no additional constraint, and the
corresponding Lagrange multiplier is left undetermined. On the other hand, each constraint
generating a transformation under which the invariance is broken leads to a secondary con-
straint. Then, the consistency condition on this secondary constraint determines one Lagrange
multiplier. Here, we apply the above rule though we may need detailed investigations about
this point. Some related studies are found in [36, 37].

Constraints and gauge fixing conditions relating to the overall general coordinate diffeo-
morphism reduce 2(d + 1) degrees of freedom. Remaining constraints responsible for broken

69



symmetries of coordinate changes generate secondary constraints, and these primary and sec-
ondary ones remove further 2(N−1) degrees of freedom. Therefore, the total number of degrees
of freedom is counted to be

1

2

(
2× 1

2
d(d+ 1)N − 2(d+ 1)− 2(N − 1)

)
=
1

2
d(d− 1)− 1 + (N − 1)

[
1

2
d(d+ 1)− 1

]
. (5.52)

In four-dimensional space-times (d = 3), we have

2 + 5(N − 1) (5.53)

degrees of freedom, which is nothing but one massless and (N − 1) massive gravitons.

5.3 Toward metric formulations

As a final work in this chapter, we consider whether or not multi-vielbein theories can be
translated into some metric theories. A vielbeins comes from doubling the number of variables,
which introduces an extra Lorentz invariance. Thus, we expect that a constraint related to this
Lorentz transformation turns out to be a clue to a metric formulation.

5.3.1 The constraint from the Lorentz transformation

We recall the action given by

S = SEH +

∫
dDxU

(
E(1), ..., E(N )

)
, SEH =

∫
dDxLEH =

N∑
I=1

∫
dDxLEH(E(I)). (5.54)

We know that the Einstein-Hilbert term SEH is invariant under each local Lorentz transforma-
tion

E(I)Aµ → Λ(I)ABE(I)
B
µ (I = 1, 2, ...,N ). (5.55)

For our purpose, it is convenient to consider an infinitesimal transformation given by

Λ(I)AB ≃ δAB + ω(I)AB, (5.56)

where ω(I)AB is antisymmetric

ω(I)ABη
BC = −ω(I)CBη

BA. (5.57)

The invariance of SEH is represented as

δωSEH =

∫
dDx

δLEH
δE(I)Aµ

ω(I)ABE(I)
B
µ = 0. (5.58)

We can take arbitrary ω(I)AB which is antisymmetric. Hence, we obtain

δLEH
δE(I)Aµ

E(I)Cµ ηCB − δLEH
δE(I)Bµ

E(I)Cµ ηCA = 0. (5.59)
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We combine (5.59) with the equation of motion for E(I)Aµ

δLEH
δE(I)Aµ

+
δU

δE(I)Aµ
= 0, (5.60)

and obtain a constraint written by only the interaction term U

δU

δE(I)Aµ
E(I)Cµ ηCB =

δU

δE(I)Bµ
E(I)Cµ ηCA. (5.61)

Here, we rewrite the interaction term (5.36) in a suitable form to consider a relationship to a
metric formulation. Using inverse vielbeins E(J)µA, we can write E(Ii)

Ai
µi

= E(J)Ai
νi
E(J)νiBi

E(Ii)
Bi
µi
.

Then, the interaction term is written as

ϵµ1µ2···µDϵA1A2···AD
E(I1)

A1
µ1
E(I2)

A2
µ2

· · ·E(ID)AD
µD

=ϵµ1···µDϵA1···AD
E(J)A1

ν1
· · ·E(J)AD

νD

(
E(J)ν1B1

E(I1)
B1
µ1

)
· · ·
(
E(J)νDBD

E(ID)
BD
µD

)
=

1

D!
ϵA1···AD

ϵλ1···λDE(J)A1
λ1

· · ·E(J)AD
λD
ϵµ1···µDϵν1···νD

(
E(J)ν1B1

E(I1)
B1
µ1

)
· · ·
(
E(J)νDBD

E(ID)
BD
µD

)
=
(
detE(J)

)
ϵµ1···µDϵν1···νD

(
E(J)ν1B1

E(I1)
B1
µ1

)
· · ·
(
E(J)νDBD

E(ID)
BD
µD

)
, (5.62)

where we have used

ϵµ1···µDϵν1···νD = D!δµ1[ν1 · · · δ
µD
νD]. (5.63)

We can also write E(Ii)
Ai
µi

= E(J)Bi
µi
E(J)νiBi

E(Ii)
Ai
νi
, and using ϵA1···ADϵB1···BD

= D!δA1

[B1
· · · δAD

BD],
we obtain

ϵµ1µ2···µDϵA1A2···AD
E(I1)

A1
µ1
E(I2)

A2
µ2

· · ·E(ID)AD
µD

=
(
detE(J)

)
ϵA1···AD

ϵB1···BD
(
E(J)ν1B1

E(I1)
A1
ν1

)
· · ·
(
E(J)νDBD

E(ID)
AD
νD

)
. (5.64)

5.3.2 The case of bi-vielbein

Figure 5.1: Each box describes a vielbein. The link represents interaction.

We consider the case where only two kinds of vielbeins interact, which we denote by E(1)
and E(2). It is convenient to represent this setting by a diagram in Fig.5.1. Notice that
vielbeins construct metrics

g(1)µν = E(1)AµE(1)
B
ν ηAB, g(2)µν = E(2)AµE(2)

B
ν ηAB. (5.65)

We extract a basic element of the interaction term

ϵµ1µ2···µDϵA1A2···AD
E(1)A1

µ1
· · ·E(1)An

µnE(2)
An+1
µn+1

· · ·E(2)AD
µD
, (5.66)
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where n copies of E(1) and (D − n) copies of E(2) are contained. We can write (5.66) in the
form (5.62)(

detE(1)
)
ϵµ1···µDϵ

ν1···νDδµ1ν1 · · · δ
µn
νn

(
E(1)

µn+1

An+1
E(2)An+1

νn+1

)
· · ·
(
E(1)µDAD

E(2)AD
νD

)
=
(
detE(1)

)
n!ϵµn+1···µDϵ

νn+1···νD
(
E(1)

µn+1

An+1
E(2)An+1

νn+1

)
· · ·
(
E(1)µDAD

E(2)AD
νD

)
(5.67)

∝
√
det g(1)eD−n(E(1)

−1E(2)), (5.68)

where we have used (D.5), (D.11) and (D.2). Therefore, if the replacement

E(1)µAE(2)
A
ν ↔

√
g(1)−1g(2)

µ

ν (5.69)

is possible, we can recover bimetric gravity. In fact, this replacement is allowed owing to the
constraint (5.61) which is related to the Lorentz transformation. In order to make sure this
fact, we write the interaction term (5.66) in the form (5.64)(

detE(1)
)
ϵA1···AD

ϵB1···BDδA1
B1

· · · δAn
Bn

(
E(1)

µn+1

Bn+1
E(2)An+1

µn+1

)
· · ·
(
E(1)µDBD

E(2)AD
µD

)
=
(
detE(1)

)
n!ϵAn+1···AD

ϵBn+1···BD
(
E(1)

µn+1

Bn+1
E(2)An+1

µn+1

)
· · ·
(
E(1)µDBD

E(2)AD
µD

)
. (5.70)

In Appendix D, we can find explicit formulae for antisymmetrization such as (5.70), from which
we know that (5.70) can be expressed as a combination of traces(

E(1)λmC1
E(2)Cm

λm

)(
E(1)

λm−1

Cm
E(2)

Cm−1

λm−1

)
· · ·
(
E(1)λ2C3

E(2)C2
λ2

)(
E(1)λ1C2

E(2)C1
λ1

)
. (5.71)

For notational simplicity, we define

XA
B := E(1)λAE(2)

B
λ , (5.72)

and read (5.71) as

XC1

CmXCm

Cm−1 · · ·XC3

C2XC2

C1 . (5.73)

In the simplest case where the interaction term U is given by

U ∝ XC
C , (5.74)

the constraint (5.61) leads to

E(1)µAE(2)
C
µ ηCB = E(1)µBE(2)

C
µ ηCA ⇔ XA

CηCB = XB
CηCA. (5.75)

Actually, this relation always solves the Lorentz constraint even if the interaction term is not
restricted to U ∝ XC

C . We apply the constraint (5.61) to a more general element (5.73), and
find that

XA
CmXCm

Cm−1 · · ·XC3

C2XC2

CηCB = XB
CmXCm

Cm−1 · · ·XC3

C2XC2

CηCA (5.76)

must be satisfied. However, we can easily prove by induction that (5.76) is automatically
satisfied when (5.75) holds.
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If we use the relation (5.75), we can rewrite the element g(1)−1g(2) as

g(1)µλg(2)λν =E(1)
µ
AE(1)

λ
Bη

ABE(2)CλE(2)
D
ν ηCD

= E(1)µAE(1)
λ
Dη

ABE(2)CλE(2)
D
ν ηCB

= E(1)µAE(2)
A
λE(1)

λ
DE(2)

D
ν . (5.77)

Therefore, we find

E(1)µAE(2)
A
ν =

(√
g(1)−1g(2)

)µ
ν
, (5.78)

and restore bimetric gravity.
Here, it should be noted, taking the inverse of both sides of (5.75), we find another relation

E(2)µAE(1)
C
µ ηCB = E(2)µBE(1)

C
µ ηCA. (5.79)

Thus, the Lorentz constraint (5.61) on E(1) is automatically satisfied when that on E(2) holds.
This is because we have one symmetry coming from the overall Lorentz transformation. In a
more general multi-vielbein case, one of the set (5.61) is automatically satisfied.

5.3.3 More general cases

We continue to the case with three vielbeins E(1), E(2) and E(3). However, we soon recognize
that interacting three vielbeins are not always translated into a metric formulation.

To begin with, we consider the chain type interaction represented by a diagram in Fig.5.2.

Figure 5.2: The diagram represents the chain type interaction.

In this type, the interaction term can be expressed as U = U12+U23, where U12 and U23 mean in-
teractions between (E(1), E(2)) and (E(2), E(3)) respectively. The point is that no interaction
between (E(3), E(1)) or among ((E(1), E(2), E(3))) are included. Focusing on the coupling be-
tween (E(1), E(2)), we express the interaction term U12 as U12 ∼ (detE(2))LTD

(
E(2)−1E(1)

)
,

where LTD is a linear combination of LTDn defined in Appendix D. We apply the constraint
(5.61) to E(1), and find

E(2)µAE(1)
C
µ ηCB = E(2)µBE(1)

C
µ ηCA. (5.80)

Taking the inverse of both sides, we also obtain

E(1)µAE(2)
C
µ ηCB = E(1)µBE(2)

C
µ ηCA. (5.81)
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We proceed to the constraint on E(2). We express the interaction terms containing E(2) as
U12 ∼ (detE(1))LTD(E(1)−1E(2)) and U23 ∼ (detE(3))LTD(E(3)−1E(2)). Then, we apply
the constraint (5.61) to E(2). Here, contributions coming from U12 cancel each other because
we already have a relation (5.81). Thus, the constraint on E(2) is calculated from only U23,
and we obtain

E(3)µAE(2)
C
µ ηCB = E(3)µBE(2)

C
µ ηCA. (5.82)

Taking the inverse of both sides, we also obtain

E(2)µAE(3)
C
µ ηCB = E(2)µBE(3)

C
µ ηCA, (5.83)

which is nothing but the constraint on E(3). Therefore, using these three relations, we can
restore trimetric gravity with one interaction cut.

When the interaction becomes loop type, namely U = U12+U23+U31, the situation becomes
complicated and we cannot recover trimetric gravity. The corresponding diagram is in Fig.5.3.

Figure 5.3: The diagram represents the loop type interaction.

As an example, we consider an interaction given by

U = α12(detE(1))E(1)
µ
AE(2)

A
µ + α23(detE(2))E(2)

µ
AE(3)

A
µ + α31(detE(3))E(3)

µ
AE(1)

A
µ ,

(5.84)

where α12, α23 and α31 are constants. Using variation δ detE = (detE)Eµ
AδE

A
µ and δEν

B =
−Eν

AE
µ
BδE

A
µ , we calculate the constraint (5.61). The result is found to be

α12(detE(1))E(1)
µ
AE(2)

C
µ ηCB − α23(detE(2))E(2)

µ
AE(3)

C
µ ηCB = (A↔ B), (5.85)

α23(detE(2))E(2)
µ
AE(3)

C
µ ηCB − α31(detE(3))E(3)

µ
AE(1)

C
µ ηCB = (A↔ B), (5.86)

α31(detE(3))E(3)
µ
AE(1)

C
µ ηCB − α12(detE(1))E(1)

µ
AE(2)

C
µ ηCB = (A↔ B), (5.87)

from which we cannot obtain the key relations like (5.81) or (5.83). Therefore, trimetric gravity
is not recovered from the loop type interaction.

In the case of an interaction among (E(1), E(2), E(3)), the situation is the same as that in
the loop type. We cannot in general recover trimetric gravity. We call this pattern as branching
link type interaction and represent it by a diagram in Fig.5.4. For example, we consider

U =ϵµ1µ2···µDϵA1A2···AD
E(1)A1

µ1
· · ·E(1)AD−2

µD−2
E(2)AD−1

µD−1
E(3)AD

µD

= ∝ detE(1)
[
(E(1)µAE(2)

A
µ )(E(1)

ν
BE(3)

B
ν )− E(1)µAE(2)

B
µE(1)

ν
BE(3)

A
ν

]
. (5.88)
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Figure 5.4: The diagram represents the branching link type interaction.

The constraint (5.61) leads to

(E(1)νC′E(2)C
′

ν )E(1)µAE(3)
C
µ ηCB − E(1)µAE(2)

C′

µ E(1)
ν
C′E(3)Cν ηCB = (A↔ B), (5.89)

(E(1)νC′E(3)C
′

ν )E(1)µAE(2)
C
µ ηCB − E(1)µAE(3)

C′

µ E(1)
ν
C′E(2)Cν ηCB = (A↔ B), (5.90)

and independent one obtained from variation with respect to E(1). Hence, we cannot obtain
the key relations necessary for a metric interpretation.

We can easily generalise this discussion to more general cases where interacting multiple
vielbeins are contained. Only the tree type interaction such as Fig.5.5 can be translated into a
metric formulation. If loop or branching link structures are included, interaction terms cannot
be reformulated in the language of metrics.

In a different viewpoint, how to translate a vielbein theory is discussed also in [38].

Figure 5.5: The diagram represents an example of the tree type interaction. Each box describes
a vielbein.
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Chapter 6

Multi-metric gravity

In Chapter 4, we have proved the absence of the BD-ghost in dRGTmassive/bimetric gravity via
the Hamiltonian analysis. We have seen that the essential point of the proof is to linearize the
lapse by the transformation of the lapse and the shift variables. However, this transformation
cannot be applied to the case of trimetric or more general multimetric gravity, and whether
BD-ghosts exist or not has been left unanswered. On the other hand, in Chapter 5, we have
considered interacting multiple gravitational fields in a vielbein formulation. Actually, we have
constructed a ghost-free interaction written by vielbeins, but they cannot always be translated
into a metric formulation. Only the tree type interaction can be translated into the language
of metrics. Thus, the ghost problem of multimetric gravity containing loop or branching link
interaction has not been resolved.

In this chapter, we analyze them and prove that they suffer from BD-ghosts, and clarify
when multimetric gravity becomes ghost-free. The difficulty of the Hamiltonian analysis in
Chapter 4 has come from the non-linear dependence of the lapse, and we have paid a lot of
trouble to linearize it. This strategy has been retained even in Chapter 5. We have introduced
vielbeins along with antisymmetrization to linearize all the lapse and shift variables. The
linearity of these variables has made the structure of the constraints extremely clear.

Now, we take the same strategy, namely linearization of the lapse. We focus on the ho-
mogeneous space-times, where the shift vector disappears. We see that interaction terms of
multimetric gravity becomes linear in the lapse, and the constraint structure is drastically sim-
plified. Therefore, we can perform the Hamiltonian analysis explicitly, and count the total
number of degrees of freedom to decide whether or not BD-ghosts are contained.

This chapter is based on our original work [5]. We focus on four-dimensional space-times.

6.1 Bimetric gravity revisited

Figure 6.1: Each blob describes a metric. The link represents interaction.

In this section, we revisit bimetric gravity and demonstrate our method to probe a BD-ghost.
Since, in Chapter 4 and Chapter 5, we have already proved that bimetric gravity is ghost-free,
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we make sure that the same conclusion can be obtained by using a simple mini-superspace
approximation.

We recall the action of ghost-free bimetric gravity (3.145)

S =M2
g

∫
d4x
√

− det gR[g] +M2
f

∫
d4x
√

− det fR[f ]

+ 2m2M2
gf

∫
d4x
√
− det g

4∑
n=0

βnen
(√

g−1f
)
, (6.1)

where the first and the second terms are the Einstein-Hilbert action for the metric g and that
for f , and R[g] and R[f ] represent scalar curvatures for these two metrics. Mg andMf stand for
Planck masses Mg :=

1
16πGg

and Mf :=
1

16πGf
. The last term describes the interaction between

two metrics, and βn are dimensionless coupling constants. The other constants m and Mgf are
introduced to adjust the mass dimension, the details of which are not relevant in this chapter.
The interaction term is constructed from antisymmetrization functions en (n = 0, 1, 2, 3, 4)
defined in Appendix D. For convenience, we represent the existence of the interaction by a
diagram in Fig.6.1, and we abbreviate trace operations as trnX =

(
trX
)n

and trXn = tr(Xn).
Now, we perform the Hamiltonian analysis based on the ADM formalism. In particular,

to make the analysis tractable, we employ the mini-superspace approach. Namely, we assume
spatial homogeneity and express metrics in terms of ADM variables as

gµνdx
µdxν = −N(t)2dt2 + γij(t)dx

idxj , (6.2)

where N is a lapse function and γij is a spatial metric. Similarly, we can take the following
ansatz

fµνdx
µdxν = −L(t)2dt2 + ωij(t)dx

idxj , (6.3)

where L is a lapse function and ωij is a spatial metric. It is convenient to write them in a
matrix form,

gµν =

(
−N2 0
0 γij

)
, gµν =

(
−1/N2 0

0 γij

)
,

fµν =

(
−L2 0
0 ωij

)
, fµν =

(
−1/L2 0

0 ωij

)
, (6.4)

where γij and ωij are inverse matrices of corresponding spatial metrics γij and ωij. Then, a
basic element of the interaction term can be calculated to be(

g−1f
)µ
ν
=

(
L2/N2 0

0 γilωlj

)
=⇒

√
g−1f =

(
L/N 0

0
√
γ−1ω

)
. (6.5)

In the right hand side of (6.5), we see that the lapse functions N and L appear only through the
combination L/N . Besides, higher order terms such as (L/N)2, (L/N)3,...etc do not appear.
Because the function en contains antisymmetrization, we have only up to linear terms of L/N in∑4

n=0 βnen
(√

g−1f
)
. Thus, the interaction term

√
− det g

∑4
n=0 βnen

(√
g−1f

)
becomes linear
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in N and L. This feature is an advantage of our homogeneous ansatz and is not restricted to
the four-dimensional case. The explicit calculation is as follows. The first one is given by√

− det g e1
(√

g−1f
)

=
√

− det g tr
√
g−1f

=
√

det γ N
(
L/N + tr

√
γ−1ω

)
=

√
det γ

(
L+Ntr

√
γ−1ω

)
. (6.6)

The second one becomes√
− det g e2

(√
g−1f

)
=

√
− det g

1

2

(
tr2
√
g−1f − tr

(
g−1f

))
=

√
det γ N

1

2

{(
L/N + tr

√
γ−1ω

)2
− L2/N2 − tr

(
γ−1ω

)}
=

√
det γ

{
L tr

√
γ−1ω +

1

2
N
(
tr2
√
γ−1ω − tr

(
γ−1ω

))}
. (6.7)

The third one can be calculated as√
− det g e3

(√
g−1f

)
=

√
− det g

1

6

(
tr3
√
g−1f − 3tr

√
g−1f tr

(
g−1f

)
+ 2tr

(
g−1f

)3/2)
=

√
det γ N

1

6

{(
L/N + tr

√
γ−1ω

)3
−3
(
L/N + tr

√
γ−1ω

)(
L2/N2 + tr

(
γ−1ω

))
+ 2
(
L3/N3 + tr

(
γ−1ω

)3/2)}
=

√
det γ

{1
2
L
(
tr2
√
γ−1ω − tr

(
γ−1ω

))
+
1

6
N
(
tr3
√
γ−1ω − 3tr

√
γ−1ω tr

(
γ−1ω

)
+ 2tr

(
γ−1ω

)3/2)}
. (6.8)

The last one is√
− det g e4

(√
g−1f

)
=
√

− det g det
√
g−1f =

√
− det f = L

√
detω . (6.9)

To sum up, the interaction term reads

√
− det g

4∑
n=0

βnen
(√

g−1f
)

=N
√
det γ

[
β0 + β1tr

√
γ−1ω +

1

2
β2

(
tr2
√
γ−1ω − tr

(
γ−1ω

))
1

6
β3

(
tr3
√
γ−1ω − 3tr

√
γ−1ω tr

(
γ−1ω

)
+ 2tr

(
γ−1ω

)3/2)]
+L

[√
det γ

{
β1 + β2tr

√
γ−1ω +

1

2
β3

(
tr2
√
γ−1ω − tr

(
γ−1ω

))}
+ β4

√
detω

]
. (6.10)

Here, we should notice an important point. When we count the number of physical degrees of
freedom, the following fact must be taken into account. In the vacuum cases, we can diagonalize
one of two spatial metrics using overall spatial coordinate transformations. Performing a spatial
coordinate transformation xi → Λ(t0)

i
j x

j, we can set one spatial metric at the time t = t0,
γij(t0), a unit matrix δij. Moreover, since the orthogonal transformation dose not change

78



γij(t0) = δij, we can diagonalize γ̇ij(t0) simultaneously by using this freedom. At this stage,
homogeneous spatial coordinates are completely fixed. Now, γij and γ̇ij is diagonal at the time
t = t0 as an initial condition. Then we assume diagonal form of γij(t) at all time, and insert
it into the equation of motion. Any contradiction never occurs in vacuum. Thus, we conclude
that one spacial metric γij(t) can be diagonalized because of the uniqueness of the solution.
Hence, the number of component of one of two spatial metrics reduces from 6 to 3. This fact
will be used later.

