<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>促進酸化を利用した難分解性有機物の新規酸化分解法に関する研究 - 講座</td>
</tr>
<tr>
<td>Author(s)</td>
<td>前川 淳</td>
</tr>
<tr>
<td>Citation</td>
<td>Kyoto University (京都大学)</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2015-03-23</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.14989/doctor.k18953</td>
</tr>
<tr>
<td>Type</td>
<td>Thesis or Dissertation</td>
</tr>
<tr>
<td>Textversion</td>
<td>ETD</td>
</tr>
</tbody>
</table>
促進酸化を利用した難分解性有機物の新規酸化分解法に関する研究

2015年

前川 淳
目次

第2章 エレクトロフェントン法によるジオキサンの分解と活性ラジカル種を考慮したモデルの構築

2.1 緒言	41
2.2 実験	42
2.2.1 試薬	42
2.2.2 電極用活性炭の作製	42
2.2.3 実験装置	42
2.2.4 実験手順	43
2.2.5 分析	43
2.3 結果と考察	44
2.3.1 電極表面におけるFe(III)の還元速度の検討	44
2.3.2 エレクトロフェントン酸化によるジオキサンの分解	45
2.3.3 最適な反応条件の検討	47
2.3.4 ジオキサン分解モデルの構築	54
2.4 結言	62
参考文献	63

第3章 銅イオンによる鉄イオンの触媒的還元を利用したフェントン酸化の促進

3.1 緒言	65
3.2 実験	66
3.2.1 試薬	66
3.2.2 実験手順	66
3.2.3 分析	66
3.3 結果と考察	68
3.3.1 フェントン酸化によるフェノールの分解挙動	68
3.3.2 遷移金属添加によるFe(III)の還元の促進	71
3.3.3 無機化条件の最適化	72
3.3.4 シュウ酸の生成挙動	74
3.3.5 還元性の分解生成物のフェントン酸化への影響	77
3.3.6 様々な有機物への銅イオン添加の適用	80
3.4 結言	81
参考文献	82
第4章 光化学還元と銅イオン添加を併用した難分解性有機物の無機化の促進

4.1 緒言
4.2 試薬と実験手順
 4.2.1 試薬と実験装置
 4.2.2 実験手順
 4.2.3 分析
4.3 結果と考察
 4.3.1 フェントン酸化におけるBPA, 2,4-Dの分解
 4.3.2 光源種による光化学還元速度の比較
 4.3.3 LED照射を併用したBPAのフェントン酸化
 4.3.4 銅イオン添加とLED照射を併用したBPAのフェントン酸化
 4.3.5 銅イオン添加とLED照射を併用した2,4-Dのフェントン酸化
 4.3.6 銅イオン添加とUVA照射を併用したBPA, 2,4-Dのフェントン酸化
 4.3.7 高濃度2,4-D溶液のフェントン酸化
 4.3.8 分解効率の検討
4.4 結言
参考文献
総論
謝辞
本論文に関する著者の発表論文
緒論

我々の社会は、資源、エネルギーの大量消費を糧に、豊かで快適な生活を手に入れてきた。また、更なる豊かさを求めて、新たな機能、特性を持つ物質の開発を日々続けている。人類の生産活動はエネルギーの消費活動と、物質の開発活動と考えていいだろう。エネルギーの消費活動に着目して、一次エネルギー消費量の推移をみると、特に 20 世紀後半からは石炭石油資源を用いた大量生産、大量消費によって一次エネルギー消費量は増加の一途を辿っている。世界の一次エネルギーの総消費量は、1965 年の 38 億 toe（原油換算トン、tonne of oil equivalent）から年平均 2.6％で増加し続け、2013 年には 127 億 toe に達した[1]。エネルギーの大量消費と共に、人類は経済成長を続け、豊かさを手に入れてきた。豊かさを手に入れた人類は長寿化し、世界人口は、1961 年から 2013 年までの 40 年ほどで 30 億人から 72 億人へと増加しており、新興国を中心に今後も人口増加は続くと考えられている[2]。人口の増加と共にエネルギー消費が増加することは必然であり、今後は特に途上国での一次エネルギー消費が増加することが予想される。また、人類の生産活動は、様々な特性をもつ無機および有機化合物を合成する行いとも考えることができる。近年は合成技術、分析技術の進歩により、様々な特性をもつ無機および有機化合物が日々開発されている。このような化学物質の数について CAS 登録番号の数を数えることでカウントしてみると、その数は 8900 万種を超えてい(2014 年 9 月)、また、現在も毎日数万種もの化学物質が登録されている。

このような、産業革命以降、人類の生産活動は非常に活発となり、自然の浄化作用を凌駕するスピードで環境に負荷をかけ続けてきた。そのため、大気汚染、水質汚濁、土壤汚染といった様々な環境問題が顕在化してきた。なかでも水に関する問題は、世界的に深刻な状況にある。WHO は、現在、世界人口の 40％以上は、政治的、経済的、気候的な理由から水を満足に手に入れることはできていないこと、さらに 25％以上の人々は水が要因となる健康問題を抱えていることを報告している[3]。しかも、今後も人類の生産活動はより増加して、環境への負荷が高まることが予想される。さらに、地球規模での人口増加も続いており、安全な水の確保は今後ますます重要になってくるだろう。このような現状において、我が国を含めた先進国に求められているこの 1 つは、地球規模での水質汚濁を食い止めることであるといえる。そのため、より効率的かつ高度な廃水処理手法を開発することは、非常に意義のあることであると言える。

本章ではまず、現在の廃水処理への取り組みとして、広く用いられている活性汚泥法をとりあげ、その特徴を述べるとともに、活性汚泥法が抱えている課題と、これからの廃水処理手法に求められる性質について明らかにする。そして、新たな処理手法として期待されている促進酸化法について述べる。さらに、促進酸化法の中からフェントン酸化を取り上げ、フェントン酸化と、その応用手法について詳細に報告する。それらを背景として、最後に本研究の目的と内容を述べる。

1
0.1 現在の廃水処理とその課題

現在,廃水処理手法として広く一般に利用されている手法の1つは活性汚泥法である。活性汚泥法とは、好気性の微生物を用いて有機物を分解除去する生物学的な手法であり、下水処理施設や大規模な工場の廃水処理施設など様々な場所で活用されている。さまざまな有機物を処理可能なことが特徴であり、特に多種多様の汚染物質を含んだ廃水を扱う下水処理施設での処理手法としては、代替する手法がないといっても良いほど適した手法であると考えられる。しかし、活性汚泥法には運用上の課題もある。まず、広大な土地が必要であることが挙げられる。流入してくる廃水の量に比べて、微生物が汚染物を分解する反応が遅いため、巨大な槽を設置する必要がある。そのため、活性汚泥法を利用できる施設は下水処理場や大規模な工場に限られており、中小規模の工場などでは、廃水処理を外部に委託している。次に、微生物の管理が必須であり、運用には高いノウハウが求められることが挙げられる。微生物に対して毒性のある成分や栄養となる成分が含まれた廃水が流入した場合や、天候の変化によって微生物が増減する。現在、廃水処理に適した微生物濃度を保つために、確立された方法はなく、管理・運用する者のノウハウが頼りとなっている。そして、処理後に生成する大量の余剰汚泥の処理が必要なことが挙げられる。余剰汚泥は、汚染物を処理した微生物の死骸であり、適切な処理を行わずに放置おくと悪臭を放ち、近隣の環境へ悪影響を与えることとなる。微生物には栄養塩を含んでいるものもあり、栄養塩を選択的に回収することが望ましいが、そのような手法は確立されていない。また、栄養塩を活用するため、下水汚泥を堆肥化して緑農地で利用することも検討されているが、堆肥化にかかるコストや、下水処理施設由来の肥料であることも影響し、ここ数年リサイクルの割合は増加していない。このような事情から、現在の余剰汚泥の処理は、燃焼灰の建築材へ転用が中心である。このように、余剰汚泥の有効な活用法が無いまま、現在に至っているが、余剰汚泥量は増加傾向にあり、発生時現物量ベースで考えると、平成15年度では全産業廃棄物排出量の18%もが余剰汚泥である。

また、近年問題視されている物質として、生物分解が困難な難分解性の有機物があげられる。難分解性であるがゆえに、一度、環境中に流出してしまうと、低濃度であっても環境中に蓄積し、将来、環境や生物に甚大な被害を及ぼすことが懸念されている。難分解性有機物として代表的なものは、残留性有機汚染物質（POPs：Persistent Organic Pollutants）に関するストックホルム条約（POPs 条約）の対象物質であるポリ塩化ビフェニル（PCB）、DDT等が挙げられる。これらは、環境中での残留性、生物蓄積性、人や生物への毒性が高く、長距離移動性が懸念されており、国際的に製造及び使用の廃絶・制限、排出の削減、これらの物質を含む廃棄物の適正処理等が規定されている。また、その他の難分解性の有機物としては、本研究でも扱う1,4-ジオキサン（ジオキサン）やビスフェノールA（BPA），2,4-ジクロロフェノキシ酢酸（2,4-D）以外にも、主に難分解性物質を対象としている化学物質審査規制法で指定されているテトラクロロエチレン等の塩素系化合物やシクロロデカン等の炭化水素化合物など、多くの物質が知られている。さらに、難分解性の有機物であることが知ら
緒論

れていない物質の存在も予想され、そのような物質による環境リスクが懸念されている。近年の日本では、後述するように、1,4-ジオキサンは、水に非常に溶けやすい上に沸点も水に近いため、1,4-ジオキサンを含む廃水の処理が非常に問題となっている。有機物であれば、難分解性の性質を持っていたとしても燃焼分解で完全に酸化分解することが可能であるが、水中に低濃度で存在している廃水の場合は、処理するために大量のエネルギーを投入することとなる。そのため、難分解性有機物の処理手法として、室温付近で化学的に酸化する促進酸化法：Advanced Oxidation Processes (AOPs)が注目されている。

0.2 1,4-ジオキサン

1,4-ジオキサンは、溶剤として様々な業種で利用されており、化学工業、医薬品製造業、繊維工業、一般機械器具製造業からの排出が報告されている[7]。ジオキサンは人体への有害性が指摘されており、国際がん研究機関（IARC）では、ヒトに対する発がん性が疑われる化合物として分類している。そのため、環境中に排出される前に、ジオキサンを除去や分解することが求められる。日本では、2012年に工業排水の排出規制として0.5 mg·L⁻¹という値が設定された。

しかし、ジオキサンは生物分解性に乏しいため、これまで広く用いられてきた活性汚泥法では、ジオキサンを十分に分解することが出来ない。また、水に溶けやすく、沸点も水に近いという性質から、活性炭による吸着や蒸留といった手法も有効な処理手法とはならず、有効な処理手法を模索している段階である[8]。そのため、ジオキサン処理手法の開発は急務であるといえる。

そこで、近年のジオキサンの処理方法に関する研究例を見てみると、新たな処理方法として、促進酸化法による分解の利用が期待されているとわかる。促進酸化法についての詳細は次節に記載するが、促進酸化法とは、OH ラジカルを有機物の分解に用いる手法である。ジオキサンとOH ラジカルとの反応の2次反応速度定数は1.1 × 10⁹～2.4 × 10⁹ M⁻¹·s⁻¹と報告されており[9-10]、OH ラジカルとの反応性が非常に高いと考えられる。これまでに促進酸化法の適用が試みられた研究例を紹介する。酸化剤として一般的に用いられているオゾン自身は、ジオキサンの分解力は高くないが[11]、H₂O₂と組み合わせると新たな活性種が発生し、分解が促進されることで生物分解性が向上すると報告されている[12-13]。他にも、種々の手法を組み合わせることで、ジオキサンの分解が試みられているが、それらの中でも、紫外線照射との併用が多くみられる。Stefanら[14]は、UV/H₂O₂において、紫外線照射による直接の光分解の寄与はほとんどなく、H₂O₂の光分解によって生成した活性種によって分解されることを示している。岸本ら[15]は、OH ラジカルの補足剤（スカベンジャー）としてジオキサンを用い、UV/O₃によってジオキサンが分解除去されることを報告している。さらにKwonら[16]は、UV/O₃とH₂O₂を併用することで、分解活性が向上するが、過剰のH₂O₂の添加はスカベンジャーとなるため、分解活性が低下することを示している。フェントン酸化を用いる方法においては、フェントン試薬のみでは、非常に分解が遅いが[17]、紫外線照射と併用する事で分解が促進さ
緒論

0.3 促進酸化法（AOPs）

難分解性の有機物を酸化分解する手法としてAOPsが注目されている。AOPsに含まれる手法には、様々なものがあるが、初めてAOPsという手法を定義づけたのはGlazeら[32]である。Glazeらは、AOPsを“Advanced oxidation processes are defined as those which involve the generation of hydroxyl radicals in sufficient quantity to affect water purification.”と定義づけた。この定義に従えば、AOPsに含まれる処理手法には、フェントン酸化やオゾン酸化、光分解などが挙げられる。AOPsの特徴として、複数の手法を組み合わせることが容易であり、2つ以上の手法を組み合わせることで有機物の分解速度や分解率を向上できることがあげられる。

