
 

 

 

 

 

Two distinct roles of the yorkie/yap gene during 
homeostasis in the planarian Dugesia japonica 

	
 

(Dugesia	
 japonicaプラナリアで yorkie/	
 yap遺伝子の 2つの機能)	
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Hwang, Byulnim 
 



i 

 

ABSTRACT 

Adult planarians possess somatic pluripotent stem cells called neoblasts that give rise to all missing 

cell types during regeneration and homeostasis. Recent studies revealed that the Yorkie 

(Yki)/Yes-associated protein (YAP) transcriptional coactivator family plays an important role in the 

regulation of tissue growth during development and regeneration, and therefore we investigated the 

role of a planarian yki-related gene (termed Djyki) during regeneration and homeostasis of the 

freshwater planarian Dugesia japonica. We found that knockdown of the function of Djyki by RNA 

interference (RNAi) downregulated neoblast proliferation and caused regeneration defects after 

amputation. In addition, Djyki RNAi caused edema during homeostasis. These seemingly distinct 

defects induced by Djyki RNAi were rescued by simultaneous RNAi of a planarian mats-related gene 

(termed Djmats), suggesting an important role of Djmats in the negative regulation of Djyki, in accord 

with the conservation of the functional relationship of these two genes during the course of evolution. 

Interestingly, Djyki RNAi did not prevent normal protonephridial structure, suggesting that Djyki 

RNAi induced the edema phenotype without affecting the excretory system. Further analyses revealed 

that increased expression of the D. japonica gene DjaquaporinA (DjaqpA), which belongs to a large 

gene family that encodes a water channel protein for the regulation of transcellular water flow, 

promoted the induction of edema, but not defects in neoblast dynamics, in Djyki(RNAi) animals. Thus, 

we conclude that Djyki plays two distinct roles in the regulation of active proliferation of stem cells 

and in osmotic water transport across the body surface in D. japonica. 
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1. Introduction 

 

Planarians possess somatic pluripotent stem cells, neoblasts, in adults, which provide us a good 

opportunity to investigate the molecular mechanisms underlying stem cell dynamics in vivo (Agata & 

Watanabe, 1999;; Agata & Umesono, 2008; Umesono & Agata, 2009). In addition, planarians have 

regenerative ability from tiny fragment after amputation, based on their somatic pluripotent stem cells 

system, suggesting that planarians are powerful experimental animals to understand molecular 

mechanisms underlying regeneration. 

The neoblasts were defined by their morphological features, which were observed by electron 

microscopy (EM) (Pedersen 1959; Morita 1969; Hori 1992). They are small in size and have scanty 

cytoplasm with a few mitochondria, many free ribosomes, no endoplasmic reticulum, and chromatoid 

bodies, which is a unique cytoplasmic structure. When planarians are irradiated with X-ray, neoblasts 

are specifically eliminated and planarians lose the ability of regeneration (Wolff & Dubois 1948). It 

has been reported that the transplantation of a single neoblst into irradiated planarian restores 

regeneration activity (Wagner et al., 2011), demonstrating the pluripotency of neoblasts in planarian. 

Initially, DjvlgA (vasa-like gene A) was identified as a neoblast-marker gene (Shibata et al. 1999). 

After that, several molecular markers to distinguish neoblasts have been identified. PCNA, 

S-phase-specific gene, was revealed as a powerful tool for detection of proliferating stem cells (Orii et 

al., 2005). Furthermore, staining with BrdU and anti-phosphorylated histone H3 antibody (pH3), 

markers of mitotic cells (S- and M-phase, respectively), visualized neoblasts (Newmark & Sánchez 

Alvarado, 2000), since only the neoblasts maintain proliferative activity in planarian somatic cells. 

 Based on the feature, planarian excretory system defines as protonephridial, which is closed up by 

a terminal cell, in contrast to metanephridial system, which is opened into the coelomic cavity such as 

vertebrate nephron. The excretory system consists of a series of tubules and flame cells. By beating of 

the flame cell cilia bundle, body fluid is filtered through the tubules and excess water and liquid waste 
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are secreted from the body. This excretory system is required for osmotic regulation, critically, to the 

freshwater planarian (Wilson & Webster, 1974). However, the structure and function of planarian 

protonephridia is still not well understood. 

In Drosophila, the Hippo signaling pathway involves a kinase cascade that controls the activity of 

a transcriptional co-activator protein, Yorkie (Yki) (Huang et al., 2005; Pan, 2010) (Fig. 1). Hippo 

(Hpo) interacts with the scaffolding protein Salvador (Sav) and then activates Warts (Wts) and Mats 

by phosphorylation (Udan et al., 2003; Wei et al., 2007; Wu et al., 2003). Yki is inactivated through 

phosphorylation by the Warts/Mats complex and is tethered in the cytoplasm by binding to 14-3-3 (Oh 

& Irvine, 2008). Dephosphorylation of Yki enables it to translocate into the nucleus and interact with 

Scalloped (Sd), a DNA-binding transcription factor, to promote target gene expression (Wu et al., 

2008; Zhang et al., 2008).  

The kinase cascade of hippo signaling pathway is well conserved in vertebrate also (Fig. 1). 