For simplicity, we assume that interactions are minimal, namely

β0 = 3, β1 = −1, β2 = 0, β3 = 0, β4 = 1. (6.11)

Clearly, this simplification does not lose any generality concerning with the ghost analysis.
Then, setting

∫
d3x = 1, the Lagrangian defined by S =

∫
dtL reads

L =M2
gπ

ij γ̇ij +M2
f p

ijω̇ij −NCN − LCL, (6.12)

and

CN :=
M2

g√
det γ

(
πijπij −

1

2
πiiπ

j
j

)
−M2

g

√
det γ (3)R[γ] + a1

√
det γ

(
tr
√
γ−1ω − 3

)
, (6.13)

CL :=
M2

f√
detω

(
pijpij −

1

2
piip

j
j

)
−M2

f

√
detω (3)R[ω] + a1

(√
det γ −

√
detω

)
, (6.14)

where πij and pij are canonical conjugate momenta of γij and ωij. The first two terms of
CN and CL come from the Einstein-Hilbert term in the action. Thus, (3)R[γ] and (3)R[ω] are
spatial scalar curvatures composed from γ and ω, respectively. The last term comes from the
interaction, and we use a1 := 2m2M2

gf . We can see that the lapse functions N and L behave
as Lagrange multipliers, and variation with respect to them leads to constraints

CN = 0, CL = 0. (6.15)

These two constraints must be preserved along the time evolution. Hence, we must impose
consistency conditions on them

ĊN =
{
CN , H

}
PB

≈ 0, ĊL =
{
CL , H

}
PB

≈ 0, (6.16)

where H is the Hamiltonian given by

H = NCN + LCL, (6.17)

and the Poisson bracket {F,G}PB is now defined by{
F , G

}
PB

=
1

M2
g

(
∂F

∂γmn

∂G

∂πmn
− ∂F

∂πmn
∂G

∂γmn

)
+

1

M2
f

(
∂F

∂ωmn

∂G

∂pmn
− ∂F

∂pmn
∂G

∂ωmn

)
. (6.18)

Here, “≈ 0” means “= 0” on the hypersurface determined by constraints. Notice that {F, F}PB =
0 because of spatial homogeneity, and we find{

CN , H
}
PB

≈ L
{
CN , CL

}
PB

=: LCNL, (6.19){
CL , H

}
PB

≈ N
{
CL , CN

}
PB

=: NCLN . (6.20)
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In order to check if additional constraints arise or not, we have to calculate the Poisson bracket
CNL. From the calculation presented in Appendix G, we obtain

CNL =
{
CN , CL

}
PB

= a1

[
1

2
πii −

√
det γ

detω

(1
2
pii tr

√
γ−1ω − tr

(√
γ−1ω pω

))]
. (6.21)

This leads to one secondary constraint CNL ≈ 0. We must also impose the consistency condition
on this secondary constraint

ĊNL = N
{
CNL , CN

}
PB

+ L
{
CNL , CL

}
PB

≈ 0. (6.22)

The explicit calculation can be found in Appendix G, and the result is
{
CNL , CN

}
PB

̸≈ 0

and
{
CNL , CJ

}
PB

̸≈ 0. Therefore, this condition determines one of two Lagrange multipliers
N and L. The remaining multiplier describes the overall time reparametrization invariance in
bimetric gravity.

The number of components of two spatial metrics and their canonical conjugates is 24.
Since we can diagonalize one of the two metrics, we should subtract 6 from this number. Recall
that there are two primary constraints and one secondary constraint. Furthermore, as we have
one undetermined Lagrange multiplier, we have to put one gauge condition. Thus, the total
number of degrees of freedom should be (24−6−2−1−1)/2 = 7 in configuration space, which
matches degrees of freedom of one massless graviton and one massive graviton. This proves
that BD-ghost is absent in bimetric gravity described by the action (6.1).

6.2 Ghost in trimetric gravity

We apply the method explained in the previous section to trimetric gravity. In contrast to the
case of bimetric gravity, there are three kinds of interaction, namely, the chain type, the loop
type and the branching link type interaction. In this section, we investigate the chain type and
the loop type interaction. Interaction with a branching pattern is considered in Section 6.4.

We remember the action for trimetric gravity given in Section 3.6

S =M2
g

∫
d4x
√

− det gR[g] +M2
f

∫
d4x
√

− det fR[f ] +M2
h

∫
d4x

√
− dethR[h]

+ 2m2
1M

2
gf

∫
d4x
√

− det g
4∑

n=0

βnen
(√

g−1f
)

+ 2m2
2M

2
fh

∫
d4x
√
− det f

4∑
n=0

β′
nen
(√

f−1h
)

+ 2m2
3M

2
hg

∫
d4x

√
− deth

4∑
n=0

β′′
nen
(√

h−1g
)
, (6.23)

where we have three metrics gµν , fµν and hµν , from which we construct scalar curvatures R[g],
R[f ] and R[h]. In previous chapters, we have denoted a perturbation as hµν , but in this chapter
it does not represent a perturbation. The interaction terms contain free parameters βn, β

′
n,

β′′
n, and mass parameters m1,m2,m3,Mgf ,Mfh,Mhg. A Planck mass Mh is also introduced. It

should be noted that there exists one overall diffeomorphism invariance in this trimetric theory
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which makes one of gravitons massless. If this trimetric gravity contains no extra degree of
freedom, the total number of degrees of freedom should be 2 + 5 + 5 = 12, which comes from
one massless graviton and two massive gravitons. From now on, we use

a1 := 2m2
1M

2
gf , a2 := 2m2

2M
2
fh , a3 := 2m2

3M
2
hg (6.24)

for notational simplicity. If we have a1 ̸= 0, a2 ̸= 0 and a3 ̸= 0, all pairs (g, f), (f, h) and (h, g)
interact and we call it the loop type interaction. When one of ai (i = 1, 2, 3) is set to zero, two
of three pairs of interactions remain, which we call the chain type interaction. The chain type
interaction is already concluded to be ghost-free via the vielbein formalism in Chapter 5. On
the contrary, whether or not the loop type interaction is ghost-free has been left unanswered.
Now, we settle this problem.

Apparently, the full Hamiltonian constraint analysis is almost impossible. To circumvent
this difficulty, we take the method used in the previous section. We assume spatial homogeneity
and express metrics in terms of ADM variables as

gµνdx
µdxν = −N(t)2dt2 + γij(t)dx

idxj, (6.25)

where N is a lapse function and γij is a spatial metric. Similarly, we can take the following
ansatz

fµνdx
µdxν = −L(t)2dt2 + ωij(t)dx

idxj, (6.26)

and

hµνdx
µdxν = −Q(t)2dt2 + ρij(t)dx

idxj, (6.27)

where L and Q are lapse functions and ωij and ρij are spatial metrics.
To perform the Hamiltonian analysis, we need the Lagrangian in the ADM variables. Similar

to the case of bimetric gravity, we assume that interactions are minimal

(β0, β1, β2, β3, β4) = (β′
0, β

′
1, β

′
2, β

′
3, β

′
4) = (β′′

0 , β
′′
1 , β

′′
2 , β

′′
3 , β

′′
4 ) = (3,−1, 0, 0, 1), (6.28)

and set
∫
d3x = 1. Then, we obtain the Lagrangian

L =M2
gπ

ij γ̇ij +M2
f p

ijω̇ij +M2
hϕ

ij ρ̇ij −NCN − LCL −QCQ, (6.29)

where πij, pij and ϕij are canonical conjugate momenta of γij, ωij and ρij, and we have defined

CN :=
M2

g√
det γ

(
πijπij −

1

2
πiiπ

j
j

)
−M2

g

√
det γ (3)R[γ]

+ a1
√

det γ
(
tr
√
γ−1ω − 3

)
+ a3

(√
det ρ−

√
det γ

)
, (6.30)

CL :=
M2

f√
detω

(
pijpij −

1

2
piip

j
j

)
−M2

f

√
detω (3)R[ω]

+ a2
√
detω

(
tr
√
ω−1ρ− 3

)
+ a1

(√
det γ −

√
detω

)
, (6.31)

CQ :=
M2

h√
det ρ

(
ϕijϕij −

1

2
ϕiiϕ

j
j

)
−M2

h

√
det ρ (3)R[ρ]

+ a3
√

det ρ
(
tr
√
ρ−1γ − 3

)
+ a2

(√
detω −

√
det ρ

)
. (6.32)
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The first line of each CN , CL and CQ comes from the Einstein-Hilbert term in the action, so
(3)R[γ], (3)R[ω] and (3)R[ρ] are spatial scalar curvatures calculated from γ, ω and ρ, respectively.
The other terms can be derived from the explicit formula of the interaction term (6.10). Ob-
viously, we can see that the lapse functions N , L and Q behave as Lagrange multipliers, and
variation with respect to them leads to three constraints

CN = 0, CL = 0, CQ = 0. (6.33)

These constraints must be preserved along the time evolution. Thus, we need consistency
conditions for them

ĊN =
{
CN , H

}
PB

≈ 0, ĊL =
{
CL , H

}
PB

≈ 0, ĊQ =
{
CQ , H

}
PB

≈ 0. (6.34)

Here, the Hamiltonian H is given by

H = NCN + LCL +QCQ, (6.35)

and we find {F, F}PB = 0 due to spatial homogeneity. Therefore, we have following three
consistency conditions{

CN , H
}
PB

≈ L
{
CN , CL

}
PB

+Q
{
CN , CQ

}
PB

≈ 0,{
CL , H

}
PB

≈ N
{
CL , CN

}
PB

+Q
{
CL , CQ

}
PB

≈ 0, (6.36){
CQ , H

}
PB

≈ N
{
CQ , CN

}
PB

+ L
{
CQ . CL

}
PB

≈ 0.

Whether or not additional secondary constraints arise depends on the Poisson brackets,

CNL :=
{
CN , CL

}
PB
, CLQ :=

{
CL , CQ

}
PB
, CQN :=

{
CQ , CN

}
PB
. (6.37)

The explicit calculation of the first Poisson bracket is found in Appendix G, and the result is

CNL = a1

[
1

2
πii −

√
det γ

detω

(1
2
pii tr

√
γ−1ω − tr

(√
γ−1ω pω

))]
. (6.38)

By performing permutations among g = (N, γ) , f = (L, ω) and h = (Q, ρ), we also obtain

CLQ = a2

[
1

2
pii −

√
detω

det ρ

(1
2
ϕii tr

√
ω−1ρ− tr

(√
ω−1ρ ϕ ρ

))]
(6.39)

and

CQN = a3

[
1

2
ϕii −

√
det ρ

det γ

(1
2
πii tr

√
ρ−1γ − tr

(√
ρ−1γ π γ

))]
. (6.40)

In general, quantities inside the bracket does not vanish.
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Figure 6.2: The diagram represents the chain type interaction.

6.2.1 Chain type interaction

In this subsection, we consider the chain type interaction

a1 ̸= 0, a2 = 0, a3 ̸= 0, (6.41)

which cut interaction between f and h as in Fig.6.2.
In any case, there are primary constraints (6.33). Since CQL = CLQ = 0 trivially holds,

consistency conditions (6.36) lead to equations

LCNL +QCNQ ≈ 0, NCLN ≈ 0, NCQN ≈ 0. (6.42)

Hence, we have two secondary constraints

CNL ≈ 0, CNQ ≈ 0. (6.43)

Needless to say, these secondary constraints have to be preserved along the time evolution,
which requires the following consistency conditions

ĊNL =
{
CNL , H

}
PB

= N
{
CNL , CN

}
PB

+ L
{
CNL , CL

}
PB

+Q
{
CNL , CQ

}
PB

≈ 0, (6.44)

ĊQL =
{
CQL , H

}
PB

= N
{
CQL , CN

}
PB

+ L
{
CQL , CL

}
PB

+Q
{
CQL , CQ

}
PB

≈ 0. (6.45)

In Appendix G, we calculate the Poisson brackets in the above equations, and see they do
not vanish. Then, we know that conditions (6.44) and (6.45) determine two of three Lagrange
multipliers N , L and Q. The remaining multiplier is related to the overall gauge transformation.
Eventually, we have five constraints and one gauge freedom. We remember that dynamical
modes are spatial metrics, and each of them has six components. However, as is already
explained, we can diagonalize one of them. Hence, trimetric gravity has 3+ 6+ 6 = 15 degrees
of freedom in configuration space and 15 × 2 = 30 in phase apace. Thus, the total number of
degrees of freedom is (30 − 5 − 1)/2 = 12 which matches the physical degrees of one massless
and two massive gravitons. Therefore, no BD-ghost exists in the spectrum. This conclusion is
consistent with that obtained by the vielbein method in Chapter 5.

6.2.2 Loop type interaction

Now, we consider the loop type interaction represented by a diagram in Fig.6.3

a1 ̸= 0, a2 ̸= 0, a3 ̸= 0. (6.46)
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Figure 6.3: The diagram represents the loop type interaction.

In this case, we know that{
CN , CL

}
PB

̸= 0,
{
CL , CQ

}
PB

̸= 0,
{
CQ , CN

}
PB

̸= 0 (6.47)

holds even on the constraint surface. Hence, consistency conditions (6.36) do not generate any
secondary constraint. Instead, it determines Lagrange multipliers N , L and Q. However, due
to the antisymmetric property of the Poisson brackets

CNL =
{
CN , CL

}
PB

= −
{
CL , CN

}
PB

= −CLN (6.48)

CLQ =
{
CL , CQ

}
PB

= −CQL (6.49)

CQN =
{
CQ , CN

}
PB

= −CNQ, (6.50)

only two of them are determined. For example, if we choose

L = −CNQ
CNL

Q, N = −CLQ
CLN

Q, (6.51)

all of consistency conditions (6.36) are satisfied.
To conclude, we have three primary constraints and one undetermined Lagrange multi-

plier. Hence, we need one gauge condition to fix it, which is associated with the overall time
reparametrization invariance. In trimetric gravity, as is already counted, there are 3+6+6 = 15
degrees of freedom in configuration space and 15× 2 = 30 in phase apace. In phase space, we
have three constraints and one gauge condition, so the total number of degrees of freedom is
(30 − 3 − 1)/2 = 13. If no BD-ghost is present, there must be 2 + 5 + 5 = 12 degrees of
freedom which comes from one massless graviton and two massive gravitons. Therefore, one
extra degree of freedom exists and it should be a BD-ghost. Here, we have just counted the
total number of degrees of freedom, but we can actually confirm that this extra one behaves as
a ghost [36]. Thus, we have proved the existence of a BD-ghost in trimetric gravity with the
loop type interaction.

6.3 General multimetric gravity without branching in-

teraction pattern

In Section 6.2, we have discussed about trimetric gravity with the chain type or loop type
interaction, and found that the loop type interaction cannot exclude a BD-ghost. However,
the conclusion is not restricted to the case of trimetric gravity. Even if we introduce more
interacting metrics, almost the same conclusion holds. The chain type interaction remains
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ghost-free while the loop type interaction suffers from BD-ghosts. In this section, we consider
N dynamical metrics gk (k = 1, 2, ..,N ), and explicitly calculate the number of BD-ghosts if
they exist.

Now, we consider the following interaction term

N∑
k=1

ak
√

− det gk

4∑
n=0

βk,nen

(√
g−1
k gk+1

)
, (6.52)

where we define gN+1 := g1. For later purpose, we also use g0 := gN . Let us describe the
interaction between two metrics gk and gk+1 in terms of ADM variables

ds2k = −N2
k (t)dt

2 + γk,ij(t)dx
idxj. (6.53)

Schematically, the interaction can be written as

√
− det gk

4∑
n=0

βk,nen

(√
g−1
k gk+1

)
= NkFk

(
γk : γk+1

)
+Nk+1Gk

(
γk : γk+1

)
, (6.54)

where Fk and Gk are some functions determined by parameters βk,n. Thus, the total interaction
term is given by

N∑
k=1

ak
√

− det gk

4∑
n=0

βk,nen

(√
g−1
k gk+1

)
=

N∑
k=1

Nk

{
akFk

(
γk : γk+1

)
+ ak−1Gk−1

(
γk−1 : γk

)}
.

(6.55)

Here, we introduce canonical conjugate momentum πk for γk, and obtain the Lagrangian

L =
N∑
k=1

πkγ̇k −H, (6.56)

where the Hamiltonian H is given by

H =
N∑
k=1

NkCk, Ck := C0
k

(
γk, πk

)
− akFk

(
γk : γk+1

)
− ak−1Gk−1

(
γk−1 : γk

)
. (6.57)

In the Hamiltonian, C0
k comes from the Einstein Hilbert term for gk, so it contains γk and its

canonical conjugate momentum πk. The lapse functions Nk (k = 1, 2, ..,N ) behave as Lagrange
multipliers, and variation with respect to them leads to N primary constraints

Ck = 0 , (k = 1, 2, ..,N ) . (6.58)

As is usual, the consistency condition about the time evolution for them must be imposed

Ċk ≈ Ck,k−1Nk−1 + Ck,k+1Nk+1 ≈ 0, (k = 1, 2, ..,N ) , (6.59)

where we have defined Ck,l :=
{
Ck , Cl

}
PB

. This Poisson bracket Ck,l satisfies Ck,l = 0 for
|k − l| ≧ 2 because Ck contains only γk−1, γk, γk+1 and πk. When we encounter N0 and NN+1,
they are understood as N0 := NN and NN+1 := N1.
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Note that the explicit calculation gives rise to an important information

Ck,k+1 ∝ ak . (6.60)

Besides, the structure of this matrix depends on whether the number of cites is odd or even.
For example, in the case N = 4, we have

Ck,l =


0 C1,2 0 C1,4

−C1,2 0 C2,3 0
0 −C2,3 0 C3,4

−C1,4 0 −C3,4 0

 , (6.61)

while, in the case of N = 5, we obtain

Ck,l =


0 C1,2 0 0 C1,5

−C1,2 0 C2,3 0 0
0 −C2,3 0 C3,4 0
0 0 −C3,4 0 C4,5

−C1,5 0 0 −C4,5 0

 . (6.62)

In the case of odd number of metrics, we cannot split the equations into two independent sets.
On the other hand, in the case of even number of metrics, we can split a set of equations into
independent two groups of equations. Hence, we have to discuss two cases, separately.

6.3.1 Chain type interaction

Figure 6.4: The diagram represents the chain type interaction.

Prior to the loop type, we consider the chain type interaction, where one of (gk, gk+1)k=1,2,..,N
interactions is cut as in Fig. 6.4. Here, we set a1 = 0. Then, the consistency conditions for the
primary constraints (6.59) lead to N − 1 secondary constraints

Ck,k+1 ≈ 0, (k = 2, 3, ..,N ). (6.63)

These secondary constraints must be preserved along the time evolution. Thus, we further
impose

Ċk,k+1 ≈
N∑
l=1

{
Ck,k+1 , Cl

}
PB
Nl ≈ 0 (k = 2, 3, ..,N ), (6.64)
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which determine N − 1 of Nk (k = 1, 2, ..,N ), and only one Lagrange multiplier remains
undetermined. Therefore, the total number of degrees of freedom can be deduced as

1

2

(
2
(
3 + 6(N − 1)

)
−N − (N − 1)− 1

)
= 2 + 5(N − 1). (6.65)

It is clear that this result corresponds to one massless and N − 1 massive gravitons. Therefore,
there exists no BD-ghost. This conclusion is also consistent with the result obtained by the
vielbein method in Chapter 5.

6.3.2 Loop type interaction

Figure 6.5: The diagram represents the loop type interaction.

If all of (gk, gk+1)k=1,2,..,N interactions exist as in Fig.6.5, the analysis gets a little complicated.
We have to discuss odd and even numbers, separately.

Odd number of metrics

Firstly, we consider the case where N = 2m + 1 with (m = 1, 2, 3, 4, ...). In this case, we can
classify the equations (6.59) into the following four parts

C2k,2k−1N2k−1 + C2k,2k+1N2k+1 = 0 (k = 1, 2, 3, ...,m), (6.66)

C2k−1,2k−2N2k−2 + C2k−1,2kN2k = 0 (k = 2, 3, ...,m), (6.67)

C1,2m+1N2m+1 + C1,2N2 = 0, (6.68)

C2m+1,2mN2m + C2m+1,1N1 = 0. (6.69)

Solving (6.66), we see that all of N2k+1 (k = 1, 2, ..,m) can be expressed by N1. Similarly,
(6.67) can be used to express N2k (k = 2, 3, ..,m) in terms of N2. Substituting these results
into (6.68) and (6.69), we obtain a single equation which determines N2 by N1. Thus, (6.59)
determines N − 1 Lagrange multipliers, and one multiplier is left undetermined, which reflects
the existence of the overall gauge symmetry. In the case of odd number of metrics, there is no
secondary constraint, while we need one gauge condition to fix the gauge degree of freedom. In
conclusion, the total number of degrees of freedom can be calculated as

1

2

(
2
(
3 + 6(N − 1)

)
−N − 1

)
= 2 + 5(N − 1) +

N − 1

2
. (6.70)

Here, the first two terms correspond to massless and massive gravitons, respectively. The last
one should be BD-ghosts, and the number of BD-ghosts is given by (N − 1)/2.
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Even number of metrics

Next, we consider the case N = 2m + 2, where m is a natural number. In this case, we can
split the consistency conditions (6.59) into two independent sets of equations,

Ck,k−1Nk−1 + Ck,k+1Nk+1 = 0 (k = 1, 3, 5, .., 2m+ 1), (6.71)

Ck,k−1Nk−1 + Ck,k+1Nk+1 = 0 (k = 2, 4, 6, .., 2m+ 2). (6.72)

The first set (6.71) contains only Nk (k = 2, 4, 6, .., 2m+ 2), and the second set (6.72) contains
only Nk (k = 1, 3, 5, .., 2m+1). Here, if a component Ck,k±1 is found in the set (6.71), Ck±1,k =
−Ck,k±1 must be in the other set (6.72) and vice versa. Therefore, in each set, every component
Ck,k±1 appears only once. Now, we define

Di,j := C2i−1,2j , Mj := N2j (i, j = 1, 2, 3, ..,m+ 1). (6.73)

Note that Dij ̸= 0 only for i− j = 0, 1. Then, the equations in (6.71) can be written as∑
j

Di,jMj = 0 (i = 1, 2, 3, ..,m+ 1), (6.74)

which we can divide into two parts

D1,1M1 +D1,m+1Mm+1 = 0, (6.75)

Di,i−1Mi−1 +Di,iMi = 0 (i = 2, 3, ..,m+ 1). (6.76)

Using the series (6.76), we can solve all of Mi (i = 2, 3, ..,m+ 1) in terms of M1. However, the
relation betweenM1 andMm+1 obtained from (6.76) cannot be coincide with the formula (6.75)
because the equations in (6.76) does not contain D1,1 and D1,m+1. Thus, we have to impose
an additional constraint in order to get non-trivial Lagrange multipliers. This is a secondary
constraint expressed by

detDij = 0. (6.77)

If the determinant is not vanish, all of Mj must be zero. Under this condition (6.77), m of Mj

(j = 1, 2, ..,m+ 1) are determined, and one is left undetermined.
Now, we take the latter set (6.72) and define

Ei,j := C2i,2j−1 , Wj := N2j−1 (i, j = 1, 2, 3, ..,m+ 1). (6.78)

The same argument applies, so we get a secondary constraint detEij = 0, and one of Wj

(j = 1, 2, ..,m + 1) is left undetermined. However, matrix Eij satisfies Eij = −Dji. Hence,
detEij = 0 is not a new constraint. Therefore, from (6.59), we get one secondary constraint
detDij = 0 and two undetermined Lagrange multipliers . Then, we must impose a consistency
condition for the secondary constraint

d

dt
detDij ≈

N∑
k=1

{
detDij , Ck

}
PB
Nk ≈ 0, (6.79)

which reduces the number of undetermined Lagrange multipliers from two to one.
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To summarize, there are N primary constraints and one secondary constraint, and we need
one gauge condition. Thus, we come to the conclusion that the total number of degrees of
freedom is

1

2

(
2
(
3 + 6(N − 1)

)
−N − 1− 1

)
= 2 + 5(N − 1) +

N − 2

2
. (6.80)

Here, again, the first two terms correspond to massless and massive gravitons, respectively.
Hence, the number of BD-ghosts should be (N − 2)/2.

6.4 General multimetric gravity with branching interac-

tion patterns

In this section, we study branching interaction patterns. In an interaction diagram, branching
can occur at a node which represents a metric or a midpoint of a link. We call these two
patterns as branching node type and branching link type respectively. The former overlaps
with a vielbein theory, but the latter does not.

6.4.1 Branching node type interaction

Figure 6.6: The diagram represents the branching node type interaction.