AOPsを実施する際は通常、室温付近かつ常圧という穏和な条件でOHラジカルを生成して水の浄化を行っている[32-33]。AOPsによって生成するOHラジカルは、非常に酸化活性が高く、多くの有機物と迅速に反応することが知られている。有機化合物を酸化する能力の大きさは、酸化還元電位によって表される。表0.1に、代表的な物質の酸化還元電位をまとめた[34]。従来の化学酸化処理で用いられてきたH₂O₂やオゾンの酸化還元電位は、H₂O₂でE⁰=1.78 V、オゾンではE⁰=2.07 Vであるのに対し、OHラジカルはE⁰=2.85 Vであり、OHラジカルが強い酸化力を持つことが分かる。また、OHラジカルとオゾンが、ベンゼンやトルエン、トリクロロエチレン等の様々な有機物と反応して酸化する際の反応速度定数[35-36]を比べてみると、OHラジカルは4.0×10⁸～7.8×10⁹ M⁻¹・s⁻¹と非常に大きな値であるのに対して、オゾンでは0.6～17 M⁻¹・s⁻¹であり、OHラジカルを用いれば酸化反応が迅速に進行するといえる。さらに、オゾンでは、テトラクロロエチレンをほとんど酸化分解することができず、ブラノールの酸化分解速度は非常に低いが、OHラジカルではいずれも迅速に酸化分解可能である[35-36]。このため、従来は分解処理が困難であった難分解性の有機物を含んだ廃水への適用も可能と考えられ、その実用化が期待されている。

AOPsを廃液処理に用いることが適切か否かは廃液性状によって異なる。用いる処理手法を判断する基準として、Mishraらは、廃液のCODを指標にして適した処理手法をまとめている[37]（表0.2）。AOPsを利用しての処理が適している廃液のCODはCOD＜5 g・L⁻¹の溶液であるとしている。より大きなCOD値をもつ廃液については、20＜COD＜200では湿式酸化法の利用、COD＜300では燃焼分解を用いればよいとしている。

それでは、AOPsの中でも代表的なものについて述べる。
緒論

表 0.1 水溶液中の酸化還元電位 (298K, 酸性条件)

<table>
<thead>
<tr>
<th>物質</th>
<th>酸化還元電位 E' (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HO•</td>
<td>2.85</td>
</tr>
<tr>
<td>O₃</td>
<td>2.07</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>1.78</td>
</tr>
<tr>
<td>HClO</td>
<td>1.63</td>
</tr>
</tbody>
</table>

表 0.2 COD を指標にした処理方法の選択

<table>
<thead>
<tr>
<th>COD (g · L⁻¹)</th>
<th>処理手法</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 5</td>
<td>AOPs</td>
</tr>
<tr>
<td>20 ~ 200</td>
<td>湿式酸化法</td>
</tr>
<tr>
<td>< 300</td>
<td>燃焼分解法</td>
</tr>
</tbody>
</table>

0.3.1 H₂O₂/UV プロセス

AOPs の中で最も有名なもののが、H₂O₂ に紫外線を照射して OH ラジカルを生成する H₂O₂/UV プロセスである。この手法では OH ラジカルは、λ < 310 nm の紫外線を用いて、式(0.1)の反応によって H₂O₂ が分解されることによって生成すると考えられている[38]。

$$H₂O₂ + hν → 2HO•$$ (0.1)

Pamela らは、H₂O₂/UV プロセスを用いて、生物分解性に乏しい様々な医薬品を含んだ廃液処理を行い、一定の効果があると報告している[39]。一方で、医薬品を含んだ廃液を対象とした Davide らの報告では、オゾンを用いた手法では完全に分解できた廃液を H₂O₂/UV プロセスでは、52%の分解率にとどまったことを報告しており、対象とする物質の性状によっては、H₂O₂/UV プロセスだけでは処理が困難であることがわかる[40]。また、天然有機物を分解処理する試みでは、有機物を CO₂にまで完全に酸化分解することが可能であると報告されているが、一方で、紫外線を照射する時間が長いこと、試薬である H₂O₂を高濃度で投入する必要があることなどの問題点を報告している[41-43]。

0.3.2 フェントン酸化

フェントン酸化については、後で詳細に記述するが、試薬として Fe(II)と H₂O₂ を用いて、酸性条件下において、式(0.2)の反応で OH ラジカルが生成する反応である。Fe(II)と H₂O₂ は
フェントン試薬といわれる。フェントン酸化では、その他に式(0.3)から式(0.7)までの反応が関与していると考えられている。

\[
\begin{align*}
 \text{Fe}^{2+} + \text{H}_2\text{O}_2 & \rightarrow \text{Fe}^{3+} + \cdot\text{OH} + \text{OH}^- \quad (0.2) \\
 \text{Fe}^{3+} + \text{H}_2\text{O}_2 & \rightarrow \text{Fe}^{2+} + \text{HO}_2^{-} + \cdot\text{H}^+ \quad (0.3) \\
 \text{Fe}^{3+} + \text{HO}_2^{-} & \rightarrow \text{Fe}^{2+} + \text{O}_2 + \cdot\text{H}^+ \quad (0.4) \\
 \text{Fe}^{2+} + \text{HO}_2^{-} + \cdot\text{H}^+ & \rightarrow \text{Fe}^{3+} + \text{H}_2\text{O}_2 \quad (0.5) \\
 \cdot\text{OH} + \text{H}_2\text{O}_2 & \rightarrow \text{HO}_2^{-} + \cdot\text{H}_2\text{O} \quad (0.6) \\
 \cdot\text{OH} + \cdot\text{Organics} & \rightarrow \text{Products} \quad (0.7)
\end{align*}
\]

式(0.2)で生成した \(\cdot\text{OH} \) ラジカルは、式(0.7)で有機物と反応し、有機物を酸化分解する。また、式(0.2)で \(\text{Fe}^{2+} \)は \(\text{H}_2\text{O}_2 \) によって酸化され \(\text{Fe}^{3+} \)となるが、式(0.3)の反応で \(\text{H}_2\text{O}_2 \) によって還元される。フェントン酸化は、\(\text{H}_2\text{O}_2 \) を消費して鉄イオンが酸化還元サイクルを回し、有機物を酸化分解する反応と考えることが出来る。また、用いる試薬である鉄イオンは安価であり、他の重金属イオンとは異なり毒性が低いことが分かっている。たとえ残留し薬が環境へ流失したとしても \(\text{H}_2\text{O}_2 \) は太陽光などで分解されるので、用いる試薬は安全で環境負荷も低いと報告されている[44]。

しかし、実際は、式(0.3)の \(\text{Fe}^{3+} \)の還元反応は、式(0.2)の \(\text{Fe}^{2+} \)の酸化反応と比べると非常に反応速度が低く、継続的に \(\cdot\text{OH} \) ラジカルを生成することができないため、有機物を完全に分解する前に分解反応がほとんど停止してしまう。そこで、実用的には大量に \(\text{Fe}^{2+} \)を投入して \(\cdot\text{OH} \) ラジカルを生成している。

大量に投入した \(\text{Fe}^{2+} \)は廃液処理後に大量の水酸化鉄のスラッジを生じてしまう。スラッジとなった鉄は回収したとしても再利用が困難で一般的には産業廃棄物として処理されている。また、フェントン酸化のみでは、十分な分解率を達成できないことも多く、フェントン酸化のみを処理に用いる例は多くはない。研究についても同様で、フェントン酸化を用いた研究では、紫外線照射による \(\text{Fe}^{3+} \)の還元反応を促進する作用[45]や、 \(\text{H}_2\text{O}_2 \)を直接分解する作用[38]に期待した光フェントン酸化が多く研究されている[46-47]。さらに近年は、電気化学還元を併用するエレクトロフェントン酸化や[48-49]、超音波照射を併用するソノフェントン酸化[50]といった試みも盛んに行われている。

0.3.3 光触媒法

光触媒法とは、半導体としての性質をもつ金属酸化物を触媒として用いる手法である。その中でも、Honda らによって光触媒としての作用を見出された \(\text{TiO}_2 \) は[51]、高い安定性や、分解性能の良さを持ち、光触媒として優れていると考えられている[52-53]。\(\text{TiO}_2 \)を触媒として用いた際の \(\cdot\text{OH} \) ラジカル生成反応は、次のように考えられている。まず、触媒に紫外線を照射すると、電子が放出され正孔が形成される。この時放出された電子は強い還元力を持ち、金
緒論

属や溶存酸素を還元して、スーパーオキサイドラジカルを生成させる。一方、触媒にできた正孔では、水や水酸化物イオンを吸着してOH ラジカルが生成すると考えられている[54]。実際にTiO_{2}を用いた廃液処理の報告例を紹介する。Kuburovicらは、メチルターシャリー ブチルエーテルを含む廃水に対してTiO_{2}を用いた処理を行い、91%の分解率を達成するとともに、廃水の生物分解性が向上したことを報告している[55]。また、SaiedとNejatIは、石油化学工業の廃水に対して水銀ランプによる照射を併用し、COD値を90%以上低減できたと報告している[56]。色素を含む溶液の処理でも高い分解率を達成できることが報告されている[57-58]。また従来法である活性汚泥法と組み合わせるという利用法も検討されており、Chatzisyemeonらは、食品工業からの廃水に対して好気性のバクテリアを利用した活性汚泥法とTiO_{2}の処理を組み合わせることで、分解対象を完全に分解できたと報告している[59]。

TiO_{2}をはじめとした、光触媒を処理に用いるためには、光触媒に直接UVなどの光を照射せねばならず、色素などの着色成分を多く含んだ廃水を処理する際には分解性能が低下するという課題がある。

0.3.4 オゾン酸化

オゾンは強い酸化力を持つ物質であり、有機物は分子状のオゾンと直接反応して、もしくはオゾンがアルカリ性の条件で分解した際に生成するOH ラジカルと反応して酸化される[60-61]。オゾンからOH ラジカルが生成する反応は下に示した連鎖反応であると考えられており、HO^{-}とO_{3}が反応してHO_{2}^{-}が生成する反応を開始反応としてOH ラジカルが生成すると報告されている[62]。

\[
\begin{align*}
O_{3} + HO^{-} & \rightarrow HO_{2}^{-} + O_{2} \quad (0.8) \\
HO_{2}^{-} + O_{3} & \rightarrow HO_{2} + HO_{2} \quad (0.9) \\
HO_{2}^{-} + H^{+} & \rightarrow O_{2}^{-} \quad (0.10) \\
O_{3} + O_{2}^{+} & \rightarrow O_{3}^{+} + O_{2} \quad (0.11) \\
O_{3}^{+} + H^{+} & \rightarrow HO_{2} \quad (0.12) \\
HO_{3}^{-} + OH^{-} & \rightarrow O_{3} + H_{2}O \quad (0.13) \\
O_{3} + OH^{-} & \rightarrow HO_{2} + H_{2}O \quad (0.14)
\end{align*}
\]

分子状のオゾンは、C=C結合を含んだ官能基やアミオンと選択的に反応するが[63]、OH ラジカルは非選択性に有機物と反応する。そのため、非選択性に有機物を分解することを目的とする場合は、OH ラジカルによる反応が優位になる条件を選択しなければならない。アルカリ性の条件、または連鎖反応を促進するような物質が系内に混在していると、OH ラジカルの非選択性が高い反応性のためにOH ラジカルによる反応が優位となる[64-65]。一方、オゾンによる直接酸化は、酸性条件下で進行することが知られている。また、OH ラジカルのスカベンジャーが系内に混在している溶液では、OH ラジカルはスカベンジャーと優先的に反
応するため、オゾンによる直接酸化を行うなど廃液性状に合わせた処理手法の選択が求められる。

本研究でも用いた BPA の分解にオゾンを用いた研究例を見てみる。50 mg·L⁻¹ の BPA 水溶液をオゾンで分解した実験では、70 分で完全に BPA を除去できていた。また、0.13 mg·L⁻¹ という低濃度の BPA 水溶液も 5 分で除去率 99.5% 以上を達成しており、BPA の分解にオゾンを利用することは有効であると考えられる。しかし、十分な酸化分解率を達成できない場合や、十分な酸化速度が得られない場合も多い。そのような場合は、紫外線照射、H₂O₂ の添加などの手法と組み合わせることが必要となる。例えば、殺虫剤に含まれるフェンバレートをオゾンのみを用いて分解したところ、80 分でも分解率は 10% も達しておらず、オゾンのみで十分に分解することは困難であるが、UV 照射とオゾンを組み合わせると迅速に分解が進み 10 分以内で分解率 100% を達成したと報告している。