STE20 family protein kinase, MST1/2 (Hpo orthologs), make a complex with Salvador1 to enhance 

kinase activity and then directly phosphorylate Lats1/2 (Wts orthologs) and Mob1 (Mats ortholog) 

(Wu et al., 2003; Chan et al., 2005; Praskova et al., 2008). This phosphorylation leads to Lats1/2 

activation. Activated Lats1/2 interact with and phosphorylate YAP (Dong et al., 2007; Huang et al., 

2005). When Yap is phosphorylated, Yap is sequestered in the cytoplasm by promoting its interaction 

with 14-3-3 and degraded in an ubiquitin-proteasome-dependent manner (Zhao et al., 2010). 

Dephosphorylated Yap translocates into the nucleus and activates target gene expression through the 

interaction with TEAD (Sd ortholog) (Wanget al., 2009).  

   The Hippo signaling pathway controls organ size by regulating cell proliferation and apoptosis in 

animals (Harvey et al., 2003; Jia et al., 2003; Pantalacci et al., 2003; Udan et al., 2003; Wu et al., 

2003). Deficiency of yap, a homolog gene of yki in vertebrates, caused decreased proliferation in 

breast and epidermal cells (Schlegelmilch et al., 2011; Zhi et al., 2012). By contrast, overexpression 

of yki/yap caused ectopic cell proliferation, resulting in overgrowth of organs (Dong et al., 2007;  
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Fig. 1. Schematic models of the Hippo pathway in Drosophila and mammals. 
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Huang et al., 2005). These observations suggest that the expression level of Yki/Yap directly 

influences cell proliferation to control organ size during development in flies and vertebrates. 

Furthermore, a recent study highlighted the crucial role of Yap1 in active cell proliferation during limb 

regeneration in Xenopus (Hayashi et al., 2014). 

In addition, it has been reported that the Hippo signaling pathway is involved in tissue regeneration 

in Drosophila and mammal. In the Drosophila midgut, expression of Yki is mostly restricted to the 

cytoplasm of intestinal stem cells (ISC), suggesting that Yki might be inactivated. In response to 

injury, however, Yki is translocated into nucleus and facilitates ISC proliferation (Karpowicz et al., 

2010; Shaw et al., 2010). Furthermore, expression of Yap is increased by intestinal damage and 

deficiency of Yap leads to malfunction of regeneration, showing Yap has an important role in tissue 

regeneration in mammal (Cai et al., 2010).  

Recently, two groups have reported the function of Hippo signaling pathway, specially focusing on 

yki/yap-related genes using two different free-living flatworm species as models (Table. 1). In the 

basal flatworm Macrostomum lignano, knockdown of the function of the gene Mac-Yap by RNA 

interference (RNAi) resulted in reduced proliferation of pluripotent stem cells (called neoblasts) 

during homeostasis (Demircan & Berezikov, 2013). In contrast, deficiency of Mac-Hpo, Mac-Sav, 

Mac-Wts, and Mac-Mats caused increase proliferative activity and formed overgrowth demonstrating 

that yki/yap is functionally conserved between flatworms and mammals. In the case of the freshwater 

planarian Schmidtea mediterranea, however, Smed-yki RNAi led to hyperproliferation of neoblasts 

during homeostasis, resulting in the opposite phenotype to that in M. lignano (Lin & Pearson, 2014). 

Specially, Smed-yki is also required for maintenance of excretory system, but Mac-Yap is not. 

Furthermore, they showed the possibility that Smed-sd might function as co-activator of Smed-yki. 

Even though Mac-Yap and Smed-yki showed opposite function in stem cell dynamics, both Mac-Yap 

RNAi and Smed-yki RNAi failed to regenerate after amputation.   

The aquaporins (AQPs) are water channels to facilitate transcellular water flow across cell  
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Table 1. Comparisons between Smed-yki and Mac-Yap. 

 

 Smed-yki (Lin & Pearson, 2014) Mac-Yap(Demircan & Berezikov, 2013) 

Proliferative activity repression activation 

Regeneration required required 

Excretory system required - 

Inhibitor - Mac-Hpo, Sav, Wts, Mats 

Co-activator Smed-sd - 
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membranes in response to osmotic gradients (Carbrey & Agre, 2009; Verkman, 2012). Commonly, 

water molecules are transported by AQP-dependent passive mechanism, however, AQP Knockout 

studies demonstrate that AQPs is controlled by lots of regulation and have diverse distribution 

depending on cell and tissue type (Papadopoulos & Verkman, 2013). In human, thirteen AQPs have 

been identified and these AQPs express in a wide range of tissue; brain, kidney, Heart, and lung (Day 

et al., 2014). AQP4, the most well studied AQP, is known to have a critical role for maintenance of 

CNS functions. It has been reported that water permeability was reduced a sevenfold in primary 

cultured astrocytes derived from AQP4-deficient mice (Solenov et al., 2004). Moreover, AQP4 

deletion showed a tenfold reduction in blood-brain barrier (BBB) water permeability in mouse brain 

(Papadospoulos et al., 2005). Even though hundreds of AQP homologues have been already 

discovered from the vertebrate to lower organisms (Tanghe et al., 2006; Soveral et al., 2010), it is 

unknown whether AQPs exist and regulate water flow in planarian. Edema, swelling, is caused by 

abnormal accumulation of fluid in the space that surrounds the body’s tissues and organs. Normally, 

edema is well studied in human and mouse. AQP4 is one of the key regulators for edema formation 

(Badaut et al., 2011) and is the most abundant AQP in brain (Badaut et al., 2002). 