Branching node type interaction can be expressed as a diagram in Fig.6.6, and the interaction
term is given by

N∑
k=2

√
− det g1

4∑
n=0

βk,nen

(√
g−1
1 gk

)
. (6.81)

Applying the spatial homogeneity ansatz and the ADM decomposition

ds2k = −N2
k (t)dt

2 + γk,ij(t)dx
idxj (k = 1, 2, ...,N ), (6.82)

each element of the interaction term can be written as

√
− det g1

4∑
n=0

βk,nen

(√
g−1
1 gk

)
= N1Fk

(
γ1 : γk

)
+NkGk

(
γ1 : γk

)
, (6.83)
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where Fk and Gk are some functions. Summing them, the total interaction term is obtained

N∑
k=2

√
− det g1

4∑
n=0

βk,nen

(√
g−1
1 gk

)
= N1F̃ (γ1 : γ2, ..., γN ) +

N∑
k=2

NkGk(γ1 : γk), (6.84)

F̃ (γ1 : γ2, ..., γN ) :=
N∑
k=2

Fk(γ1 : γk). (6.85)

Here, we introduce canonical conjugate momentum πk for γk, and obtain the Hamiltonian H

H =
N∑
k=1

NkCk, (6.86)

C1 := C0
1

(
γ1, π1

)
− F̃ (γ1 : γ2, ..., γN ), (6.87)

Ck := C0
k

(
γk, πk

)
−Gk(γ1 : γk) (k = 2, 3, ...,N ). (6.88)

In the above formulae, C0
k comes from the Einstein Hilbert term and contains γk and its

canonical conjugate momentum πk. The lapse functions Nk (k = 1, 2, ..,N ) are Lagrange
multipliers, and variation with respect to them leads to N primary constraints

Ck = 0 , (k = 1, 2, ..,N ). (6.89)

Since we notice {C1, Ck}PB ̸≈ 0 for k = 2, 3, ...,N and {Ck, Ck′}PB = 0 when k, k′ = 2, 3, ...,N ,
the consistency condition for the time evolution becomes

0 C1,2 · · · C1,N
−C1,2

... 0
−C1,N




N1

N2
...
NN

 ≈ 0. (6.90)

Thus, we have N − 1 secondary constraints

C1,k =
{
C1, Ck

}
PB

≈ 0 (k = 2, 3, ...,N ). (6.91)

These secondary constraints must be preserved along the time evolution. Hence, we impose the
consistency condition

Ċ1,k =
{
C1,k, H

}
PB

≈
N∑
k′=1

Nk′
{
C1,k, Ck′

}
PB

≈ 0 (k = 2, 3, ...,N ), (6.92)

which determines N − 1 Lagrange multipliers. Eventually, we have N primary constraints,
N − 1 secondary constraints and one undetermined Lagrange multiplier. Therefore, the total
number of degrees of freedom is

1

2

(
2
(
3 + 6(N − 1)

)
−N − (N − 1)− 1

)
= 2 + 5(N − 1). (6.93)

We have no BD-ghost.
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Figure 6.7: The diagram represents an example of the branching link type interaction containing
three metrics.

6.4.2 Branching link type interaction

We close our investigation toward multimetric gravity with the analysis on the branching link
type interaction. An example is sketched in Fig.6.7.

For matrices X(I)µν (I = 1, 2, 3, 4), we introduce a function S given by

S
(
X(1), X(2), X(3), X(4)

)
:= ϵµ1µ2µ3µ4ϵ

ν1ν2ν3ν4X(1)µ1ν1X(2)µ2ν2X(3)µ3ν3X(4)µ4ν4 , (6.94)

where ϵµ1µ2µ3µ4 and ϵν1ν2ν3ν4 are antisymmetrization symbols defined by ϵ0123 = 1 and ϵ0123 = 1
respectively. Here, we have four matrices since we are focusing on the four dimensional case.
Interaction terms we have considered in previous sections have been constructed from the
functions en (n = 0, 1, 2, 3, 4), which can be expressed by S as

e0
(√

g−1f
)
∝ S

(
1,1,1,1

)
,

e1
(√

g−1f
)
∝ S

(
1,1,1,

√
g−1f

)
,

e2
(√

g−1f
)
∝ S

(
1,1,

√
g−1f,

√
g−1f

)
, (6.95)

e3
(√

g−1f
)
∝ S

(
1,
√
g−1f,

√
g−1f,

√
g−1f

)
,

e4
(√

g−1f
)
∝ S

(√
g−1f,

√
g−1f,

√
g−1f,

√
g−1f

)
, (6.96)

where 1 means unit matrix.
On the spatial homogeneity ansatz, interaction terms in previous sections become linear in

the lapse functions, which is necessary to exclude BD-ghosts. Otherwise, we have no constraints
and cannot reduce any degrees of freedom. Thus, the interaction term of the branching link
type should be constructed to be linear in the lapse functions.

In the case of trimetric gravity with metrics gµν , fµν and hµν , the following combinations
are possible

√
− det g ×



S
(
1,1,

√
g−1f,

√
g−1h

)
S
(
1,
√
g−1f,

√
g−1f,

√
g−1h

)
S
(
1,
√
g−1f,

√
g−1h,

√
g−1h

)
S
(√

g−1f,
√
g−1f,

√
g−1h,

√
g−1h

)
S
(√

g−1f,
√
g−1f,

√
g−1f,

√
g−1h

)
S
(√

g−1f,
√
g−1h,

√
g−1h,

√
g−1h

)
.

(6.97)

We can also include permutations of g, f and h. Since spatial homogeneity is assumed, three
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metrics are written as

gµν =

(
−N2 0
0 γij

)
, gµν =

(
−1/N2 0

0 γij

)
, (6.98)

fµν =

(
−L2 0
0 ωij

)
, fµν =

(
−1/L2 0

0 ωij

)
, (6.99)

hµν =

(
−Q2 0
0 ρij

)
, hµν =

(
−1/Q2 0

0 ρij

)
, (6.100)

from which basic elements of the interaction terms are expressed as(
g−1f

)µ
ν
=

(
L2/N2 0

0 γilωlj

)
=⇒

√
g−1f =

(
L/N 0

0
√
γ−1ω

)
, (6.101)

(
g−1h

)µ
ν
=

(
Q2/N2 0

0 γilρlj

)
=⇒

√
g−1f =

(
Q/N 0

0
√
γ−1ρ

)
, (6.102)√

− det g = N
√

det γ. (6.103)

Then, we can immediately find that antisymmetrization in (6.94) actually makes interaction
terms (6.97) linear in N , L and Q.

Now, the Hamiltonian can be read schematically as

H = NCN + LCL +QCQ, (6.104)

with

CN := C0
N(γ, π) + FN(γ, ω, ρ), (6.105)

CL := C0
L(ω, p) + FL(γ, ω, ρ), (6.106)

CQ := C0
Q(ρ, ϕ) + FQ(γ, ω, ρ), (6.107)

where C0
N , C

0
L and C0

Q come from the Einstein-Hilbert terms while FN , FL and FQ come from
the interaction term. Notice that FN , FL and FQ generally contain all of γ, ω and ρ. In fact, if

we consider an interaction such as
√
− det gS

(
1,
√
g−1f,

√
g−1f,

√
g−1h

)
, FQ does not depend

on ρ. Hence, FN , FL and FQ may independent of γ, ω and ρ respectively, but this situation
is not relevant to our analysis. The lapse functions N , L and Q are Lagrange multipliers, and
variation with respect to them leads to three primary constraints

CN = 0, CL = 0, CQ = 0. (6.108)

Since they must be preserved along the time evolution, we impose the consistency condition

ĊN =
{
CN , H

}
PB

= L
{
CN , CL

}
PB

+Q
{
CN , CQ

}
PB

≈ 0, (6.109)

ĊL =
{
CL , H

}
PB

= N
{
CL , CN

}
PB

+Q
{
CL , CQ

}
PB

≈ 0, (6.110)

ĊQ =
{
CQ , H

}
PB

= N
{
CQ , CN

}
PB

+ L
{
CQ , CL

}
PB

≈ 0, (6.111)

which is equivalent to  0 CNL CNQ
−CNL 0 CLQ
−CNQ −CLQ 0

 N
L
Q

 ≈ 0. (6.112)
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Here, the Poisson brackets CNL :=
{
CN , CL

}
PB

, CLQ :=
{
CL, CQ

}
PB

and CNQ :=
{
CN , CQ

}
PB

does not vanish.
In the case of four metrics gk (k = 1, 2, 3, 4), the following combinations are possible

√
− det g1 ×


S
(
1,
√
g1−1g2,

√
g1−1g3,

√
g1−1g4

)
S
(√

g1−1g2,
√
g1−1g2,

√
g1−1g3,

√
g1−1g4

)
S
(√

g1−1g3,
√
g1−1g2,

√
g1−1g3,

√
g1−1g4

)
S
(√

g1−1g4,
√
g1−1g2,

√
g1−1g3,

√
g1−1g4

)
,

(6.113)

and permutations of gk (k = 1, 2, 3, 4). Applying the spatial homogeneity ansatz and the ADM
decomposition gk = (Nk, γk), we obtain the Hamiltonian

H =
4∑

k=1

NkCk, Ck := C0
k(γk, πk) + Fk(γ1, γ2, γ3, γ4), (6.114)

where C0
k comes from the Einstein-Hilbert part while Fk comes from the interaction term.

Notice that each Fk generally contains all kinds of spatial metrics. As mentioned before, Fk
may not depend on γk in special situations, but our argument below does not change. Then,
we have four primary constraints Ck = 0 (k = 1, 2, 3, 4), and the consistency condition

0 C1,2 C1,3 C1,4

−C1,2 0 C2,3 C2,4

−C1,3 −C2,3 0 C3,4

−C1,4 −C2,4 −C3,4 0




N1

N2

N3

N4

 ≈ 0 (6.115)

is imposed. Here, Ck,l :=
{
Ck, Cl

}
PB

vanishes only for k = l.
In the case of five metrics gk (k = 1, 2, 3, 4, 5), possible combinations are√

− det g1S
(√

g1−1g2,
√
g1−1g3,

√
g1−1g4,

√
g1−1g5

)
(6.116)

and permutations of gk (k = 1, 2, 3, 4, 5). Then, the Hamiltonian is give by

H =
5∑

k=1

NkCk, Ck := C0
k(γk, πk) + Fk(γ1, γ2, γ3, γ4, γ5), (6.117)

which leads to five primary constraints Ck = 0 (k = 1, 2, 3, 4, 5), and we impose the consistency
condition 

0 C1,2 C1,3 C1,4 C1,5

−C1,2 0 C2,3 C2,4 C2,5

−C1,3 −C2,3 0 C3,4 C3,5

−C1,4 −C2,4 −C3,4 0 C4,5

−C1,5 −C2,5 −C3,5 C4,5 0




N1

N2

N3

N4

N5

 ≈ 0. (6.118)

Notice that Ck,l :=
{
Ck, Cl

}
PB

vanishes only for k = l.
In any case, consistency conditions (6.112), (6.115) and (6.118) can be read as a linear

equation

CN ≈ 0, (6.119)
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where C is an antisymmetric matrix and N is a column vector. In general, an antisymmetric
real matrix is a normal matrix because the Hermitian conjugate C† = −C satisfies CC† =
−C2 = C†C. Thus, the spectral decomposition is possible C =

∑
I aIPI , where aI is an

eigenvalue and PI is a projection operator. Taking the Hermitian conjugate of this spectral
decomposition C† =

∑
I a

∗
IPI , where a

∗ means complex conjugate of a, we find a∗I = −aI to
notice that eigenvalues aI must be pure imaginary or zero. On the other hand, the trace of
an antisymmetric matrix have to be zero. Hence, the number of non-zero eigenvalues must be
even, and we come to the conclusion that the rank of matrix C, which we denote by r, must
be an even number.

In the following, we assume that we have N metrics, and C is a N × N matrix. In
configuration space, the number of original dynamical variables is 3+6(N − 1), but a no-ghost
theory should have 2 + 5(N − 1) ones. Thus, we have to remove extra N degrees of freedom.
In phase space, we already have N primary constraints. Therefore, in order to exclude all of
BD-ghosts, we need N additional conditions.

If the number of metricsN is odd, (6.119) determines r Lagrange multipliers while remaining
(N − r) ones are left undetermined. Then, there is no secondary constraint, and we have only
N − r gauge conditions, which cannot exclude all of BD-ghosts. Though we do not carry out
explicit calculations, we expect N − r = 1 because we have one overall invariance of the time
coordinate change. Therefore, the total number of degrees of freedom should be

1

2

(
2
(
3 + 6(N − 1)

)
−N − 1

)
= 2 + 5(N − 1) +

N − 1

2
. (6.120)

We have (N − 1)/2 BD-ghosts.
When we have even number of metrics, we see two possibilities. One of them is a case

where the rank r does not coincide with the number of metrics r ̸= N , and in the other case,
we have r = N . In the first case, we immediately find that we do not have enough conditions
and some of BD-ghosts remain. In the second case, we must impose an additional condition
detC ≈ 0. Otherwise, only the solution N = 0 is allowed. Then, the rank of the matrix C
reduces, which we denote by r′ (r′ is an even number.). Then, (6.119) determines r′ Lagrange
multipliers while remaining N − r′ ones are left undetermined. Besides, we must impose the
consistency condition on the secondary constraint d detC/dt ≈ 0, which reduces the number of
undetermined Lagrange multipliers from N−r′ to N−r′−1. Therefore, we have one secondary
constraint and N − r′ − 1 gauge conditions. In total, N − r′ conditions are obtained, but they
are not enough to exclude all of BD-ghosts. Here, we expect N − r′ − 1 = 1 which corresponds
to the overall invariance of the time parameterization. Hence, the total number of degrees of
freedom should be

1

2

(
2
(
3 + 6(N − 1)

)
−N − 2

)
= 5(N − 1) + 2 +

N − 2

2
. (6.121)

We have (N − 2)/2 BD-ghosts.
The conclusion is that the branching link type interaction always suffers from BD-ghosts.
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Chapter 7

Applications

Applications of bimetric or multimetric gravity are diverse. For example, gravitational waves
[39], inflationary universe [40], acceleration of the universe, dark matter,...etc. In this chap-
ter, we consider an application to the AdS/CFT correspondence. This topic is based on our
unpublished work [6].

7.1 The AdS/CFT correspondence and multimetric grav-

ity

The AdS/CFT correspondence is a kind of holography where the world is understood as a
boundary of a higher dimensional space-time. This is one of the most widely studied topics
in modern theoretical physics [41, 42, 43, 44], covering general relativity, string theory, matter
field theory and so on. In the AdS/CFT correspondence, we prepare a (d + 1)-dimensional
asymptotically AdS (anti de-Sitter) space-time and read information from the AdS-boundary.
In the bulk space-time, we put a (classical) gravity theory. Then, a (quantum) matter field
theory is reflected on the AdS-boundary. An important feature of the AdS/CFT correspondence
is that when the bulk side is weakly coupled, the coupling of the boundary field gets strong.
Thus, we can investigate the complicated matter field theory through analyzing rather simple
equations in the bulk gravity theory. In standard settings, we use general relativity with other
scalar, vector or spinor fields as a gravity theory. As is well known, we have a large number
of applications of the AdS/CFT correspondence. For practical applications, a review [45] and
references therein is useful.

Sometimes, massive fields play an important role in the AdS/CFT correspondence. For
instance, a massive scalar field is used in holographic superconductor. Massive fields are also
expected to describe dissipative systems, such as metals with impurities. Hence, it seems
promising to investigate massive gravity in the context of the AdS/CFT correspondence. In a
sense, a natural completion of massive gravity is bimetric gravity. It seems also interesting to
study bimetric or more general multimetric gravity in this context. On the other hand, from a
more theoretical view point, emergence of massive gravitons in the AdS/CFT correspondence
has been reported in the past [46, 47, 48]. They say when we prepare several CFT boundaries
and introduce interactions among them, some of gravitons on the bulk side become massive.
This situation makes us recall multimetric gravity.

Motivated these facts, we attempt to apply bimetric gravity to the AdS/CFT correspon-
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dence. Multimetric cases are left as future works. In studying the AdS/CFT correspondence,
one of the main difficulties is how to interpret a result. We put a gravity theory on the bulk
space-time, and read information from the boundary. However, we cannot know in advance
what kind of theory we obtain as a boundary field theory. We are often puzzled with what
a result physically means. Therefore, we proceed our argument as close as possible to a well-
known case where pure general relativity is used. Besides, we rely on the hydrodynamic limit,
which makes analytic calculation possible. In these settings, the counterpart on the boundary
side is interpreted as fluid of the supersymmetric Yang-Mills plasma [49, 50, 51]. Its transport
coefficients such as sheer viscosity are calculated via the AdS/CFT prescription. Following this,
we investigate the case of bimetric gravity and see that two-component fluid emerges. We also
calculate values of the pressure and sheer viscosity.

7.2 dRGT massive gravity and the AdS/CFT correspon-

dence

Prior to directly consider bimetric gravity, it is convenient to start with dRGT massive gravity.
In this section, we firstly revisit the case of general relativity [49, 50], and then extend it to
that of dRGT massive gravity. Our calculations follow a review [45].

In the AdS/CFT correspondence in general relativity, we encounter divergent terms. In
order to cancel them, we add a counterterm and obtain a finite result. However, mass of a
graviton gives rise to extra divergences which are absent in the case of general relativity. The
main topic of this section is how to cancel these additional divergences.

7.2.1 The case of general relativity

We review the AdS/CFT correspondence in general relativity. Especially, we focus on the
first order hydrodynamic limit. Hydrodynamic limit means a long wave length limit, where
derivative expansion is effective. We take only the first order derivatives, and higher order ones
are discarded. We can carry out analytic calculations owing to this approximation.

In these settings, the boundary field theory is interpreted as the supersymmetric Yang-
Mills plasma, and the pressure and the sheer viscosity can be calculated via the AdS/CFT
correspondence.

Now, we start with the five-dimensional Einstein-Hilbert action with a cosmological constant
Λ:

SEH =
1

16πG5

∫
d5x
√
− det g

(
R− 2Λ). (7.1)

Since we consider an asymptotically AdS space-time which has a boundary, we need to bring
in the Gibbons-Hawking term. We denote the induced metric on the AdS-boundary as γ and
introduce

SGH :=
2

16πG5

∫
AdS−bdy

d4x
√

− det γK, (7.2)

where K represents the extrinsic curvature and the subscript “AdS−bdy” means that the term
is evaluated on the AdS-boundary. The Gibbons-Hawking term is necessary to obtain correctly
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the equation of motion. In the AdS/CFT correspondence, we have to add one more term

Sct :=
1

16πG5

∫
AdS−bdy

d4x
√
− det γ

( 6
L
+
L

2
R+ · · ·

)
, (7.3)

namely a counterterm which plays a role to cancel divergences. In the above formula, R is the
curvature constructed from γ, and L is the AdS-radius related to the cosmological constant as
Λ = −6/L2. Terms denoted by “· · · ” contain higher order derivatives such as R2. Including
R, they can be neglected because we leave only first order derivatives with respect to the
coordinates on the AdS-boundary. This is the first order hydrodynamic limit. Then, we have
set up the action

S = SEH + SGH + Sct. (7.4)

SEH is a bulk term while SGH and Sct are boundary terms.
In general relativity, a lot of asymptotically AdS solutions are known. However, we focus

only on five dimensional Schwarzschild AdS black hole (SAdS-BH) whose metric is given by

gµνdx
µdxν =

(r0
L

)2 1

u2
(
− hdt2 + dx2 + dy2 + dz2

)
+

L2

hu2
du2, (7.5)

where r0 is a constant and L is the AdS-radius. A function h is defined as h := 1−u4 (0 < u < 1).
Note that the coordinates on the bulk space-time are denoted by xµ = (t, x, y, x, u), and the
AdS-boundary is located at u = 0 while the Black Hole horizon is on the region u = 0. If we
set h = 1 and r0 = 1, we restore the pure AdS space-time.

According to the ordinary prescription of the AdS/CFT correspondence, we consider a
perturbation around a fixed background and expand the action up to the second order. Then,
we solve the equation of motion, and substitute the solution back into the original action. To get
this on-shell action is the first step. For this purpose, we take a perturbation gµν = ḡµν + δgµν
and set the background metric ḡ to be SAdS-BH (7.5). We assume a simple ansatz for the
fluctuation

δgµν = ḡµλδgλν =


0 0 0 0 0
0 0 ϕ 0 0
0 ϕ 0 0 0
0 0 0 0 0
0 0 0 0 0

 , ϕ = ϕ(t, u). (7.6)

Here, ϕ depends only on the coordinates t and u. Then, we expand the action S = SEH+SGH+
Sct up to the second order in ϕ and perform the Fourier transform ϕ(t, u) =

∫
dω
2π
e−iωtϕω(u). The

perturbed Einstein-Hilbert action is given by (B.44), but we should note that total derivatives
cannot be discarded since we have boundaries. Including them, we write down the Einstein-
Hilbert action

SEH =− V4
16πG5

r40
L5

∫ 1

0

du
8

u5

+
V3

16πG5

r40
L5

∫
dω

2π

∫ 1

0

du

{
3

2

h

u3
ϕ′
−ωϕ

′
ω + 2

h

u3
ϕ−ωϕ

′′
ω

− 8

u4
ϕ−ωϕ

′
ω +

(
1

2u3h

(L2

r0
ω
)2

+
4

u5

)
ϕ−ωϕω

}
, (7.7)
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where we have abbreviated
∫
dxdydz = V3, ∂uϕ(u) = ϕ′ and

∫
dtdxdydz = V4. Remaining parts

SGH and Sct are easy to calculate. Using
√
−γ ∼

(
r0
L

)4√h
u4

(
1− 1

2
ϕ2
)
and K = −∂u

√
γ

N
√
γ
with the

lapse function N−1 = u
√
h/L, we expand SGH as

SGH = − 2

16πG5

∫
d4x

1

N
∂u
√
−γ
∣∣∣
u=0

=
1

16πG5

r40
L5

∫
d4x

{
8
h

u4
− h′

u3
+
( h′

2u3
− 4

h

u4

)
ϕϕ+ 2

h

u3
ϕϕ′
}∣∣∣

u=0
(7.8)

=
V4

16πG5

r40
L5

( 8

u4
− 4
)
+

V3
16πG5

r40
L5

∫
dω

2π

{(
− 4

u4
+ 2
)
ϕ−ωϕω + 2

( 1

u3
− u
)
ϕ−ωϕ

′
ω

}∣∣∣∣∣
u=0

.

(7.9)

Noticing that the back ground value of R is zero, and taking into account the first order
hydrodynamic limit , we also get

Sct =− 1

16πG5

∫
d4x

√
−γ 6

L

∣∣∣
u=0

=− 6
V4

16πG5

r40
L5

√
h

u4
+

V3
16πG5

r40
L5

∫
dω

2π
3

√
h

u4
ϕ−ωϕω

∣∣∣
u=0

(7.10)

=
V4

16πG5

r40
L5

(
3− 6

u4

)
+

V3
16πG5

r40
L5

∫
dω

2π

( 3

u4
− 3

2
+O[u4]

)
ϕ−ωϕω

∣∣∣
u=0

, (7.11)

where O[u4] means higher than fourth order terms un≥4.
Boundary terms SGH and Sct do not contribute to the equation of motion. It is obtained

from the bulk term SEH . For convenience, we write the bulk term schematically as

Sbulk = SEH =

∫ 1

0

duL(ϕ , ϕ′ , ϕ′′), (7.12)

and take the variation ϕ→ ϕ+ δϕ. We obtain the variation of the bulk action

δSbulk =

∫ 1

0

du

{(∂L
∂ϕ

)
δϕ+

( ∂L
∂ϕ′

)
δϕ′ +

( ∂L
∂ϕ′′

)
δϕ′′
}

=

[{( ∂L
∂ϕ′

)
−
( ∂L
∂ϕ′′

)′}
δϕ+

( ∂L
∂ϕ′′

)
δϕ′
]1
0

+

∫ 1

0

du

{( ∂L
∂ϕ′′

)′′
−
( ∂L
∂ϕ′

)′
+
(∂L
∂ϕ

)}
δϕ.