これまで、AOPs の中でも代表的であり研究も盛んな手法について紹介した。これらの主な反応と課題をまとめたものを表 0.3 に示す。

<table>
<thead>
<tr>
<th>手法</th>
<th>主な反応</th>
<th>課題</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O₂/UVプロセス</td>
<td>H₂O₂ + hν → 2HO•</td>
<td>長時間の UV 照射</td>
</tr>
<tr>
<td>フェントン酸化</td>
<td>Fe²⁺ + H₂O₂ → Fe³⁺ + HO• + OH⁻</td>
<td>大量の試薬投入</td>
</tr>
<tr>
<td>光触媒法</td>
<td>TiO₂ + hν → h⁺ + e⁻</td>
<td>反応速度が低い</td>
</tr>
<tr>
<td></td>
<td>h⁺ + >Ti⁴⁺OH → {Ti⁴⁺OH⁺}</td>
<td>触媒コスト</td>
</tr>
<tr>
<td>オゾン酸化</td>
<td>O₃ + OH⁻ → O₂ + HO₂⁻</td>
<td>オゾン生成のコスト</td>
</tr>
<tr>
<td></td>
<td>を開始反応とする連鎖反応</td>
<td>プロセスの安全性</td>
</tr>
</tbody>
</table>

H₂O₂/UV プロセスは、非常に簡単に利用することが可能であるが、UV 照射時間が長くなりがちであることが欠点といえる。

フェントン酸化では、用いる試薬が安価であり、環境への負荷も低いことが特徴である。しかし、OH ラジカルを継続的に供給できず、有機物の分解を完全に行うには大量の試薬投入が必要となることが課題である。

光触媒を用いた手法は、他の手法と比べると反応速度が非常に遅いこと、触媒コストが高いことが大きな欠点である。また、紫外線を触媒に吸収させることができるように廃液にしか適用できないという制限もあり、実用化には至っていないようである。

オゾン酸化は、非常に高い分解力があり、反応後に有害な物質や汚泥が残存しない点が利点である。しかし、オゾン生成に要するコストが高く、組み合わせる手法によってはさらに高コスト化が懸念される。また、オゾンは高濃度で存在すると人体に有害な物質である
緒論

もかかわらず、未だにオゾン使用に関しての安全基準が策定されていないため、オゾンを用いた処理プロセスには、人体に悪影響を与えるプロセスもあるのではないかと懸念される。このように AOPs には様々な手法があるが、廃液処理手法として理想的な手法は未だなく、AOPs のさらなる研究が望まれている。AOPs での OH ラジカル源となる酸化剤として、低濃度であれば環境中に排出されても容易に分解される H_2O_2 に着目した。H_2O_2 から OH ラジカルを発生させる手法は、先に述べたように様々な手法があるが、典型的な紫外線照射やオゾン酸化は電気エネルギーの消費が大きく、コストのみならず省エネルギーの観点からも好ましくない。そのため、本研究では、化学的なエネルギーで H_2O_2 を活性化させるフェントン酸化を用いた効率的な手法を開発することが有効であると考えた。次節では、フェントン酸化のこれまでの主要な研究例をまとめるとともに、フェントン酸化を応用した促進酸化法である光フェントン酸化とエレクトロフェントン酸化について述べ、その特徴と課題を明らかにする。

0.4 フェントン酸化とその応用

0.4.1 フェントン酸化とは

フェントン酸化を用いて廃液処理を行う手法には、フェントン酸化に紫外線照射や電気化学反応、超音波照射といった手法を組み合わせた手法も多く研究されている。まず、フェントン酸化の歴史と主要な研究について述べたのち、フェントン酸化とその応用として紫外線照射等を組み合わせた手法について、研究事例をまとめる。

フェントン酸化の歴史を考えると、フェントン酸化の誕生は 100 年以上も前、1894 年に H. J. Fenton が Fe(II) が H_2O_2 による酒石酸の酸化を強く催進すると報告したことから始まるといえる[72]。それ以降、フェントン酸化には強い関心が寄せられている。フェントン酸化がどういった反応であるのかの解明は、現在も盛んに行われている。Harber と Weiss は、Fenton が報告した酒石酸の酸化について、実際に酸化反応を行っているのは、OH ラジカル (HO•) であることを報告した[73]。この H_2O_2 と Fe(II) の反応によって OH ラジカルが生成する反応は、発見した Fenton の名をとってフェントン反応（Fenton reaction）と呼ばれている。その後、Barb らによって、フェントン酸化が H_2O_2 の分解に連動するある種の連鎖反応であることが報告された[74-76]。Harber と Weiss によって報告された Fe(II) と H_2O_2 が反応して OH ラジカルが生成する反応は、この一連の反応の中でも主要な反応であるので、"classical"や"free radical"といった冠を付けて呼称されることもある。フェントン酸化によって Fe(II)は酸化され Fe(III)となるが、この Fe(III)が分解生成物との錯体を形成し、さらにフェントン酸化に関与することも指摘されている。Walling は、共同研究者らとの関連する研究をまとめると、Fe(III), Fe(III)がフェントン酸化によって様々な有機化合物に反応する様子について報告している[77]。

フェントン酸化が初めて有害な有機物の処理に用いられたのは 1960 年代であると考えられている[78]。Bigda は様々な有機物に対して、フェントン酸化による分解が可能であるかを
詳細に調べた(79)。分解可能であることが報告されている有機物を表0.4に示した。この表から分かるように、フェントン酸化は多くの有機化合物を分解できる手法であると言える。

表 0.4 フェントン酸化で酸化することができると報告されている有機物[79]

<table>
<thead>
<tr>
<th>有機酸</th>
<th>芳香類</th>
<th>ギ酸</th>
<th>ヒドロキシノン</th>
</tr>
</thead>
<tbody>
<tr>
<td>フルコン酸</td>
<td>p-ニトロフェノール</td>
<td></td>
<td></td>
</tr>
<tr>
<td>乳酸</td>
<td>フェノール</td>
<td></td>
<td></td>
</tr>
<tr>
<td>リンゴ酸</td>
<td>トルエン</td>
<td></td>
<td></td>
</tr>
<tr>
<td>プロピオン酸</td>
<td>トリクロロフェノール</td>
<td></td>
<td></td>
</tr>
<tr>
<td>酒石酸</td>
<td>キシレン</td>
<td></td>
<td></td>
</tr>
<tr>
<td>トリニトロトルエン</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

アルコール類 | アミン類 | ベンジルアルコール | アニリン |
must-プチルアルコール	環状アミン
エタノール	ジエチルアミン
エチレングリコール	ジメチルホルムアミド
グリセロール	エチレンジアミン四酢酸（EDTA）
イソプロパノール	プロパンジアミン
メタノール	r-プロピルアミン
プロパンジオール	爆薬（RDX, サイクロナイト）

アルデヒド類 | 染料 | アセトアルデヒド | アントラキノン |
ベンズアルデヒド	モノアゾ化合物
ホルムアルデヒド	ジアゾ化合物
グリオキサール	テトラヒドロフラン
イソプロチルアルデヒド	ケトン類
トリクロロアセットアルデヒド	ジヒドロキシアセトン（DHA）
芳香類	メチルエチルケトン（MEK）
ベンゼン	
クロロベンゼン	
クロロフェノール	
クレオソート	
ジクロロフェノール	

近年は、フェントン酸化に他の手法を組み合わせる研究が盛んである。OH ラジカルは非常に酸化活性が高いが、フェントン酸化のみでは継続的におH ラジカルを供給できない。そのため、十分な酸化速度を得ることが出来ず、除外対象の物質を目的の濃度以下にまで低減することが困難である場合が多く、他の手法と組み合わせて分解を進めている。そのため、紫外線照射を併用する光フェントン酸化が盛んで研究されてきた(45)、また、近年は電気化学的な反応を併用するエレクトロフェントン酸化(48-49)や、超音波照射を併用するノフェントン酸化(50)の研究も盛んに行われている。

0.4.2 フェントン酸化の応用

0.4.2(a) 光フェントン酸化

光フェントン酸化とは、フェントン酸化と紫外線照射または可視光照射を併用する手法で
あり、λ < 600 nm の光照射によって、OH ラジカルの生成を促進することが出来ると報告されている。光照射によって OH ラジカルの生成が促進される反応には次の 2 つが考えられている。一つは、Fe(III)が光照射によって還元される反応[48]。

Fe(III) (OH)2+ + hν → Fe2+ + HO• (0.15)

もう一つは、H2O2 が λ < 310 nm の波長の光照射で OH ラジカルに分解される反応である。

H2O2 + hν → 2HO• (0.1)

フェントン酸化に加えて光を照射するだけという簡単な応用手法でありながら、フェントン酸化と比べて、有機物の分解が大きく促進されるため、様々な有機物を分解した研究例が報告されている。フェノールを分解した報告例では[46-47, 80]、200 mg · L⁻¹ のフェノール水溶液を分解し 10 分でフェノールの分解率 90% を達成し、120 分では COD 値を 98% 低減している。また、100 mg · L⁻¹ のフェノール水溶液に対しては、5 分という非常に短い時間で 99.15% のフェノールを分解できたと報告されている。さらに、産業分野の廃液に対しても実績がある。石油精製プラントの廃水や石油工業の廃水の処理に用いたものでは[81-83]、7 時間という長時間を要するが、太陽光を光源として 96% の芳香族炭素を分解できたと報告されている[83]。また、医薬品工業や病院の廃水処理にも用いられており、115 分で TOC 濃度を 84% 低減するといった実績がある[84-85]。

このように、高い分解率を達成できる手法であるが、光照射のためのコストが問題となる。様々な AOPs に対して LCA 分析を行った Muñoz らによれば[86]、光フェントン酸化を行うプロセスでのエネルギー消費は、98% 以上が光照射によるものであると報告している。照射に必要なエネルギーを削減する、もしくは照射時間を短縮する手法が求められている。その一例として、上述のように太陽光を利用するといったアプローチも用いられているが、概して廃液処理が長時間化してしまい、完全な解決手段とはならないようである。

0.4.2(b) エレクトロフェントン酸化

エレクトロフェントン酸化は、電気化学反応とフェントン酸化を組み合わせた手法である。エレクトロフェントン酸化で取り上げられることの多い陰極反応は以下の二つである。

O2 + 2H+ + 2e⁻ → H2O2 (0.16)
Fe3+ + 2e⁻ → Fe2+ (0.17)

一般的には式(0.16)が重要視されることが多く[87]、例えば酸素拡散電極を用いた有機物の分解[48-49]が行われている。一方で Petrucci らの研究によれば[48]、疎水性炭素膜に比べ親水性炭
素膜を用いた方がH$_2$O$_2$生成量は多いが、疎水性炭素膜を用いた方が次亜リン酸イオンの酸化率は高くなることがわかっている。条件によってはH$_2$O$_2$の生成を重視することが対象物質の酸化を妨げる可能性もあると言える。

エレクトロフェントン酸化における反応容器には、陽極と陰極を一つの槽中に挿入するone-compartment cellと、陽極槽と陰極槽を隔離するtwo-compartment cellの二種類が用いられている。one-compartment cellを用いた場合では、OH ラジカルによる有機物の酸化分解だけでなく陽極上での直接酸化分解も期待できる。しかしこのとき陽極でH$_2$O$_2$の分解反応が起こるという欠点もある。two-compartment cellでは陽極酸化を行うことはできないが、陽極でのH$_2$O$_2$分解反応は起こらない。一方で、セル抵抗の増加に伴いセル電圧が上昇するため消費電力は高くなってしまう。電極表面積が有機物分解速度に与える影響が大きいこともわかっている。例えば、Pimentelらは二種類のカーボンフェルト電極（S = 48, 102 cm2）を用いて定電流下でフェノール溶液を分解した[49]。その結果、表面積が大きい電極を用いることで電流密度が低くなり、H$_2$発生反応を抑えるので分解速度が速くなることを見出した。

数学的なモデリングに関しては、以前からフェントンサイクルのシミュレーションについては検討されてきた[88-89]。純水下だけではなく、硫酸塩[90]、塩化物[91]存在下での検討も行われている。有機物存在下でのシミュレーションも行われており、フェントン酸化ではギ酸[92]、フェノール、モノクロロフェノール[93]、アトラジン[94]、フミン酸[95]などに対してモデルが作成されてきた。いずれも定常状態近似を仮定することで実験結果を計算結果をよく表すことができる。また光フェントン酸化では、光によるH$_2$O$_2$の分解と鉄の還元を考慮したモデルが作成されており[96-98]。フェントン酸化での有機物分解モデルを活用してシミュレーションを行うことが可能であると示唆されている。一方で、エレクトロフェントン酸化を用いた有機物分解のシミュレーションに関しては、その多くが分解反応を一次反応や二次反応に当てはめたものである[99-101]。反応工学的なモデルの作成も行われてはいる[102-104]。しかしGhoshらによる論文は微分方程式に誤りがある。またLiuらによる研究はエレクトロフェントン酸化のシミュレーションとして最も引用数が多いものであり、電流密度、溶存酸素濃度、Fe(II)濃度に着目しH$_2$O$_2$の生成・消費速度を数学的に考慮したフェノール分解モデルを作成している。一方で電極によるFe(III)の還元を定式化していない、どの値をフィッティングパラメータとしているか不明である、最終的な反応速度定数が不明であるなどの問題がある。

