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Abstract 

 

-Background 

Although previous voxel-based studies using features extracted by atlas-based parcellation 

produced relatively poor performances on the prediction of Alzheimer's disease (AD) in 

subjects with mild cognitive impairment (MCI), classification performance usually depends 

on features extracted from the original images by atlas-based parcellation. To establish 

whether classification performance differs depending on the choice of atlases, support vector 

machine (SVM)-based classification using different brain atlases was performed. 

-New Method 

Seventy-seven three-dimensional T1-weighted MRI data sets of subjects with amnestic MCI, 

including 39 subjects who developed AD (MCI-C) within three years and 38 who did not 

(MCI-NC), were used for voxel-based morphometry (VBM) analyses and analyzed using 

SVM-based pattern recognition methods combined with a feature selection method based on 

the SVM recursive feature elimination (RFE) method. Three brain atlases were used for the 

feature selections: the Automated Anatomical Labeling (AAL) Atlas, Brodmann's Areas 

(BA), and the LONI Probabilistic Brain Atlas (LPBA40). 

-Results 

The VBM analysis showed a significant cluster of gray matter density reduction, located at 

the left hippocampal region, in MCI-C compared to MCI-NC. The SVM analyses with the 

SVM-RFE algorithm revealed that the best classification performance was achieved by 

LPBA40 with 37 selected features, giving an accuracy of 77.9%. The overall performance in 

LPBA40 was better than that of AAL and BA regardless of the number of selected features. 

-Conclusions 
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These results suggest that feature selection is crucial to improve the classification 

performance in atlas-based analysis and that the choice of atlases is also important. 
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Introduction 

 

Although there is no real treatment for Alzheimer’s disease (AD), medications 

currently available to alleviate cognitive and behavioral symptoms of AD may delay clinical 

progression to AD (Petersen et al., 2005). AD pathophysiological processes precede the 

clinical manifestation of symptoms of AD. The earlier the intervention against symptomatic 

progression begins, the more effective the intervention may be. Earlier diagnosis or 

prediction of the conversion of mild cognitive impairment (MCI) to AD is therefore required 

for earlier intervention. It is necessary to explore effective biomarkers for early AD detection 

in the earliest stages of the disease. 

The recently revised diagnostic criteria for AD incorporated biomarkers of neuronal 

injury such as brain atrophy (Albert et al., 2011). Currently, even clinical magnetic resonance 

imaging (MRI) scanners allow the acquisition of images with high spatial resolution, to 

provide AD biomarkers that reflect brain atrophy (Frisoni et al., 2010). Structural MRI-based 

features that are widely used in such pattern recognition methods include: voxel-based whole 

brain volume data, surface-based measures such as cortical thickness, and features based on 

specific regions of interest (ROIs) such as hippocampus and entorhinal cortex. In this context, 

MRI studies across the whole brain, such as voxel-based morphometry (VBM) techniques 

(Ashburner and Friston, 2000), could be more useful in investigating biomarkers for early 

AD detection, rather than those based on specific ROIs. For example, Karas et al. (2004) 

conducted a VBM study to analyze patterns of gray matter (GM) loss and revealed that 

subjects with MCI had significant local GM reductions in the medial temporal lobe, the 

insula, and the thalamus compared to normal elderly controls. GM loss on structural MRI can 

be shown in a specific topographic pattern involving temporal lobes and parietal cortices 

(Jack et al., 2011). VBM studies have also demonstrated that patterns of GM loss correlate 
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with neurofibrillary tangle pathology (Vemuri et al., 2008; Whitwell et al., 2008). AD 

neuropathology is mainly characterized by the extracellular deposition of fibrillary β-amyloid 

protein and intracellular formation of neurofibrillary tangles composed of abnormal tau 

protein (Nelson et al., 2009). Braak et al. (2011) reported that β-amyloid protein and 

neurofibrillary tangles were significantly correlated and that pathological aggregation of tau 

protein might begin earlier than previously thought; these authors also suggest that possibly 

these events occur in subcortical nuclei rather than in the transentorhinal region of the 

perirhinal cortex. 

Pattern recognition methods based on machine-learning techniques such as the 

support vector machine (SVM) are promising tools for computer-aided diagnosis of AD 

(Klöppel et al., 2008, 2012). It is, however, currently unrealistic to use a hundred thousand 

voxels of MRI data for each scan directly for machine-learning-based pattern recognition, 

because of the possibility of poor generalization from overfitting, which could arise in a case 

in which the number of features is much larger than the number of subjects. Therefore, 

dimensionality reduction in the feature space, such as feature extraction and feature selection, 

is usually necessary to achieve good generalization, which is required for possible clinical 

utility. 

Among various approaches to classifying subjects with MCI using structural MRI, 

voxel-based methods can be roughly classified into two categories: data-driven adaptive 

feature extraction methods (Fan et al., 2007; Misra et al., 2009; Davatzikos et al., 2011) and 

atlas-based parcellation methods, using a predefined brain atlas (Cuingnet et al., 2011; Cho et 

al., 2012). Data-driven feature extraction methods adaptively define ROIs depending on the 

input data without a predefined brain atlas, which are difficult to interpret anatomically. On 

the other hand, atlas-based parcellation methods allow feature vector extraction with good 

anatomical interpretability. An atlas-based parcellation approach can be used as an 
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anatomical filter for dimensionality reduction to construct gray matter volumes for dozens of 

predetermined ROIs from hundreds of thousands of voxels in each subject’s whole-brain 

structural MRI. The extracted regional feature variables for each subject can be employed to 

create multivariate models to classify each subject into different groups (Whitwell et al., 

2011). Examples of such an anatomical brain atlas include Brodmann’s areas (BA; Brodmann, 

1909) and the Automated Anatomical Labeling Atlas (AAL; Tzourio-Mazoyer et al., 2002). 

These atlases are publicly available from the Internet, in open source software packages 

(MRIcro/MRIcron, http://www.mricro.com/). Although previous benchmark studies showed 

poor classification performance of an atlas-based method (Cuingnet et al., 2011; Cho et al., 

2012), classification performance strongly depends on the features that are extracted from the 

atlas used for parcellation. It remains unclear whether atlas-based parcellation methods 

applied to different atlases would in fact lead to different classification performances. 