(7.13)

The δϕ′ term will be canceled by δSGH , and we get the equation of motion( ∂L
∂ϕ′′

)′′
−
( ∂L
∂ϕ′

)′
+
(∂L
∂ϕ

)
= 0. (7.14)

On the other hand, we can also express the bulk action as

Sbulk =− V4
16πG5

r40
L5

∫ 1

0

du
8

u5
+

1

2

∫ 1

0

du

{(∂L
∂ϕ

)
ϕ+

( ∂L
∂ϕ′

)
ϕ′ +

( ∂L
∂ϕ′′

)
ϕ′′
}

=
V4

16πG5

r40
L5

[ 2
u4

]1
0
+

1

2

[{( ∂L
∂ϕ′

)
−
( ∂L
∂ϕ′′

)′}
ϕ+

( ∂L
∂ϕ′′

)
ϕ′
]1
0

+
1

2

∫ 1

0

du

{( ∂L
∂ϕ′′

)′′
−
( ∂L
∂ϕ′

)′
+
(∂L
∂ϕ

)}
ϕ, (7.15)

98



since we know that L(ϕ, ϕ′, ϕ′′) is quadratic in ϕ, ϕ′ and ϕ′′. The remaining zeroth order term
is explicitly written. According to the AdS/CFT prescription, we solve the equation of motion
and substitute the solution into the original action, and get the on-shell action. Thus, the last
term is discarded. Besides, we do not need the field value on the non AdS-boundary ϕ(u = 1),
which we neglect [52, 53]. Then, the bulk action can be read as

Sbulk =
V4

16πG5

r40
L5

(
2− 2

u4

)∣∣∣
u=0

− 1

2

{(( ∂L
∂ϕ′

)
−
( ∂L
∂ϕ′′

)′)
ϕ+

( ∂L
∂ϕ′′

)
ϕ′
}∣∣∣∣∣

u=0

. (7.16)

Therefore, recalling the explicit formula (7.7), we obtain the bulk action

Sbulk =
V4

16πG5

r40
L5

(
2− 2

u4

)
+

V3
16πG5

r40
L5

∫
dω

2π

{
h

u4
ϕ−ωϕω −

3

2

h

u3
ϕ−ωϕ

′
ω

}∣∣∣∣∣
u=0

(7.17)

=
V4

16πG5

r40
L5

(
2− 2

u4

)
+

V3
16πG5

r40
L5

∫
dω

2π

{( 1

u4
− 1
)
ϕ−ωϕω −

3

2

( 1

u3
− u
)
ϕ−ωϕ

′
ω

}∣∣∣∣∣
u=0

,

(7.18)

and the full action

S = Sbulk + SGH + Sct

=
V4

16πG5

r40
L5

+
V3

16πG5

r40
L5

∫
dω

2π

{(
− 1

2
+O[u4]

)
ϕ−ωϕω +

1

2

( 1

u3
− u
)
ϕ−ωϕ

′
ω

}∣∣∣∣∣
u=0

. (7.19)

From (7.7) and (7.14), we also obtain explicitly the equation of motion( h
u3
ϕ′
ω

)′
+
(L2

r0
ω
)2 1

u3h
ϕω = 0. (7.20)

Now, we solve the equation of motion (7.20) and substitute the solution into the action
(7.19) to get the on-shell action. Since our main interest is the first order hydrodynamic limit,
we have only to solve (7.20) up to the first order expansion in ω. We expand ϕω(u) as

ϕω(u) = ϕ0(u) + ωϕ1(u) + ω2ϕ2(u) + · · · (7.21)

and insert it into (7.20), which becomes( h
u3
ϕ′
i

)′
= 0 (i = 0, 1). (7.22)

We can easily solve these equations

ϕi = Ai +Bi ln(1− u4) (i = 0, 1), (7.23)

and obtain

ϕω(u) = (A0 + ωA1) + (B0 + ωB1) ln(1− u4) +O[ω2], (7.24)
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where Ai and Bi are constants. This solution is substituted into (7.19), but in (7.19) we need
only the asymptotic formula near the AdS-boundary u ∼ 0, which we approximate as

ϕω(u) = Aω +Bω ln(1− u4) +O[ω2] = Aω +Bω(−u4 +O[u8]) +O[ω2], (7.25)

where we have defined Aω := A0 + ωA1 and Bω := B0 + ωB1. Then, the on-shell action is
obtained

S =
V4

16πG5

r40
L5

+
V3

16πG5

r40
L5

∫
dω

2π

(
− 1

2
A−ωAω − 2A−ωBω

)
. (7.26)

The remaining constants A0,1 and B0,1 are fixed by a boundary condition on the Black Hole
horizon (u = 1). Hence, we have to solve the equation of motion (7.20) near the u ∼ 1 region.
Approximating as h = 1− u4 ∼ 4(1− u), we get the near horizon equation from (7.20)

ϕ′′
ω −

1

1− u
ϕ′
ω +

( L2

4r0
ω
)2 1

(1− u)2
ϕω = 0. (7.27)

Its solution is easy to find

ϕω(u ∼ 1) ∝ (1− u)
±i L

2

4r0
ω
. (7.28)

A boundary condition selects one of these branches. In order to see what they mean, we set
r0 = L = 1 and remember that background SAdS-BH has ds2 = − h

u2
dt2+ du2

u2h
. If we change the

coordinate u to u∗ =
∫∞
u

du
h
∼ 1

4
ln(1− u), this metric reads as ds2 ∝ (−dt2 + du2). Then, the

solution is written as ϕω(u ∼ 1) ∝ (1−u)± i
4
ω = e±iωu∗ , and we notice ϕ(t, u ∼ 1) ∝ e−iωtϕω(u ∼

1) = e−iω(t∓u∗). Because the Black Hole horizon is located at u∗ = −∞, the branch e−iω(t+u∗)

represents an ingoing wave while the other e+iω(t+u∗) is outgoing. We select the ingoing wave
condition according to the standard AdS/CFT prescription. Thus, we obtain the near horizon
solution

ϕω(u ∼ 1) ∝ (1− u)
−i L

2

4r0
ω ∼ (1− u4)e

−i L
2

4r0
ω
= 1− i

L2

4r0
ω ln(1− u4) +O[ω2]. (7.29)

The previously obtained solution (7.24) must match (7.29), which fixes the constants as A1 = 0,
B0 = 0, B1 = −i L2

4r0
A0. Renaming A0 as ϕ(0), we obtain the on-shell action from (7.26)

S =
V4

16πG5

r40
L5

+
V3

16πG5

r40
L5

∫
dω

2π

{
− 1

2
ϕ
(0)
−ωϕ

(0)
ω +

1

2
ϕ
(0)
−ω

(
i
L2

r0
ω
)
ϕ(0)
ω

}
, (7.30)

where we should notice that i
∫
dωϕ

(0)
−ωωϕ

(0)
ω cannot be interpreted as zero [52].

The last step is to apply the GKP-Witten relation⟨
exp

(
i

∫
ϕ(0)O

)⟩
= exp

(
iS
[
ϕ|u=0 = ϕ(0)

])
. (7.31)

In the right hand side, we have an action S[ϕ]. We solve the equation of motion for a bulk field
ϕ and obtain its solution. The boundary value of the solution is important and denoted by ϕ(0).
We substitute the solution into the action and get the on-shell action S

[
ϕ|u=0 = ϕ(0)]. The left
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hand side represents an expectation value of the boundary field theory, where ϕ(0) becomes a
source of an operator O.

In our case, ϕ is a fluctuation of a gravitational field so that O is interpreted as a perturbed
boundary energy-momentum tensor δTµν . Thus, we obtain

< δT xyω >=
δS

δϕ
(0)
−ω

= − 1

16πG5

r40
L5
ϕ(0)
ω + i

1

16πG5

(r0
L

)3
ωϕ(0)

ω , (7.32)

where the functional derivative must be interpreted as δ
δϕ−ω

ϕ−ωFωϕω = 2Fωϕω [52, 53]. In a
long wave-length limit, any field theory can be effectively described by hydrodynamics. Hence,
we assume that the energy-momentum tensor of the boundary field theory has the following
form

T µν = (ϵ+ P )uµuν + Pηµν + τµν , (7.33)

with energy density ϵ, pressure P and velocity field uµ. Since the boundary field theory is
supposed to be on the four dimensional uncurved space-time, we have µ = 0, 1, 2, 3 and ηµν is
the Minkowski metric. The term τµν contains derivatives, but we need only first order ones. In
the rest frame, τµν has no time component (µ = 0) and spatial components are given by

τij = −η
(
∂iuj + ∂jui −

2

3
δij∂ku

k
)
− ζδij∂ku

k (i, j, k = 1, 2, 3). (7.34)

η and ζ represent transport coefficients called sheer viscosity and bulk viscosity. Here, we
assume that this fluid is firstly at rest uµ = (1, 0, 0, 0), and then the background space-time is
slightly distorted ηµν → gµν = ηµν + δgµν . Using a projection operator Pµν := gµν + uµuν , the
energy-momentum tensor is written as

T µν = (ϵ+ P )uµuν + Pgµν −PµλPνρ

[
η
(
∇λuρ +∇ρuλ −

2

3
gλρ∂σu

σ
)
+ ζgλρ∇σu

σ

]
. (7.35)

We calculate the linear response of this tensor, but we are now concerned with a perturbation
(7.6). Thus, we set

δgµν =


0 0 0 0
0 0 δgxy(t) 0
0 δgxy(t) 0 0
0 0 0 0

 . (7.36)

The velocity field uµ = (1, 0, 0, 0) is not changed because of parity symmetry. We can easily
calculate the linear level response. After the Fourier transformation, we find

δT xy = −Pδgxy + iωηδgxy . (7.37)

We compare (7.32) to (7.37) and identify ϕ(0) with δgxy , from which we interpret that the

boundary field theory has the pressure P = 1
16πG5

r40
L5 and the shear viscosity η = 1

16πG5

(
r0
L

)3
.

On the Black Hole horizon, (x, y, z) components of the metric can be written as ds2 =(
r0
L

)2
(dx2 + dy2 + dz2). Employing the area law of Black Hole entropy, we can calculate the
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entropy density as s = 1
4G5

(
r0
L

)3
. This value is interpreted as the entropy density of the

boundary field theory. Thus, we obtain the ratio η/s = 1/4π.
The pressure can be calculated in a different way. If we consider only background SAdS-BH

with no perturbation, the Euclidean on-shell action is given by

SE = − 1

16πG5

r40
L5

∫ β

0

dτ

∫
dxdydz = − βV3

16πG5

r40
L5
, (7.38)

where β is the inverse temperature. Thus, we have the partition function Z = e−SE and we can
calculate the pressure as

P =
1

β
∂V3 lnZ =

1

16πG5

r40
L5
. (7.39)

This result is compatible with the value obtained from a perturbation.
This is the standard calculation of the first order hydrodynamics via the AdS/CFT corre-

spondence. Other types of perturbations lead to other coefficients, but we will not treat them
in this thesis.

7.2.2 The case of massive gravity

We apply the method explained in the case of general relativity to dRGT massive gravity. We
see that mass of a graviton give rise to extra divergences, and how to cancel them is our concern.
We show that not only a new counterterm have to be added but also a condition on graviton’s
mass must be imposed. For notational simplicity, we set 16πG5 = 1, L = r0 = 1 and V3 = 1 in
this subsection.

In Section 3.3, we have obtained dRGT massive gravity, where we add the mass term

Smass := 2m2

∫
d5x
√
− det g

5∑
n=0

βn en
(√

g−1ḡ
)

(7.40)

to the usual Einstein-Hilbert action. In this mass term, ḡ represents a background metric while
g means a full metric g = ḡ + δg (background +fluctuation). Parameters βn are adjusted to
restore the Fierz-Pauli mass term in the expansion up to the second order in δg

Smass = −1

4
m2

∫
d5x
√

− det ḡ
(
Tr(δg)2 − Tr2(δg)

)
, (7.41)

where we have abbreviated Tr2A = (TrA)2 and TrA2 = Tr(A2). Then, we start with the action
given by

S = SEH + SGH + Sct + Smass, (7.42)

and set the background metric ḡ to be SAdS-BH. SEH , SGH and Sct are the same as those in
general relativity, and are constructed from the full metric g.

Now, we take a perturbation similar to (7.6)

δgµν =


0 0 0 0 0
0 0 ϕ 0 0
0 ϕ 0 0 0
0 0 0 0 0
0 0 0 0 0

 , ϕ = ϕ(t, u), (7.43)
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and expand the action up to the second order in ϕ. Calculations are almost the same as those
in general relativity. The only difference is that Smass is added to the bulk action (7.12)

Sbulk = SEH + Smass =

∫
duL(ϕ , ϕ′ , ϕ′′), (7.44)

where we have

Smass = −
∫
dω

2π

∫ 1

0

du
m2

2

1

u5
ϕ−ωϕω. (7.45)

Since Smass contains no derivative, it has no contribution to (7.16) and there is no change in
(7.19)

S = Sbulk + SGH + Sct = V4 +

∫
dω

2π

{(
− 1

2
+O[u4]

)
ϕ−ωϕω +

1

2

( 1

u3
− u
)
ϕ−ωϕ

′
ω

}∣∣∣∣∣
u=0

.

(7.46)

The difference occurs only in the equation of motion. From (7.14), we find( h
u3
ϕ′
ω

)′
−m2 1

u5
ϕω +

ω2

u3h
ϕω = 0. (7.47)

We solve (7.47) up to the first order expansion in ω. The result is

ϕω(u) = Aω

{
u2−2α +

1

4
(1− α)u6−2α +O[u10−2α]

}
+Bω

{
u2+2α +

1

4
(1 + α)u6+2α +O[u10+2α]

}
.

(7.48)

Aω and Bω are defined as Aω := A0 + ωA1 and Bω := B0 + ωB1 with constants A0,1 and B0,1.

graviton’s mass is contained in α :=
√
1 +m2/4. We substitute this solution into the action

(7.46) and obtain the on-shell action

S = V4 +

∫
dω

2π

{
(1 + α)A−ωBω + (1− α)B−ωAω

+ A−ωAω

(
(1− α)u−4α +

1

2
(α2 − α− 1)u4−4α +O[u8−4α]

)}∣∣∣∣∣
u=0

. (7.49)

However, we see that extra divergences arise from u−4α|u=0, u
4−4α|u=0 and O[u8−4α]|u=0.

Here, it should be noted that if we consider the pure AdS space-time, only one divergence
occurs. The AdS space-time corresponds to setting h = 1 in the metric of SAdS-BH (7.5). In
this case, the solution for (7.47) becomes ϕω(u) = Aωu

2−2α + Bωu
2+2α. Higher order terms

such as O[u6−2α] or O[u6+2α] in (7.48) come from the expansion of h = 1 − u4 around u ∼ 0.
In addition, if we set h = 1 in (7.17), (7.8) and (7.10), the action (7.46) becomes S = V4 +∫

dω
2π

1
2u3
ϕ−ωϕ

′
ω|u=0. Therefore, we have only one divergence u−4α|u=0 in the pure AdS space-time.

In order to cancel divergences in (7.49), we attempt to add a new counterterm Smct. This
situation resembles that of a massive scalar field [54], in which extra divergences can be canceled
by a mass term on the AdS-boundary. Therefore, we try to add a term

Smct ∝
∫
Ads−bdy

d4x
√
− det γ

4∑
n=0

β′
n en
(
γ−1γ̄

)
. (7.50)
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We chose parameters β′
n to return to the Fierz-Pauli mass term in the second order expansion

Smct = −1

2
(1− α)

∫
Ads−bdy

d4x
√
− det γ̄

(
Tr(δγ)2 − Tr2(δγ)

)
. (7.51)

The coefficient (1 − α) is adjusted for our purpose. If we consider perturbations dependent
on the spatial coordinates (x, y, z), we may need other counterterms [54]. However, we do not
treat this topic in this thesis. In Section 7.2.3, we investigate the validity of this counterterm
in a different perturbation.

Inserting the perturbation (7.43) and the solution (7.48), we find

Smct =−
(
1− α

) ∫
Ads−bdy

d4x
√
− det γϕ2 (7.52)

=−
(
1− α

) ∫ dω

2π

√
1− u4

u4
ϕ−ωϕω

∣∣∣
u=0

(7.53)

=−
(
1− α

) ∫ dω

2π

( 1

u4
− 1

2
+O[u4]

)
ϕ−ωϕω

∣∣∣
u=0

(7.54)

=

∫
dω

2π

{
(α− 1)(A−ωBω +B−ωAω) (7.55)

+ A−ωAω

(
− (1− α)u−4α +

1

2
α(1− α)u4−4α +O[u8−2α]

)}∣∣∣∣∣
u=0

. (7.56)

Thus, we obtain

S + Smct = V4 +

∫
dω

2π

{
2αA−ωBω + A−ωAω

(
− 1

2
u4−4α +O[u8−2α]

)}∣∣∣
u=0

. (7.57)

The divergence from u−4α has been canceled, but still other divergences remain. If we take
the pure AdS space-time as a background, these remaining divergences do not appear and
Smct is enough. Cancellation of them requires a condition on graviton’s mass. We have to set
−4 < m2 < 0, namely 0 < α < 1, which is a reminiscence of the BF-bound [55, 56, 57].

Then, the non-divergent on-shell action is given by

S + Smct = V4 +

∫
dω

2π
(2αA−ωBω). (7.58)

Finally, we attempt to fix constants A0,1 and B0,1. If we assume that the massive and

massless solutions (7.48) and (7.29) coincide in the massless limit α = 1, we should set Aω = ϕ
(0)
ω

and Bω = iω
4
ϕ
(0)
ω , which leads to

S + Smct = V4 +

∫
dω

2π

( iαω
2

)
ϕ
(0)
−ωϕ

(0)
ω , (7.59)

< δT xyω >=
δS

δϕ
(0)
−ω

= iωαϕ(0)
ω . (7.60)

Compared to (7.37), we read P = 0 and η = α. The pressure is zero which is not consistent
with the value calculated from the background metric (7.39). We do not know how to interpret
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this result. We suspect that this peculiarity comes from the weird feature of dRGT massive
gravity. It depends explicitly on the background metric, which seems artificial. We have a more
natural theory for a massive graviton, that is bimetric gravity. Hence, we proceed to extend
the method to bimetric gravity and expect that the peculiarity in dRGT massive gravity is
modified.

7.2.3 Validity of the new counterterm

Before going to the case of bimetric gravity, we reconsider the counterterm introduced in (7.50)
and (7.51). In Section 7.2.2, we have taken only a perturbation (7.43). Thus, it is worth
considering whether the counterterm (7.50), (7.51) can cancel divergences in other types of
perturbations. Recalling calculations in Section 7.2.2, we notice that the role of the counterterm
(7.51) is to cancel the divergence coming from u−4α. This term is a leading order contribution
in the expansion of h = 1 − u4 around u ∼ 0. Next order terms contribute as u4−4α, u8−4α,...
and so on. If we consider the pure AdS space-time as a background, only u−4α divergence is
left and other divergences O[u4−4α] do not occur. Hence, we need only to consider the AdS
space-time for our purpose. In the following, we set 16πG5 = 1 and L = r0 = 1 for notational
simplicity.

We consider a perturbation dependent only on the coordinate u

δgµν =


χ0(u) −θ1(u) −θ2(u) −θ3(u) −Π0(u)
θ1(u) χ1(u) ϕ1(u) ϕ2(u) Π1(u)
θ2(u) ϕ1(u) χ2(u) ϕ3(u) Π2(u)
θ3(u) ϕ2(u) ϕ3(u) χ3(u) Π3(u)
Π0(u) Π1(u) Π2(u) Π3(u) χ4(u)

 , (7.61)

and the background metric is set to be purely AdS. Minus signs are put to make δgµν symmetric.
Now, we expand the action as in Section 7.2.2. We can use (B.44) for the Einstein-Hilbert

part. Then, we obtain the equation of motion. The solutions are substituted back into the
action, and we see whether or not divergences remain. We skip the details, but we find that
only diagonal components χ0,1,2,3,4 couple. Calculations for ϕi=1,2,3 are the same as those in
Section 7.2.2, so we omit this part. The simplest part is Πi=0,1,2,3. The equation of motion
turns out to be

m2 1

u5
Π0 = 0 , −m2 1

u5
Πi = 0 (i = 1, 2, 3), (7.62)

and we have Πi=0,1,2,3 = 0. They have no contribution.
Each of θi=1,2,3 obeys the equation of motion

− 1

u3
θ′′i +

3

u4
θ′i +

m2

u5
θi = 0, (7.63)

and has the action

Sbulk + SGH + Sct = − 1

2u3
θiθ

′
i

∣∣∣
u=0

, (7.64)

Smct = (1− α)
1

u4
θ2i

∣∣∣
u=0

. (7.65)
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The solution for (7.63) is easy to obtain

θi(u) = Aiu
2−2α +Biu

2+2α, (7.66)

where α :=
√

1 +m2/4 is understood. Then, the divergent part of the on-shell action is given
by

Sbulk + SGH + Sct = −A2
i (1− α)u−4α, (7.67)

Smct = (1− α)A2
iu

−4α, (7.68)

and can be canceled.
Diagonal components χi=0,1,2,3,4 are rather complicated. Their equations of motion are given

by

(12 +m2)χ4 − 3uχ′
4 +m2(Γ− χi) + 3u(Γ′ − χ′

i)− u2(Γ′′ − χ′′
i ) = 0 (i = 0, 1, 2, 3), (7.69)

12χ4 +m2Γ + 3uΓ′ = 0, (7.70)

where we have defined Γ := χ0 + χ1 + χ2 + χ3. Summing up (7.69) for i = 0, 1, 2, 3, we find

4(12 +m2)χ4 − 12uχ′
4 + 3m2Γ + 9uΓ′ − 3u2Γ′′ = 0. (7.71)

From (7.70) and (7.71), we obtain

Γ = 0, χ4 = 0. (7.72)

Then, the equations of motion (7.69) are expressed as

−m2χi − 3uχ′
i + u2χ′′

i = 0 (i = 0, 1, 2, 3), (7.73)

and we have their solutions

χi(u) = Aiu
2−2α +Biu

2+2α (i = 1, 2, 3), (7.74)

χ0(u) = −(A1 + A2 + A3)u
2−2α − (B1 +B2 +B3)u

2+2α. (7.75)

The action for χ part is, using Γ = 0,

Sbulk + SGH + Sct =
1

4u4
(χ0χ

′
0 + χ1χ

′
1 + χ2χ

′
2 + χ3χ

′
3), (7.76)

Smct = (1− α)
1

u4
(−χ0χ0 + χ1χ2 + χ2χ3 + χ3χ1). (7.77)

We substitute the solutions (7.74) and (7.75), and obtain its divergent part

Sbulk + SGH + Sct = (1− α)(A2
1 + A2

2 + A2
3 + A1A2 + A2A3 + A3A1)u

−4α
∣∣∣
u=0

, (7.78)

Smct = −(1− α)(A2
1 + A2

2 + A2
3 + A1A2 + A2A3 + A3A1)u

−4α
∣∣∣
u=0

. (7.79)

Therefore, all divergence can be canceled.
This fact supports the validity of the counter term introduced in (7.50) and (7.51).
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7.3 Bimetric gravity and the AdS/CFT correspondence

In this section, we apply the AdS/CFT prescription studied in Section 7.2 to bimetric gravity.
Our interest is what emerges as a boundary field theory. In Section 7.2, we have considered
the case of dRGT massive gravity and obtained a weird result which we do not know how
to interpret. Certainly, massive gravity itself is a peculiar theory. It explicitly contains a
background metric, which we give outside the theory. In Section 7.2, we have set it to be
SAdS-BH, but it has not been determined by an equation within massive gravity. Hence, it
seems natural to make the reference metric dynamical and solve the equation of motion for both
two metrics. This is nothing but bimetric gravity introduced in Section 3.5. Since bimetric
gravity can be regarded as a completion of dRGT massive gravity, we expect that the strange
result in massive gravity should be cured in bimetric gravity.