0.5 本研究の目的

これまで述べてきたように、廃液処理手法として完全なAOPsはなく、どの手法も改善の余地が残されている。そのなかで、フェントン酸化の課題についてみてみると、フェントン反応の課題はFe(III)の還元反応の速度が小さいことに起因するものであると言える。フェントン酸化の応用手法である光照射や電気化学還元といった手法についてみてみると、いずれもFe(III)の還元反応を促進する反応が含まれており、Fe(III)の還元反応を促進することにより,
フェントン酸化の課題を解決する試みと考えることもできる。しかし、光フェントン酸化では、光照射のためのコストが課題であり、エレクトロフェントン酸化は比較的新しい手法であるため、まだ研究段階にある手法と言える。

本研究では、難分解性有機物の処理が可能な廃水処理プロセスの実現を目指し、OH ラジカルを効率的かつ継続的に発生させ、有機物の酸化分解を促進する手法の開発を目的とする。そのために、Fe(III)の還元反応を促進させるというアプローチを試みる。Fe(III)の還元反応が促進できれば、鉄投入量は少量であっても継続的にフェントン反応を起こし、OH ラジカルを供給することができると考えられる。さらに、投入している鉄が少量であれば、廃液処理時に水酸化鉄スラッジの沈殿が生成しないため、イオン状態の Fe(III)を処理後に回収して再利用することも可能である。

Fe(III)の還元反応を促進する手法として、光照射での光化学還元、活性炭電極を用いた電気化学還元、還元反応を促進する触媒添加の 3 つを試みる。光化学還元を併用する光フェントン酸化では UV ランプまたは、可視光域の LED を用いる。光化学還元に伴う Fe(III)の還元反応は通常紫外線を照射して進行させるが、この反応が LED での可視光照射でも進行すれば、光照射のためのエネルギーの節減が期待できる。また、可視光であるため人体に対する有害性は低く、反応器を遮蔽する必要がない。近年は、水銀が含まれている蛍光灯から水銀を含まない LED 照明への転換も進んでおり、室内照明を利用し、更なる省エネルギー化が期待できる。電気化学還元を併用した手法では、Fe(III)の還元反応に着目し、反応条件が分解に与える影響を検討する。触媒を添加する手法では、Fe(III)の還元反応を促進する触媒としての作用がある物質を遷移金属イオン中から探索し添加する。本手法は外部からエネルギーを投入する必要がない。また、用いた遷移金属イオンは、処理後に重金属を選択的に回収できるキレート樹脂を利用して Fe(III)と同時に回収し再利用が可能である。

本論文は、緒論、第 1 章～第 4 章、および総論からなっており、各章の内容を以下に説明する。

まず、第 1 章では、有効な処理手法が確立されていない 1,4-ジオキサンを対象物質として、フェントン酸化を用いた処理手法の検討を行う。通常、光化学還元による Fe(III)の還元反応は紫外線照射で行うが、この反応が白色 LED による可視光照射とシュウ酸添加によって進行するかを検討する。さらに、光化学還元による Fe(III)の還元速度を算出し、1,4-ジオキサンの分解速度を評価する。また、白色 LED による可視光照射とケミカルランプによる紫外線照射とを比較しジオキサン分解に要する消費電力についての検討を行う。

第 2 章では、エレクトロフェントン法による 1,4-ジオキサンの処理手法の検討を行う。H₂O₂濃度、Fe(III)濃度、1,4-ジオキサン濃度が 1,4-ジオキサンの分解に与える影響を検討する。さらに、電極上での Fe(III)の還元反応を組み込んだ 1,4-ジオキサンの分解反応モデルを構築しシミュレーションを行い、実験では把握することが難しいラジカル種の反応について考察する。

第 3 章では、フェノールを対象物質として用い、フェントン酸化による完全な酸化分解（無機化）を促進させる手法についての検討を行う。Fe(III)の還元反応を促進する触媒としての作
緒論

用を期待して，種々の遷移金属イオンを添加することを試みる．また，分解生成物のシュウ酸に着目して定量的な分析を行い，無機化が進行するための反応条件についての検討を行う．さらに，廃水処理として問題となっている種々の有機化合物に対して，本手法による分解を行い有効性の検討を行う．

第 4 章では，第 1 章で提案した光化学還元を併用した光フェントン酸化と，第 3 章で提案した銅イオン添加を組み合わせて，さらなる無機化の促進を達成する手法を提案する．まずは，光化学還元による Fe(II)の還元に対する波長の影響を検討する．さらに，分解対象物質として第 3 章で用いた有機化合物を用い，様々な有機化合物に対して，本手法の有効性を示す．

そして最後に，第 1~4 章の結果をまとめて，難分解性の有機物であっても酸化分解する手法としてのフェントン酸化の可能性と，今後の展開についてまとめる．

参考文献

[8] 環境省, 1,4-ジオキサンの処理技術に関する状況 参考資料3 (2010)

[34] 化学便覧基礎編改訂 3版, II 473-482, 丸善, 東京 (1984)

(2010)

第1章 光化学還元を利用した1,4-ジオキサンの酸化分解
－UV 照射と可視光 LED 照射の比較－

1.1 緒言

1,4-ジオキサン（ジオキサン）は、工業分野で汎用的に用いられているが、難分解性の有機物であるため、ジオキサンを含む廃水に関しては、これまで広く用いられてきた活性汚泥法では処理が困難である。また、水に非常に溶けやすく、活性炭吸着法でもほとんど処理することが出来ない[1]。このような状況の中、0.5 mg·L⁻¹という厳しい排出規制値が新たに設けられたことから、有効な処理手法の開発が急務である。ジオキサンは前章でも述べたようにOH ラジカルとの反応性が非常に高いことから、フェントン酸化をはじめとする促進酸化法が、その処理に有効であると考えられる。水に溶けやすいことから、廃液中に高濃度で存在することも想定されるので、継続的にOH ラジカルを発生させる技術が必要である。

OH ラジカルを継続的に発生させる手法として、光照射と組み合わせたフェントン酸化があげられる。光照射で Fe(III)を還元し、継続的にフェントン酸化を行うものである。しかしながら、単純な光照射のみを組み合わせる方法では、長時間の照射が必要になることが多く、消費電力が問題となってくる。そこで、有機リガンドと形成した Fe(III)錯体を光照射で還元するLigand to Metal Charge Transfer (LMCT)を利用した光化学還元に着目した。有機リガンドとしては、量子効率が高いシュウ酸がよく使われており[2]、以下の反応でFe(III)の還元が進行する。

$$\text{Fe}^{III}(\text{C}_2\text{O}_4)_3^{3-} + h\nu \rightarrow \text{Fe}^{2+} + 2\text{C}_2\text{O}_4^{2-} + \text{C}_2\text{O}_4^{-}$$

シュウ酸を用いた光化学還元の量子効率は、照射する光の波長が200～500 nmの間で高く、ピークは313 nmの紫外線を照射した際の1.24であり、502 nmの光照射でも0.9であると報告されている[3]。また、光化学還元を併用したフェントン酸化での、有機物の分解反応の量子効率は、300 nmの光照射で3.0であると報告されている。これにより、OH ラジカルによる有機物の分解生成物としてラジカルが生成し、そのラジカルがH₂O₂を分解してOH ラジカルを生成する反応や、有機物を分解する反応が進むためであると考えられている[4]。このように、シュウ酸を利用した光化学還元は、波長が550 nm以下の光照射で進行するといわれており[5]、可視光照射でも光化学還元反応の適用が期待できる。これまでは、光化学還元を併用したフェントン酸化による有機物を分解した研究の多くは紫外線を照射している。Paterlini らは[6]、フェントン酸化では高いTOC除去率を達成できない2,4-ジクロロフェノキシ酢酸を分解対象として、シュウ酸添加とUVA照射を併用したフェントン酸化を行い、20分という短い反応時間でTOC除去率93%を達成した。また、可視光を光源とした研究例として、太陽光を照射
する報告がなされている。Lucasらは61、リアクティブブラック5の分解実験でUVC照射と太陽照射の比較を行った。反応時間30分でTOC除去率を比較するとUVC照射では46.4%、太陽光照射では29.6%であり、可視光でも十分に光化学還元でフェントン酸化を進行できる可能性がある。

そこで、本章では、光化学還元を利用したジオキサンを酸化分解するプロセスの開発を目的とする。そのために、まず、フェントン酸化によってジオキサンを分解処理する際の反応条件が分解率に与える影響について検討し、フェントン酸化でのジオキサンの分解特性を明らかにする。次に、高濃度のジオキサンを連続的に酸化分解するため、光照射とフェントン酸化を組み合わせた光フェントン酸化を実施し、ジオキサンの分解に有効な紫外線の波長について検討する。より効率よく光照射を利用し、短時間の照射でジオキサンを酸化分解するため、シュウ酸を添加した光フェントン酸化を試みる。さらには、光源として、可視光LEDも使用し、その可能性について検討する。可視光LEDは、効率よく電力を光に変化することができるが、これまで可視光LEDを用いて光化学還元とフェントン酸化を併用した有機物の分解は行われていない。また、可視光LEDは、室内照明としても利用されており、室内照明を光源として用いれば、光照射を行うプロセスで課題となる照射コストの削減が期待できる。

1.2 実験

1.2.1 試薬と実験装置

実験で用いた試薬は、すべて和光純薬工業株式会社から購入した。鉄イオンとしてFe(III)を用いる場合は、あらかじめ0.25Mに調製したFe2(SO4)3水溶液を用いた。Fe(II)を用いる場合は、実験開始の直前に0.25MのFeSO4水溶液を調製した。H2O2は実験開始の直前に15wt%のH2O2水溶液を調製した。pH調整のために、1.0Mの硫酸を用いた。

光照射を行う実験では、2種類のUVランプ（UVA、UVC）、白色LEDのいずれかを照射した。用いた光源の詳細なスペックを表1.1に示す。

<table>
<thead>
<tr>
<th></th>
<th>dominant wavelength (nm)</th>
<th>wavelength region (nm)</th>
<th>wattage (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UVA</td>
<td>352</td>
<td>300 - 450</td>
<td>6.0</td>
</tr>
<tr>
<td>UVC</td>
<td>254</td>
<td>240 - 270</td>
<td>6.0</td>
</tr>
<tr>
<td>White LED</td>
<td>468, 570</td>
<td>430 - 725</td>
<td>1.8</td>
</tr>
</tbody>
</table>

表1.1 実験に用いた光源のスペック
1.2.2 実験手順

300 mL のパイレックス製のビーカーを反応器として用い、マグネティックスターラーで常時攪拌した。光源として UVC ランプを用いた実験では、パイレックスは UVC の光を通さないため、石英製のビーカーを反応器として用いた。ジオキサン水溶液 250 mL を pH 3.0 ± 0.1 となるように硫酸で pH 調整したものを試料溶液とした。シュウ酸を添加する実験では、ジオキサン水溶液を調製する際にシュウ酸を加えておき、シュウ酸とジオキサンが実験条件の濃度となるように調整した。ここに、実験条件に合わせて 0.1 ~ 1.0 mM の濃度となるように Fe(II) もしくは Fe(III) を加えてから 0.7 ~ 20 mM になるように H₂O₂ を加えてフェントン酸化を開始した。実験は外部からの光の影響を遮断するため、暗室内において室温条件 (23 ± 2°C) で行った。UV もしくは白色 LED を照射する際は、ビーカーの側面に光源を設置して光照射を行った。図 1.1 に光照射を行った実験の様子を示す。

図 1.1 実験装置外観

1.2.3 分析

1.2.3(a) 過酸化水素(H₂O₂), 鉄イオン(Fe(II), Fe(III)) 濃度測定

表 1.2 発色後の測定溶液と測定波長

<table>
<thead>
<tr>
<th>Sample</th>
<th>H₂O₂</th>
<th>Fe(II)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>Yellow</td>
<td>Red</td>
</tr>
<tr>
<td>Wavelength (nm)</td>
<td>350</td>
<td>534</td>
</tr>
</tbody>
</table>
第1章

H₂O₂、Fe(II)、Fe(III)濃度は、紫外可視分光光度計(UV-1800, Shimadzu)を用いて比色分析法を用いて分析を行った。H₂O₂濃度の測定にはアイオダイド法を用いて溶液を発色させ、\(\lambda = 350 \text{ nm} \)の波長の吸光度を測定した\(^{[5]} \)。Fe(II)濃度の測定にはパソフェナントロリン法を用いて溶液を発色させ、\(\lambda = 534 \text{ nm} \)の波長の吸光度を測定した\(^{[6]} \)。Fe(III)濃度は、塩化ヒドロキシアミンを測定溶液に加えFe(III)をFe(II)に還元し、パソフェナントロリン法で溶液中の全鉄イオン濃度を測定し、Fe(II)濃度の測定結果との差分をFe(III)濃度とした。表1.2には、発色させた測定溶液の写真と測定波長をまとめた。