The aim of our study was to establish whether the performance when predicting 

conversion to AD using GM volumes from the structural MRI of subjects with MCI differs 

depending on the choice of the atlas. To accomplish this goal, SVM-based classification 

using three different brain atlases was used. We also investigated whether a feature selection 

method could enhance the classification accuracy. 

 

Materials and methods 

 

Subjects 

 

Studies on the Diagnosis of Early Alzheimer's Disease—Japan (SEAD-J), a 

prospective multicenter cohort study of subjects with amnestic MCI was started in 2005 by 

the National Center for Geriatrics and Gerontology, to achieve the early prediction of AD 
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conversion (Kawashima et al., 2012). In this cohort study, 114 subjects with amnestic MCI 

were recruited from nine different facilities across Japan (Supplementary Table 1) between 

January 2006 and March 2007. All of the subjects were living independently in the 

community at the time of their baseline evaluation. This study was approved by the Ethics 

Committee at every participating institution. Each subject signed an informed consent form 

after a full explanation of the procedures had been offered. 

Diagnosis of MCI was based on an interview with neurologists that contained 

evidence of reduced cognitive capacity, normal activities of daily living, and the absence of 

dementia (Cui et al., 2011). All of the patients were free of significant underlying medical, 

neurological, or psychiatric illness. The patients were initially accessed using a 

neuropsychological test battery, including the Mini-Mental State Examination (MMSE; 

Folstein et al., 1975), Alzheimer’s Disease Assessment Scale-Cognitive Subscale, Japanese 

version (ADAS-J cog; Homma et al., 1992), Clinical Dementia Rating (CDR; Morris, 1993), 

Geriatric Depression Scale (GDS; Yesavage et al., 1982; Nyunt et al., 2009), Everyday 

Memory Checklist (EMC; Kazui et al., 2003), and the Wechsler Memory Scale-Revised 

Logical memory test (WMS-R LM; Sullivan, 1996). In accordance with the inclusion criteria, 

MCI patients were between 50 and 80 years old, with an MMSE score ≥ 24, a GDS score ≤ 

10, a WMS-R LM I score ≤ 13, an LM II part A and part B score (maximum, 50) ≤ 8, and a 

CDR memory box score restricted to 0.5. Patients who had an educational level (defined as 

the number of completed years of formal education) of under 6 years were excluded. The 

patients were observed at 1-year intervals for 3 years and underwent the following 

standardized procedures. Trained clinicians performed baseline and follow-up 1-year 

evaluations. The CDR, MMSE, EMC, and WMS-R-LM were completed at each visit during 

follow-up. 18F-2-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET) and 

MRI were optional during follow-up. The ADAS-J cog was also administered as an option in 
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selected centers. Conversion to dementia was established when CDR became ≥ 1. The 

diagnosis of AD was made in a given center if a patient fulfilled both CDR ≥ 1 and the 

National Institute of Neurological Disorders and Stroke–Alzheimer’s Disease and Related 

Disorders Association (NINCDS-ADRDA) probable AD criteria (McKhann et al., 1984). The 

diagnosis of other causes was based on established clinical criteria for each disease, including 

vascular dementia (VaD) (Devanand et al., 2010), dementia with Lewy bodies (DLB) 

(McKeith et al., 1996), frontotemporal dementia (FTD) (McKhann et al., 2001), and 

Creutzfeldt-Jakob disease (CJD) (Knopman et al., 2001). 

Of all of the 114 participants, 37 subjects were excluded from our analyses due to the 

following reasons: 2 had no baseline three-dimensional T1-weighted MRI scans, 3 converted 

to non-AD dementia (VaD, DLB, and FTD), 23 withdrew from the study within 3 years, and 

9 were excluded due to the lack of whole-brain coverage in their baseline T1-weighted MRI 

scans. 

As a result, we identified 77 subjects with amnestic MCI from the SEAD-J 

comprising 39 who developed AD within 3 years (AD converters, MCI-C; 20 females, 19 

males; age ± SD = 71.3 ± 6.7 years ranging from 50 to 79 years; and MMSE = 25.6 ± 1.8 

ranging from 24 to 30) and 38 who did not (non-converters, MCI-NC; 22 females, 16 males; 

age ± SD = 70.6 ± 6.9 years ranging from 55 to 79 years; and MMSE = 27.0 ± 2.0 ranging 

from 24 to 30). Among these AD converters, 21 converted to AD within 1 year after 

inclusion, 14 within 2 years, and 4 within 3 years. Baseline demographic data and 

neuropsychological test results of these subjects are shown in Table 1. The two groups 

significantly differed in the MMSE, ADAS-J cog, WMS-R-LM, and GDS scores at the 

baseline. No significant differences were observed in the age, gender, and education. 

 

MRI acquisition and preprocessing 
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A three-dimensional structural MRI at the baseline was acquired on each subject with 

T1-weighted gradient echo sequences on 1.5 T or 3.0 T MRI scanners at the nine facilities. 

Details about MRI acquisition conditions are provided in Supplementary Table 2. 

We used the SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8) and VBM8 

Toolbox (Kurth et al., 2010; http://dbm.neuro.uni-jena.de/vbm) on MATLAB 7.12 for 

preprocessing the baseline MRI data. The images were first segmented into GM, white matter 

and cerebrospinal fluid using Unified Segmentation (Ashburner and Friston, 2005) 

implemented in SPM8 and a technique based on the maximum a posteriori (MAP) estimation 

(Rajapakse et al., 1997) and the Partial Volume Estimation (PVE) (Tohka et al., 2004) 

implemented in VBM8 with standard parameters. Then, the segmented images were spatially 

normalized using the Diffeomorphic Anatomical Registration using the Exponentiated Lie 

algebra (DARTEL) algorithm (Ashburner, 2007). Jacobian modulation was applied to 

compensate for the effect of spatial normalization and to restore the original absolute GM 

density in the segmented GM images. The normalized, segmented, and modulated images 

were smoothed with an 8-mm full-width at half-maximum isotropic Gaussian kernel. 