  Since Hippo signaling pathway is already known to have functions to regulate proliferative activity 

and regeneration in Drosophila and mammal, we expected that Yki/Yap might be a key clue to 

elucidate stem cells dynamics and regeneration process of planarian in the molecular level. To assess 

the role of yki/yap, we used Dugesia japonica, another species of free-living freshwater planarian, and 

performed RNAi experiments of its yki/yap-related gene (termed Djyki). We found that Djyki RNAi 

resulted in decreased rather than increased proliferation of neoblasts during homeostasis, a situation 

similar to that in M. lignano, but not to that in S. mediterranea. As expected, Djyki RNAi showed 

regeneration defect after amputation. In addition, Djyki RNAi also caused edema formation during 

homeostasis, as Smed-yki RNAi did in S. mediterranea. It has been reported that Smed-yki RNAi 

caused an aberrant protonephridial (excretory) system, resulting in the edema formation (Lin & 
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Pearson, 2014). However, we revealed that Djyki RNAi caused edema formation by increased 

expression of the gene D. japonica aquaporinA (DjaqpA), which belongs to a large gene family that 

encodes a water channel protein involved in the regulation of transcellular water flow, without 

affecting protonephridial structures. Thus, our findings represent qualitatively different aspects of the 

function of Djyki from that of Smed-yki in the two respective freshwater planarians, D. japonica and S. 

mediterranea.  
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2. Materials and methods 

 

2.1 Animals 

A clonal strain of the planarian D. japonica was used. Planarians were cultured at 24°C in artificial 

diluted sea water consisting of sea water powder (Instant Ocean, Aquarium systems) in dissolved 

water. They were fed chicken liver one or two times per 2 weeks. Planarians which were 6 to 8 mm in 

length and that had been starved for at least 1 week were used in all experiments. 

 

2.2 X-ray irradiation 

One week starved planarians were irradiated at 18kV, 5mA, by using an X-ray generator (SOFTEX 

B-5; SOFTEX, Tokyo, Japan). Five days after irradiation, animals were used for experiments. 

 

2.3 Feeding RNA interference 

Double-stranded RNA (dsRNA) was synthesized as previously described (Rouhana et al., 2013). 

Fifteen planarians were fed a mixture of 25 µl of chicken liver solution, 5 µl of 2% agarose, and 10 µl 

of 4 µg / µl dsRNA, 3 times at an interval of 2 days (Sakurai et al., 2012). For regeneration studies, 

planarians were amputated into three body fragments (head, trunk containing a pharynx, and tail) 1 

day after the last dsRNA feeding. Control animals were fed egfp dsRNA. The effect of RNAi was 

confirmed by quantitative RT-PCR, using a set of primers specific to the gene that was targeted. 

 

2.4 Quantitative RT-PCR 

Total RNA was extracted by using ISOGEN-LS (Wako) and cDNA was synthesized from 1 µg of total 

RNA using a QuantiTect Reverse Transciription Kit (Qiagen). The synthesized cDNAs were diluted 

10-fold and used for gene expression analysis performed using an ABI PRISM 7900 HT (Applied 

Biosystems). The following series of incubation conditions was used for each PCR reaction: 50°C for 
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2 minutes, 95°C for 15 minutes, 50 cycles of 95°C for 15 seconds, 60°C for 30 seconds, 72°C for 1 

minute. Quantitative analysis of the amount of each gene product was carried out as previously 

described (Ogawa et al., 2002). All quantitative RT-PCR data were normalized against expression 

level of DjGAPDH, a housekeeping gene. A fold-change of the expression level of genes between 

control and RNAi-treated animals was reported using the mean of three biological replicates of 

quantitative RT-PCR assays. 

The primer sets for each target gene were as follows: 

Djyki forward: GACTGCTTGTTGGGATTTTTG 

     reverse: GTCAAATACAAAATGATCTCAAAGG 

Djmats forward: GGTAGATCGGAAGGAATTAGCTCC 

       reverse: TGAGCTGTTTGATCTGTTTGGCT 

DjaqpA forward: CTTTTGGACGGCTCTATTTG 

       reverse: ACAAGCTCCTAACCCAATGA 

DjaqpB forward: CAGCTGCTAGTTTGGGAAAA 

       reverse: CCACCTAAAAGCGGTCCTAT 

DjaqpC forward: TATGTACAGGCAGCACAGGA 

       reverse: CAGAATTCCAGCCAAAAATC 

Djegfr5 forward: TGGGGACGAATTCTGGAGTA 

       reverse: TGCCGATTTAGTTGACTCTCTG 

DjpiwiA forward: CGAATCCGGGAACTGTCGTAG 

       reverse: GGAGCCATAGGTGAAATCTCATTTG 

Djpcna forward: ACCTATCGTGTCACTGTCTTTGACCGAAAA 

       reverse: TTCATCATCTTCGATTTTCGGAGCCAGATA 

 