1. 2. 3(b) ジオキサン濃度測定

ジオキサンの濃度測定には、HPLCを用いた。検出器はフォトダイオードアレイ検出器（SPD M20A, Shimadzu）を使用した。カラムはShim-pack VP-ODSを使用し、オープン温度35℃のもと測定を行った。移動相はpH 3.0のリン酸緩衝液を0.630 mL・min\(^{-1}\)、アセトニトリルを0.070 mL・min\(^{-1}\)の混合液を用いた。本条件でのジオキサンの保持時間は4.5 minであり、ジオキサンの吸収スペクトルから検出波長は195 nmとした。

1. 2. 3(c) シュウ酸濃度測定

シュウ酸の定量測定は、サプレッサー付きのイオンクロマトグラフ(ICS-1100, DIONEX)を用いて行った。カラムは、Dionex IonPac AG22を用いた。炭酸ナトリウム(5.0 mM)と炭酸水素ナトリウム(1.4 mM)の水溶液を移動相として用いた。

1. 3 結果と考察

1. 3. 1 フェントン酸化によるジオキサンの分解

光照射を行わない暗室条件下で、初期Fe(II)濃度[Fe(II)]₀、初期H₂O₂濃度[H₂O₂]₀、初期ジオキサン濃度[dioxane]₀を変化させて、ジオキサンの分解実験を行った。まず、[Fe(II)]₀ = 1.0 mMとして、[H₂O₂]₀/[Fe(II)]₀を0.1〜20と変化させ200 mg・L\(^{-1}\)のジオキサン水溶液のフェントン酸化を行った。暗室条件でのジオキサンのフェントン酸化は、後に示すように15分で反応が完全に停止するため、反応時間15分でのジオキサン分解率とH₂O₂消費量の比較を行った（図1.2）。[H₂O₂]₀/[Fe(II)]₀が高くても低くても、ジオキサンの分解率は、低下する結果が得られ、最適な[H₂O₂]₀/[Fe(II)]₀が存在することがわかった。ジオキサンを最も分解できたのは、[H₂O₂]₀/[Fe(II)]₀ = 2.5の条件で、66%のジオキサンを分解できたが、[H₂O₂]₀/[Fe(II)]₀ = 20になると25%のジオキサンしか分解できていない。[H₂O₂]₀/[Fe(II)]₀ ≤ 1.0の条件では、ほぼ全てのH₂O₂が消費されており、[H₂O₂]₀/[Fe(II)]₀が低い条件では、H₂O₂が不足するためにジオキサンの分解率が低くなると考えられる。一方、[H₂O₂]₀/[Fe(II)]₀ ≥ 5.0の条件でジオ
キサンの分解率が低下する理由として、OH ラジカルがジオキサンではなく H₂O₂と反応して消費されることが考えられる。これは、フェントン酸化においてよく知られている現象である。しかしながら、[H₂O₂]/[Fe(II)]₀が高い条件においては、H₂O₂の消費量も減少しており、単純に H₂O₂によって OH ラジカルが消費されるということだけでは説明できない。この挙動については、今後さらなる検討が必要であるが、これらの実験結果より、暗室条件でジオキサンのフェントン酸化を行う際の、[H₂O₂]₀と[Fe(II)]₀との最適な濃度比は、[H₂O₂]₀ / [Fe(II)]₀ = 2.5であることが分かった。

図 1.2 ジオキサン分解への[H₂O₂]₀/[Fe(II)]₀の影響（反応時間 15 分）

フェントン酸化において、ジオキサンの酸化分解力を評価するため、[Fe(II)]₀ = 1.0 mM、[H₂O₂]₀ = 2.5 mM として、様々な[dioxane]₀のジオキサン水溶液に対してフェントン酸化を行った。反応時間15分で分解されずに溶液中に残留しているジオキサンの割合を図1.3に示す。残留しているジオキサン濃度[dioxane]の値も図中に併せて示した。[dioxane]₀ = 5, 10 mg · L⁻¹のとき、15分でほとんどすべてのジオキサンを分解することが出来ている。これらの条件では、残留しているジオキサンの濃度は、0.5 mg · L⁻¹以下であった。この結果は、低濃度であれば、フェントン酸化によって十分にジオキサンを分解除去することが可能であることを示しており、10 mg · L⁻¹以下の低濃度のジオキサン水溶液を処理する際には、フェントン酸化は非常に有効な手段であるといえる。また、[dioxane]₀が高いほど、ジオキサンの残留率は高くなっている。[dioxane]₀ = 100 mg · L⁻¹と500 mg · L⁻¹の場合を比較すると、ジオキサンの残留率は、
それぞれ 0.15 と 0.66 である．一方，分解によって低減できたジオキサン濃度を残留濃度から計算すると，100 mg·L⁻¹の場 合では，100 – 14.7 = 85.3 mg·L⁻¹であるのに対し，500 mg·L⁻¹の場合では，500 – 328.8 = 171.2 mg·L⁻¹であり，[dioxane]₀が高いほど，分解できるジオキサン量も多いということがわかった．しかしながら，[dioxane]₀ ≥ 25 mg·L⁻¹の条件では，フェントン酸化後に残存しているジオキサン濃度が，いずれも国内の排出規制値(0.5 mg·L⁻¹)より非常に高く，フェントン酸化のみで高濃度のジオキサンを処理することは困難であると考えられる．

図 1.3 様々な初期濃度のジオキサンを分解した際のジオキサンの残留率と残留濃度(反応時間 15 分)

1.3.2 UV 照射を組み合わせた光フェントン酸化

[dioxane]₀ = 200 mg·L⁻¹のジオキサン水溶液を[H₂O₂]₀/[Fe(II)]₀ = 2.5 として，様々な[Fe(II)]₀でフェントン酸化を行った．ジオキサン分解率と H₂O₂残留率の経時変化を図 1.4に示す．ジオキサンの分解率は，[Fe(II)]₀に依存しており，[Fe(II)]₀が高いほど，高い分解率を得ることが出来た．[Fe(II)]₀ = 0.25 mM では，ジオキサンの分解率は 0.1 未満であったが，[Fe(II)]₀ = 1.0 mM では，分解率が 0.65 となるまでジオキサンの分解が進行した．特に，[Fe(II)]₀ ≥ 0.5 mM では，[Fe(II)]₀が増加すると，ジオキサンの分解率も大きく増加している．しかし，どの条件においても，反応時間 15 分以降は，ジオキサンの分解率が変化していない．H₂O₂残留率を見ても，15 分以降は H₂O₂がほとんど消費されていない．これらの結果より，反応時間 15 分でフェントン酸化が停止してしまう，ジオキサンの分解が進行しないと考えられる．
そこで、OH ラジカルを継続的に生成させ、反応時間 15 分以降もジオキサンの分解を行うため、紫外線照射を併用した。紫外線照射によって、Fe(III)の還元と H₂O₂の直接分解が期待できる。[Fe(II)]₀ = 1.0 mM, [H₂O₂]₀ = 2.5 mM として、光源は UVA ランプ（主波長 λ = 352 nm）もしくは UVC ランプ（主波長 λ = 254 nm）を用いて紫外線照射を行なう。ジオキサン水溶液のフェントン酸化を行った。ジオキサン分解率の経時変化を図 1.4 に併せて示した。紫外線照射を併用した条件では、H₂O₂ 消費量が大きく、最初に投入した H₂O₂だけでは H₂O₂が不足するため、15 分ごとに H₂O₂を追加した。UVA 照射を併用した
第1章

場合、15分以降も分解は進行するものの、分解の進行は非常に遅い。60分での分解率は69%にとどまり、フェントン酸化のみでジオキサン分解を行った条件とほとんど違いは無かった。一方で、UVC照射を併用した条件では、60分でのジオキサン分解率は84%となり、分解率が明らかに向上した。また、ジオキサン水溶液にFe(II)もH2O2も加えず、UVC照射を行ったが、UVC照射のみではジオキサンは分解しなかった。紫外線照射による、Fe(III)の還元とH2O2の直接分解によってジオキサンの分解が進行したと考えられる。

ここで、UVA、UVCランプの中心位置での照射強度は、それぞれ2.82, 2.12 mW · cm⁻¹であり、照射強度はUVAの方がUVCよりも30%ほど高い。一方、ジオキサンの分解速度はUVCの方が速かった。この結果より、600 nmより短い波長の光照射で進行するFe(III)の還元反応よりも、310 nmより短い波長の光照射で進行するH2O2の直接分解がジオキサンの分解速度に大きく影響したと考えられる。それは、H2O2の吸収帯のピークはUVC領域にあり、UVC照射と比べてUVA照射では310 nmより短い波長の光が少なかったため、H2O2の直接分解速度は低いと考えられる。そのため、照射強度はUVCランプの方が低いにも関わらず、ジオキサン分解速度が高い結果となったと示唆される。しかし、UVC照射を併用したとしても、ジオキサンを規制値以下まで分解するには、ジオキサンの分解率が99.75%まで分解する必要があり、60分以上の紫外線照射が必要である。UV照射を併用した光フェントン酸化では、消費エネルギーのほとんどがUV照射によるものであり、照射のためのコストが実用化への課題とされている。そのため、長時間の照射が必要であることは、実用化の際に問題となることが予見される。さらに、通常のパイレックス製の反応器ではUVCの波長の紫外線は透過することが出来ないため、石英製の反応器を準備する必要があり、UVCの利用には高価な機材が必要となる。

1.3.3 シュウ酸添加と光照射を組み合わせたフェントン酸化

1.3.3(a) 光化学還元によるFe(III)の還元

フェントン酸化では、15分でジオキサンの分解が停止してしまうこと、紫外線照射を併用してもジオキサンを規制値以下の濃度まで分解するには長時間を要することが分かった。効率よくFe(III)の還元を行う手法として、シュウ酸とFe(III)の錯体を用いたFe(III)の光化学還元を利用し、継続的にFe(II)を生成させることを試みる。まずは、光化学還元によるFe(III)の還元が、UVA照射、白色LED照射でも進行するかの検討を行った。初期Fe(III)濃度[Fe(III)]₀ = 1.0 mM、初期シュウ酸濃度[Ox]₀ = 1.0 mMとして、UVAランプ、もしくは白色LEDランプを光源として用いて、光化学還元によるFe(III)の還元実験を行った。Fe(III)の還元をFe(II)の生成で評価するために、H2O2とジオキサンは加えずに照射実験を行った。Fe(II)濃度とシュウ酸濃度[Ox]の経時変化を図1.5に示す。シュウ酸を添加しない条件では、Fe(II)はほとんど生成しておらず、Fe(III)がUVA照射では還元されないことが分かる。シュウ酸を添加した条件を示すと、UVA照射では、Fe(II)濃度が迅速に増加しており、照射時間30分で93%もの
Fe(III)が Fe(II)へと還元された。また、Fe(II)濃度の増加と共にシュウ酸濃度が減少したことから、光化学還元によって Fe(III)が Fe(II)へと還元されるとともに、シュウ酸も分解したと考えられる。Fe(II)への還元量93%程度までしか進行しない理由は、反応時間45分では残留しているシュウ酸が0.1 mMと少なくなっていること、溶存酸素によって生成したFe(II)が酸化される反応が進行することが影響していると考えられる。

白色LED照射でも同様に、可視光照射によって Fe(II)が生成すると共に、シュウ酸濃度が低下しており、可視光照射でも光化学還元による Fe(III)の還元が進行することが分かった。UVAと比較すると Fe(III)の還元速度は低いものの、30分で約40%のFe(III)を還元できた。

図 1.5 光化学還元によるFe(III)還元実験におけるFe(II)濃度とシュウ酸濃度の経時変化
これら結果から光化学還元による Fe(III)還元速度の推算を試みた。光化学還元は液中の H₂O₂やシュウ酸以外の有機物による影響を受けないと仮定して、[Fe(III)]/[Fe(III)]₀ の対数を時間に対してプロットしたところ、反応時間 t ≤ 10 min において UVA、白色 LED とともに概ね直線関係が得られた（図 1.6）。それぞれの場合において、Fe(II)の生成速度が Fe(III)の濃度に比例すると仮定し、その傾きから反応速度定数 k を推算した。UVA では k = 0.0497 min⁻¹、白色 LED では k = 0.0189 min⁻¹ であった。UVA、白色 LED の主波長がそれぞれ 352, 468 nm であり、どちらも光化学還元の量子効率が高いことが報告されている波長域の光を照射しているが、Fe(III)の還元速度には大きな差が見られた。この違いについて検討するため、[Fe(III)]₀ = 1 mM、
[Ox]₀ = 1 mM の水溶液の吸光度を測定した(図1.7). 352 nm での吸光度 $A_{352} = 0.632$ であったのに対して, $A_{468} = 0.016$ であり, 吸収される光の量が大きく異なっていることが分かった。すなわち, UVA 照射では, 照射された光子のほとんどが吸収されているのに対して, 白色 LED 照射では吸収されず, 光化学還元反応を起こすことなく反応器を通過する光が存在していると考えられる。