In the following, we denote two metrics in bimetric gravity as g and f , and their induced
metrics on the AdS-boundary as γ and ρ respectively. Collecting the results in the previous
section, we start with the action given by

S =SEH [g] + SGH [γ] + Sct[γ]

+SEH [f ] + SGH [ρ] + Sct[ρ]

+Sint[g, f ] + Sint,ct[γ, ρ]. (7.80)

For one metric g, we have

SEH [g] + SGH [γ] + Sct[γ]

=
1

16πGg

∫
d5x
√
− det g

(
R[g]− 2Λ)

+
2

16πGg

∫
AdS−bdy

d4x
√

− det γK[γ] +
1

16πGg

∫
AdS−bdy

d4x
√

− det γ
( 6
L
+ · · ·

)
, (7.81)

and for the other metric f , we know

SEH [f ] + SGH [ρ] + Sct[ρ]

=
1

16πGf

∫
d5x
√

− det f
(
R[f ]− 2Λ)

+
2

16πGf

∫
AdS−bdy

d4x
√

− det ρK[ρ] +
1

16πGf

∫
AdS−bdy

d4x
√

− det ρ
( 6
L
+ · · ·

)
. (7.82)

In bimetric gravity, we can introduce different gravitational constants for two metrics, which
we write as Gg and Gf . R[g] is the scalar curvature for g and R[f ] is the scalar curvature for
f . K[γ] and K[ρ] represent the extrinsic curvatures for each metric. In general, cosmological
constants for g and f can be different, but we assume that they have the same value Λ and each
metric has the same AdS-radius L. We impose this condition in order to take perturbations on
the same background for both g and f . The interaction term Sint[g, f ] is given by

Sint[g, f ] =
2m2

16πGg + 16πGf

∫
d5x
√

− det g
5∑

n=0

βn en
(√

g−1f
)
, (7.83)
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and the counterterm Sint,ct[γ, ρ] is an extension of the counterterm (7.50) we have added in
massive gravity

Sint,ct[γ, ρ] ∝
1

16πGg + 16πGf

1

L

∫
AdS−bdy

d4x
√
− det γ

4∑
n=0

β′
n en
(√

γ−1ρ
)
. (7.84)

As explained in Section 3.5, we suppose that Sint[g, f ] vanishes when we set f = g. Therefore,
we have a solution g = f =(a solution in general relativity). In the following, we consider a
perturbation g = ḡ + δg and f = f̄ + δf around the same background ḡ = f̄ =(SAdS-BH).
Thus, the expansion of Sint[g, f ] and Sint,ct[γ, ρ] up to the second order in δg and δf is given
by

Sint[g, f ] = − 1

16πGg + 16πGf

(m2

4

)∫
d5x
√

− det ḡ
(
Tr(δg − δf)2 − Tr2(δg − δf)

)
, (7.85)

Sint,ct[γ, ρ] = −
(1− α

2L

) 1

16πGg + 16πGf

∫
Ads−bdy

d4x
√
− det γ̄

(
Tr(δγ − δρ)2 − Tr2(δγ − δρ)

)
,

(7.86)

where we have defined α :=
√

1 + (mL)2/4. The coefficient (1 − α) is adjusted to cancel the
leading order divergence.

Now, we take a perturbation such as (7.43)

δgµν = ḡµλδgλν =


0 0 0 0 0
0 0 ϕ 0 0
0 ϕ 0 0 0
0 0 0 0 0
0 0 0 0 0

 , ϕ = ϕ(t, u), (7.87)

δfµν = ḡµλδfλν =


0 0 0 0 0
0 0 ψ 0 0
0 ψ 0 0 0
0 0 0 0 0
0 0 0 0 0

 , ψ = ψ(t, u). (7.88)

The interaction term Sint[g, f ] is expanded to be

Sint = − 1

16πGg + 16πGf

(mL)2

2

( r40
L5

)
V3

∫
dω

2π

∫ 1

0

du
1

u5
(ϕ−ω − ψ−ω)(ϕω − ψω), (7.89)

and the bulk action Sbulk = SEH [g] + SEH [f ] + Sint[g, f ] is obtained

Sbulk

=−
( 1

16πGg

+
1

16πGf

)( r40
L5

)
V4

∫ 1

0

du
8

u5

+
1

16πGg

( r40
L5

)
V3

∫
dω

2π

∫ 1

0

du

{
3

2

h

u3
ϕ′
−ωϕ

′
ω + 2

h

u3
ϕ−ωϕ

′′
ω −

8

u4
ϕ−ωϕ

′
ω +

(
1

2u3h

(L2

r0
ω
)2

+
4

u5

)
ϕ−ωϕω

}
+

1

16πGf

( r40
L5

)
V3

∫
dω

2π

∫ 1

0

du

{
3

2

h

u3
ψ′
−ωψ

′
ω + 2

h

u3
ψ−ωψ

′′
ω −

8

u4
ψ−ωψ

′
ω +

(
1

2u3h

(L2

r0
ω
)2

+
4

u5

)
ψ−ωψω

}
− 1

16πGg + 16πGf

(mL)2

2

( r40
L5

)
V3

∫
dω

2π

∫ 1

0

du
1

u5
(ϕ−ω − ψ−ω)(ϕω − ψω). (7.90)
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We expand the counterterm

Sint,ct = −(1− α)
1

16πGg + 16πGf

( r40
L5

)
V3

∫
dω

2π

√
h

u4
(ϕ−ω − ψ−ω)(ϕω − ψω)

∣∣∣
u=0

, (7.91)

and including other boundary terms, we find

S =
( 1

16πGg

+
1

16πGf

)( r40
L5

)
V4

+
1

16πGg

( r40
L5

)
V3

∫
dω

2π

{(
− 1

2
+O[u4]

)
ϕ−ωϕω +

1

2

( 1

u3
− u
)
ϕ−ωϕ

′
ω

}∣∣∣∣∣
u=0

+
1

16πGf

( r40
L5

)
V3

∫
dω

2π

{(
− 1

2
+O[u4]

)
ψ−ωψω +

1

2

( 1

u3
− u
)
ψ−ωψ

′
ω

}∣∣∣∣∣
u=0

−(1− α)
1

16πGg + 16πGf

( r40
L5

)
V3

∫
dω

2π

( 1

u4
− 1

2
+O[u4]

)
(ϕ−ω − ψ−ω)(ϕω − ψω)

∣∣∣
u=0

.

(7.92)

Sint has no contribution to (7.92) since Sint does not contain derivatives, but it has effects
on the equation of motion obtained from (7.90). Here, we normalize ϕ̃ := ϕ/

√
16πGg and

ψ̃ := ψ/
√
16πGf , and introduce new variables

Φ :=

√
16πGf ϕ̃+

√
16πGgψ̃

16πGg + 16πGf

, Ψ :=

√
16πGgϕ̃−

√
16πGf ψ̃

16πGg + 16πGf

. (7.93)

Using relations such as ϕ̃2 + ψ̃2 = Φ2 +Ψ2, we notice

S =
( 1

16πGg

+
1

16πGf

)( r40
L5

)
V4

+
r40
L5
V3

∫
dω

2π

{(
− 1

2
+O[u4]

)
Φ−ωΦω +

1

2

( 1

u3
− u
)
Φ−ωΦ

′
ω

}∣∣∣∣∣
u=0

+
r40
L5
V3

∫
dω

2π

{(
− 1

2
+O[u4]

)
Ψ−ωΨω +

1

2

( 1

u3
− u
)
Ψ−ωΨ

′
ω

}∣∣∣∣∣
u=0

−
(
1− α

) r40
L5
V3

∫
dω

2π

( 1

u4
− 1

2
+O[u4]

)
Ψ−ωΨω

∣∣∣
u=0

. (7.94)

On the other hand, we obtain the equation of motion for Φ and Ψ from the bulk action (7.90)( h
u3

Φ′
ω

)′
+
(L2

r0
ω2
)2 1

u3h
Φω = 0, (7.95)( h

u3
Ψ′
ω

)′
− (Lm)2

1

u5
Ψω +

(L2

r0
ω2
)2 1

u3h
Ψω = 0. (7.96)

We solve them up to the first order expansion in ω

Φω(u) = Aω +Bω(u
4 +O[u8]), (7.97)

Ψω(u) = Cω

{
u2−2α +

1

4
(1− α)u6−2α +O[u10−2α]

}
+Dω

{
u2+2α +

1

4
(1 + α)u6+2α +O[u10+2α]

}
.

(7.98)
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Aω, Bω, Cω and Dω are Aω := A0+ωA1, Bω := B0+ωB1, Cω := C0+ωC1 and Dω := D0+ωD1

with constants Ai, Bi, Ci and Di (i = 0, 1). Then, the on-shell action is found to be

S =
( 1

16πGg

+
1

16πGf

)( r40
L5

)
V4

+
r40
L5
V3

∫
dω

2π

(
− 1

2
A−ωAω + 2A−ωBω

)
+
r40
L5
V3

∫
dω

2π
(2αC−ωDω), (7.99)

where we have imposed a condition 0 < α < 1 in order to make O[u4−4α]|u=0 terms finite.
Now, we have obtained the on-shell action (7.99), but it is written by massless and massive

modes Φ and Ψ. The original variables gµν and fµν are mixed. In the context of the gravity/fluid
correspondence, how to interpret this mixture is not clear. Hence, we proceed with variables
gµν and fµν , namely ϕ and ψ. In addition, we have to consider a boundary condition on the
Black Hole horizon to fix constants A, B, C and D. In the massless limit m = 0, bimetric
gravity decouples to a pair of independent general relativity, in which case we should select
the ingoing wave condition. Therefore, it seems natural that the solutions for ϕ and ψ should
match (7.29) in the massless limit.

When we set α = 1 (m2 = 0), we have

ϕω =
√
16πGg

√
16πGfΦω +

√
16πGgΨω√

16πGg + 16πGf

=
√
16πGg

√
16πGfAω +

√
16πGgCω√

16πGg + 16πGf

+
√

16πGg

√
16πGfBω +

√
16πGgDω√

16πGg + 16πGf

u4 +O[u8],

(7.100)

ψω =
√
16πGf

√
16πGgΦω −

√
16πGfΨω√

16πGg + 16πGf

=
√
16πGf

√
16πGgAω −

√
16πGfCω√

16πGg + 16πGf

+
√
16πGf

√
16πGgBω −

√
16πGfDω√

16πGg + 16πGf

u4 +O[u8].

(7.101)

Thus, we put

ϕ(0)
ω =

√
16πGg

√
16πGfAω +

√
16πGgCω√

16πGg + 16πGf

, i
L2ω

4r0
ϕ(0)
ω =

√
16πGg

√
16πGfBω +

√
16πGgDω√

16πGg + 16πGf

,

(7.102)

ψ(0)
ω =

√
16πGf

√
16πGgAω −

√
16πGfCω√

16πGg + 16πGf

, i
L2ω

4r0
ψ(0)
ω =

√
16πGf

√
16πGgBω −

√
16πGfDω√

16πGg + 16πGf

,

(7.103)

and we obtain

Aω =
16πGfϕ

(0)
ω + 16πGgψ

(0)
ω

16π
√
GgGf

√
16πGg + 16πGf

, Bω =
(
i
L2ω

4r0

) 16πGfϕ
(0)
ω + 16πGgψ

(0)
ω

16π
√
GgGf

√
16πGg + 16πGf

,

(7.104)

Cω =
(ϕ

(0)
ω − ψ

(0)
ω )√

16πGg + 16πGf

, Dω =
(
i
L2ω

4r0

) (ϕ
(0)
ω − ψ

(0)
ω )√

16πGg + 16πGf

. (7.105)
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Figure 7.1: non-interacting case Figure 7.2: interacting case

Substituting these relations into (7.99), we obtain the on-shell action expressed by original
variables ϕ and ψ

S =
( 1

16πGg

+
1

16πGf

)( r40
L5

)
V4

+
1

16πGg + 16πGf

( r40
L5

)
V3

∫
dω

2π

{
− 1

2

(Gf

Gg

)
ϕ
(0)
−ωϕ

(0)
ω + i

L2ω

2r0

(Gf

Gg

+ α
)
ϕ
(0)
−ωϕ

(0)
ω

− 1

2

(Gg

Gf

)
ψ

(0)
−ωψ

(0)
ω + i

L2ω

2r0

(Gg

Gf

+ α
)
ψ

(0)
−ωψ

(0)
ω

− 1

2

(
ϕ
(0)
−ωψ

(0)
ω + ψ

(0)
−ωϕ

(0)
ω

)
+ i

L2ω

2r0
(1− α)

(
ϕ
(0)
−ωψ

(0)
ω + ψ

(0)
−ωϕ

(0)
ω

)}
. (7.106)

This on-shell action contains mixed terms such as ϕψ, which suggests that two-component fluid
emerges. If the metrics g and f do not interact, we have two independent AdS (bulk)/CFT
(boundary) pairs. The fluctuation of g enters into one boundary and becomes a source to
generate one field. The fluctuation of f goes into the other boundary and becomes a source
of another field (FIG.7.1). For convenience, we call these boundaries as g-boundary and f-
boundary. However, if the interaction between two metrics is switched on, perturbations begin
to go into not only the original boundary but also the other. For example, the perturbation of
metric g enters into f-boundary as well as g-boundary. As a result, two fields are generated on
respective boundaries (FIG.7.2).

In this situation, the GKP-Witten relation can be written as⟨
exp

(
i

∫
ϕ(0)Og + ϕ(0)Of + ψ(0)Qg + ψ(0)Qf

)⟩
= exp

(
iS
[
ϕ, ψ|u=0 = ϕ(0), ψ(0)

])
, (7.107)

where Og and Qg are operators on g-boundary, and Of and Qf are on f-boundary. ϕ(0) becomes
a source of not only Og on g-boundary but also Of on f-boundary. ψ(0) becomes a source of
Qg as well as Qf . In our setting, these operators are interpreted as energy momentum tensors.

Here, we remember the discussion in the case of general relativity. We considered a pertur-
bation around SAdS-BH and obtained an expectation value of the perturbed energy momentum
tensor (7.32) via the AdS/CFT correspondence. On the other hand, we focused on the boundary
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field theory. We assumed that the boundary space-time was slightly distorted and calculated
the linear response of the energy momentum tensor (7.37). We compared (7.32) with (7.37),
and read the coefficients.

Now, we proceed in the same way. We have two boundaries, namely g-boundary and f-
boundary. Each boundary field theory has some energy momentum tensor though we do not
know their concrete formulae. Schematically, we write them as T[g] and T[f]. T[g] is an energy
momentum tensor on g-boundary and T[f] is that on f-boundary. Then, we assume that the
boundary space-times are slightly distorted from the flat background, and consider the linear
response of these energy momentum tensors. We denote the distortion as ηµν → ηµν + δgµν and
ηµν → ηµν + δfµν for g-boundary and f-boundary respectively. It seems natural to think that
the response on g-boundary δT [g] should consists of only δgµν and that on f-boundary δT [f ]
should composed of only δfµν . We seek concrete forms of these linear responses δT [g] ∝ δg
and δT [f ] ∝ δf from expectation values calculated via the AdS/CFT correspondence. Thus,
expectation values on g-boundary < Og > and < Qg > should contain only the metric g (or ϕ)
while < Of > and < Qf > should contain only the other metric f (or ψ).

Focusing on g-boundary, expectation values of the energy momentum tensors are calculated
as

< Og >=
δS

δϕ
(0)
−ω

∣∣∣∣
ψ=0

= −
( r40
L5

) Gf/Gg

16πGg + 16πGf

ϕ(0)
ω + iω

( r30
L3

) Gf/Gg + α

16πGg + 16πGf

ϕ(0)
ω , (7.108)

< Qg >=
δS

δψ
(0)
−ω

∣∣∣∣
ψ=0

= −
( r40
L5

) 1

16πGg + 16πGf

ϕ(0)
ω + iω

( r30
L3

) 1− α

16πGg + 16πGf

ϕ(0)
ω . (7.109)

These formulae and (7.37) have the same form. Thus, we compare them and conclude that we
have two-component fluid. The pressure P and the sheer viscosity η of each component are
given by

P [g]ϕ =
( r40
L5

) Gf/Gg

16πGg + 16πGf

, P [g]ψ =
( r40
L5

) 1

16πGg + 16πGf

, (7.110)

η[g]ϕ =
( r30
L3

) Gf/Gg + α

16πGg + 16πGf

, η[g]ψ =
( r30
L3

) 1− α

16πGg + 16πGf

. (7.111)

P [g]ϕ represents the pressure on g-boundary generated by the fluctuation ϕ. We note that the

total pressure is P [g]ϕ+P [g]ψ = 1
16πGg

r40
L5 which is compatible with the value calculated from the

background metric (7.39). We recall that the entropy density on g-boundary is s[g] = 1
4Gg

( r0
L
)3

and calculate the ratios

η[g]ϕ
s[g]

=
( 1

4π

)Gf/Gg + α

Gf/Gg + 1
,

η[g]ψ
s[g]

=
( 1

4π

) 1− α

Gf/Gg + 1
. (7.112)

If we set Gg = Gf , they depend only on graviton’s mass

η[g]ϕ
s[g]

=
( 1

4π

)1 + α

2
,

η[g]ψ
s[g]

=
( 1

4π

)1− α

2
. (7.113)

7.4 Summary and discussion

In this chapter, we applied the AdS/CFT correspondence to dRGT massive and bimetric grav-
ity, especially in the first order hydrodynamic limit. Based on the well known case of general
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relativity, we first try dRGT massive gravity. Then, in contrast to the case of general relativity,
we encountered additional divergences. In order to remove them, we added a new counterterm.
Besides, we also need to imposed a condition on mass of a graviton. Certainly, we removed the
divergences and obtained a finite result but how to interpret it was not clear. The AdS/CFT
correspondence suggested that the pressure is zero, which contradicts the value calculated from
the background metric. Thus, we further extended the AdS/CFT prescription to the case of bi-
metric gravity, expecting this peculiarity is removed. As a result, we found that two-component
fluid emerges, and the total pressure restores the background value. We also calculated their
sheer viscosity, which is dependent on graviton’s mass and ratio of gravitational constants.

However, what we studied in this chapter is only the simplest setting. Further detailed
investigation is needed to clarify the features of the boundary field theory. It is worth studying
more general perturbations. For example, diagonal perturbations which lead to other properties
such as sound waves [51]. Applications to more general multimetric case can be also possible.
Besides, the relation between bimetric or multimetric gravity and the deformation of boundary
CFTs [46, 47] remains unanswered. We left these issues as future works.

113



Chapter 8

Conclusion

Figure 8.1: The diagrams represent branching node type, chain type, loop type and branching
link type interactions.

The main purpose of this thesis is to determine when we can construct a healthy theory for
interacting multiple gravitational fields. In general, interaction among gravitational fields gen-
erate extra ghost-like degrees of freedom, which we call BD-ghost. Thus, we need to construct a
theory which excludes such ghosts and has the right number of degrees of freedom. In describing
gravitational fields, we have two kinds of formulations. One of them is expressed by metrics,
and the other is written by vielbeins. If there is only one field, these two formulations coincide.
However, they do not necessarily overlap when we have multiple kinds of interacting gravita-
tional fields. In any case, basic interaction patters are classified into four categories, namely
branching node type, chain type, loop type and branching link type interactions (Fig.8.1). The
former two patterns construct tree type interaction (Fig.8.2). Only under the tree type inter-
action, metric theories and vielbein theories coincide. In this thesis, we have addressed metric
theories since vielbein theories are known to be ghost-free. Our strategy is to directly count
the total number of degrees of freedom by using the ADM decomposition and the Hamiltonian
analysis. However, the non-linear dependence of the lapse and shift obscures the constraint
structure. Thus, we have employed the spatial homogeneous ansatz to make the lapse appear
linearly. The result of our analysis is that, in a metric formulation, only the tree type interac-
tion can exclude extra ghost degrees of freedom. Loop or branching link structures suffer from
BD-ghosts and cannot be allowed.

Though we have determined when we can exclude extra ghost states, this is only for “extra”
ones. Therefore, what we have obtained is a necessary condition for a healthy theory. In general
settings, we may contain other types of ghost modes in ordinary degrees of freedom, which needs
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case by case treatment.

Figure 8.2: The diagrams represent an example of the tree type interaction.
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Appendix A

A note on the Poincaré group and
degrees of freedom

In this Appendix, we consider the origin of degrees of freedom for massless and massive fields.
We concentrate on the four-dimensional Minkowski space-time.

The number of degrees of freedom of a field is related to the Poincaré group, which is
constructed from the translation and the Lorentz transformation. We denote its infinitesimal
version as

xµ → x′µ = xµ + aµ + ωµνx
ν , (A.1)

where parameters aµ and ωµν correspond respectively to the translation and the Lorentz trans-
formation. In the following, we raise or lower space-time indices by the Minkowski metric ηµν
and ηµν , and a property ωµν = −ωνµ is understood. Under a transformation (A.1), a field
ΦA(x) transforms as ΦA(x) → Φ′

A(x
′). In general, we can write it as ΦA(x) = ΛA

BΦ′
B(x

′). A
spin-1 vector field is a case of A = µ and Λµ

ν = ∂x′ν

∂xµ
while a spin-2 tensor field has double

index A = (µν) and Λµν
λρ = ∂x′λ

∂xµ
∂x′ρ

∂xν
. In an infinitesimal transformation, we can approximate

this matrix as ΛA
B ≈ δBA − i

2
ωµν(Sµν)A

B. Explicit formulae are given by

(Sαβ)µ
ν = −i

(
ηαµδ

ν
β − ηβµδ

ν
α

)
(A.2)

for a vector field, and

(Sαβ)µν
λρ = −i

(
ηανδ

(λ
µ δ

ρ)
β + ηαµδ

(λ
β δ

ρ)
ν − ηβνδ

(λ
µ δ

ρ)
α − ηβµδ

(λ
α δ

ρ)
ν

)
(A.3)

for a tensor field. The symbol (· · · ) means symmetrization divided by the number of the
elements. In any case, we obtain

Φ′
A(x)− ΦA(x) =

(
− iaµPµδ

B
A +

i

2
ωµν(Mµν)A

B)ΦB(x), (A.4)

where we have defined

Pµ := −i∂µ, (Mµν)A
B := (xµPν − xνPµ)δ

B
A + (Sµν)A

B. (A.5)

They construct the generators of the Poincaré group. We regard contractions on indices A,B
as matrix products, and find the following commutation relations

[Pµ, Pν ] = 0, (A.6)

[Mµν , Pα] = i
(
ηµαPν − ηανPµ

)
, (A.7)

[Mµν ,Mαβ] = i
(
ηµαMνβ + ηνβMµα − ηµβMνα − ηναMµβ

)
. (A.8)
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Note that P 2 := P µPµ commutes with all of the generators and is a casimir operator. The
poincaré group has another casimir operator called the Pauli-Lubanski spin vector W µ :=
ϵµνλρPνMλρ. Representations of the Poincaré group are classified by these two casimir operators,
which correspond to mass and spin respectively. P 2 = 0 means a massless case while P 2 = −m2

stands for a massive case. P 2 = m2 is a tachyon case and omitted as an unphysical situation.
Since we know that momentum operators P µ commute with each other, they can be diagonalized
simultaneously. We write their eigenvalues as pµ, but states with p0 < 0 are discarded due to
their negative energy.