2.5 Whole-mount in situ hybridization  
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The plasmid pBluescript SK containing the gene from the EST clone was used as the template for 

RNA probe synthesis. The plasmid was linearized with NotI or Kpn I at the 5’ or 3’ region of the 

target genes. The linearized DNA was used as a template for antisense or sence RNA probe by T7 or 

T3 RNA polymerase (Fermentas). Antisense and sense RNA probe was labeled with digoxigenin 

(Dig) according to the manufacturer’s instructions (Roche Diagnostics). Planarians were treated with 

2% hydrochloric acid (HCl) in 5/8 Holtfreter’s solution for 5 min at room temperature (RT) and fixed 

in 5/8 Holtfreter’s solution containing 4% paraformaldehyde for 90 min at 4°C. The samples were 

bleached with 5% hydrogen peroxide (H2O2) in methanol overnight at RT under fluorescent light. 

Then, bleached samples were washed with a xylene and ethanol mixture (1:1) for 1 h at 4°C and 

washed by methanol. After washing by methanol, the samples were rinsed with 100%, 75%, 50% and 

25% ethanol in Holtfreter’s solution consecutively for 30 min each at 4°C. After rinsing with ethanol, 

the samples were washed one more time by PBST (phosphate buffered saline containing 0.1% Triton 

X-100) for 30 min at 4°C and then treated with 5 mg/ml proteinase K in PBST for 10 min at 37°C. 

After washing with cold PBST, the samples were re-fixed with 4% paraformaldehyde in 5/8 

Holtfreter’s solution for 30 min at 4°C and rinsed with PBST twice each for 5 min 4°C. The samples 

were incubated in hybridization buffer for 1 hour at 55°C. Digoxigenin (Dig)-labeled RNA probes 

were denatured for 10 min at 65°C and then mixed with the samples in hybridization. After 38 h of 

incubation at 55°C, the samples were washed in washing solution 6 times for 30 min each at 55°C and 

rinsed in Buffer I (maleic acid buffer containing 0.1% Triton X-100) twice at RT. The rinsed samples 

were treated with Buffer II (Buffer I containing 1% blocking reagent (Roche Diagnostics)) for 

blocking for 30 min at RT and treated with 1/2000 alkaline phosphatase-conjugated anti-Dig antibody 

(Roche Diagnostics) in Buffer II overnight at 4°C. Samples were rinsed in Buffer I 6 times for 30 

minutes each at RT and washed in TMN solution two times at RT. A mixture of 3.5 mg/ml 

5-bromo-4-chloro-3-indolyl phosphatase (Roche Diagnostics) and 2.7 mg/ml 4-nitro blue tetrazolium 

chloride (Roche Diagnostics) in TMN solution was used for detection of colored signals (Umesono et 
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al., 1997). After the color detection, the samples were rinsed with TE buffer to stop the reaction and 

then stored in TE buffer at 4°C. 

 

2.6 Whole-mount immunohistochemistry 

The processing of samples was the same as for whole-mount in situ hybridization before hybridization. 

In the case of immunohistochemistry, the samples were incubated for overnight at 50°C. After 

washing with Buffer I (maleic acid buffer containing 0.1% Triton X-100) 6 times for 30 min each at 

RT, Buffer II (Buffer I containing 1% blocking reagent (Roche Diagnostics)) was treated for blocking 

for 30 min at RT. After blocking, the samples were incubated in Buffer II containing 1/1000 diluted 

primary antibody overnight at 4°C. The samples were washed in Buffer I 6 times for 30 min each at 

RT, and incubated in Buffer II containing 1/1000 fluorescent-labeled secondary antibody (Alexa Fluor 

594 or Alexa Fluor 488 (Molecular Probes)) and 1/1000 Hoechst33342 (Calbiochem) for 3 h at 4°C. 

The samples were rinsed in Buffer I 6 times for 30 min each at RT, and mounted with Fluorescent 

Mounting Medium (Dako). 

 

2.7 Statistical analysis 

The quantitative data were analyzed by one-way analysis of variance (ANOVA) and the statistical 

significance of differences was determined by Student’s t-test. P values more than 0.05 were taken as 

not significant and error bars represent ± standard error of the mean (SEM) of three independent 

biological replicates.  