 

Voxel-based morphometry (VBM) analysis 

 

The smoothed baseline MR images were analyzed using a conventional VBM method 

(Ashburner and Friston, 2000) to investigate the differences in the density of the GM between 

the MCI-C and the MCI-NC group. We conducted a statistical analysis that included an 

adjustment for age, gender, and scan facilities as covariates using SPM8. The statistical 

threshold was set at p<0.001, was uncorrected for multiple comparisons and was cluster-level 

corrected for multiple comparisons (p<0.05). 
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Feature extraction using atlas-based parcellation 

 

We performed atlas-based parcellation to extract feature vectors from the segmented, 

normalized MR images using three different anatomically labeled brain atlases: the AAL 

atlas, BA, and the LONI Probabilistic Brain Atlas (LPBA40; Shattuck et al., 2008) (Fig. 1). 

The AAL atlas is a single-subject atlas based on the Montreal Neurological Institute 

(MNI) Colin27 T1 atlas. This MNI single-subject brain template was obtained from 27 high-

resolution T1-weighted scans of a young male. Each acquisition was spatially normalized to 

the MNI305 average template using a linear nine-parameter transformation (Holmes et al., 

1998). In each hemisphere, 45 ROIs were drawn manually every 2 mm on the axial slices of 

the MNI single-subject brain. In addition, AAL includes a cerebellar parcellation with 26 

ROIs (Schmahmann et al., 1999, 2000) (Fig. 1). Finally, 116 ROIs were defined, including 

the cerebellum for the AAL atlas. 

The BA of the human cortex originally shows 43 cytoarchitectonic areas (Brodmann, 

1909), where areas with the numbers 12–16 and 48–51 are not shown (Zilles et al., 2010). 

We used the BA atlas in MRIcro with 41 areas, where BA 31 (dorsal posterior cingulate area), 

33 (pregenual area), and 52 (parainsular area) were not included, and BA 48 (retrosubicular 

area) was included. For the purpose of the comparison with the other two atlases, we 

subdivided each of the 41 areas of BA symmetrically with respect to the mid-sagittal plane to 

obtain 82 ROIs in total (Fig. 1). Both AAL and BA in MRIcro were based on the “ch2” 

image, which was created using 27 scans from a single individual (Holmes et al., 1998). 

The LPBA40 atlas is a population-based probabilistic atlas that is constructed from 

high-resolution T1-weighted MRI scans of 40 healthy, normal volunteers comprising 20 

males and 20 females with the average age of 29.2 ± 6.3 years (mean ± S.D.; min = 19.3, max 
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= 39.5) (Shattuck et al., 2008). LPBA40 has three variants depending on the spatial 

normalization strategy. We used the LPBA40/AIR version. Each of the 40 volumes was 

aligned to the ICBM 452 T1 Warp 5 Atlas (ICBM452W5). The ICBM452W5 was created 

from 452 brains, and each volume was normalized to MNI305 average brains using a linear 

12-parameter transformation and a subsequent non-linear 5th-order polynomial warping. In 

LPBA40, a total of 56 structures were manually labeled, including 50 cortical structures, 4 

subcortical nuclei, the brainstem, and the cerebellum (Fig. 1). 

We obtained deformation fields in the same manner as the above spatial 

normalization. Then we applied the forward deformation field to each atlas ROIs to map to 

MNI space. The mean GM density within each ROI, as calculated by modulation with the 

Jacobian, was computed with linear regression to adjust image quality differences among the 

facilities and used as the feature vectors. 

 

Classification using a support vector machine (SVM) 

 

Multivariate pattern recognition analysis using machine-learning methods has been 

applied to the classification of MCI subjects. In particular, SVM (Vapnik, 1998) is one of the 

widely used methods because of its remarkable performance of classification as well as the 

simplicity of its theory and implementation. For example, Aguilar et al. (2013) demonstrated 

that SVM was superior to other multivariate classifiers for classification of subjects with AD 

and cognitive normal and SVM also provided similar predictive values for MCI 

differentiation although there were no significant differences between classifiers. 

Accordingly, we chose SVM as a classifier for predicting the conversion from MCI to AD 

because we anticipated achieving a better classification performance. 
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We used an SVM classifier with a radial basis function (RBF) in accordance with the 

practical guide by Hsu et al. (2003). The classification performance was assessed using a 

leave-one-out cross-validation (LOOCV) strategy. We used MATLAB 7.6 and the LIBSVM 

library (Chang and Lin, 2011; Software available at 

http://www.csie.ntu.edu.tw/~cjlin/libsvm) to implement an RBF-kernel SVM with LOOCV. 

The hyperparameters (C, γ) of the RBF kernel were optimized using a two-step grid-search 

technique with 5-fold cross-validation according to the recommendation described in a 

practical guide to SVM classification (Hsu et al., 2003). First, the best pair of Ccoarse and 

γcoarse was found by a coarse grid-search on log2C = −5, −3, …, 15 and log2γ = −15, −13, …, 

3. Then, the best pair of Cfine and γfine was obtained by a fine grid-search on log2C = Ccoarse−2, 

Ccoarse−1.75, …, Ccoarse+1.75, Ccoarse+2 and log2γ = γcoarse−2, γcoarse−1.75, …, γcoarse+1.75, 

γcoarse+2. The best (Cfine, γfine) was used to generate the final classifier for each training set. 

 

Feature selection using the SVM recursive feature elimination (SVM-RFE) 

 

In general, feature sets that are extracted from an input data set still contain redundant 

or irrelevant features as well as those that are important for classification. The higher the 

dimension the feature space is, the worse the performance of the classification. The ultimate 

goal of pattern recognition is to improve the generalization. 