図 1.7 Fe(III)とシュウ酸の混合溶液の吸光スペクトル

图 1.8 白色 LED 照射の光化還元で[Fe(III)]₀がFe(III)還元量に与える影響(反応時間10分)
そこで、[Fe(III)]₀、[Ox]₀ が Fe(III)還元速度に及ぼす影響を検討した。[Ox]₀/[Fe(III)]₀ = 1.0 として、[Fe(III)]₀ = 0.5, 1.0, 2.0, 4.0, 5.0 mM の水溶液に対して光化学還元実験を行い、反応時間 10 分の[Fe(II)]を図 1.8 に示す。[Fe(III)]₀ ≤ 2.0 mM では、[Fe(II)]が[Fe(III)]₀ に比例して増加している。これは、[Fe(III)]₀ と[Ox]₀ が増加すると、吸光度は[Fe(III)]₀ と[Ox]₀ の増加量に比例して増加し、光化学還元反応による Fe(III)還元量も比例的に増加したことを示している。すなわち、高濃度の溶液では吸収されずに反応器を通過した光を、吸光度が増加した量だけ吸収することが出来たと考えられる。一方、[Fe(III)]₀ = 4.0, 5.0 mM では、[Fe(III)]₀ と[Ox]₀ の増加量と比べて、Fe(III)還元量は少なくなっている。この条件では、Fe(III)とシュウ酸の水溶液の吸光度が十分に高くなっており、白色 LED ランプから照射された光を十分に吸収しており、吸収されずに反応器を通過した光はほとんどないと考えられる。この時の吸光度の比から、[Fe(III)]₀ = 1.0 mM では、光化学還元に有効な波長の光は50%以上透過していると考えられる。

1.3.3(b) 光化学還元を利用したフェントン酸化によるジオキサン分解

![Graph Image]

図 1.9 光化学還元を併用したジオキサン分解におけるジオキサン濃度とシュウ酸濃度の経時変化

シュウ酸添加と光照射を併用して、フェントン酸化によるジオキサンの分解実験を行った。[Fe(III)]₀ = 1.0 mM、[Ox]₀ = 1.0 mM、[H₂O₂]₀ = 10 mM とし UVA ランプもしくは白色 LED ランプを光源として用いて、[dioxane]₀ = 100 mg・L⁻¹ のジオキサン水溶液のフェントン酸化を行った際の[dioxane]、[Ox]の経時変化を、図 1.9 に示す。どちらの光源を用いた条件でも、
第1章

フェントン酸化によるジオキサンの分解が継続的に進行し、ほとんどの完全にジオキサンを分解することができている。UVAと白色LEDを比較すると、UVAを用いたほうが、ジオキサンの分解速度が高い。UVAを用いた条件では、10分で[dioxane] = 20 mg·L⁻¹まで分解し、30分では[dioxane] < 0.5 mg·L⁻¹であり排出基準値以下にまでジオキサンを分解できた。白色LEDを用いた条件では、20分で[dioxane] = 23 mg·L⁻¹まで分解し、[dioxane] < 0.5 mg·L⁻¹までジオキサンを分解するのに要した時間は50分であった。シュウ酸酸化と光照射を併用する本手法と、図1.4で示した紫外線照射を併用した光フェントン酸化と比較すると、本手法はより短い反応時間で、ジオキサンを分解できており、紫外線照射の課題である大きな消費電力を削減することが出来る。ジオキサン分解に要する消費電力あたりの分解量に関しては、1.3.5節で検討を行う。

1.3.3(c) UVAと白色LEDの比較

前節の結果より、用いる光源がUVAランプと白色LEDとでは、ジオキサンの分解速度が異なっていた。図1.5で示したように、光化学還元によるFe(III)還元速度はUVAランプと白色LEDではUVAランプがより速くFe(III)を還元できた。ジオキサンの分解速度の違いがFe(III)還元速度の違いによるものだけであれば、Fe(III)の還元量に対するジオキサンの分解量は、UVAと白色LEDの場合で同じであると考えられる。そこで、1.3.3(a)節で推算した光化学還元での反応速度定数kを用いて、還元されたFe(III)の総量S_{Fe(III)}を推算した。UVA照射ではk = 0.0497 min⁻¹、白色LED照射ではk = 0.0189 min⁻¹である。実際の反応溶液中にはH₂O₂が存在しており、フェントン酸化が起こっているため、還元によって生成したFe(II)は迅速にFe(III)に酸化される。そのため、Fe(III)濃度は[Fe(III)] = 1.0 mMで一定としてS_{Fe(III)}を推算した。

\[S_{Fe(III)} = k \times [Fe(III)] \times t_d \times V \quad (1.1) \]

\[k : \text{rate constant (min}^{-1}) \quad 0.0497 \text{ (UVA), 0.0189 (LED)} \]

\[t_d : \text{degradation time (min)} \]

\[V : \text{reactor volume (L)} \]

推算したS_{Fe(III)}と、Fe/H₂O₂/Ox/UVA、Fe/H₂O₂/Ox/LEDの条件で100 mg·L⁻¹のジオキサン水溶液をフェントン酸化した際のジオキサンの分解量との関係を図1.10に示す。どちらの反応条件でも、還元されたFe(III)の量と、ジオキサンの分解量との間には、1:2の比例関係が成立している。これらの結果より、ジオキサンの分解をどれだけ進行させることができるかは、光源の種類には依存せず、どれだけのFe(III)を還元することが出来るかで決まると考えられる。この条件では1 molのFe(III)が光化学還元による還元とフェントン酸化に伴うFe(II)/Fe(III)の酸化還元サイクルを1サイクル経ると、2 molのジオキサンが分解されている。

31
第1章

[Fe(III)]₀ = 1.0 mM, [H₂O₂]₀ = 10 mM, [dioxane]₀ = 100 mg · L⁻¹, [Ox]₀ = 1.0 mM

図1.10 Fe(III)還元量 $S_{Fe(III)}$ とジオキサンの分解量の関係

[Fe(III)]₀ = 1.0 mM, [H₂O₂]₀ = 10 mM, [dioxane]₀ = 100 mg · L⁻¹, [Ox]₀ = 1.0 mM

図1.11 ジオキサン分解量に対する、シュウ酸、H₂O₂消費量の比較
シュウ酸添加と光照射を併用したフェントン酸化では、フェントン酸化によって有機物が分解されると共に、シュウ酸と H₂O₂が消費される。そこで、シュウ酸と H₂O₂の消費挙動を UV 照射と白色 LED 照射で比較するため、Fe/H₂O₂/Ox/UVA, Fe/H₂O₂/Ox/LED の条件でフェントン酸化を行った際のジオキサンの分解量と、シュウ酸、H₂O₂の消費量との関係を図 1.11 に示した。ジオキサンの分解量に対する H₂O₂の消費量を見ると、UVA を用いた場合も白色 LED を用いた場合も、ジオキサン分解量が同じであれば、H₂O₂の消費量もほとんど同じであり、ジオキサン 1 mM (= 88 mg ·L⁻¹) を分解した際の、H₂O₂の消費量は、光源の種類に依らず 2 mM であった。シュウ酸の消費量についても、80%の分解率となるジオキサン分解量 80 mg ·L⁻¹程度までは、ジオキサンの分解量に対するシュウ酸の消費量は近い値であった。これらの結果より、光源として UVA と白色 LED とを比較した場合、ジオキサンの分解速度に違いがみられるが、Fe(III)の還元量が同じであれば、ジオキサンの分解挙動も同じであると示唆された。

1.3.4 シュウ酸濃度と鉄イオン濃度の検討

シュウ酸添加と光照射を併用したフェントン酸化は、ジオキサンを継続的に分解し、短い照射時間で高い分解率を達成できることが分かった。本手法を用いて高濃度のジオキサンを分解する際には、ジオキサンの分解に伴ってシュウ酸も分解されるため、必要なシュウ酸の量も増加する。そこで、反応条件として、シュウ酸濃度がジオキサンの分解に及ぼす影響を検討する。[Fe(III)]₀ = 1.0 mM, [H₂O₂]₀ = 10 mM, [dioxane]₀ = 100 mg ·L⁻¹ として、様々な[Ox]₀で UVA もしくは白色 LED を光源として、ジオキサンのフェントン酸化を行った。[dioxane]と H₂O₂濃度の経時変化を図 1.12, 図 1.13 に示す。UVA 照射下では、[Ox]₀/[Fe(III)]₀ ≥ 0.75 において、ジオキサンの分解速度に大きな違いはなく、[Ox]₀/[Fe(III)]₀ = 0.75 では反応時間 40 分で、[Ox]₀/[Fe(III)]₀ ≥ 1.0 では反応時間 30 分でジオキサンを[dioxane] < 0.1 mg ·L⁻¹まで分解することが出来た。よって、UVA ランプを光源として用いる際には、最初に高濃度のシュウ酸を添加しても、ジオキサンのフェントン酸化が効果的に進行するといえる。一方、[Ox]₀/[Fe(III)]₀ = 0.5 の条件ではジオキサンの分解速度が大きく低下した。ジオキサン濃度は、30 分では 14.6 mg ·L⁻¹であり、0.1 mg ·L⁻¹以下まで分解するには 75 分を要した。ここで、H₂O₂の消費量を見ると、[Ox]₀/[Fe(III)]₀ = 0.5 の条件では、他の条件と比べて H₂O₂の消費量が少なかったことが分かる。これは、シュウ酸が低濃度であるため、光化学還元による Fe(III)の還元反応の速度が低くなり、ジオキサンの分解速度も低下したと考えられる。一方、白色 LED 照射下での分解挙動を見ると、[Ox]₀/[Fe(III)]₀ によってジオキサンの分解速度が大きく異なっており、[Ox]₀/[Fe(III)]₀に最適値が存在していることが分かる。ジオキサンの分解が最も速く進行したのは、[Ox]₀/[Fe(III)]₀ = 1.0 の条件であり、30 分で[dioxane] = 7.0 mg ·L⁻¹, 50 分で[dioxane] < 0.1 mg ·L⁻¹まで分解することが出来た。他の条件について、30 分での[dioxane]を比較すると、[Ox]₀/[Fe(III)]₀ = 0.5, 0.75, 3, 10 では、[dioxane] = 55.7, 31.5, 27.6, 52.6 mg ·L⁻¹であり、[Ox]₀/[Fe(III)]₀ が 1 から外れるほど、ジオキサンの分解率は低下していた。[Ox]₀/[Fe(III)]₀ が
低い条件では、UVA 照射の場合と同じくシュウ酸が不足により、光化学還元の反応速度が低下し、ジオキサンの分解速度も低下したと考えられる。一方、白色 LED 照射では、[Ox]/[Fe(III)] の高い条件でジオキサンの分解速度が低下した。白色 LED 照射では、Fe(III) に対するシュウ酸の割合が過剰であると、光化学還元反応を阻害することを示唆している。これらの結果より、白色 LED ランプを光源として用いる際には、溶液中のシュウ酸濃度が最適な値を維持できるように、シュウ酸を連続的に添加する、もしくは分解したシュウ酸量を補うように適宜添加するといった操作が必要であると考えられる。

図 1.12 異なるシュウ酸濃度でのジオキサン分解におけるジオキサン濃度の経時変化
図1.13 異なるシュウ酸濃度でのジオキサンの分解でのH₂O₂消費量の経時変化

光照射を行わないフェントン酸化では、[Fe(II)]₀によってジオキサンの分解率が大きく異なった。フェントン酸化において、[Fe(II)]₀は、重要な操作条件であるため、[Fe(III)]₀の影響を検討する。[H₂O₂]₀ = 10 mM、[dioxane]₀ = 100 mg · L⁻¹として、[Ox]₀/[Fe(III)]₀ = 1 となるようにして、[Fe(III)]₀ = 0.5, 0.75, 1.0 mM の条件でUVA 照射下、もしくは白色 LED 照射下でのフェントン酸化を行った。ジオキサン濃度の経時変化を図1.14 に示す。UVA 照射下では、[Fe(III)]₀が高いほどジオキサンの分解速度も高い傾向がみられたが、その影響は非常に小さく、いずれの条件でも45分で[dioxane] < 0.1 mg · L⁻¹まで分解できている。これは、1.3.3(a)
第1章

36節で示したように、UVA 照射では照射光の吸収効率が非常に高く、[Fe(III)]₀ = 0.5 mM においても照射光をほとんど全て吸収しているため、[Fe(III)]₀が変化してもジオキサンの分解速度に違いは見られない。一方で、白色 LED 照射下では、[Fe(III)]₀が高いほどジオキサンの分解速度も高く、3つの条件では分解速度に大きな違いが見られた。これは、白色 LED の照射光の吸収効率が低いため、[Fe(III)]₀が吸収できる光の量に大きな影響を与えているためであると考えられる。そのため、[Fe(III)]₀ = 1.0 mM では、ジオキサンを完全に分解するのに要した時間は 50 分であるが、[Fe(III)]₀ = 0.75 mM では、90 分で規制値以下の[dioxane] = 0.29 mg · L⁻¹まで分解し、[Fe(III)]₀ = 0.5 mM では、120 分でも[dioxane] = 11.1 mg · L⁻¹であり規制値以下にまでジオキサンを分解することはできなかった。これらの結果より、白色 LED 照射では、Fe(III)が酸化鉄のスラッジとして沈殿を生じない範囲で、Fe(III)を高濃度で加えるとジオキサンの分解が速く進むと考えられる。