 

2.8 cDNA clones 

cDNA clones encoding the respective proteins Djyki (accession number LC011458), Djmats 

(LC011527), DjaqpA (LC012043), DjaqpB (LC011528), DjaqpC (LC011529), Djegfr5 (LC011530), 

DjCA (LC011531), and Djcubilin (LC011532) were identified based on deduced protein sequence 
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similarity in a previously constructed library of expressed sequence tags (ESTs) (Mineta et al., 2003) 

using tblastn program.  
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3. Results 

 

3.1 Identification of homologs 

We identified a single yki-related gene (termed Djyki) from our cDNA database of D. japonica 

(Nishimura et al., 2012) using BLAST search based on protein sequence similarity to figure out the 

role of Hippo signaling pathway in D. japonica. Djyki encodes a protein with a tead-binding domain, 

which is necessary for the interaction with Sd to activate transcriptional activity, with 38% and 92% 

identity to Mac-Yap and Smed-Yki, respectively, and also a WW domain, which is known to be 

required for the interaction with other proteins (Zhao et al., 2009), with 52% and 87% identity to 

Mac-Yap and Smed-Yki, respectively (Fig. 2A). We also identified homologs of the hippo pathway 

components, a single mats-related gene (termed Djmats), a single hpo-related gene (termed Djhpo), a 

single wts-related gene (termed Djwts), which provided us a good opportunity to assess whether 

Djmats, Djhpo, and Djwts protein functions as an evolutionarily conserved negative regulators of 

Djyki in this planarian species. Furthermore, to check conserved enhanced activity, we identified a 

single sd-related gene (termed Djsd).  

Firstly, we analyzed the expression patterns of these five genes in non-regenerating intact animals. 

Whole-mount in situ hybridization (WISH) demonstrated that Djyki, Djmats, Djwts, and Djsd were 

ubiquitously expressed throughout the body (Fig. 2B). Only Djhpo localized cephalic ganglia (CG), 

ventral nerve cord (VNC), and pharynx (Fig. 2B). 
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Fig. 2. Identification of Hippo pathway components and their expression. (A) Schematic 

representation of the protein structures of DjYki, Smed-Yki, and Mac-Yap. (B) Expression patterns of 

homologs by performing Whole-mount in situ hybridization (WISH). 
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3.2 Djyki RNAi caused edema formation during homeostasis 

Next, we performed RNAi experiments of Djyki, Djmats, Djhpo, Djwts, or Djsd. We fed double-strand 

RNA (dsRNA) three times in a week with two days interval. In single Djmats(RNAi), Djhpo(RNAi), 

Djwts(RNAi), and Djsd(RNAi) animals, we could not detect any obvious defect during homeostasis or 

regeneration (data not shown). In contrast, we found that Djyki(RNAi) non-regenerating intact animals  

showed the edema phenotype, swelling by an excessive accumulation of water into the body, during 

homeostasis (Fig. 3A). All of these animals died within 17 days after the first feeding of Djyki dsRNA 

(Fig. 3B). We performed double RNAi to analyze whether the edema phenotype induced by Djyki 

RNAi was rescued by simultaneous Djmats, Djhpo, or Djwts RNAi. Since mats, hpo, and wts showed 

conserved inhibitory functions against yki from drosophila to vertebrate, we expected clear rescue 

phenotypes after double RNAi experiments. Surprisingly, only Djmats RNAi rescued Djyki RNAi 

induced edema (Fig. 3A), but Djhpo and Djwts did not (data not shown). As a consequence, the 

survival rate of double Djyki and Djmats(RNAi) animals was increased prominently when compared to 

that of single Djyki(RNAi) animals (Fig. 3B). Single Djmats(RNAi) did not affect survival of 

planarians. There is no obvious difference between control (EGFP(RNAi)) and Djmats(RNAi). The 

survival rate of Djyki(RNAi) or/and Djmats(RNAi) was confirmed by performing an independent 

experiment (data not shown). Since Djmats showed conserved negative activity for the function of 

Djyki, we tested whether Djsd also have conserved function as positive regulator of Djyki. However, 

double RNAi of Djyki and Djsd did not show any significant difference compared to Djyki single 

RNAi animals (data not shown). Even though we identified several key genes of Hippo pathway, only 

Djmats functions against Djyki as a conserved inhibitory regulator. 
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Fig. 3. Djyki RNAi leads to edema, which is rescued by Djmats RNAi. (A) Live image of intact 

animals at 10 days after last RNAi feeding. (B) Survival curves for RNAi-treated planarians. n=15. 

The experiment was performed twice independently to confirm that the results were reproducible. 
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3.3 Djyki and Djmats expressed in differentiated cells, but not in stem cells 

Based on results of RNAi assay, we were focusing on demonstration of the relationship between Djyki 

and Djmats. Since X-ray irradiation specifically eliminates somatic pluripotent stem cells (neoblasts) 

in planarians, the lack of change of the expression patterns of Djyki and Djmats after X-ray irradiation 

suggests that Djyki and Djmats are expressed in X-ray-insensitive differentiated cells, not in neoblasts 

(Fig. 4A). We used antisense and sense mRNA probes, respectively, to demonstrate specificity of 

antisense mRNA probe. To further assess the effect of X-ray irradiation, we also performed 

quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and confirmed that there was 

no reduction of the expression level of these two genes by X-ray irradiation (Fig. 4B). These data 

suggested that Djyki and Djmats located in differentiated cells, but not in stem cells. 
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Fig. 4. Djyki and Djmats are expressed in differentiated cells. (A) Expression patterns of Djyki and 

Djmats, analyzed by WISH after X-ray irradiation. (B) Expression levels of Djyki and Djmats, 

analyzed by qRT-PCR after X-ray irradiation. No significant variation was observed between control 

and X-ray irradiated animals. 
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3.4 Djyki RNAi caused a decrease of neoblast proliferation 