Now, we assume that we have some large state space and need to find an irreducible rep-
resentation. In general, irreducible states are interpreted as one particle states. Here, the
representation of a transformation L is expressed as U(L). A convenient way to classify repre-
sentations for the Lorentz group is to use a notion of little group. Generators Pµ and Mµν can
be decomposed into time and spatial components as H := P 0, Ji := ϵijkMjk and Ki := M0i,
and they satisfy

[Pi, Pj] = 0, [Ji, Pj] = iϵijkP
k, [Ki, Pj] = iδijH, (A.9)

[Pi, H] = 0, [Ji, H] = 0, [Ki, H] = iPi, (A.10)

[Ji, Jj] = iϵijkJk, [Ji, Kj] = iϵijkKk, [Ki, Kj] = −iϵijkJk. (A.11)

In a massive case p2 = −m2, we can chose a rest frame pµ = p(0)µ := (m, 0, 0, 0). A general
momentum pµ can be restored by a Lorentz transformation p = B(p)p(0). Here, transformations
which do not change the fixed momentum p(0) makes a group called little group. In this case,
little group is composed of spatial rotations, whose generators are angular momenta J1, J2
and J3. As is usual, we can simultaneously diagonalize J2

1 + J2
2 + J2

3 and J3, which we write
J2
1 + J2

2 + J2
3 = s(s + 1) and J3 = n (n = −s,−s + 1, ..., s − 1, s). Thus, states with p(0)µ are

labeled by spin s and its J3 component n = −s, ..., s, which we denote by |p(0), s, n⟩. These
states span a subspace invariant under spatial rotations, and a rotation R is represented as

U(R)|p(0), s, n⟩ =
∑
n′

D(R)n.n′|p(0), s, n′⟩, (A.12)

where D(R)n,n′ is the representation matrix for R. Then, we define states outside of this
subspace as

|p, s, n⟩ := U(B(p))|p(0), s, n⟩. (A.13)

In fact, these states construct the irreducible representation of the Poincaré group. This is
because an arbitrary Lorentz transformation L is represented as

U(L)|p, s, n⟩ = U(LB(p))|p(0), s, n⟩ =U(B(Lp))U(B−1(Lp)LB(p))|p(0), s, n⟩

=
∑
n′

D(B−1(Lp)LB(p))n.n′U(B(Lp))|p(0), s, n′⟩

=
∑
n′

D(B−1(Lp)LB(p))n.n′|Lp, s, n′⟩, (A.14)

where we have used the fact that B−1(Lp)LB(p) does not change p(0) and thus it is interpreted
as a spatial rotation. Therefore, states of a massive field are labeled by mass m, spin s and
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components n = −s, ..., s. A massive spin-1 (s=1) field has three (n = −1, 0, 1) degrees of
freedom while a massive spin-2 (s=2) field has five n = −2,−1, 0, 1, 2 degrees of freedom. If we
use p(0) = (m, 0, 0, 0), the Pauli-Lubanski spin vector becomes W0 = 0 and Wi = mJi.

In a massless case, we cannot chose a rest frame, but we can chose such a frame pµ = p′(0)µ :=
(1, 0, 0, 1). The original momentum pµ is restored by a Lorentz transformation p = B′(p)p′(0).
An infinitesimal Lorentz transformation which does not change p′(0) is specified by ωµνp

′(0)ν = 0.
Thus, a condition ωµ0 = ωµ3 corresponds to the little group, and we find

i

2
ωµνMµν = i

(
ω10
(
M10 +M13

)
+ ω20

(
M20 +M23

)
+ ω12M12

)
. (A.15)

We notice that generators of the little group are T1 := −M10 −M13 = K1 + J2, T2 := −M20 −
M23 = K2 − J1 and J3 = M12. Here, we define T+ := T1 + iT2 and T− := T1 − iT2. Then,
commutation relations for these generators can be read as

[J3, T+] = T+, [J3, T−] = −T−, [T+, T−] = 0. (A.16)

The above algebra has a finite dimensional representation

J3|p′(0), λ⟩ = λ|p′(0), λ⟩, T+|p′(0), λ⟩ = 0, T−|p′(0), λ⟩ = 0. (A.17)

Other types of representations are continuously infinite dimensional and discarded as unphysi-
cal. This is because (A.16) means J3 rotates T+ and T−, namely we have eiθJ3T+e

−iθJ3 = eiθT+
and eiθJ3T−e

−iθJ3 = e−iθT−. We can extend the states (A.17) to more general states

|p, λ⟩ := U(B′(p))|p′(0), λ⟩ (A.18)

and construct the irreducible representation. This argument is the same as that in a massive
case. Under the condition pµ = p′(0)µ, the Pauli-Lubanski spin vector satisfies W 2 = W µWµ ∝
T+T− and can be interpreted as W 2 = 0. Besides, we immediately see W µPµ = 0 from the
definition ofW µ. Hence,W µ must be proportional to pµ. The proportional coefficient is nothing
but λ, namely we have W µ = 2λpµ, which says

λ =
1

2

W 0

p0
=

p⃗ · J⃗√
p⃗ · p⃗

. (A.19)

An eigenvalue λ represents helicity of the field. In general, modes with opposite helicity λ
and −λ are related via spatial reversal. When the theory contains a symmetry about spatial
reversal, opposite helicity modes are interpreted as two states of the same field. Theories for
spin-1 electromagnetic field or spin-2 gravitational field have this symmetry. Therefore, we
conclude that massless spin-1 or spin-2 field are composed of two degrees of freedom, which
corresponds to helicity ±1 and ±2 modes respectively.
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Appendix B

Linearization of the Einstein-Hilbert
action

In this Appendix, we derive the action for linearized general relativity from the Einstein-Hilbert
action

SEH [g] =
1

16πG

∫
dDx

√
− det g(R[g]− 2Λ). (B.1)

For a systematic calculation, we assume that we have two metrics gµν and ḡµν . We denote their
Christoffel symbols as Γµνλ and Γ̄µνλ respectively. We also denote their covariant derivatives as
∇µ and ∇̄µ. Since the difference of the Christoffel symbols plays an important role, we define

Cµ
νλ := Γµνλ − Γ̄µνλ. (B.2)

These two covariant derivatives operate on the metric gµν in the following way

∇µgνλ = ∂µgνλ − Γρµνgρλ − Γρµλgνρ, (B.3)

∇̄µgνλ = ∂µgνλ − Γ̄ρµνgρλ − Γ̄ρµλgνρ, (B.4)

from which we obtain

∇µgνλ − ∇̄µgνλ = −Cρ
µνgρλ − Cρ

µλgνρ. (B.5)

In this formula, we set ∇µgνλ = 0 and take permutations of indices (µ, ν, λ)

∇̄µgνλ = Cλµν + Cνµλ,

∇̄νgλµ = Cµνλ + Cλνµ,

∇̄λgµν = Cνλµ + Cµλν , (B.6)

where we have defined Cλµν := gλρC
ρ
µν . We can solve the equations (B.6) for Cλ

µν as

Cλ
µν =

1

2
gλρ
(
∇̄µgρν + ∇̄νgµρ − ∇̄ρgµν

)
. (B.7)

Here, we remember the definition of the curvature tensors. The curvature tensors for gµν and
ḡµν can be defined by the following formulae, with an arbitrary vector uµ,

(∇µ∇ν −∇ν∇µ)uλ =: Rµνλ
ρuρ, (B.8)

(∇̄µ∇̄ν − ∇̄ν∇̄µ)uλ =: R̄µνλ
ρuρ. (B.9)
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The difference of these two curvatures is obtained when we express (B.8) by use of ∇̄. We can
rewrite the covariant derivative ∇ by ∇̄ in such a way

∇µuν = ∂µuν − Γλµνuλ = ∇̄µ − Cλ
µνuλ. (B.10)

Repeating such calculations, we can find

(∇µ∇ν −∇ν∇µ)uλ − (∇̄µ∇̄ν − ∇̄ν∇̄µ)uλ

=− (∇̄µC
ρ
νλ − ∇̄νC

ρ
µλ)uρ + (Cσ

µλC
ρ
νσ − Cσ

νλC
ρ
µσ)uρ. (B.11)

Hence, we obtain an important formula

Rµνλ
ρ = R̄µνλ

ρ − 2∇̄[µC
ρ
ν]λ + 2Cσ

λ[µC
ρ
ν]σ, (B.12)

where [· · · ] means antisymmetrization, for example a[µbν] =
1
2
(aµbν − aνbµ), divided by the

factorial of the total number of the elements. We contract (B.12) with δνρ and also obtain a
formula for the difference of the Ricci tensors

Rµλ = R̄µλ − 2∇̄[µC
ρ
ρ]λ + 2Cσ

λ[µC
ρ
ρ]σ. (B.13)

Thus far, we have not assumed any relation between two metrics gµν and ḡµν , but our present
purpose is to obtain the linearized action of general relativity. Therefore, we assume that ḡµν
is a background metric and gµν is composed of the background plus fluctuation

gµν = ḡµν + δgµν . (B.14)

Then, we can obtain the perturbed curvature tensor for any order through the expansion of
Cλ

µν by δgµν . For our purpose, it is enough to calculate up to the second. Using ∇̄µḡνλ = 0,
the formula for Cλ

µν (B.7) is now written as

Cλ
µν =

1

2
gλρ
(
∇̄µδgρν + ∇̄νδgµρ − ∇̄ρδgµν

)
, (B.15)

from which we see that the higher order expansion comes from the inverse metric gµν . In the
following, we denote the inverse of the background metric ḡµν as ḡµν , namely ḡµλḡλν = δµν .
The inverse of the metric gµν is defined by the formula gµλgλν = δµν , and we can calculate it
order by order. We expand the inverse gµν as

gµν = ḡµν + gµν(1) + gµν(2) +O[δ3], (B.16)

and substitute it into the definition gµλgλν = δµν(
ḡµλ + gµλ(1) + gµλ(2) +O[δ3]

)(
ḡλν + δgλν

)
= δµν . (B.17)

We determine gµν(1) and gµν(2) perturbatively. The first order term is determined as gµν(1) =

−ḡµλḡνρδgλρ. If we perform index manipulations by the background metric ḡµν and its inverse
ḡµν , we can write gµν(1) in a simple form gµν(1) = −δgµν . We apply this index rule throughout this

chapter. In the same way, the next second order term is determined as gµν(2) = (δgµρ)(δgρλ)ḡ
λν .

Then, we can write the inverse metric gµν as

gµν = ḡµν − δgµν + (δgµρ)(δgρλ)ḡ
λν +O[δ3]. (B.18)
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The action (B.1) contains the determinant of the metric gµν . Thus, we also need to expand the
determinant

det(g..) =det(ḡ..+ δg..)

=(det ḡ..) det(1+ ḡ−1δg)

=(det ḡ..)
[
1 + δgµµ +

1

2

(
δgµµδg

ν
ν − δgµνδg

ν
µ

)
+O[δ3]

]
, (B.19)

where we should notice δgµν := ḡµλδgλν . Applying the Taylor expansion
√
1 + x = 1 + 1

2
x −

1
8
x2 +O[x3], we find√

− det g.. =
√

− det ḡ..
[
1 +

1

2
δgµµ +

1

8
δgµµδg

ν
ν −

1

4
δgµνδg

ν
µ +O[δ3]

]
. (B.20)

From these formulae, we can obtain the action for linearized general relativity. In the following,
we denote δgµν as hµν for notational simplicity.

Substituting (B.18) into (B.15), we obtain the perturbed Cλ
µν

Cλ(0)

µν = 0, (B.21)

Cλ(1)

µν =
1

2
ḡλρ
(
∇̄µhρν + ∇̄νhµρ − ∇̄ρhµν

)
, (B.22)

Cλ(2)

µν = −1

2
hλρ
(
∇̄µhρν + ∇̄νhµρ − ∇̄ρhµν

)
. (B.23)

We have attached the subscripts (0), (1), ... to represent the order of the expansion. Then, the
Ricci tensor (B.13) is calculated order by order

R
(0)
µλ =R̄(0)

µν , (B.24)

R
(1)
µλ =

1

2
ḡαβ
(
∇̄α∇̄µhβλ − ∇̄µ∇̄λhαβ + ∇̄α∇̄λhµβ − ∇̄α∇̄βhµλ

)
, (B.25)

R
(2)
µλ =

1

2
∇̄µ(h

αβ∇̄λhαβ) +
1

2
∇̄α(h

αβ∇̄βhµλ)−
1

2
∇̄α(h

αβ∇̄µhβλ)−
1

2
∇̄α(h

αβ∇̄λhβµ)

− 1

4
(∇̄µh

αβ)(∇̄λhαβ) +
1

2
(∇̄βhαλ)(∇̄βhµ

α)− 1

2
(∇̄βhαλ)(∇̄αhβµ)

+
1

4
(∇̄λhαµ)(∇̄αhββ) +

1

4
(∇̄µhαλ)(∇̄αhββ)−

1

4
(∇̄αhλµ)(∇̄αhββ). (B.26)

We proceed to calculate the scalar curvature R = gµλRµλ. The zeroth and the first order terms
are given by

R(0) =ḡµλR
(0)
µλ = R̄, (B.27)

R(1) =ḡµλR
(1)
µλ + gµλ(1)R

(0)
µλ = ∇̄µ∇̄λhµλ − ∇̄µ∇̄µh

λ
λ − hµλR̄µλ. (B.28)

The second order term is composed of three elements

R(2) = ḡµλR
(2)
µλ + gµλ(1)R

(1)
µλ + gµλ(2)R

(0)
µλ , (B.29)
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and each of them is

ḡµλR
(2)
µλ =

1

4
(∇̄αhµν)(∇̄αhµν)− 1

2
(∇̄αhµν)(∇̄νhαµ) +

1

2
(∇̄µh

α
α)(∇̄νh

µν)− 1

4
(∇̄αhµµ)(∇̄αhνν)

+
1

2
∇̄µ

(
hαβ∇̄µhαβ − 2hµα∇̄βhαβ + hµα∇̄αh

β
β

)
, (B.30)

ḡµλ(1)R
(1)
µλ =(∇̄αhµν)(∇̄νhαµ)− 1

2
(∇̄µh

α
α)(∇̄νh

µν)− 1

2
(∇̄αhµν)(∇̄αhµν)

+
1

2
∇̄µ

(
− 2hαβ∇̄αh

µ
β + hµα∇̄αh

β
β + hαβ∇̄µhαβ

)
, (B.31)

ḡµλ(2)R
(0)
µλ =R̄µλh

µαhλα. (B.32)

Hence, we obtain

R(2) =− 1

4
(∇̄αhµν)(∇̄αhµν) +

1

2
(∇̄αhµν)(∇̄νhαµ)− 1

4
(∇̄αhµµ)(∇̄αh

ν
ν) + R̄µνh

µαhνα

+ ∇̄µ

(
hαβ∇̄µhαβ − hµα∇̄βhαβ + hµα∇̄αh

β
β − hαβ∇̄αh

µ
β

)
. (B.33)

Since our final purpose is to obtain the perturbed Lagrangian density
√
− det g(R − 2Λ), we

must continue to calculate(√
− det g(R− 2Λ)

)(0)
=
√

− det g
(0)
(R(0) − 2Λ) =

√
− det ḡ(R̄− 2Λ), (B.34)(√

− det g(R− 2Λ)
)(1)

=
√

− det g
(0)
R(1) +

√
− det g

(1)
R(0) −

√
− det g

(1)
· 2Λ

=
√

− det ḡ
(
∇̄µ
(
∇̄λhµλ − ∇̄µh

λ
λ

)
− hµλ

(
R̄µλ −

1

2
ḡµλR̄ + Λḡµλ

))
,

(B.35)

and (√
− det g(R− 2Λ)

)(2)
=
√
− det g

(0)
R(2) +

√
− det g

(1)
R(1) −

√
− det g

(2)
(R− 2Λ)(0),

(B.36)

whose elements are√
− det g

(0)
R(2) =

√
− det ḡ R(2), (B.37)√

− det g
(1)
R(1) =

√
− det ḡ

[
− 1

2
(∇̄µhαα)(∇̄λhµλ) +

1

2
(∇̄µhαα)(∇̄µh

β
β)−

1

2
hααh

µλR̄µλ

+
1

2
∇̄µ
(
hαα∇̄λhλµ − hαα∇̄µh

β
β

)]
, (B.38)√

− det g
(2)
(R− 2Λ)(0) =

√
− det ḡ

(1
8
hααh

β
β −

1

4
hαβh

β
α

)
(R̄− 2Λ). (B.39)
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Therefore, we obtain(√
− det g(R− 2Λ)

)(2)
/
√
− det ḡ

=
1

4

(
hαβh

β
α −

1

2
hααh

β
β

)
(R̄− 2Λ) +

(
R̄µν −

1

2
ḡµνR̄ + Λḡµν

)(
hµαhα

ν − 1

2
hααh

µν
)

− 1

4
(∇̄αhµν)(∇̄αhµν) +

1

2
(∇̄αhµν)(∇̄νhαµ) +

1

4
(∇̄µhαα)(∇̄µh

β
β)−

1

2
(∇̄µhαα)(∇̄λhµλ)

+ ∇̄µ

(
hαβ∇̄µhαβ − hµα∇̄βhαβ + hµα∇̄αh

β
β − hαβ∇̄αh

µ
β +

1

2
hββ∇̄αhµα −

1

2
hαα∇̄µhββ

)
.

(B.40)

We can simplify the above formula by use of the Einstein equation for the back ground metric

R̄µν −
1

2
ḡµνR̄ + Λḡµν = 0, (B.41)

and its contracted form

Λ =
D − 2

2D
R̄. (B.42)

Eventually, we obtain the action for linearized general relativity

SEH =
1

16πG

∫
dDxL(2)

EH , (B.43)

where the Lagrangian density L(2)
EH is given by

L(2)
EH√

− det ḡ
=

2

D
R̄ + ∇̄µ

(
∇̄λh

µλ − ∇̄µhλλ
)

− 1

4
(∇̄αhµν)(∇̄αhµν) +

1

2
(∇̄αhµν)(∇̄νhαµ)− 1

2
(∇̄µhαα)(∇̄λhµλ) +

1

4
(∇̄µhαα)(∇̄µh

β
β)

+
R̄

2D

(
hαβh

β
α −

1

2
hααh

β
β

)
+ ∇̄µ

(
hαβ∇̄µhαβ − hµα∇̄βhαβ + hµα∇̄αh

β
β − hαβ∇̄αh

µ
β +

1

2
hββ∇̄αhµα −

1

2
hαα∇̄µhββ

)
.

(B.44)

If we include a matter coupling

S = SEH + Scoup, Scoup :=

∫
dDx

√
− det gLcoup, (B.45)

its perturbation is interpreted as

δScoup = −1

2

∫
dDx

√
− det g T µνδgµν . (B.46)

Here, the energy momentum tensor T µν is defined by

T µν = − 2√
− det g

δ

δgµν

(√
− det gLcoup

)
. (B.47)
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Appendix C

The Poisson bracket in general
relativity

In Section 3.1, we have formulated the Einstein-Hilbert action in the ADM decomposition

S =
1

16πG

∫
dt ddx

[
γ̇ijπ

ij +NR0 +N iRi

]
, (C.1)

where each element has been defines as

R0 :=
√

det γ (d)R− 1√
det γ

(
πijπ

ij − 1

d− 1
π2
)

=
√

det γ (d)R− 1√
det γ

(
γikγjl −

1

d− 1
γijγkl

)
πijπkl, (C.2)

Ri :=2Djπ
j
i = 2γikDjπ

jk. (C.3)

The Poisson bracket is determined by

{
F (x), G(y)

}
PB

=

∫
ddz

[
δF (x)

δγij(z)

δG(y)

δπij(z)
− δF (x)

δπij(z)

δG(y)

δγij(z)

]
, (C.4)

and those between R0 and Ri are calculated as follows.
To begin with, we remember the calculation

δ det γ = (det γ)
[
det(1 + γ−1δγ)− 1

]
= (det γ)Tr(γ−1δγ) = (det γ)γijδγij, (C.5)

(C.6)

from which variation such as δ
√
det γ = 1

2

√
det γγijδγij can be easily obtained. We also re-

member the formula for the first order variation of the scalar curvature (B.28), and apply it to
variation of the curvature (d)R with respect to γij

δR = −Rijδγij +DiDjδγij − γijDkDkδγij, (C.7)

where we have omitted the subscript (d). Throughout this appendix, we neglect the subscript
(d), and R means the scalar curvature for the spatial metric γij.
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Next, we calculate variation of R0 and Ri. Variation of R0 with respect to γij is given by

δγR0 =
1

2

√
det γ Rγijδγij +

√
det γ

(
−Rijδγij +DiDjδγij − γijDkDkδγij

)
− 2√

det γ

(
πikπk

jδγij −
1

d− 1
ππijδγij

)
+

1

2
√
det γ

(
πklπkl −

1

d− 1
π2
)
γijδγij. (C.8)

In the above formula, we notice that derivatives are operating on the variation of the metric δγ.
Hence, in the calculation of the Poisson bracket, we encounter derivatives on the delta function,
D δγ(x)
δγ(y)

= Dδ(x− y). In such a situation, it is convenient to introduce integrated forms

⟨⟨fR0⟩⟩ :=
∫
ddxf(x)R0(x), ⟨⟨f iRi⟩⟩ :=

∫
ddxf i(x)Ri(x), (C.9)

where f(x) and f i(x) are arbitrary scalar and vector functions. Thus, neglecting total deriva-
tives, we find

δγ⟨⟨fR0⟩⟩ =
∫
ddx

[
1

2

√
det γ fRγij +

√
det γ

(
− fRij +DiDjf − γijDkDkf

)
− 2√

det γ
f
(
πikπk

j − 1

d− 1
ππij

)
+

1

2
√
det γ

f
(
πklπkl −

1

d− 1
π2
)
γij
]
δγij.