To enhance the performance of SVM-based classification, we performed a feature 

selection method that was based on the support vector machine recursive feature elimination 

(SVM-RFE) algorithm (Guyon et al., 2002). The SVM-RFE algorithm uses SVM to produce 

a feature ranking. Features that do not contribute to separation are eliminated according to the 

feature ranking. We used a linear kernel in the SVM-RFE procedure in the same manner as 

the original algorithm proposed by Guyon et al. (2002), and implemented the algorithm using 
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MATLAB 7.6 according to the literature (Guyon et al., 2002). The hyperparameter C of the 

linear kernel was optimized using a two-step grid-search technique with 5-fold cross-

validation in a similar manner to the above. A total of 77 feature ranked lists were obtained 

by the following SVM-RFE LOOCV iterative process: 

Inputs: feature vectors X0 = [x1, x2, ..., xi, xn]T and class labels y = [y1, y2, ..., yi, ..., yn]T 

for i = 1 to n 

 Split X0 into a test set (subject i) and a training set (the remaining subjects) 

 Initialize: 

 Subset of surviving features: s = [1, 2, ..., m] 

 Feature ranked list: r = [] 

 repeat 

  Restrict training set to good feature indices 

  Optimize hyperparameters of linear and RBF kernel SVM classifier 

  Train the classifiers 

  Compute the weight vector 

  Compute the weight magnitude as ranking criterion 

  Find the feature with smallest ranking criterion 

  Update feature ranked list 

  Eliminate the feature with smallest ranking criterion 

  Predict the test set with the RBF kernel classifier 

 until s = [] 

end for 

Output: feature ranked list r 

After SVM-RFE, we computed classification measures for feature j; accuracy ACCj as the 

percentage of trials that were correctly classified, sensitivity SENj as the percentage of trials 
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that were correctly classified as MCI-C, and specificity SPCj as the percentage of trials that 

were correctly classified as MCI-NC. The number of features that provided the best accuracy 

in the SVM-RFE procedure was used as the number of features selected after SVM-RFE. As 

a result of SVM-RFE, we obtained a 77 x m matrix L (Fig. 2), where m is the number of 

features of each data set. Each row of the matrix L corresponds to the feature ranked list r for 

the ith LOOCV iteration. The feature ranked list r is a 1 x j matrix of the features ordered by 

relevance. The first element of the feature ranked list r had the index of the most relevant 

feature. More specifically, L(i, j) refers to the feature number of the rank j of the ith LOOCV 

iteration. To obtain a final ranking of features, we first converted the matrix L to the RFE 

rank matrix R according to the equation R(i, L(i, j)) = j. We then converted the resulting RFE 

rank matrix R to the RFE rank score matrix according to the following equation: 

S(i, j) = 0 (R(i, j) > k) 

or 

S(i, j) = (k – R(i, j) + 1) / k (R(i, j) ≤ k) 

where S(i, j) is the score for feature j of the ith LOOCV iteration (0 ≤ S ≤ 1); k is the number 

of selected features after SVM-RFE for the data set; and R(i, j) is the rank number of feature j 

in the matrix R (1 ≤ R ≤ m; m is the number of features of the data set). Then we computed 

the sum of each column of the RFE rank score matrix S and normalized the resulting matrix 

between 0 and 1 to obtain a 1 x m feature rank score matrix. We sorted these feature rank 

scores into numerical order to obtain a final selection ranking of features after SVM-RFE for 

each atlas data set (Supplementary Table 3). 

 

Statistical analysis 

In order to investigate whether the classification accuracies were significantly 

different from one another, we applied leave-one-out cross validation a hundred times using 
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different atlases and with features selected through the SVM-RFE procedure. Two-way 

ANOVA followed by Tukey’s multiple comparison test was performed for statistical analysis 

of atlas and feature selection using the statistical software packages R version 2.15.2 (The R 

Foundation for Statistical Computing, http://www.r-project.org/). To examine the behavior of 

the classifiers, we generated receiver operating characteristics (ROC) curves and computed 

areas under the curve (AUC) and 95% confidence intervals (CI) using the pROC package for 

R (Robin et al., 2011). CIs for AUCs were computed with DeLong’s method. Pairwise 

comparisons of ROC curves were performed using DeLong’s test implemented in the pROC 

package. LOOCV was also used to test these final classifiers. 

 

Results 

 

VBM analysis 

 

Fig. 3 shows the result of VBM analysis. We found a significant cluster of GM 

density reduction in MCI-C compared with MCI-NC. The 2,391 mm3 cluster was located in 

the parahippocampal gyrus and hippocampus on the left side (peak voxel at MNI coordinate 

−26, −42, −9). The reverse contrast (MCI-NC<MCI-C) showed no significant regions of GM 

loss. 

 

Features selected with SVM-RFE 

 

 Fig. 4 illustrates the RFE rank score matrices S from three brain atlases. The vertical 

axis of the matrix represents a subject number, i.e., each step of the LOOCV procedure. The 

horizontal axis represents the number of features in each atlas. The top-ranked feature (the 
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feature that was selected last during the SVM-RFE procedure) having a score of 1 was 

colored in white. The score of the features that were not selected was 0 and colored in black. 

For example, in the map from the AAL, for the left hippocampus, feature number 37 was the 

most often selected during the LOOCV procedure. As can be seen from Fig. 4, “hot” regions 

that were often selected and “cold” regions that were rarely selected almost tidily line up 

vertically, suggesting that similar regions were selected through each step of the LOOCV 

procedure. 

Fig.5 lists the regions that were selected with the SVM-RFE procedure, which 

revealed the highest performance in the three brain atlases. In AAL, 20 regions out of 116 

were selected, 20 out of 82 in BA, and 37 out of 56 in LPBA40. The left hippocampus was in 

the highest rank in AAL, which is consistent with the results of the VBM analysis. In BA, the 

left parahippocampal region was ranked first. In LPBA40, the left parahippocampal gyrus 

was ranked second following the left inferior occipital gyrus. 

Fig. 6 illustrates selected region maps with the SVM-RFE procedure overlaid to 

representative structural MR images. The regions with the highest rank are colored in white 

and the lowest rank are colored in black. The results of AAL and BA were similar, e.g., the 

left hippocampal region was the most often selected. In contrast, more regions that included 

the left hippocampal region were often selected in LPBA40. 