Since yki/yap is known as a co-transcription factor to facilitate proliferation, we tested proliferative 

activity in Djyki RNAi. Quantification of the expression levels of DjpiwiA, a neoblast-specific marker 

gene, and Djpcna, a proliferative cell marker gene, by qRT-PCR revealed that Djyki RNAi caused a 

decrease rather than an increase the expression levels of both DjpiwiA and Djpcna when compared to 

the control during homeostasis (Fig. 5A). Consistent with this observation, Djyki RNAi resulted in a 

decrease of the number of mitotic cells, as assayed by staining with anti-phospho-histone H3 antibody 

(Fig. 5B). In addition, we also detected head-regeneration defects in Djyki(RNAi) animals (Fig. 5C). 

Djyki(RNAi) animals failed to regenerate their eyes after amputation. As shown in Fig. 5D, over 60% 

of Djyki(RNAi) have one or no eye at 3 day post amputation (dpa), suggesting that they have 

regeneration defect. In control animals, however, 15% of planarians showed cyclopia or no eye at 3dpa 

also. To confirm the regeneration defect in Djyki RNAi, we tested later time point, 6dpa. At 6dpa, all 

of control planarians successfully regenerated two eyes. In contrast, 35% of Djyki(RNAi) still failed to 

regenerate normal eyes at 6dpa. Even though success rate of head regeneration was slightly increased 

from 3dpa to 6dpa, Djyki RNAi planarians showed distinct regeneration defect. As we expected, all of 

the defects related to neoblast activity and regeneration defect in Djyki(RNAi) animals were rescued by 

simultaneous RNAi of Djmats (Fig. 5A, B, D), while leaving Djyki RNAi was effective. These 

observations suggest that Djyki is required for active proliferation of neoblasts and regeneration, in 

which processes Djmats negatively regulates Djyki. 

These observations raised the possibility that edema itself may decrease the number of neoblasts 

and also cause regeneration defects, and therefore we carefully examined this possibility. To verify the 

relationship between edema and regeneration defects, we first examined the role of the gene D. 

japonica epidermal growth factor receptor 5 (Djegfr5), a D. japonica ortholog of the Smed-egfr5 gene 

in S. mediterranea, since it has been reported that Smed-egfr5 RNAi induced edema by causing an 

aberrant protonephridial (excretory) system during homeostasis (Rink et al., 2011). We confirmed that  
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Fig. 5. Reduced proliferation and defective regeneration caused by Djyki RNAi. (A) Significant 

decrease of DjpiwiA and Djpcna in Djyki(RNAi) at 3 days after the last feeding. * P<0.05. (B) The 

number of pH3-positive cells (n=5). * P<0.05. Unit volume: 1.1 x 10
-2

mm
3
. (C) Head regeneration at 3 

dpa in trunk and tail fragments. Live image. Arrows indicate eyes. (D) Quantification of number of 

eyes at 3 days (left) and 6 days (right) post amputation. n=40. (E) Djegfr5 RNAi caused the edema 

phenotype and normal head regeneration. Live image. Asterisk indicates bloated region. Arrows indicate 

eyes. (F) Graphs display levels of DjpiwiA and Djpcna expression in Djegfr5(RNAi) animals. 
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Djegfr5 RNAi also caused edema formation in D. japonica; however, Djegfr5(RNAi) animals seemed 

to undergo normal head regeneration after amputation, in contrast to Djyki(RNAi) regenerating animals 

(Fig. 5E). In addition, qRT-PCR analysis demonstrated that Djegfr5 RNAi did not affect the 

expression levels of DjpiwiA or Djpcna during homeostasis (Fig. 5F). 
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3.5 Djyki is not required for maintenance of protonephridial system 

We next examined the protonephridial system in Djyki(RNAi) animals since Smed-yki RNAi caused 

edema due to dysfunction of the protonephridial system in S. mediterranea (Lin & Pearson, 2014). We 

used two protonephridial marker genes, D. japonica carbonic anhydrase (DjCA) and Djcubilin, and 

counted the number of clusters of DjCA-positive cells or Djcubilin-positive cells in Djyki(RNAi) 

animals, and compared to those in control animals. Fluorescent in situ hybridization (FISH) assay 

demonstrated that the number of clusters of these two cell types were indeed significantly decreased in 

Djegfr5(RNAi) animals (Fig. 6A). In contrast, we did not detect any significant difference of the 

number of these two clusters between control and Djyki(RNAi) animals (Fig. 6B). Furthermore, 

qRT-PCR analysis demonstrated that Djyki RNAi did not affect the expression level of Djegfr5 (Fig. 

6C). Consistent with this observation, double Djyki and Djegfr5 RNAi resulted in a dramatic increase 

of the number of dead planarians when compared to single Djyki or Djegfr5 RNAi (Fig. 6D).  