(C.10)

Here, it should be noted that [· · · ]ij in (C.10) is symmetric for the indices ij because a relation
DiDjf = DjDif holds. Variation of R0 with respect to πij is easy to obtain

δπR0 = − 2√
det γ

(
πij −

1

d− 1
πγij

)
δπij (C.11)

δπ⟨⟨fR0⟩⟩ =
∫
ddx

[
− 2√

det γ
f
(
πij −

1

d− 1
πγij

)]
δπij. (C.12)

We continue to variation of Ri. Discarding total derivatives, the variation with respect to γij
is given by

δγ⟨⟨f iRi⟩⟩ =2δγ⟨⟨f iγijDkπ
kj⟩⟩

=− 2δγ⟨⟨γijπjkDkf
i⟩⟩

=− 2⟨⟨(δγγij)πjkDkf
i⟩⟩ − 2⟨⟨γijπjkδγ(Dkf

i)⟩⟩. (C.13)

The second term in (C.13) contains a factor

δγ(Dkf
i) = δγ(∂kf

i + Γiklf
l) = (δγΓ

i
kl)f

i. (C.14)

We apply the formula (B.22)

δγΓ
i
kl =

1

2
γim
(
Dkδγml +Dlδγkm −Dmδγkl

)
, (C.15)

and find that the second term in (C.13) is written as

−2⟨⟨γijπjkδγ(Dkf
i)⟩⟩ = ⟨⟨−πij(Dkδγij)f

k⟩⟩ = ⟨⟨Dk(π
ijfk)δγij⟩⟩. (C.16)
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Thus, we obtain

δγ⟨⟨f iRi⟩⟩ =
∫
ddx
[
− 2(Dkf

(i)πj)k +Dk(f
kπij)

]
δγij, (C.17)

where the indices ij at [· · · ]ij are symmetrized. Variation of Ri with respect to πij leads to

δπ⟨⟨f iRi⟩⟩ = δπ⟨⟨2f iγikDjπ
jk⟩⟩ = ⟨⟨−2γk(i(Dj)f

k)δπij⟩⟩, (C.18)

where the symmetrization is understood.
Now, we set about the calculation of the Poisson brackets. The first target is

{
R0,R0

}
PB

which corresponds to{
⟨⟨fR0⟩⟩, ⟨⟨gR0⟩⟩

}
PB

=

∫
ddz

[
δ⟨⟨fR0⟩⟩
δγij(z)

δ⟨⟨gR0⟩⟩
δπij(z)

− δ⟨⟨fR0⟩⟩
δπij(z)

δ⟨⟨gR0⟩⟩
δγij(z)

]
. (C.19)

In the above Poisson bracket, contributions between non-derivative terms cancel out, and the
remaining part is calculated to be∫

dz
δ⟨⟨fR0⟩⟩
δγij(z)

δ⟨⟨gR0⟩⟩
δπij(z)

=

∫
dx

∫
dy

∫
dz

[√
det γ

(
DiDjf − γijDkDkf

)]
(x)δ(x− z)

×
[
− 2√

det γ
g
(
πij −

1

d− 1
πγij

)]
(y)δ(y − z)

=− 2

∫
dx
(
DiDjf − γijDkDkf

)
g
(
πij −

1

d− 1
πγij

)
=− 2

∫
dx
[
gπij(DiDjf)

]
. (C.20)

Combining the contribution from the exchange f ↔ g, we obtain{
⟨⟨fR0⟩⟩, ⟨⟨gR0⟩⟩

}
PB

=− 2

∫
dx
[
gπij(DiDjf)

]
+ 2

∫
dx
[
fπij(DiDjg)

]
=2

∫
dx
[
g(Diπij)(Djf)− f(Diπij)(Djg)

]
=

∫
dx
[
(Dif)g − (Dig)f

]
Ri. (C.21)

Here, we write f(x) =
∫
dyf(y)δ(x− y) and g(x) =

∫
dyf(y)δ(x− y) to find{

⟨⟨fR0⟩⟩, ⟨⟨gR0⟩⟩
}
PB

=

∫
dx

∫
dy[Di

(x)f(y)δ(x− y)]g(x)Ri(x)−
∫
dx

∫
dy[Di

(x)g(y)δ(x− y)]f(x)Ri(x)

=

∫
dx

∫
dyf(x)g(y)

[
Ri(y)Di

(y)δ(x− y)−Ri(x)Di
(x)δ(x− y)

]
, (C.22)

where we have renamed integration variable as x↔ y at the first term. Hence, we conclude{
R0(x),R0(y)

}
PB

= Ri(y)Di
(y)δ

(d)(x− y)−Ri(x)Di
(x)δ

(d)(x− y). (C.23)
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We proceed to consider
{
R0,Ri

}
PB

which corresponds to{
⟨⟨fR0⟩⟩, ⟨⟨giRi⟩⟩

}
PB

=

∫
dx

∫
dy

∫
dz

[
1

2

√
det γ fRγij +

√
det γ

(
− fRij +DiDjf − γijDkDkf

)
− 2√

det γ
f
(
πikπk

j − 1

d− 1
ππij

)
+

1

2
√
det γ

f
(
πklπkl −

1

d− 1
π2
)
γij
]
(x)δ(x− z)

×
[
− 2γmiDjg

m
]
(y)δ(y − z)

−
∫
dx

∫
dy

∫
dz

[
− 2√

det γ
f
(
πij −

1

d− 1
πγij

)]
(x)δ(x− z)

×
[
− 2(Dkg

i)πjk +Dk(g
kπij)

]
(y)δ(y − z). (C.24)

In the above formula, terms without π are∫
dx

[
1

2

√
det γ fRγij +

√
det γ

(
− fRij +DiDjf − γijDkDkf

)][
− 2γmiDjg

m
]

=

∫
dx
√
det γ

[
− fR(Dig

i) + 2fRij(Djgi)− 2(DiDjf − δjiDkDkf)(Djg
i)
]

=

∫
dx
√
det γ

[
− fR(Dig

i) + 2fRij(Djgi) + 2(Djf)(DiDj −DjDi)g
i
]

=

∫
dx
√
det γ

[
− fR(Dig

i) + 2fRij(Djgi) + 2(Djf)Rjkg
k
]

=

∫
dx
√
det γ

[
− fR(Dig

i)− 2f(DjRjk)g
k
]

=

∫
dx
√
det γ

[
− fR(Dig

i)− f(DkR)g
k
]

=

∫
dx
[
−
√

det γ fDi(g
iR)
]
, (C.25)

where we have used the definition of the curvature and a property DiRij =
1
2
DjR. On the other

hand, terms containing π are∫
dx

[
− 2√

det γ
f
(
πikπk

j − 1

d− 1
ππij

)
+

1

2
√
det γ

f
(
πklπkl −

1

d− 1
π2
)
γij
][

− 2γmiDjg
m
]

−
∫
dx

[
− 2√

det γ
f
(
πij −

1

d− 1
πγij

)][
− 2(Dkg

i)πjk +Dk(g
kπij)

]
=

∫
dx

f√
det γ

Dk

[(
πijπij −

1

d− 1
π2
)
gk
]
. (C.26)

Hence, we find{
⟨⟨fR0⟩⟩, ⟨⟨giRi⟩⟩

}
PB

=

∫
dxfDi

[
−
√
det γRgi +

1√
det γ

(
πklπkl −

1

d− 1
π2
)
gi
]

= −
∫
dxfDi(R0g

i). (C.27)
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If we write R0(x)g
i(x) =

∫
dyR0(y)g

i(y)δ(x− y), we see{
⟨⟨fR0⟩⟩, ⟨⟨giRi⟩⟩

}
PB

= −
∫
dx

∫
dyf(x)gi(y)R0(y)D(x)

i δ(x− y), (C.28)

from which we obtain {
R0(x),Ri(y)

}
PB

= −R0(y)D(x)
i δ(x− y). (C.29)

The last calculation is
{
Ri,Rj

}
PB

. We write down the former half of this Poisson bracket∫
dz
δ⟨⟨fkRk⟩⟩
δγij(z)

δ⟨⟨f lRl⟩⟩
δπij(z)

=

∫
dx

∫
dy

∫
dz
[
− 2(Dkf

i)πjk +Dk(f
kπij)

]
(x)δ(x− z)

[
− 2γl(iDj)g

l
]
(y)δ(y − z)

=

∫
dx
[
2πjk(Dkf

i)(Djgi) + 2πjk(Dkf
i)(Digj)− 2(Djgi)Dk(f

kπij)
]
. (C.30)

The second term in (C.30) is∫
2πjk(Dkf

i)(Digj) =

∫
−2f i(Dkπ

jk)(Digj)− 2f iπjkDkDigj, (C.31)

and the third term in (C.30) is∫
−2(Djgi)Dk(f

kπij) =

∫
2fkπij(DkDjgi)

=

∫
2fkπij

[
(DkDj −DjDk)gi +DjDkgi

]
=

∫
2fkπijRkjilg

l + 2fkπijDjDkgi. (C.32)

Thus, (C.30) can be read as∫
2πjk(Dkf

i)(Djgi)− 2f i(Dkπ
jk)(Digj) + 2fkπijRkjilg

l. (C.33)

Combining the contribution from the exchange f ↔ g, we find{
⟨⟨f iRi⟩⟩, ⟨⟨gjRj⟩⟩

}
PB

=

∫
2fkglπij(Rkjil −Rljik) + giRj(Difj)− f iRj(Digj)

=

∫
dx
[
Rjg

i(Dif
j)−Rjf

i(Dig
j)
]
, (C.34)

where we have used a property Rkjil = Rljik. If we write f j(x) =
∫
dyf j(y)δ(x − y) and

gj(x) =
∫
dygj(y)δ(x− y), we see{

⟨⟨f iRi⟩⟩, ⟨⟨gjRj⟩⟩
}
PB

=

∫
dx

∫
dy
[
Rj(x)g

i(x)D(x)
i f j(y)δ(x− y)−Rj(x)f

i(x)D(x)
i gj(y)δ(x− y)

]
=

∫
dx

∫
dyf i(x)gj(y)

[
Ri(y)D(y)

j δ(x− y)−Rj(x)D(x)
i δ(x− y)

]
.

(C.35)

Therefore, we conclude{
Ri(x),Rj(y)

}
PB

= Ri(y)D(y)
j δ(d)(x− y)−Rj(x)D(x)

i δ(d)(x− y). (C.36)

129



Appendix D

Total derivatives

In this appendix, we think about total derivatives. In the main part of this thesis, we often
rely on total derivative combinations constructed from polynomials of ∂µA

ν or ∂µ∂νϕ. Here,
the dimension is assumed to be D. We recall a relation(

∂µ1A
ν1
)(
∂µ2A

ν2
)
· · ·
(
∂µnA

νn
)

=∂µ1

(
Aν1
(
∂µ2A

ν2
)
· · ·
(
∂µnA

νn
))

−
n∑
k=2

(
Aν1
(
∂µ2A

ν2
)
· · ·
(
∂µ1∂µkA

νk
)
· · ·
(
∂µnA

νn
))
, (D.1)

and find that antisymmetrization of indices on partial derivatives leads to a total derivative.
Hence, we introduce the following polynomial for a matrix Πµ

ν

LTDn (Π) := ϵµ1µ2···µnν1ν2···νn Πν1
µ1Π

ν2
µ2 · · ·Πνn

µn , (D.2)

where the symbol ϵµ1µ2···µnν1ν2···νn is defined by

ϵµ1µ2···µnν1ν2···νn := n!δµ1[ν1δ
µ2
ν2

· · · δµnνn]. (D.3)

In the definition (D.3), [· · · ] represents antisymmetrization divided by the number of the ele-
ments. When we set Π to be Πµ

ν = ∂νA
µ, LTDn becomes a total derivative. We should notice

that ϵµ1µ2···µnν1ν2···νn satisfies ϵµ1µ2···µnµ1µ2···µn = 1 and returns zero if two sets {µ1, µ2, ..., µn} and {ν1, ν2, ..., νn}
do not coincide. For example, we have ϵ123124 = 0 for n = 3. It is also useful to introduce other
antisymmetrization symbols ϵµ1µ2···µD and ϵν1ν2···νD . They are totally antisymmetric and deter-
mined by ϵ12···D = 1 and ϵ12···D = 1 respectively. We do not raise or lower their indices. We can
easily show that relations

ϵµ1µ2······µDϵν1ν2······νD = D! δµ1[ν1δ
µ2
ν2

· · · δµDνD], (D.4)

ϵµ1···µnλn+1···λDϵν1···νnλn+1···λD = (D − n)! ϵµ1···µnν1···νn , (D.5)

hold, which are convenient for explicit calculations.
An important property for (D.2) is that the same index appears only up to two times. One

is in the upper index and the other is in the lower index. Therefore, if we set Πµ
ν = ∂µ∂νϕ,
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there is no higher order derivative with respect to time. Their concrete formulae are given by

LTD1 (Π) :=1, (D.6)

LTD1 (Π) =Πµ
µ = Tr(Π), (D.7)

LTD2 (Π) =Πµ
µΠ

ν
ν − Πµ

νΠ
ν
µ = Tr(Π)2 − Tr(Π2), (D.8)

LTD3 (Π) =Tr(Π)3 − 3Tr(Π)Tr(Π2) + 2Tr(Π3), (D.9)

LTD4 (Π) =Tr(Π)4 − 6Tr(Π2)Tr(Π)2 + 8Tr(Π3)Tr(Π) + 3Tr(Π2)2 − 6Tr(Π4), (D.10)

and LTDn>D(Π) = 0. The first one (D.6) is a definition.
In this thesis, instead of (D.2), we mainly use the following definition

en(Π) :=
1

n!
LTDn (Π). (D.11)

We immediately find eD(Π) = detΠ. When we have the inverse matrix Π−1, namely Πµ
λ(Π

−1)λν =
(Π−1)µλΠ

λ
ν = δµν , we can express en(Π) by eD−n(Π

−1). Using (D.3) and (D.5), we calculate it
as

en(Π) =
1

n!(D − n)!
ϵµ1···µnλn+1···λDϵν1···νnλn+1···λD Πν1

µ1 · · ·Πνn
µn

=
1

n!(D − n)!
ϵµ1···µnµn+1···µDϵν1···νnνn+1···νD Πν1

µ1 · · ·Πνn
µnδ

νn+1
µn+1

· · · δνDµD

=
1

n!(D − n)!
ϵµ1···µnµn+1···µDϵν1···νnνn+1···νD Πν1

µ1 · · ·Πνn
µn

×
(
Πνn+1

αn+1(Π
−1)βn+1

µn+1
δ
αn+1

βn+1

)
· · ·
(
ΠνD

αD
(Π−1)βDµDδ

αD
βD

)
=

1

n!(D − n)!(D − n)!
ϵµ1···µnµn+1···µDϵν1···νnνn+1···νDϵ

αn+1···αD

βn+1···βD

×
(
Πν1

µ1 · · ·Πνn
µnΠ

νn+1
αn+1 · · ·ΠνD

αD

)(
(Π−1)βn+1

µn+1
(Π−1)βDµD

)
=

1

n!(D − n)!(D − n)!DCn
ϵµ1···µnµn+1···µDϵν1···νnνn+1···νDϵ

αn+1···αD

βn+1···βD

×
(
Πν1

µ1 · · ·Πνn
µnΠ

νn+1
µn+1 · · ·ΠνD

µD

)(
(Π−1)βn+1

αn+1
(Π−1)βDαD

)
=

1

D!
ϵµ1···µDϵν1···νD

(
Πν1

µ1 · · ·ΠνD
µD

)
× 1

(D − n)!
ϵ
αn+1···αD

βn+1···βD

(
(Π−1)βn+1

αn+1
(Π−1)βDαD

)
=eD(Π)eD−n(Π

−1). (D.12)

In fact, we can include more general cases with matrices Π(I) (I = 1, 2, ..., n). A combination

STDn
(
Π(1), π(2), ...,Π(n)

)
:= ϵµ1µ2···µnν1ν2···νn Π(1)ν1µ1Π(2)

ν2
µ2
· · ·Π(n)νnµn , (D.13)

becomes a total derivative when we set Π(I)µν = ∂νA(I)
µ (I = 1, 2, ..., n).

A derivative of (D.2) is also important

X(Π)(n)νµ :=
1

n+ 1

δ

δΠµ
ν

LTDn+1(Π) = ϵµµ1µ2···µnνν1ν2···νn Πν1
µ1Π

ν2
µ2 · · ·Πνn

µn . (D.14)
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When we decompose the indices as µ = (0, i), we see that X(n)i
j contain up to two “0” indices,

and X(n)i
j contains only one “0” index while X(n)0

0 has no “0” index. The trace of (D.14) is
easily calculated to be

X(Π)(n)µµ = (D − n)LTDn (Π). (D.15)

Similarly, general Xµ
ν can be expressed by LTD. Variation of LTD is directly given by

δLTDn+1(Π) = (n+ 1)ϵµ1µ2···µn+1
ν1ν2···νn+1

(
δΠν1

µ1

)
Πν2

µ2 · · ·Πνn+1
µn+1 , (D.16)

but we know that the right hand side of (D.16) can be written by traces. Assuming that δΠ
constructs a trace Tr

(
(δΠ)Πm

)
, the number of combinations to choose the elements of Πm is

nCm = n!
(n−m)!m!

and the number of their ordering is m!. In addition, we take notice that the

signature of the permutation (λ2, λ3, · · · , λm+1, λ1) → (λ1, λ2, · · · , λm+1) is (−1)m. Thus, we
obtain

δLTDn+1(Π) = (n+ 1)
n∑

m=0

(−1)mn!

(n−m)!
Tr
(
(δΠ)Πm

)
LTDn−m(Π), (D.17)

from which we conclude

X(Π)(n)µν =
n∑

m=0

(−1)mn!

(n−m)!
(Πm)µνL

TD
n−m(Π). (D.18)

In the same reasoning, we can also find

LTDn (Π) = −
n∑

m=1

(−1)m(n− 1)!

(n−m)!
Tr(Πm

)
LTDn−m(Π). (D.19)

These two relations (D.18) and (D.19) lead to a recursion formula

X(Π)(n)µν = −nΠµ
λX(Π)(n−1)λ

ν +Πλ
ρX(Π)(n−1)ρ

λδ
µ
ν . (D.20)

Concrete formulae for X(n)µ
ν are given by

X(Π)(0)µν =δ
µ
ν , (D.21)

X(Π)(1)µν =Tr(Π)δµν − Πµ
ν , (D.22)

X(Π)(2)µν =
(
Tr(Π)2 − Tr(Π2)

)
δµν − 2Tr(Π)Πµ

ν + 2(Π2)µν (D.23)

X(Π)(3)µν =
(
Tr(Π)3 − 3Tr(Π)Tr(Π2) + 2Tr(Π3)

)
δµν − 3

(
Tr(Π)2 − Tr(Π2)

)
Πµ

ν ,

+ 6Tr(Π)(Π2)µν − 6(Π3)µν , (D.24)

and X(Π)(n≥D−1) = 0.
In Section 3.4, we encounter a case where we set Π = K. The definition of Kµ

ν is found
in (3.120). We need a derivative of

√
− det gLTDn (K) with respect to hµν . We recall the hµν

dependence in Hα
β = gαλHλβ = (ηαλ − hαλ +O[h2])(hλβ + · · · ) and find

δHα
β

δhµν
= δα(µgν)β − δα(µHν)β. (D.25)
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Then, using properties of the coefficient dn such as (n+ 1)dn+1 − ndn = −1
2
dn and d1 =

1
2
, we

obtain

δ

δhµν
TrK =

1

2
(gµν −Kµν), (D.26)

which leads to

δ

δhµν
Tr(Kn) =

n

2

(
(Kn−1)µν − (Kn)µν

)
, (D.27)

where the index is lowered by gµν . From (D.17) and (D.27), we calculate as

δ

δhµν
(√

− det gLTDn (K)
)∣∣
h=0,A=0

=
1

2
ηµνLTDn (∂∂ϕ) +

n∑
m=1

(−1)m−1 (n− 1)!

(n−m)!

n

m

[ δ

δhµν
Tr(Km)

]
LTDn−m(K)

∣∣
h=0,A=0

=
1

2
ηµνLTDn (∂∂ϕ) +

n∑
m=1

(−1)m−1 n!

2(n−m)!

[
(Πm−1)µν − (Πm)µν

]
LTDn−m(Π)

∣∣
Π=∂∂ϕ

. (D.28)

Here, we introduce a notation (Π−1)µν := 0 and use (D.18) to simplify the above formula. We
come to the conclusion

δ

δhµν
(√

− det gLTDn (K)
)∣∣
h=0,A=0

=
n∑

m=0

(−1)m
n!

2(n−m)!

[
(Πm)µν − (Πm−1)µν

]
LTDn−m(Π)

∣∣
Π=∂∂ϕ

=
1

2

(
X(Π)(n)µν + nX(Π)(n−1)

µν

)∣∣
Π=∂∂ϕ

. (D.29)

In the case of Πµ
ν = ∂µ∂νϕ, we can also prove

ϕLTDn (∂∂ϕ) = −1

2
(n+ 1)(∂µϕ)(∂

µϕ)LTDn−1(∂∂ϕ) + (total derivative), (D.30)

which is combined with (D.15) to give

ϕX(∂∂ϕ)(n)µµ = −1

2
(D − n)(n+ 1)(∂µϕ)(∂

µϕ)LTDn−1(∂∂ϕ) + (total derivative). (D.31)

Similarly, we can show that the following relation

(∂µϕ)(∂νϕ)X(∂∂ϕ)(n)µν =
(1
2
n+ 1

)
(∂µϕ)(∂

µϕ)LTDn (∂∂ϕ) + (total derivative) (D.32)

holds. These relations are used in Section 3.4.
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Appendix E

Linearized interaction in bimetric
gravity

In D-dimensional space-times, the interaction term of bimetric gravity (3.150) is constructed
from the following elements

√
− det g e0

(√
g−1f

)
√
− det ḡ

=1 +
1

2
[h]− 1

4
[h2] +

1

8
[h]2, (E.1)

√
− det g e1

(√
g−1f

)
√
− det ḡ

=D +
(D
2
− 1

2

)
[h] +

1

2
[l] +

(
− D

4
+

3

8

)
[h2]− 1

4
[hl]− 1

8
[l2]

+
(D
8
− 1

4

)
[h]2 +

1

4
[h][l], (E.2)

2 ·
√
− det g e2

(√
g−1f

)
√
− det ḡ

=D(D − 1) +
(D
2
− 1
)
(D − 1)[h] + (D − 1)[l]

+
(
− D2

4
+D − 1

)
[h2]−

(D
2
− 1
)
[hl]− D

4
[l2]

+
(D2

8
− 5

8
D +

3

4

)
[h]2 +

(D
2
− 1
)
[h][l] +

1

4
[l]2, (E.3)

6 ·
√
− det g e3

(√
g−1f

)
√
− det ḡ

=(D3 − 3D2 + 2D) +
(1
2
D3 − 3D2 +

11

2
D − 3

)
[h] +

(3
2
D2 − 9

2
D + 3

)
[l]

+
(
− D3

4
+

15

8
D2 − 37

8
D +

15

4

)
[h2] +

(
− 3

4
D2 +

15

4
D − 9

2

)
[hl] +

(
− 3

8
D2 +

3

8
D +

3

4

)
[l2]

+
(D3

8
− 9

8
D2 +

13

4
D − 3

)
[h]2 +

(3
4
D2 − 15

4
D +

9

2

)
[h][l] +

(3
4
D − 3

2

)
[l]2, (E.4)
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24 ·
√
− det g e4

(√
g−1f

)
√
− det ḡ

=(D4 − 6D3 + 11D2 − 6D) +
(D4

2
− 5D3 +

35

2
D2 − 25D + 12

)
[h] + (2D3 − 12D2 + 22D − 12)[l]

+
(
− D4

4
+ 3D3 − 53

4
D2 +

51

2
D − 18

)
[h2] + (−D3 + 9D2 − 26D + 24)[hl]

+
(
− D3

2
+

3

2
D2 + 2D − 6

)
[l2] +

(D4

8
− 14

8
D3 +

71

8
D2 − 77

4
D + 15

)
[h]2

+ (D3 − 9D2 + 26D − 24)[h][l] +
(3
2
D2 − 15

2
D + 9

)
[l]2, (E.5)

where we have calculated up to e4.
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Appendix F

The Poisson bracket in dRGT
massive/bimetric gravity

In this Appendix, we calculate the Poisson bracket which we need in Section 4.3. In calculating
the Poisson bracket, it seems hard to take into account derivatives with respect to variables in
n̂i(γ, π, ω). However, in fact, we do not need to trace variables hidden in n̂i(γ, π, ω). To see
this fact, we recall variation of the Lagrangian density (4.102)

∂L
∂n̂k

= Ci
∂

∂n̂k
(Ln̂i +ND̂i

jn̂
j), (F.1)

where Ci represents the left hand side of (4.105), namely

Ci := R(g)
i − 2m2

√
det γ

1√
x̂
n̂Tω

{
β11+ β2

√
x̂
(
1TrD̂ − D̂

)
+ β3x̂

[
D̂2 − D̂TrD̂ +

1

2
1
(
Tr2D̂ − TrD̂2

)]}
i

. (F.2)

The variational principle leads to the equation of motion Ci = 0, which we have solved as
n̂i = n̂i(γ, π, ω). On the other hand, from the explicit formulae for the Lagrangian densities
(4.112) and (4.115), we can express the left hand side of (F.1) as

∂L
∂n̂k

= −∂Hf

∂n̂k
+N

∂C
∂n̂k

. (F.3)

Thus, we obtain

∂Hf

∂n̂k
= −LCk,

∂C
∂n̂k

= Ci
∂

∂n̂k
(D̂i

jn̂
j). (F.4)

Since we have solved Ci = 0 and substituted the solution, we conclude

∂Hf

∂n̂k
= 0,

∂C
∂n̂k

= 0. (F.5)

Therefore, when we concern C and Hf , we need not to take care of derivatives with respect to
variables contained in n̂i(γ, π, ω).
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F.1
{
C(x), C(y)

}
PB

We perform the explicit calculation of the Poisson bracket
{
C(x), C(y)

}
PB

. We omit the sub-
script “PB” for convenience. In dRGT massive/bimetric gravity, the Poisson bracket is deter-
mined by

{
F (x), G(y)

}
=

∫
d3z
[ δF (x)
δγmn(z)

δG(y)

δπmn(z)
− δF (x)

δπmn(z)

δG(y)

δγmn(z)
+ (ω and p derivatives)

]
, (F.6)

where we neglect the coefficients Mg and Mf . The above Poisson bracket contains functional
derivatives with respect to ωij and pij. However, we have only to calculate derivatives with
respect to γij and π

ij because C does not contain pij. Therefore, there is no difference between
the case of dRGT massive gravity and that of bimetric gravity. Results are translated each
other via the replacement m2 ↔M2

effm
2/M2

g .
Now, we write down the Poisson bracket using the Leibniz rule{
C(x), C(y)

}
PB

=
{
R0(x), R0(y)

}
(F.7)

+
{
R0(x), RjD̂j

ln̂
l(y)
}
+
{
RiD̂i

kn̂
k(x), R0(y)

}
(F.8)

+
{
R0(x), 2m

2√γ V (y)
}
+
{
2m2√γ V (x), R0(y)

}
(F.9)

+
{
RiD̂i

kn̂
k(x), RjD̂j

ln̂
l(y)
}

(F.10)