 

SVM classification combined with SVM-RFE 

 

Fig. 7 shows the plots of the classification accuracy versus the number of selected 

features in the dataset extracted with each brain atlas and selected based on the SVM-RFE. 

First, the classification accuracy differs depending on the choice of atlases. LPBA40 allowed 

the highest accuracy, AAL was the second, and BA was the lowest. Second, all the plots had 
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a peak between the minimum and maximum numbers of features. The number of features at 

the peak, i.e., the number of features selected in the SVM-RFE procedure, was the largest in 

LPBA40. 

Table 2 lists the sets of accuracy, sensitivity, and specificity for the classification 

without feature selection and with feature selection based on the SVM-RFE algorithm. As a 

result of the SVM-RFE-based feature selection, 20 features were selected in AAL and BA, 

and 37 features were selected in LPBA40. The feature selection method improved the 

classification accuracy in all of the atlases. The best classification performance was obtained 

by using LPBA40 with 37 features, giving a correct classification rate of 77.9%, a sensitivity 

of 76.9%, and a specificity of 78.9%. AAL with 20 features distinguished MCI-C from MCI-

NC with 71.4% accuracy, 69.2% sensitivity, and 73.7% specificity. BA with 20 features 

reached 67.5% accuracy, 64.1% sensitivity, and 71.1% specificity. 

Fig. 8 demonstrates classification accuracies obtained with features extracted using 

different atlases (left) and features further selected through the SVM-RFE procedure (right). 

Note that the accuracies shown in Fig. 8 were obtained with the fixed set of 37 features that 

we chose based on the ranking after SVM-RFE, while the accuracies shown in Fig. 7 were 

calculated with the 80 LOOCV results of different classifiers that were trained with different 

combinations of 37 features. These combinations of 37 features were similar but not identical 

to one another and to the fixed set based on the feature ranking. There were significant main 

effects and interactions of atlas and feature selection (p<0.0001) except between AAL and 

BA without feature selection (p = 0.16). 

Fig. 9 shows ROC curves with AUC and 95% CI obtained with different atlases using 

the original features and the features further selected through the SVM-RFE procedure. All p-

values for feature selection differences were smaller than 0.0001 in all the atlases. Without 

feature selection, p-values for atlas differences were 0.84 for AAL vs. BA, 0.0055 for AAL 
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vs. LPBA40, and 0.014 for BA vs. LPBA40. In contrast, using feature selection, there were 

no significant differences (p>0.05) between the pairs of atlases. 

 

Discussion 

 

This study focused on feature extraction using atlas-based parcellation and feature 

selection based on the SVM-RFE algorithm in SVM-based classification using GM volumes 

from baseline structural MRI of subjects with amnestic MCI. To date, we are not aware of 

any study that has demonstrated a comparison of brain atlases for feature extraction. 

The SEAD-J study showed a higher conversion rate for year 1 compared with the 

ADNI study (Kawashima et al., 2012). The inclusion criteria of SEAD-J were different from 

that of ADNI, for example, in WMS-R LM II score. The cohort of SEAD-J included 

amnestic MCI patients with severer verbal memory deficits compared with ADNI. Tabert et 

al. (2006) reported that deficits in verbal memory strongly predicted conversion to AD. Thus, 

this higher conversion rate might be due to the severity of memory deficit of the SEAD-J 

cohort, which is likely to be attributed to the inclusion criteria of SEAD-J. 

We classified 77 subjects in this study into late MCI (LMCI) and early MCI (EMCI) 

on the basis of their objective memory loss measured by education-adjusted scores on WMS-

R LM II according to the definition of LMCI and EMCI in the inclusion criteria of the ADNI 

2 study (page 27 of the ADNI 2 Procedures Manual, http://adni.loni.ucla.edu/wp-

content/uploads/2008/07/adni2-procedures-manual.pdf). As a result, 60 subjects (77.9% of 

total) were classified into LMCI and 17 subjects (22.1%) EMCI. More specifically, 39 

converters (MCI-C) in our study consisted of 37 LMCI (94.9%) and 2 EMCI (5.1%), whereas 

38 non-converters (MCI-NC) included 23 LMCI (60.5%) and 15 EMCI (39.5%). The 
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proportions of LMCI and EMCI between the MCI-C and MCI-NC groups were significantly 

different (Fisher’s exact test, p-value = 0.00028). 

The result of the VBM analysis was consistent with that of a previous meta-analysis 

of VBM studies (Ferreira et al., 2011). The correspondence could demonstrate the validity of 

the MRI data and the methodology of VBM that we used in this study. The results have their 

own limitations, which are derived from the MRI data being acquired on multiple scanners at 

different research institutions. After adjusting for interscanner variability in the quality of the 

MRI acquisitions in both VBM and SVM analyses, we obtained classification accuracies in 

the range of 55%-78% (mean±SD = 65.8%±9.1%) that were comparable with those of 

previous studies (56%-82%, mean±SD = 66.8%±7.0%) (Eskildsen et al., 2013). These results 

indicate that the effect of scanner differences on the results of this study might not be 

significant, as shown in a previous VBM study using MRI data from different scanners 

(Stonnington et al., 2008). In addition, because the goal of this study was to evaluate the 

relative differences in the classification performances of the different brain atlases, the MRI 

data from multiple scanners probably made no remarkable difference in the results of the 

comparison among the atlases. 

We applied an LOOCV technique where a test set and a training set were initially 

separated before the SVM-RFE procedure. The training set at each step of the SVM-RFE did 

not include the test set. The cross-validation procedure may prevent the overfitting problem 

(Hsu et al., 2003). Thus, it may be unlikely that the classification accuracies we obtained are 

inflated accuracies due to overfitting. 