図 1.14 異なる Fe(III)濃度でのジオキサンの分解

[Fe(III)]₀ = 0.5 mM, 0.75 mM, 1.0 mM
[H₂O₂]₀ = 10 mM, [dioxane]₀ = 100 mg · L⁻¹, [Ox]₀/[Fe(III)]₀ = 1

1.3.5 ジオキサン分解におけるエネルギー効率の検討

UVA 照射と白色 LED 照射とでは、Fe(III)の還元速度に違いがあるため、ジオキサンの分解速度が異なるものの、Fe(III)還元速度に対するジオキサンの分解挙動はほぼ同じであった。そこで、ジオキサン分解のエネルギー効率を UVA 照射と白色 LED 照射とで比較検討を行う。反応条件として、[Fe(III)]₀ = 1.0 mM, [Ox]₀ = 1.0 mM, [H₂O₂]₀ = 10 mM とし、[dioxane]₀ = 100, 200 mg · L⁻¹とした。この時、ジオキサンの分解速度が約 80%に達した際の、消費電力 1 Wh あ
第1章

たりのジオキサン分解量(mg)をエネルギー効率 \(\eta_{80} \) と定義して、図1.15に示す。

\[
\eta_{80} = \frac{\text{amount of 1,4-dioxane degraded (mg)}}{\text{energy consumption (Wh)}}
\]

(1.2)

図1.15 分解率80%でのエネルギー効率の比較

[dioxane]₀ = 100 mg・L⁻¹では、UVA照射を併用した場合は \(\eta_{80} = 20.0 \) mg・Wh⁻¹であるのに対して、白色LED照射を併用した場合は \(\eta_{80} = 32.1 \) mg・Wh⁻¹であり、同じ量のジオキサンを分解する場合に、白色LED照射を行えばUVA照射に対して同じ消費電力で約1.5倍のジオキサンを分解できることが分かった。[dioxane]₀ = 200 mg・L⁻¹においても、UVA照射を併用した場合は \(\eta_{80} = 28.27 \) mg・Wh⁻¹であるのに対して、白色LED照射を併用した場合は \(\eta_{80} = 42.77 \) mg・Wh⁻¹であった。この条件でも白色LED照射の方が、効率が1.5倍程度高い。

紫外線は人体に対して有害であることが知られており、紫外線照射を行う装置を設計する際には、反応装置を遮光する必要がある。しかし、今回用いた白色LEDは、紫外線域の光は全く照射せず、可視光域の光のみを照射しているため、安全性がより高く、反応装置を遮光する必要もない。このような低消費電力で、人体への有害性の低いLED照明は、近年、室内照明としての利用が広がっている。そこで、光照射のために光源を用意せず、室内照明を利用することで更なる消費エネルギーの削減が期待できる。さらに、反応器の可視化もできるので、光照射で問題となる反応器内壁の汚れも目視できる。このように可視光LEDによる光化学還元を利用した分解法はエネルギー消費を抑えた安全なプロセスになりうると考えられる。

紫外線は人体に対して有害であることが知られており、紫外線照射を行う装置を設計する際には、反応装置を遮光する必要がある。しかし、今回用いた白色LEDは、紫外線域の光は全く照射せず、可視光域の光のみを照射しているため、安全性がより高く、反応装置を遮光する必要もない。このような低消費電力で、人体への有害性の低いLED照明は、近年、室内照明としての利用が広がっている。そこで、光照射のために光源を用意せず、室内照明を利用することで更なる消費エネルギーの削減が期待できる。さらに、反応器の可視化もできるので、光照射で問題となる反応器内壁の汚れも目視できる。このように可視光LEDによる光化学還元を利用した分解法はエネルギー消費を抑えた安全なプロセスになりうると考えられる。
1.4 結言

有効な処理手法の開発が急務である。1,4-ジオキサンに対し、フェントン酸化の有効性を検討した。フェントン酸化や、光フェントン酸化に加え、光化学還元による Fe(III)の還元反応を利用して新たな処理手法として提案し、それらの有効性を検討した。フェントン酸化により、ジオキサンを迅速に分解することができるが、15分以内に分解反応は停止してしまうことがわかった。これは、フェントン酸化によって生成した Fe(III)を還元する反応がほとんど進行しないためである。ジオキサンの分解量は、[Fe(II)]₀が高い方が多く、反応中に水酸化鉄のスラッジが発生しない条件で考えると、ジオキサン濃度が10 mg · L⁻¹以下のような低濃度のジオキサン水溶液であれば、フェントン酸化是有効な処理方法であるといえる。また、[H₂O₂]/[Fe(II)]₀の最適値が存在しており、適切な[H₂O₂]/[Fe(II)]₀で分解を行う必要がある。

継続的にジオキサンの分解を進行させるため、紫外線照射を併用したフェントン酸化を行ったところ、主波長が352 nmであるUVAの場合は、ジオキサンの分解が非常に遅い。一方、主波長が254 nmであるUVCの場合は、UVAに比べるとジオキサンの分解量は大きかったが、200 mg · L⁻¹のジオキサンを規制値以下にまで分解するには非常に長い時間紫外線を照射せねばならず、エネルギー消費量も大きくなることが分かった。また、UVCの波長の紫外線は、通常のパイレックス製の反応器を透過することが出来ないため、石英製の反応器のようないくたに高価な機材が必要となる。

より効率よくジオキサンを分解し、光照射の時間を短くするため、シュウ酸を添加して光化学的にFe(III)を還元する光化学還元を併用する手法を提案した。本章では、UVAのみならず可視光である白色LED照射についての検討を行ったところ、いずれの光照射でも、短時間で完全にジオキサンを分解できることを示した。初期ジオキサン濃度100 mg · L⁻¹のジオキサン水溶液であれば、UVA照射では10分で、白色LED照射では20分で約80%のジオキサンを分解することが出来た。UVA照射と白色LED照射による違いを検討するため、Fe(III)の還元速度を測定し、Fe(III)の還元量とジオキサンの分解量を比較したところ、いずれの光源でもFe(III)が1 mol還元されるとジオキサンが2 mol分解される結果が得られた。また、H₂O₂およびシュウ酸の消費量も比較したところ、ジオキサンの分解量が同じであれば、光源による違いは見られなかった。よって、Fe(III)の還元速度が同じであれば、UVA照射と白色LED照射でのジオキサンの分解挙動は、ほぼ同じであることが示唆された。

ジオキサンの分解効率を必要な消費エネルギーを基準にして比較したところ、白色LED照射を利用すれば、UVAランプと比べて分解効率が1.5倍も高いことが分かった。今後、光源として室内照明を利用すれば、更なる省エネルギー化も期待できる。また、可視光であれば反応器の可視化が可能であり、光照射で問題となる内壁の汚れを安全に確認できる。可視光LEDを利用した光化学還元による分解法は、省エネルギー性と安全性を兼ね備えたプロセスになりうると考えられる。
参考文献

[1] 環境省, 1,4-ジオキサンについて（資料3-1）
第2章 エレクトロフェントン法によるジオキサンの分解と活性ラジカル種を考慮したモデルの構築

2.1 緒言

本章では電気化学還元を併用するエレクトロフェントン酸化を用いて、第1章でも分解対象とした1,4-ジオキサン（ジオキサン）の処理を行う。エレクトロフェントン酸化で取り上げられるの多い亜鉛反応は、過酸化水素（H₂O₂）の生成反応と、Fe(III)の還元反応である。これららの反応によって、試薬投入量を削減することが期待されている。これら2つの反応でも、一般的にはH₂O₂の生成反応に着目して、H₂O₂の生成反応を優位に進める試みがなされることが多く、例えば凝集拡散電極を用いて、効率よく電極上でH₂O₂の生成反応を進めながら有機物の分解を行う研究が挙げられる[1]。また、電極の探索も行われており、Pimentelら[4]は、2種類の電極表面積をもつカーポンフェルト電極（S = 48, 102 cm²）でのフェノールの分解挙動を比較し、電極表面積が大きいと電流密度が低くなり、電極での水素の生成反応を抑制することができ、有機物の分解速度が高くなると報告している。

本章では、Fe(III)の還元反応に着目した。第1章で示したように、光を照射しない従来のフェントン酸化でジオキサンの分解を行うと、反応開始直後には迅速にジオキサンが分解するが、分解反応が継続的に進行しないことが課題であった。そこで、電気化学的な手法でFe(III)を還元するエレクトロフェントン酸化を利用して、継続的にジオキサンの分解を進めることができる。しかしながら、これまでエレクトロフェントン酸化によるジオキサンの分解の研究はなく、反応に適したH₂O₂の添加手法や、濃度条件などの知見がないため、ジオキサンの分解に適用できるのかは明らかでない。また、フェントン酸化では、酸化分解にラジカル種が関与するが、ラジカル種を実験で定量的に測定することは困難である。そのため、シミュレーションによるアプローチが試みられているが、エレクトロフェントン酸化に関しては、緒論で述べたように活性ラジカル種や電極反応を考慮した研究は乏しく、十分な知見があるとは言えない。

本章では、エレクトロフェントン酸化を利用してジオキサンを分解するプロセスの開発を目的とする。エレクトロフェントン酸化では、フェントン試薬の供給方法やセルタイプには様々な形式が提案されているが[5-6]、H₂O₂の供給不足にならないようにH₂O₂を外部から添加し、また添加したH₂O₂が陽極で分解されることを防ぐため、陽極槽と陰極槽を隔離したtwo-compartment cellタイプの反応器を使用する。カソードに活性炭電極を使用し、Fe(III)の還元特性を評価するとともに、エレクトロフェントン酸化によるジオキサンの分解を行い、実験条件がジオキサンの分解や、H₂O₂の消費に与える影響を検討する。さらに、エレクトロフェントン酸化によるジオキサンの分解反応モデルを新たに構築し、シミュレーションの結果から、ジオキサンとH₂O₂の分解挙動を定量的に検討する。
2.2 実験

2.2.1 試薬

実験で用いた活性炭は日本エンバイロケミカルズから、その他の試薬はすべて和光純薬工業株式会社から購入した。Fe(III)源として、あらかじめ 0.25 M に調製した Fe_{2}(SO_{4})_{3} 水溶液を用いた。H_{2}O_{2} は実験開始の直前に 15 wt% の H_{2}O_{2} 水溶液を調製した。pH 調整のために、1.0 M の硫酸を用いた。また、電解液として pH 2.5 に調整した 0.05 M Na_{2}SO_{4} 溶液を用いた。

2.2.2 電極用活性炭の作製

活性炭 100 mg を量り取り、カーボンブラック 10 mg とともに乳棒の中でよくかき混ぜた。そこに PTFE バインダー 10 mg を加え、押しつぶすようにして均一に混ぜ合わせた。その後ステンレス棒（0.5 inch）で所定の大きさ以上に延ばし、250 N cm^{-2} の圧力で SUS 製の網に15分間圧着した。

初めて活性炭電極を使用する際には、pH 2.5 に調整した 0.05 M Na_{2}SO_{4} 水溶液中で電気分解を約 1 時間、その後 1.0 mM になるように Fe(III)溶液を加えて更にもう 1 時間の電気分解を行った。また、活性炭電極の使用日は、その日使用する活性炭について最初の実験前に 0.05 M Na_{2}SO_{4} 溶液による予備運転を 60 分間行ってから実験を開始した。

2.2.3 実験装置

![実験装置](image)

図 2.1 実験装置外観
反応器には図2.1に示した自作のアクリル製の電気化学反応器を使用した。陰極槽の容量は250 mL、陽極槽の容量は100 mLであり、二つの槽をナフィオン膜により物理的に隔離した。陽極槽・陰極槽いずれについても、電解液としてpH 2.5に調整した0.05M Na2SO4水溶液を使用した。上述の方法で作製した活性炭電極を陰極に、Pt ワイヤ電極を陽極に使用した。参照極はAg/AgCl電極を使用し、三電極をポテンシオスタットに接続した。また、気体のブリングを行う際は反応器上部に蓋をして空気との接触を可能な限り避けた。

2.2.4 実験手順

250 mLメスフラスコ中に所定の濃度になるようにNa2SO4、H2O2、ジオキサン、H2SO4を加えて250 mLにして、反応容器陰極槽にうつした。さらに1.0 M H2SO4を用いてpH 2.5になるよう調整した。陽極槽にはpH 2.5に調整した0.05 M Na2SO4水溶液を100 mL加えた。三電極を設置し、所定の初期Fe(III)濃度[Fe(III)]0になるよう0.25 M Fe2(SO4)3を滴下すると同時にポテンシオスタットを操作し実験を開始した。