+
{
RiD̂i

kn̂
k(x), 2m2√γ V (y)

}
+
{
2m2√γ V (x), RjD̂j

ln̂
l(y)
}

(F.11)

+
{
2m2√γ V (x), 2m2√γ V (y)

}
, (F.12)

where γ is a shorthand notation for det γ and we have dropped the subscript (g) on R0,i. We
can immediately find that (F.12) vanishes because both terms do not contain π outside n̂i.
Similarly, (F.9) has no contribution, which can be shown as follows. Since

√
γ V (y) does not

contain π outside n̂, we notice

{
R0(x),

√
γ V (y)

}
∝ δR0

δπ

δ(
√
γV )

δγ
. (F.13)

Besides, there is no derivative on π in R0 and no derivative on γ in
√
γV . Thus, we find{

R0(x),
√
γ V (y)

}
∝ δ(x− y), and conclude{

R0(x),
√
γ V (y)

}
+
{√

γ V (x), R0(y)
}
∝ δ(x− y)− δ(y − x) = 0. (F.14)

We can simplify (F.8). Applying the Leibniz rule, we have{
R0(x), RjD̂j

ln̂
l(y)
}
=
{
R0(x), Rj(y)

}
D̂j

ln̂
l(y) +

{
R0(x), D̂j

ln̂
l(y)
}
Rj(y). (F.15)

We notice that D̂j
ln̂
l does not contain π outside n̂ and also does not have ∂γ terms, while R0

contains no ∂π terms. Then, we find
{
R0(x), D̂j

ln̂
l(y)
}
Rj(y) ∝ δ(x−y), and (F.8) is simplified

to be {
R0(x), Rj(y)

}
D̂j

ln̂
l(y) + D̂i

kn̂
k(x)

{
Ri(x), R0(y)

}
. (F.16)
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We proceed to take (F.10). Since D̂j
ln̂
l does not depend on πij outside n̂, we find{

RiD̂i
kn̂

k(x), RjD̂j
ln̂
l(y)
}
=D̂i

kn̂
k(x)

{
Ri(x), Rj(y)

}
D̂j

ln̂
l(y)

+ D̂i
kn̂

k(x)
{
Ri(x), D̂j

ln̂
l(y)
}
Rj(y)

+Ri(x)
{
D̂i

kn̂
k(x), Rj(y)

}
D̂j

ln̂
l(y)

+Ri(x)
{
D̂i

kn̂
k(x), D̂j

ln̂
l(y)
}
Rj(y) (F.17)

=D̂i
kn̂

k(x)
{
Ri(x), Rj(y)

}
D̂j

ln̂
l(y)

+Ri(x)
δD̂i

kn̂
k(x)

δγmn(x)

δRj(y)

δπmn(x)
· D̂j

ln̂
l(y)

−Rj(y)
δD̂j

ln̂
l(y)

δγmn(y)

δRi(x)

δπmn(y)
· D̂i

kn̂
k(x). (F.18)

We can also write down (F.11) with functional derivatives{
RiD̂i

kn̂
k(x), 2m2√γ V (y)

}
= −2m2 δ

√
γV (y)

δγmn(y)

δRi(x)

δπmn(y)
· D̂i

kn̂
k(x). (F.19)

Collecting all of these formulae, we obtain{
C(x), C(y)

}
=
{
R0(x),R0(y)

}
(F.20)

+
{
R0(x), Rj(y)

}
D̂j

ln̂
l(y)−

{
R0(y), Rj(x)

}
D̂j

ln̂
l(x) (F.21)

+ D̂i
kn̂

k(x)
{
Ri(x), Rj(y)

}
D̂j

ln̂
l(y) (F.22)

+ Smn(x)
δRj(y)

δπmn(x)
· D̂j

ln̂
l(y)− Smn(y)

δRi(x)

δπmn(y)
· D̂i

kn̂
k(x), (F.23)

where Smn is defined by

Smn(x) := Ri(x)
δD̂i

kn̂
k(x)

δγmn(x)
+ 2m2 δ

√
γV (x)

δγmn(x)
. (F.24)

The Poisson brackets among R0 and Ri are obtained in Appendix C, which says{
R0(x), R0(y)

}
= −

[
Ri(x)

∂

∂xi
δ(3)(x− y)−Ri(y)

∂

∂yi
δ(3)(x− y)

]
, Ri := γijRj, (F.25){

R0(x), Ri(y)
}
= −R0(y)

∂

∂xi
δ(3)(x− y), (F.26){

Ri(x), Rj(y)
}
= −

[
Rj(x)

∂

∂xi
δ(3)(x− y)−Ri(y)

∂

∂yj
δ(3)(x− y)

]
. (F.27)

We also need the following formula∫
d3x

δRj(x)

δπmn(y)
vj(x) =

∫
d3x

δ

δπmn(y)

[
2γjlDkπ

lk
]
vj(x)

=− 2

∫
d3x
(
Dkvl

) δπkl

δπmn(y)

=−Dmvn(y)−Dnvm(y) (F.28)
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for any vector vj = γjkvk. The symbol Di represents the covariant derivative constructed from
the spatial metric γij. In the following calculation, it is convenient to consider the integrated
Poisson bracket ∫

d3x

∫
d3yf(x)g(y){C(x), C(y)} (F.29)

with some functions f and g. We multiply two functions f(x) and g(y) to the Poisson bracket
{C(x), C(y)} and integrate over x and y. If we define C(f) :=

∫
d3xf(x)C(x) and C(g) :=∫

d3yg(y)C(y), this Poisson bracket is expressed as {C(f), C(g)} =
∫
d3x

∫
d3yf(x)g(y){C(x), C(y)}.

We integrate (F.20) with functions f(x) and g(y), and obtain∫
d3x

∫
d3yf(x)g(y)

{
R0(x), R0(y)

}
=

∫
d3x

∫
d3yf(x)g(y)

[
−Ri(x)

∂

∂xi
δ(3)(x− y) +Ri(y)

∂

∂yi
δ(3)(x− y)

]
=

∫
d3xg

∂

∂xi
(fRi)−

∫
d3yf

∂

∂yi
(gRi)

=

∫
d3x
(
g∂if − f∂ig

)
Ri (F.30)

Similarly, we can see that integration of (F.21) leads to∫
d3x
(
g∂if − f∂ig

)
R0D̂i

kn̂
k, (F.31)

and (F.22) is integrated to give∫
d3x
(
g∂if − f∂ig

)
RjD̂j

ln̂
lD̂i

kn̂
k. (F.32)

We apply (F.28) to the integrated formula for (F.23), and find

−2

∫
d3x
(
f∂mg − g∂mf

)
SmnγnjD̂j

kn̂
k. (F.33)

Hence, we obtain

{C(f), C(g)} = −
∫
d3x
(
f∂ig − g∂if

)
P i, (F.34)

where P i is determined by

P i := Ri +R0D̂i
kn̂

k +RjD̂j
ln̂
lD̂i

kn̂
k + 2SilγljD̂j

kn̂
k. (F.35)

Here, we express g(x) as g(x) =
∫
d3yg(y)δ(3)(x− y) in the first term on the right hand side of

(F.34) ∫
d3xf(x)

[ ∂
∂xi

g(x)
]
P i(x) =

∫
d3x

∫
d3yf(x)g(y)

[ ∂
∂xi

δ(3)(x− y)
]
P i(x). (F.36)
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We also write f(x) as f(x) =
∫
d3yf(y)δ(3)(x− y) in the second term on the right hand side of

(F.34), and rename integration variables as x↔ y∫
d3xg(x)

[ ∂
∂xi

f(x)
]
P i(x) =

∫
d3x

∫
d3yf(x)g(y)

[ ∂
∂yi

δ(3)(x− y)
]
P i(y). (F.37)

Therefore, we obtain

{C(f), C(g)} = −
∫
d3x

∫
d3yf(x)g(y)

[
P i(x)

∂

∂xi
δ(3)(x− y)− P i(y)

∂

∂yi
δ(3)(x− y)

]
, (F.38)

and read the Poisson bracket{
C(x), C(y)

}
= −

[
P i(x)

∂

∂xi
δ(3)(x− y)− P i(y)

∂

∂yi
δ(3)(x− y)

]
. (F.39)

At first glance, P i defined by (F.35) seems complicated, but we can show that it is proportional
to C. To see this fact, we write down Smn explicitly

Smn(x) = Ri(x)
δD̂i

kn̂
k(x)

δγmn(x)
+ 2m2 δ

√
γV (x)

δγmn(x)
= Ri

δD̂i
kn̂

k

δγmn
+ 2m2

(1
2

√
γ γmnV +

√
γ
δV

δγmn

)
,

(F.40)

where we have used δ
√
det γ = 1

2

√
det γ Tr(γ−1δγ). V is defined by (4.80), and in order to

calculate the derivative on it, we prepare the following variation with respect to γij

δ
√
x̂D̂ =δTr

√(
γ−1 − D̂n̂n̂T D̂T

)
ω

=
1

2
Tr
[√(

γ−1 − D̂n̂n̂T D̂T
)
ω

−1

δ
(
γ−1 − D̂n̂n̂T D̂T

)
ω
]

=
1

2

1√
x̂
(D̂−1)

i

j

[
δγjkωki − δ(D̂j

kn̂
k)n̂lD̂m

lωmi − D̂j
kn̂

kδ(n̂lD̂m
l)ωmi

]
=

1

2
√
x̂

[
ωki(D̂

−1)
i

jδγ
jk − (D̂−1)

i

jD̂
m
iωmln̂

lδ(D̂j
kn̂

k)− n̂iωmiδ(n̂
lD̂m

l)
]

=
1

2
√
x̂
ωij(D̂

−1)
j

kδγ
ki − 1√

x̂
n̂iωijδ(D̂j

kn̂
k)

=
1

2
√
x̂
Tr
(
ωD̂−1δγ−1

)
− 1√

x̂
n̂Tωδ(D̂n̂), (F.41)

and in the same way

δ(
√
x̂D̂)2 = Tr(ωδγ−1)− 2n̂TωD̂δ(D̂n̂), (F.42)

δ(
√
x̂D̂)3 =

3

2

√
x̂Tr(ωD̂δγ−1)− 3

√
x̂ n̂TωD̂2δ(D̂n̂). (F.43)

Here, it should be noted that the above calculation includes variation with respect to γij within
n̂i(γ, π, ω). We also need

δγij = −γik δγkl γlj, (F.44)
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which comes from γikγkj = δij. Then, we collect these variation, and after a rather lengthy
calculation, we find

δV = −1

2
V̄ mnδγmn +

Ci −Ri

2m2
√
γ
δ(D̂n̂)i, (F.45)

where we have defined

V̄ mn := γmi
[
β1√
x̂
ωD̂−1 + β2

{
(TrD̂)ωD̂−1 − ω

}
+ β3

√
x̂
{1
2
(Tr2D̂ − TrD̂2)ωD̂−1 + ωD̂ − (TrD̂)ω

}]
ij

γjn. (F.46)

Thus, we obtain

Smn = Ci
δD̂i

kn̂
k

δγmn
+m2√γ

(
γmnV − V̄ mn

)
. (F.47)

We put Ci = 0 and substitute (F.47) into (F.35), and we have

P i = CD̂i
kn̂

k − 2m2
√

det γ V̄ ilγljD̂j
kn̂

k +Ri. (F.48)

We apply (F.46) to the second term on the right had side of (F.48)

V̄ ilγljD̂j
kn̂

k = γim
(

1√
x̂
n̂Tω

[
β11+ β2

√
x̂
{
(TrD̂)1− D̂

}
+ β3x̂

{1
2

(
Tr2D̂ − TrD̂2

)
1+ D̂2 − (TrD̂)D̂

}])
m

, (F.49)

which leads to

Ri − 2m2
√
det γ V̄ ilγljD̂j

kn̂
k = γimCm. (F.50)

Therefore, we finally obtain

P i = CD̂i
jn

j + γijCj = CD̂i
jn

j. (F.51)

F.2
{
C(x),Hf(y)

}
PB

We perform the detailed calculation of
{
C(x),Hf (y)

}
PB

. It is useful to rely on the integrated
form ∫

d3y
{
C(x),Hf (y)

}
PB
. (F.52)

The calculation in Appendix F.1 has no difference between the case of dRGT massive gravity
and that of bimetric gravity. Their results are translated each other under the replacement
m2 ↔M2

effm
2/M2

g . On the contrary,
{
C(x),Hf (y)

}
PB

picks up a difference. Since Hf contains
momenta pij, we have such a result{

C(x),Hf (y)
}
bimetric

=
{
C(x),Hf (y)

}
massive

+
δR(f)

δp
× (· · · ). (F.53)
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However, our main purpose is to show
{
C(x),Hf (y)

}
PB

̸≈ 0. Thus, we have only to see{
C(x),Hf (y)

}
massive

̸≈ 0, and the following calculation is based on dRGT massive gravity. We
assume that Ci = 0 has been solved as n̂i = n̂i(γ, π, ω), and do not trace derivatives with respect
to variables in n̂i(γ, π, ω)

To begin with, we write down the Poisson bracket{
C(x),Hf (y)

}
=−

{
R0(x), (Ln̂

i + Li)Ri(y)
}

− 2m2
{
R0(x), L

√
det γ U(y)

}
−
{
RiD̂i

kn̂
k(x), (Ln̂j + Lj)Rj(y)

}
− 2m2

{
RiD̂i

kn̂
k(x), L

√
det γ U(y)

}
− 2m2

{√
det γ V (x), (Ln̂j + Lj)Rj(y)

}
− 4m2

{√
det γ V (x), L

√
det γ U(y)

}
, (F.54)

which can be simplified via the Leibniz rule{
C(x),Hf (y)

}
=−

{
R0(x), Ri(y)

}
(Ln̂i + Li)(y)

− 2m2
{
R0(x), L

√
det γ U(y)

}
− D̂i

kn̂
k(x)

{
Ri(x), Rj(y)

}
(Ln̂j + Lj)(y)

−Ri(x)
{
D̂i

kn̂
k(x), Rj(y)

}
(Ln̂j + Lj)(y)

− 2m2
{
RiD̂i

kn̂
k(x), L

√
det γ U(y)

}
− 2m2

{√
det γ V (x), Rj(y)

}
(Ln̂j + Lj)(y). (F.55)

We express the above formula with functional derivatives{
C(x),Hf (y)

}
=−

{
R0(x), Ri(y)

}
(Ln̂i + Li)(y)− D̂i

kn̂
k(x)

{
Ri(x), Rj(y)

}
(Ln̂j + Lj)(y)

+ 2m2 δR0(x)

δπmn(y)

δ
√
γ U(y)

δγmn(y)
· L(y)

−Ri(x)
δD̂i

kn̂
k(x)

δγmn(x)

δRj(y)

δπmn(x)
· (Ln̂j + Lj)(y)

+ 2m2D̂i
kn̂

k(x)
δRi(x)

δπmn(y)

δ
√
γ U(y)

δγmn(y)
· L(y)

− 2m2 δ
√
γ V (x)

δγmn(x)

δRj(y)

δπmn(x)
· (Ln̂j + Lj)(y). (F.56)

Here, we define

Umn :=
2√
det γ

δ
√
det γ U

δγmn
, (F.57)
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and remember the definition of Smn (F.24). Then, this Poisson bracket can be read as{
C(x),Hf (y)

}
=−

{
R0(x), Ri(y)

}
(Ln̂i + Li)(y)− D̂i

kn̂
k(x)

{
Ri(x), Rj(y)

}
(Ln̂j + Lj)(y) (F.58)

+m2L(y)
δR0(x)

δπmn(y)

√
γ Umn(y) (F.59)

+m2L(y)D̂i
kn̂

k(x)
δRi(x)

δπmn(y)

√
γ Umn(y) (F.60)

− Smn(x)
δRj(y)

δπmn(x)
(Ln̂j + Lj)(y). (F.61)

We calculate functional derivatives

δR0(x)

δπmn(y)
=

1√
det γ

(
γmn(x)π

k
k(x)− 2πmn(x)

)
δ(3)(x− y) (F.62)

δRi(x)

δπmn(y)
= −

(
γim(x)D(y)

n + γin(x)D(y)
m

)
δ(3)(x− y), (F.63)

and substitute the Poisson brackets among R0 and Ri. Integrating over y, (F.58) becomes∫
d3y(F.58) =Di

(
R0(Ln̂

i + Li)
)
+ D̂i

kn̂
kRjDi(Ln̂

j + Lj) + D̂i
kn̂

kDj

(
Ri(Ln̂

j + Lj)
)

=
(
DiR0 + (DiRj)D̂j

kn̂
k
)
(Ln̂i + Li) + D̂i

kn̂
kRjDi(Ln̂

j + Lj)

+ D̂i
kn̂

kRiDj

(
Ln̂j + Lj

)
+R0Di

(
Ln̂i + Li

)
, (F.64)

and (F.59) and (F.60) turn out to be∫
d3y(F.59) =m2L

(
γmnπ

k
k − 2πmn

)
Umn, (F.65)∫

d3y(F.60) =2m2
√
det γ γimDn(LU

mn)D̂i
kn̂

k. (F.66)

Along with (F.47), we integrate (F.61) to find∫
d3y(F.61) =2Smnγim∇n(Ln̂

i + Li)

=2m2
√

det γ VDi(Ln̂
i + Li)− 2m2

√
det γ V̄ mnγmiDn(Ln̂

i + Li). (F.67)

Collecting these formulae, we obtain∫
d3y
{
C(x),Hf (y)

}
=m2L

(
γmnπ

k
k − 2πmn

)
Umn + 2m2

√
det γ γimDn(LU

mn)D̂i
kn̂

k + C Di(Ln̂
i + Li)

+
(
D̂i

kn̂
kRj − 2m2

√
det γ V̄ ilγlj

)
Di(Ln̂

j + Lj) +
(
DiR0 + D̂j

kn̂
kDiRj)(Ln̂

i + Li). (F.68)
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Appendix G

The Poisson bracket in homogeneous
bi/tri-metric gravity

In this appendix, we calculate the Poisson bracket among

CN :=
M2

g√
det γ

(
πijπij −

1

2
πiiπ

j
j

)
−M2

g

√
det γ (3)R[γ]

+ a1
√

det γ
(
tr
√
γ−1ω − 3

)
+ a3

(√
det ρ−

√
det γ

)
, (G.1)

CL :=
M2

f√
detω

(
pijpij −

1

2
piip

j
j

)
−M2

f

√
detω (3)R[ω]

+ a2
√
detω

(
tr
√
ω−1ρ− 3

)
+ a1

(√
det γ −

√
detω

)
, (G.2)

and

CQ :=
M2

h√
det ρ

(
ϕijϕij −

1

2
ϕiiϕ

j
j

)
−M2

h

√
det ρ (3)R[ρ]

+ a3
√
det ρ

(
tr
√
ρ−1γ − 3

)
+ a2

(√
detω −

√
det ρ

)
, (G.3)

which we need in Chapter 6. In a homogeneous space, the Poisson bracket is defined as

{
F , G

}
PB

=
1

M2
g

(
∂F

∂γmn

∂G

∂πmn
− ∂F

∂πmn
∂G

∂γmn

)
+

1

M2
f

(
∂F

∂ωmn

∂G

∂pmn
− ∂F

∂pmn
∂G

∂ωmn

)
+

1

M2
h

(
∂F

∂ρmn

∂G

∂ϕmn
− ∂F

∂ϕmn
∂G

∂ρmn

)
. (G.4)

The calculation is done based on the trimetric case, but that of the bimetric case is obtained by
setting parameters a1 ̸= 0, a2 = 0 and a3 = 0. In the following, we omit the subscript “PB”.

To begin with, we calculate CNL := {CN , CL}. Since CN and CL do not contain ϕij, there
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is no contribution from the pair (ρij, ϕ
ij).

{
CN , CL

}
=
{ M2

g√
det γ

(1
2
πiiπ

j
j − πijπij

)
, −a1

√
det γ

}
+
{
− a1

√
det γ tr

√
γ−1ω ,

M2
f√

detω

(1
2
piip

j
j − pijpij

)}
=a1

(
M2

g√
det γ

{√
det γ ,

1

2
πiiπ

j
j − πijπij

}
−M2

f

√
det γ

detω

{
tr
√
γ−1ω ,

1

2
piip

j
j − pijpij

})
.

(G.5)

The point is that the result is proportional to a1. Each term can be manipulated as

M2
g

{√
det γ ,

1

2
πiiπ

j
j − πijπij

}
=

∂
√
det γ

∂γmn

∂

∂πmn

(1
2
πiiπ

j
j − πijπij

)
=

1

2

√
det γ γmn

(
γmnπ

i
i − 2πmn

)
=

1

2

√
det γ πii (G.6)

and

M2
f

{
tr
√
γ−1ω ,

1

2
piip

j
j − pijpij

}
=

∂tr
√
γ−1ω

∂ωmn

∂

∂pmn

(1
2
piip

j
j − pijpij

)
=

1

2

(√
γ−1ω

−1
γ−1
)mn (

ωmnp
i
i − 2pmn

)
=

1

2
pii tr

√
γ−1ω − tr

(√
γ−1ω pω

)
, (G.7)

where p represents a matrix with components pmn. Hence, we conclude

CNL =
{
CN , CL

}
= a1

[
1

2
πii −

√
det γ

detω

(1
2
pii tr

√
γ−1ω − tr

(√
γ−1ω pω

))]
. (G.8)

In this case, CNL ̸= 0 because there is an interaction between g and f , namely a1 ̸= 0. Thus, if
the Poisson bracket is non-trivial or not is determined by the interaction pattern. The others
CLQ := {CL, CQ} and CQN := {CQ, CN} are obtained via permutations among g = (N, γ),
f = (L, ω) and h = (Q, ρ)

We proceed to the Poisson bracket {CNL, CN}. Since CNL does not contain ρij and ϕ
ij, the
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pair (ρij, ϕ
ij) has no contribution.

1

a1

{
CNL, CN

}
=
1

2
M2

g
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πkk,

1√
det γ

(
πijπij −

1

2
πiiπ

j
j
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√
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}
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√
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√
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√
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√
det γ
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{
tr
(√

γ−1ω pω
)
, tr
√
γ−1ω

}
. (G.9)

Noticing that πkk = γklπ
kl and pkk = ωklp

kl, each term is calculated as

M2
g

{
πkk,

1√
det γ

(
πijπij −

1

2
πiiπ

j
j

)}
=

3

2
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det γ
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2
πiiπ
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)
, (G.10)

M2
g

{
πkk,

√
det γ (3)R[γ]

}
= −1

2

√
det γ (3)R[γ], (G.11)

M2
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πkk,
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det γ tr
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= −

√
det γ tr
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γ−1ω, (G.12)
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{
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= −3

2
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det γ, (G.13)
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{
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γ−1ω, (G.15)
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M2
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)
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2
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)
, (G.17)
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where π and p represent matrices with components πmn and pmn. Therefore, we conclude{
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=
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. (G.18)

It is almost clear that
{
CNL, CN

}
̸≈ 0.

The Poisson bracket
{
CNL, CQ

}
is easy to calculate

{
CNL, CQ

}
/a1 =
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(G.19)

Each element is calculated to be

M2
g

{
πkk, tr

√
ρ−1γ

}
= −1

2
tr
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ρ−1γ, (G.20)

M2
f

{
pkk,
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detω
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= −3

2

√
detω, (G.21)

M2
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{
tr
(√

γ−1ω pω
)
,
√
detω

}
= −1
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√
detω tr

√
γ−1ω. (G.22)

Thus, we obtain{
CNL, CQ

}
/a1 = − a3

4M2
g

√
det ρ tr

√
ρ−1γ +

a2
4M2

f

√
det γ tr

√
γ−1ω. (G.23)

Apparently, it is not automatically vanish
{
CNL, CQ

}
̸≈ 0.

Other Poisson brackets such as
{
CNL, CN

}
or
{
CNQ, CN

}
,...etc are obtained via permuta-

tions among g = (N, γ), f = (L, ω) and h = (Q, ρ).
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