Different atlases for parcellation may cause differences in feature vectors constructed 

from the original whole-brain volumetric image on the basis of the following major factors: 

(1) a method to parcel the whole brain and (2) number or size of regions. Different atlases 

having different number of ROIs provide different feature vectors having different inter-



 

 20  

regional correlations (Wang et al., 2009; Faria et al., 2012). Multivariate analysis utilizes the 

spatial covariance structure in the data (Habeck et al., 2008). Differences in topological 

patterns of feature vectors in feature space thus may affect the decision boundary of a 

multivariate classifier. Accordingly, different inter-regional correlations due to different 

parcellation atlases can influence the classification accuracy in the multivariate pattern 

analysis. 

The overall classification performance in this study was better than or comparable 

with the results of previous studies on the early prediction of AD using MRI-based 

biomarkers (Cuingnet et al., 2011; Davatzikos et al., 2011; Wolz et al., 2011; Cho et al., 

2012; Eskildsen et al., 2013). The study demonstrated the classification performance differed 

across atlases when no feature selection was applied, using the same dataset and the same 

methods except for different atlases to define ROIs in voxel-based analysis. Although there 

were no significant differences in AUC, classification accuracies revealed significant 

differences across atlases when SVM-RFE was applied. To find the "optimal" atlas for AD 

prediction, however, replication in another cohort would be required to demonstrate that the 

found prediction accuracy was not merely by chance on the particular cohort studied. 

Then, what are the reasons for providing such a considerable disparity in the 

performance across the three atlases? Although underlying causality remains unknown, clues 

for solving this question, if any, could be found in the differences between the atlases. The 

AAL and BA atlases with the “ch2” image gave similar classification accuracies, whereas 

LPBA40 with the ICBM452W5 template differed in their classification performance from the 

other two. Therefore, we mainly contrast AAL with LPBA40 for simplicity. 

Brain atlases are classified into two categories: single-subject topological atlases and 

population-based probabilistic atlases (Cabezas et al., 2011). AAL is a single-subject atlas 

that is based on the brain of a young male (Tzourio-Mazoyer et al., 2002), whereas LPBA40 
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is a probabilistic atlas created from 40 MRI volumes (Shattuck et al., 2008). We speculate 

that this difference might be a major important difference between AAL and LPBA40. No 

single brain is representative of a population because of the neuroanatomical variability 

across individuals (Devlin and Poldrack, 2007). There is, therefore, no "correct" single-

subject atlas. For example, the MNI single-subject brain has some problems because of 

anatomical variation and methodological limitations in spatial normalization. 

Regarding anatomical variation, Tzourio-Mazoyer et al. (2002) mentioned that the 

MNI single-subject brain of AAL showed an atypical rightward asymmetry of the planum 

temporale (PT). The PT is a triangular structure that is located on the superior temporal gyrus 

(STG) and that has extensive connections to (and from) other regions of the brain. The PT 

could be engaged in mediating sensorimotor control processing such as speech motor 

processing (Zheng, 2009). PT asymmetry might be influenced by gender, and this rightward 

anatomical variation in the MNI brain of a young man was found in only approximately 10% 

of the subjects in a previous study (Shapleske et al., 1999). Chance et al. (2011) reported that 

microanatomical changes in cortical minicolumn organization of the association cortex in the 

PT (BA22) were detected in the early stages of MCI as well as AD. Such minicolumn 

measures in the temporal lobe reportedly reflect selective regional vulnerability to AD tangle 

pathology and differential involvement in the cognitive deficit of AD (Chance et al., 2006). 

Involvement of the superior temporal cortex in early atrophic changes in AD was also found 

in a VBM study on patterns of GM loss in MCI and AD (Karas et al., 2004). Furthermore, the 

SVM analyses in this study demonstrated that BA22 and STG in the right hemisphere were 

selected via the SVM-RFE procedure in BA and LPBA40, respectively, whereas in AAL, the 

STG in each hemisphere was eliminated. STG was also chosen by a feature selection method 

that was different from the SVM-RFE procedure for the classification of MCI using a linear 

discriminant analysis (Eskildsen et al., 2013). These findings suggest that the atypical PT 
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asymmetry in the MNI single-subject brain might pertain to the relatively poor performance 

of a whole-GM SVM classification of MCI using AAL-based parcellation. 

Tzourio-Mazoyer et al. (2002) also reported that several sulcal patterns in the MNI 

single-subject brain, such as the Rolandic sulcus and the precentral sulcus in the left 

hemisphere, had a low probability with reference to Ono's atlas of sulci (Ono et al., 1990). In 

AAL, the ROIs in each hemisphere were defined using sulcal landmarks as the limits of the 

ROIs on the outer surface of the brain. The internal limit of the regions was extended beyond 

the gray matter layer, because AAL was originally intended to provide a standard reference 

frame of anatomical localization for functional neuroimaging studies with generally lower 

spatial resolution compared to anatomical MRI (Tzourio-Mazoyer et al., 2002). However, 

sulcal and gyral patterns are extremely variable, and macroanatomical landmarks do not 

match cytoarchitectonic borders in almost all of the cases (Amunts et al., 2007). In fact, AAL 

provides peak labeling, not precise anatomical localization, for structural imaging studies 

(Tzourio-Mazoyer et al., 2007). Thus, a single-subject atlas such as AAL does not represent 

the individual diversity of human anatomy (Toga et al., 2007; Cabezas et al., 2011). 

These issues in AAL suggest that care must be taken to apply AAL to structural MRI 

analyses of subjects with MCI, as many experts suggested (Devlin and Poldrack, 2007; Toga 

et al., 2006, 2007; Tzourio-Mazoyer et al., 2002, 2007; Evans et al., 2012). 

Although LPBA40 better represents the MCI cohort in this study compared with AAL, 

LPBA40 might not be the best choice. Population-based templates also lack inter-subject 

correspondence in cortical folding (Mangin et al., 2010). Furthermore, LPBA40 also differed 

from the MCI cohort in this study in terms of age, race, and disease, which is similar to in 

AAL. Cortical thickness analysis with the surface-based atlases in FreeSurfer (Desikan et al., 

2006; Destrieux et al., 2010; http://surfer.nmr.mgh.harvard.edu/) using the same dataset as in 

this study might provide improved classification performance. Future studies that use a 



 

 23  

disease-specific population-based atlas for MCI would also better serve the early detection of 

AD (Toga et al., 2006, 2007). 