   These observations suggest that i) edema itself may not affect the proliferative activity of neoblasts 

or regeneration and that ii) Djyki and Djegfr5 may have different mechanisms of blocking edema 

formation during homeostasis.  
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Fig. 6. Djyki is not required for excretory system. (A), (B) Fluorescence in situ hybridization 

(FISH) for staining RNAs transcribed from DjCA (green), Djcubilin (magenta), and protonephridial 

marker genes, after Djegfr5 and Djyki RNAi. Graphs display number of DjCA
+
 expression and 

Djcubilin
+
 expression clusters (right). n=3. * P<0.05. (C) Djegfr5 level in Djyki(RNAi) analyzed by 

qRT-PCR. (D) Survival curves after RNAi feeding. 
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3.6 DjaqpA was upregulated in Djyki RNAi 

It has been demonstrated that aquaporin has an important role in the regulation of osmotic water 

transport across cell plasma membranes (Carbrey & Agre, 2009; Verkman, 2012). Specifically, 

dysregulation of aquaporin-4 correlates with the formation of brain edema in rodents and humans 

(Papadopoulos & Verkman, 2005, 2007; Sun et al., 2003; Zador et al., 2009). These observations 

encouraged us to propose the idea that dysregulation of aquaporin-4-related genes in Djyki(RNAi) 

animals might cause the edema phenotype during homeostasis. 

   Firstly, we succeeded in identifying three distinct aquaporin-4-related genes, which we termed 

DjaqpA, B, and C, respectively, in the genome sequences of D. japonica and examined the expression 

patterns of these three aquaporin genes by WISH. All three genes were expressed ubiquitously 

throughout the body (Fig. 7A). In contrast to DjaqpB and C, DjaqpA was also expressed strongly in 

the brain-branch region (Fig. 7A). Interestingly, WISH and qRT-PCR analyses showed that Djyki 

RNAi caused a significant increase of the level of expression of DjaqpA during homeostasis when 

compared to that in control (Fig. 7B, C). This increase was suppressed by simultaneous Djmats RNAi 

(Fig. 7C), suggesting that the expression level of DjaqpA depends on the activity level of Djyki during 

homeostasis. By contrast, the expression levels of DjaqpB and C were not changed in Djyki(RNAi) 

animals (Fig. 7D), showing that the Djyki activity is specifically required for the transcriptional 

regulation of DjaqpA during homeostasis. Furthermore, we also found that Djegfr5 RNAi did not 

affect the expression level of DjaqpA (Fig. 7E), suggesting that edema itself is not a cause of the 

increased expression of DjaqpA during homeostasis. 
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Fig. 7. Djyki RNAi Upregulates expression of DjaqpA. (A) Expression patterns of DjaqpA, B, and C 

in intact animals. (B), (C) Level of DjaqpA in Djyki(RNAi) planarian as determined by WISH and 

qRT-PCR. * P<0.05. (D)There was no significant change of DjaqpB or C expression level after Djyki 

RNAi. (E) DjaqpA expression level in Djegfr5(RNAi) planarians analyzed by qRT-PCR. 
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3.7 Djyki negatively regulates the expression of DjaqpA to block edema formation during 

homeostasis 

Next, we tested whether or not increased expression of DjaqpA has a role in Djyki RNAi-induced 

edema formation. Surprisingly, the edema phenotype induced by Djyki RNAi was rescued by 

simultaneous RNAi of DjaqpA (Fig. 8A), as well as by Djmats RNAi (Fig. 4A). These data suggest 

that increased expression of DjaqpA promotes edema formation in Djyki(RNAi) animals during 

homeostasis. Under this condition, interestingly, we found that simultaneous DjaqpA RNAi did not 

rescue either the reduced proliferative activity of neoblasts or the regeneration defects induced by 

Djyki RNAi (Fig. 8B, C).  

   Therefore, the identification and characterization of DjaqpA enables us to conclude that Djyki 

plays at least two distinct roles in the regulation of stem cell dynamics and homeostasis in D. japonica. 
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Fig. 8. Upregulation of DjaqpA is necessary for Djyki RNAi-induced edema. (A) Phenotypes of 

Djyki or/and DjaqpA RNAi at 10 days after last RNAi feeding. (B) Levels of DjpiwiA and Djpcna 

expression in Djyki or/and DaqpA RNAi planarians. ** P<0.01, * P<0.05. (C) Classification by 

number of eyes at 3 days (left) and 6 days (right) post amputation. n=15. (D) WISH and qRT-PCR 

data showed that DjaqpA is expressed in X-ray-insensitive cells. 
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4. Discussion 

 

We showed here that in D. japonica, Djyki is required for stem cell proliferation and regeneration, and 

also for osmoregulation (Fig. 2, 4). In addition, we found that Djmats has an evolutionarily conserved 

inhibitory function against Djyki and is involved in all of the contexts in which Djyki is required (Fig. 

2, 4). Furthermore, the most interesting discovery here was that Djyki negatively regulates the 

expression of DjaqpA and thereby blocks edema formation during homeostasis (Fig. 6, 7). 

   From mammals to flatworms, yki/yap has a conserved role to activate stem cell proliferation 

(Demircan & Berezikov, 2013; Schlegelmilch et al., 2011; Zhi et al., 2012). Our study demonstrated 

that Djyki RNAi reduced the proliferative activity of neoblasts in D. japonica. We speculate that this 

defective proliferative activity may lead to the regeneration defect seen in Djyki(RNAi) animals. 