Another difference between the atlases is the number of ROIs in each atlas. Although 

a left hippocampal region was detected as a robust discriminating region by a univariate 

analysis (Fig. 3), our multivariate analysis demonstrated that classification using multiple 

features rather than a sole well-discriminating predictor could lead to better performance. 

When using the AAL atlas, the left hippocampus (Region 37) was most often selected as the 

last remaining feature after SVM-RFE. Using only this feature can provide a relatively good 

accuracy around 70% for the dataset we used in this study. In some circumstances, when 

adding more features, the resulting set of features may be more discriminating as a whole 

than the only feature in multivariate analysis. In other cases, the resulting set of features may 

be less discriminating than the original set and the resulting accuracy may be worse than 

when not adding the features. A set of features generated from 116 regions of the AAL atlas 

may generally contain a lot of less discriminating features. Therefore feature selection can be 

crucial when using atlases. A previous multivariate analysis of MR images of subjects with 

MCI also achieved improved accuracy in classification using linear discriminant analysis 

(LDA) with multiple features (Wolz et al., 2011). Our study suggests that an optimal number 

of regions could result in good performance in multivariate analysis and that too many 

regions also could lead to poor performance due to overfitting. However, it is difficult to 

determine the optimal number of regions in advance of feature extraction. During the SVM-

RFE procedure, regions that do not contribute well to the separation are removed from the 

original feature set according to a feature-ranking algorithm. Whether an individual region 

separates the classes well or not is determined by how to parcellate a brain template. 

Multimodal probabilistic atlases generated by integrating the cytoarchitectonic, receptor 
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architectonic and functional imaging data (Toga et al., 2006) will play an important role in 

MRI data analyses. 

BA and AAL gave similar results in both the classification performance and the 

regions selected through the SVM-RFE procedure. A parcellation that is too coarse would not 

reflect the underlying cytoarchitecture in each coarse region, as Amunts et al. (2007) 

concluded from their classification results using unsupervised cluster analysis on seven 

occipital areas of ten human brains. One of the possible explanations for why BA has poorer 

performance compared with AAL was the coarse parcellation in BA, although the ROI 

generation of BA by subdivision at the mid-sagittal plane might be imprecise. However, the 

poor classification performance in BA could primarily be attributed to the same problems in 

the MNI single-subject brain as in AAL, because LPBA40, which has the smallest number of 

regions, provided the best performance. 

As seen from Figs. 5 and 6, the left hippocampal region was not consistently selected 

among the atlases. Fig. 10 showed the left parahippocampal region and left hippocampal 

region in each atlas corresponding to the regions detected by the VBM analysis shown in Fig. 

3. The left hippocampal region differed across the atlases as shown in Fig. 10. Moreover, 

because the number of ROIs was also different among the atlases, correlations between the 

left hippocampal region and the other regions, i.e., correlation or covariance patterns also 

differed across the atlases. Multivariate analysis utilizes the spatial covariance structure in the 

data (Habeck et al., 2008). Different covariance patterns due to different atlas-based 

parcellations might cause the inconsistency in the selection of the left hippocampal region 

among the atlases as well as the differences in the performance of multivariate classifiers. 

Similarly to this study, Chu et al. (2012) also employed similar methods for MCI 

prediction. Namely, they also used the LPBA40 atlas for atlas-based parcellation, the SVM-

RFE method for feature selection, and SVMs for classification among AD, MCI, and normal 
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controls. However, differently from our study, they basically adopted a voxel-wise data-

driven feature selection approach using high-dimensional whole brain voxel data (299,477 

voxels) as the original input features. Moreover, they used seven atlas-based ROIs and two 

combinations thereof as prior knowledge for feature selection. The regions were chosen 

arbitrarily based on findings from previous mass-univariate VBM analyses. The classification 

accuracies using different ROIs for classifying MCI-C and MCI-NC were up to 65%, and the 

region combining hippocampus and parahippocampal gyrus (11,031 voxels) were superior to 

other regions. From the results, they also suggested that covariance between information 

encoded in the ROIs may help classification. The regions selected using SVM-RFE were 

widely distributed across the brain, which is similar to our results on the LPBA40 atlas. This 

also suggests that inter-regional covariance or correlation may play an important role as a 

biomarker for early detection of AD. 

As Faria et al. (2012) noted, a typical whole brain MR image has approximately more 

than hundreds of thousands of voxels, and correlations between these enormous number of 

voxels exceed 5 billion. Moreover, the signal from each voxel is so noisy that it is practically 

challenging for us to produce a good feature representation for a classification task from the 

high-dimensional original data. Thus, future work towards challenges of learning 

automatically hidden topological structures or deep architectures from the original data such 

as unsupervised feature learning (Coates et al., 2011) and deep learning (Bengio, 2009) could 

allow us to identify a good representation of features for classification in various 

neuroimaging data. 

 

Conclusions 
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In conclusion, this study showed that the performance of SVM-based classification of 

MCI using GM volumes from structural MRI at the baseline differs depending on the choice 

of atlases that defines ROIs. LPBA40, a population-based probabilistic atlas, was superior to 

AAL, a single-subject atlas, in classification performance using the SVM-RFE procedure. 

The result suggests that feature selection is crucial to improve classification performance and 

that the feature selection method based on the SVM-RFE algorithm effectively enhanced the 

classification accuracy regardless of the choice of atlas. The choice of atlases for feature 

extraction is also important when using no feature selection. The appropriate selection of 

ROIs combined with a feature selection technique in a voxel-based approach has the potential 

of further improving the classification performance. Moreover, atlas-based parcellation 

methods can be applied to analyses using other modalities such as resting state functional 

connectivity MRI studies (Wang et al., 2009; Faria et al., 2012) and multi-modal studies 

combining structural MRI with other modalities. This study will provide implications for 

future atlas-based analyses using multivariate pattern analysis methods on a wide range of 

issues and modalities. 
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Figure captions 

 

Fig. 1. 

Three brain atlases used for feature extraction, overlaid to representative structural MR 

images. AAL, Automated Anatomical Labeling; BA, Brodmann’s areas; LPBA40, LONI 

Probabilistic Brain Atlas. 

 

Fig. 2. 

Schematic representation of how to obtain a final ranking of features after SVM-RFE. In the 

figure, m refers to the number of features of a data set. 

 

Fig. 3. 

Result of VBM analysis: In the left hippocampus and parahippocampal gyrus, only a 

significant cluster of gray matter density reduction in subjects with amnestic MCI who 

converted to AD within three years (MCI-C) compared to subjects who did not (MCI-NC) 

(p<0.001, uncorrected for multiple comparisons and p<0.05, cluster-level corrected for 

multiple comparisons). 

 

Fig. 4. 

RFE rank score matrices from three brain atlases. The vertical axis of the map represents the 

subject number, i.e., each step of the leave-one-out cross-validation (LOOCV) procedure. 

The horizontal axis represents the number of features in each atlas. The top-ranked features 

having a score of 1, i.e., the feature last selected during the SVM-RFE procedure, are colored 

in white, while the features that were not selected (score 0) are colored in black. AAL, 
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Automated Anatomical Labeling; BA, Brodmann’s areas; LPBA40, LONI Probabilistic Brain 

Atlas. 

 

Fig. 5. 

Final rankings of features of three brain atlases and bar plots of feature rank score as a result 

of the SVM-RFE procedure. Each bar plot for each region is colored differently according to 

its anatomical location. AAL, Automated Anatomical Labeling; BA, Brodmann’s areas; 

LPBA40, LONI Probabilistic Brain Atlas. 

 

Fig. 6. 

Selected region maps from the SVM-RFE procedure, which revealed the highest performance, 

overlaid to representative structural MR images. The regions with the highest rank are 

colored in white and those with the lowest rank are colored in black. AAL, Automated 

Anatomical Labeling; BA, Brodmann’s areas; LPBA40, LONI Probabilistic Brain Atlas. 

 

Fig. 7. 

Plots of the classification accuracy versus the number of features in the dataset extracted with 

each brain atlas. AAL, Automated Anatomical Labeling; BA, Brodmann’s areas; LPBA40, 

LONI Probabilistic Brain Atlas. 

 

Fig. 8. 

Classification accuracies obtained with features extracted using different atlases (left) and 

features further selected through the SVM-RFE procedure (right). Values are mean and error 

bars represent standard errors. * p<0.0001, two-way ANOVA followed by Tukey’s multiple 

comparison test. AAL, Automated Anatomical Labeling; BA, Brodmann’s areas; LPBA40, 
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LONI Probabilistic Brain Atlas; SVM-RFE, Support vector machine-recursive feature 

elimination. 

 

Fig. 9. 

Receiver operating characteristics (ROC) curves with the areas under the curve (AUC) and 

95% confidence intervals (CI) obtained with different atlases using the original features and 

the features further selected through the SVM-RFE procedure. CIs for AUCs were computed 

with DeLong’s method. SVM-RFE, Support vector machine-recursive feature elimination; 

AAL, Automated Anatomical Labeling; BA, Brodmann’s areas; LPBA40, LONI 

Probabilistic Brain Atlas. 

 

Fig. 10. 

Left parahippocampal regions and left hippocampal regions in three brain atlases 

corresponding to the regions detected by the VBM analysis. The left parahippocampal and 

the hippocampal regions are colored in white and red, respectively. AAL, Automated 

Anatomical Labeling; BA, Brodmann’s areas; LPBA40, LONI Probabilistic Brain Atlas; L 

PHG, Left parahippocampal gyrus; L HC, Left hippocampus. 























 

 

 
Table 1 
Demographic and neuropsychological data of MCI-C and MCI-NC subjects at baseline. 

 
MCI-C 
(n = 39) 

MCI-NC 
(n = 38) p value 

Age [years] 71.3 ± 6.7  70.6 ± 6.9   0.65  

Female / Male 20 / 19  22 / 16   0.32  

Education [years] 12.2 ± 3.2  11.8 ± 3.1   0.62  

WMS-R LM immediate recall 6.5 ± 3.3  9.4 ± 3.1   <10-3 * 

WMS-R LM delayed recall 1.6 ± 2.2  4.3 ± 2.9   <10-4 * 

MMSE  25.6 ± 1.8  27.0 ± 2.0   0.003 * 

ADAS-J cog 9.9 ± 4.7  7.8 ± 4.6   0.046 * 

GDS 4.9 ± 2.3  3.4 ± 1.8   0.004 * 

MCI-C, MCI converters; MCI-NC, MCI non-converters; WMS-R LM, Wechsler Memory 
Scale-Revised Logical memory; MMSE, Mini-Mental State Examination; ADAS-J cog, 
Alzheimer’s Disease Assessment Scale-Cognitive Subscale, Japanese version; GDS, 
Geriatric Depression Scale. 
Age, education, and neuropsychological test scores are shown with mean ± S.D. 
* t-test, p<0.05. 

 



 

 

 
Table 2 
Results of SVM classification using the feature sets extracted with three brain atlases 
without feature selection and those with a feature selection method based on SVM-RFE. 
The feature selection technique enhanced the performance of the classification for all of 
the atlases. 

  Without feature selection  With SVM-RFE 

Atlas  Number of 
features ACC SEN SPC  Number of 

features ACC SEN SPC 

AAL  116 55.8% 56.4% 55.3%  20 71.4% 69.2% 73.7% 

BA  82 54.5% 53.8% 55.3%  20 67.5% 64.1% 71.1% 

LPBA40  56 67.5% 71.8% 63.2%  37 77.9% 76.9% 78.9% 

SVM-RFE, support vector machine-based recursive feature elimination; ACC, accuracy; 
SEN, sensitivity; SPC, specificity; AAL, Automated Anatomical Labeling; BA, 
Brodmann’s Areas; LPBA40, LONI Probabilistic Brain Atlas. 
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