Indeed, our data in D. japonica fit with the general conception about the function of the yki/yap gene 

family among animal species. As far as we were able to determine, however, Djyki is not highly 

expressed in neoblasts. For this reason, we attempted to further assess the relationship between edema 

and reduced proliferation of neoblasts in Djyki(RNAi) animals, and we concluded that they are 

mutually independent phenotypes induced by Djyki RNAi (Fig. 9). However, it is possible to speculate 

that regulation of body size and osmotic regulation should be coupled to maintain homeostasis of body 

conditions. These observations suggest that Djyki regulates neoblast proliferation in a 

non-cell-autonomous manner. Further investigations will be required to understand the 

non-cell-autonomous function of Djyki in the regulation of neoblast proliferation in D. japonica. For 

this, it will be very important to identify which types of Djyki-expressing differentiated cells promote 

neoblast proliferation in a non-cell-autonomous manner. 

   We identified five homologs, yki, mats, hpo, wts, and sd in D. japonica (Table. 2), and confirmed 

functional activity of only two genes, yki and mats, by performing RNAi assay. In M. lignano, 

Mac-Hpo, Mac-Wts, and Mac-Mats showed opposite phenotype against Mac-Yap after RNAi assay  
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Table 2. Comparisons between Djyki, Smed-yki and Mac-Yap. 

Gray parts indicates new discoverywhich we have demonstrated and identified in D. japonica. 

 Djyki(Hwang, 2015) Smed-yki(Lin & Pearson, 2014) Mac-Yap Demircan & Berezikov, 2013) 

Proliferative activity activation repression activation 

Regeneration  required required required 

Excretory system not required required - 

aqp expression required - - 

Co-activator - Smed-sd - 

Inhibitor Djmats - Mac-Hpo, Sav, Wts, Mats 

 

 

 

 

 

 

Fig. 9.  Yorkie activates stem cells proliferation and inhibits edema formation in independent 

manner in D. japonica 
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(Demircan & Berezikov, 2013). Two homologs of sd were identified in S. mediterranea and showed 

similar function as Smed-yki did (Lin & Pearson, 2014). In D. japonica, we found that yki is negatively 

regulated by mats and required for stem cell proliferation and osmoregulation (Fig. 10). Still, we do 

not understand how yki regulates those things and why other homologs, hpo, wts, and sd, did not show 

any phenotype when they were deficient. In Drosophila and vertebrate, Mats inhibits Yki activity by 

binding to Wts. In other ward, Mats is not able to phosphorylate and regulate Yki directly. Therefore, 

further studies are necessary to elucidate how Djmats regulates Djyki and what gene has a role as the 

bridge to connect between Djmats and Djyki. 

   Even though D. japonica and S. mediterranea have similar biotic features as a sister species 

(Nishimura et al, 2012), yki/yap-related genes have different functions in stem cells dynamics and 

homeostasis in both species. Surprisingly, Djyki and Smed-yki showed opposite functions to regulate 

stem cells proliferation (Table. 2). To inhibit edema formation, Djyki and Smed-yki chose different 

mechanism, regulation of Djaqp expression and protonephridial system, respectively (Table. 2). The 

hippo pathway is well known to regulate diverse cellular processes such as proliferation, development, 

regeneration, and metastasis (Harvey et al, 2013). Specially, Yki, a key factor of the hippo pathway, 

has functions to be involved in various processes and is controlled by multiple mechanisms. Therefore, 

it is difficult to pick only a couple of function of yki by performing RNAi analysis. Complex and 

tangled functions of yki might show distinct phenotype after knockdown of yki in D.japonica and S. 

meditteranea.  

  Since planarians live in water, it is important to maintain the internal water balance of the in body 

by modulating osmotic water transport across the body surface depending on the environmental 

conditions under which they are living during homeostasis. The edema phenotype is an obvious sign 

that signifies the dysfunction of osmoregulation. Previous reports demonstrated that destruction of the 

excretory (protonephridial) system leads to edema in S. mediterranea (Rink et al., 2011; Scimone et al., 

2011). By contrast, we found that increased expression of DjaqpA induced by Djyki RNAi could also  
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Fig. 10. The functions of key components of Hippo pathway in D. japonica. 
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induce edema in D. japonica, while leaving the protonephridial system normal. This increase of 

expression was restored to the normal level by simultaneous RNAi of Djmats, which we showed here 

encodes an inhibitor of Djyki, resulting in a lack of edema formation. X-ray irradiation of planarians 

demonstrated that DjaqpA was expressed in differentiated cells, as Djyki was (Fig. 7D). These 

observations suggest that DjaqpA acts as a downstream effecter in the transcriptional circuit of Djyki 

for the regulation of osmotic water transport across the body surface. Interestingly, DjaqpB and C are 

not involved in this circuit. 

   It is still largely unknown what kinds of signaling pathways regulate the expression of aquaporin 

genes in animals. Our data for the first time suggest the possibility that Hippo signaling might be 

involved in the regulation of aquaporin expression during homeostasis. It will be interesting to further 

assess this possibility in other animals, especially in mammals, including human. 
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