2.2.5 分析

2.2.5(a) 過酸化水素(H2O2)、鉄イオン（Fe(II), Fe(III)）濃度測定

H2O2、Fe(II), Fe(III)濃度は、紫外可視分光光度計(UV-1800, Shimadzu)を用いて比色分析法を用いて分析を行った。H2O2濃度の測定にはアイオダイド法を用いて溶液を発色し、λ = 350 nmの波長の吸光度を測定した[7]。Fe(II)濃度の測定にはパノフェナントロリン法を用いて溶液を発色させ、λ = 534 nmの波長の吸光度を測定した[8]。Fe(III)濃度は、塩化ヒドロキシアミンを測定溶液に加えFe(III)をFe(II)に還元し、パノフェナントロリン法で溶液中の全鉄イオン濃度を測定し、Fe(II)濃度の測定結果との差分をFe(III)濃度とした。

2.2.5(b) ジオキサン濃度測定

ジオキサンの濃度測定には、HPLCを用いた。検出器はフォトダイオードアレイ検出器(SPD M20A, Shimadzu)を使用した。カラムはShim-pack VP-ODSを使用し、オーブン温度35 ℃のもと測定を行った。移動相はpH 3.0のリン酸緩衝液を0.630 mL・min⁻¹、アセトニトリルを0.070 mL・min⁻¹の混合液を用いた。本条件でのジオキサンの保持時間は4.5 minであり、ジオキサンの吸収スペクトルから検出波長は195 nmとした。
2.3 結果と考察

2.3.1 電極表面における Fe(III)の還元速度の検討

まず、ジオキサンを含まない溶液において、電極表面で Fe(III)が還元できるかの検証を行うため、H₂O₂を加えず電圧を印加し、生成した Fe(II)の濃度[Fe(II)]を測定した。陰極電位は

\(V_c = -0.1 \text{ V (vs Ag/AgCl)} \)

とし、[Fe(III)]₀ = 0.5, 1.0 mM の条件で還元実験を行った。[Fe(II)] の経時変化を図 2.2 に示す。Fe(II)の生成速度を考えると、[Fe(III)]₀ が高い [Fe(III)]₀ = 1.0 mM の方が Fe(II)の生成速度が高く、電極上の Fe(III)の還元は [Fe(III)]₀ が高い方が Fe(III)の還元速度も高い。このため、ジオキサンの分解を行う際も、[Fe(III)]₀ が高い方が、ジオキサンの分解が迅速に進行すると考えられる。

ここで、Fe(III)の電気化学的な還元を Fe(III)濃度[Fe(III)]に対して一次反応と仮定すると電極による Fe(II)生成速度は、

\[
\frac{d[\text{Fe(II)}]}{dt} = k_c [\text{Fe(III)}] = k_c ([\text{Fe(III)}]_0 - [\text{Fe(II)}])
\]

と表せる。\(k_c \) は一次反応速度定数(min⁻¹)である。両辺を積分して、

\[
\ln \left(1 - \frac{[\text{Fe(II)}]}{[\text{Fe(III)}]_0}\right) = -k_c t
\]

(2.2)
第2章

を収める。式(2.2)の左辺を時間tに対してプロットした際、直線を示せば電極によるFe(III)還元速度は[Fe(III)]に対して一次で表せると言える。図2.3にln(1-[Fe(II)]/[Fe(III)]₀)のtに対するプロットを示す。[Fe(III)]₀=0.5, 1.0 mM のいずれの場合も、直線関係が得られている。このことから電極によるFe(III)還元反応の速度は[Fe(III)]に対して一次で近似できると言える。直線の傾きから、一次反応速度定数kᵣ=3.48×10⁻³ min⁻¹が得られた。

![図2.3 Fe(III)還元速度の速度解析](image)

2.3.2 エレクトロフェントン酸化によるジオキサンの分解

初期ジオキサン濃度[dioxane]₀ = 40 mg·L⁻¹のジオキサン水溶液を、初期H₂O₂濃度[H₂O₂]₀ = 2.0 mMとして、フェントン酸化、エレクトロフェントン酸化により分解した。反応条件は、フェントン酸化では、初期Fe(II)濃度[Fe(II)]₀ = 0.5 mMとし、エレクトロフェントン酸化では、[Fe(III)]₀ = 0.5 mM、Vᵣ = -0.1 Vとした。ジオキサン濃度[dioxane]とH₂O₂濃度[H₂O₂]の経時変化を図2.4に示す。フェントン酸化では、分解初期にジオキサンの分解が迅速に進行し、10分で[dioxane] = 25.7 mg·L⁻¹となり約35%のジオキサンを分解できた。第1章で示したように、Fe(II)とH₂O₂によるフェントン反応で生成したOHラジカルで分解が進行するが、10分以降では、[dioxane]に変化が見られない。H₂O₂もほとんど消費されておらず、Fe(III)の還元反応がほとんど進行しなくなっていると言える。一方、エレクトロフェントン酸化では、Fe(III)として鉄イオンを投入しているため、反応初期の迅速なジオキサンの分解は見られないが、継続的にジオキサンを分解することができており、60分で[dioxane] = 26.5 mg·L⁻¹となりフェントン酸化での[dioxane]とほぼ同じになった。これ以降もジオキサンの分解が継続的に進
行し、180分で[dioxane] = 6.8 mg · L⁻¹となり、ジオキサンの分解率は80%以上となった。[H₂O₂]も[dioxane]と同様に継続的に減少している。これは、電極上で Fe(III)が Fe(II)に還元される反応が進行して、継続的に溶液内に Fe(II)が供給され、フェントン酸化も継続的に進行したと考えられる。これらの結果より、電気化学的な手法を併用するエレクトロフェントン酸化は、Fe(III)を還元して継続的に OH ラジカルを生成し、ジオキサンの分解も継続的に進めることができるといえる。

図 2.4 フェントン酸化とエレクトロフェントン酸化によるジオキサンの分解におけるジオキサン濃度と H₂O₂濃度の経時変化

ここで、ジオキサンの分解生成物が電極上での Fe(III)の還元反応に影響を与えるかの検討を行った。[Fe(III)]₀ = 1.0 mM、[H₂O₂]₀ = 0.5 mM、Vc = -0.1 V、[dioxane]₀ = 40 mg · L⁻¹でジオ
キサンの分解を行った。[Fe(II)]の経時変化を図2.5に示す。比較のため、[Fe(III)]₀ = 1.0 mM、
Vc = -0.1 V としてジオキサン、H₂O₂を加えずに Fe(III)の電極上での還元実験を行った結果も
あわせて示す。ジオキサンの分解を行った場合、H₂O₂を添加しているので、H₂O₂がほぼ消費
される150分まではFe(II)の生成が見られず、その後Fe(III)の還元実験と同様のFe(II)の生成
が見られる。150分でのジオキサンの分解率は85%程度であり、液中に存在する有機物の多くの
分解生成物である。図2.5には、先の電極での還元実験で求めた還元速度定数k = 3.48 × 10⁻³
min⁻¹から算出した[Fe(III)] = 1.0 mMにおけるFe(III)の還元速度d[Fe(III)]/dt = k[Fe(III)] =
3.48 × 10⁻³ mmol · L⁻¹ · min⁻¹の直線も示した。ジオキサンの分解実験における150分からの
Fe(II)の生成速度は、Fe(II)の濃度変化と直線を比較するとほぼ同じ傾きであるため、
d[Fe(III)]/dt = 3.48×10⁻³ mmol · L⁻¹ · min⁻¹と考えてよいことがわかる。つまり、ジオキサンの
分解生成物が水溶液中に存在していても、電極上のFe(III)の還元速度はほぼ同じであり、
ジオキサンの分解生成物は、電極でのFe(III)の還元反応に影響を与えないといえる。

![図2.5 分解生成物の有無によるFe(III)還元速度の比較](image)

[Fe(III)]₀ = 1.0 mM, Vc = -0.1 V (vs Ag/AgCl)

2.3.3 最適な反応条件の検討

2.3.3(a) H₂O₂供給方法の検討

フェントン酸化では、H₂O₂を消費する反応しか起こらないが、電気化学還元を併用した場合、
陰極上で溶存酸素が還元され、H₂O₂が生成する反応が知られている。そこで、陰極上で生
成するH₂O₂のみで分解を行う場合と、外部から供給する場合とでのジオキサンの分解速度を
比較した。まず、[dioxane]₀ = 40 mg · L⁻¹ のジオキサン水溶液を、[Fe(III)]₀ = 0.5 mM、Vc = −0.1 V として、外部から H₂O₂ を供給せず、陰極上で生成する H₂O₂ のみで反応させるエレクトロフェントン酸化で分解を行った。溶液中に 100 mL · min⁻¹ で空気のバブリングを行う条件と、バブリングを行わない条件とでの[dioxane] の経時変化を図 2.6 に示す。バブリングの有無に関らず、どちらの条件でもジオキサンの分解は進行したが、ジオキサンの分解速度に違いがみられる。バブリングを行った条件では、120 分で[dioxane] = 24.5 mg · L⁻¹ までジオキサンを分解したが、バブリングを行わなかった条件では、120 分で[dioxane] = 34.4 mg · L⁻¹ であった。これは、空気のバブリングを行うことで、溶存酸素を継続的に供給することができ、H₂O₂ の生成速度の低下が抑制されたためと考えられる。

次に、[H₂O₂]₀ = 2.0 mM としてあらかじめ H₂O₂ を外部から供給した条件で、[Fe(III)]₀ = 0.5 mM、Vc = −0.1 V として、[dioxane]₀ = 40 mg · L⁻¹ のジオキサン水溶液に対してエレクトロフェントン酸化を行った。[dioxane] の経時変化を図 2.6 に示す。[dioxane] の経時変化について、陰極反応のみで H₂O₂ を供給する場合と比較すると、外部から H₂O₂ を供給した条件では、ジオキサンの分解速度が大きく、バブリングを行わなかった条件でも、120 分で[dioxane] = 16.0 mg · L⁻¹ となるまでジオキサンを分解することができた。また、H₂O₂ を添加した条件では、バブリングの有無は、ジオキサンの分解速度にほぼ影響を与えなかった。H₂O₂ を添加しない条件では、バブリングを行っても反応溶液中の[H₂O₂] は 1.0 × 10⁻⁵ mM 以下であったことから、陰極反応のみで H₂O₂ を供給する場合では、常に H₂O₂ が不足した状態であったと考えられる。
そのため，H₂O₂を外部から供給することがジオキサンを迅速に分解することに対して有効であると言える。

2.3.3 (b) 初期 H₂O₂濃度の影響

![図2.7 ジオキサン分解に及ぼすH₂O₂の影響](chart.png)

图2.7 ジオキサン分解に及ぼすH₂O₂の影響

[Fe(III)]₀ = 1.0 mM, V_c = −0.1 V (vs Ag/AgCl)
第2章

[dioxane]の経時変化を見ると、[H₂O₂]₀によってジオキサンの分解量が異なっていることが分かる。[H₂O₂]₀ = 2.0, 4.0 mM でジオキサンの分解が最も速く進行し、60分ではそれぞれ、[dioxane] = 12.9, 13.4 mg · L⁻¹であった。一方、[H₂O₂]₀ = 1.0, 10 mM では[dioxane] = 15.8, 19.0 mg · L⁻¹であり、[H₂O₂]₀には最適な濃度が存在すると考えられる。[H₂O₂]の経時変化をみると、[H₂O₂]₀によって消費されている H₂O₂の量が大きく異なっていることが分かる。特に、[H₂O₂]₀ = 10 mM では[H₂O₂]₀ = 2.0 mM と比較して、H₂O₂の消費量が多いが、ジオキサンの分解量は少ない。また、分解後期に H₂O₂消費速度が大きくなっていることも特徴的である。

そこで、この現象についての考察を行うため、各反応条件の 60 分でのジオキサン分解量と H₂O₂消費量を比較したものを図 2.8 に示す。[H₂O₂]₀ = 1.0, 2.0, 4.0 mM では、ジオキサン分解量も H₂O₂消費量もそれぞれ近い値であるが、[H₂O₂]₀ = 10 mM では、他の条件と比べて H₂O₂を2倍近く消費しているにも関わらず、ジオキサンの分解量は少ないことがはっきりと分かる。これは、[H₂O₂]₀が高い条件では、H₂O₂と OH ラジカルとの反応が進んだと説明することができる。溶液中の[H₂O₂]が高いほど、OH ラジカルが消費される反応として、H₂O₂と OH ラジカルとの反応の選択率が高くなり、ジオキサンの分解量に対する H₂O₂消費量が増加したと考えられる。また、反応後半で H₂O₂消費速度が高くなった理由も、溶液内に残留している[dioxane]が低くなり、相対的に[H₂O₂]が高くなったため、H₂O₂と OH ラジカルとの反応の選択率が高くなったと考えることができる。

[dioxane]₀ = 40 mg · L⁻¹、[Fe(III)]₀ = 1.0 mM、Vc = 0.1 V (vs Ag/AgCl)

図 2.8 H₂O₂の消費量とジオキサンの分解量の比較
2.3.3(c) 初期 Fe(III)濃度の影響

\[\text{[H}_2\text{O}_2\text{]}_0 = 2.0 \text{ mM, } V_c = -0.1 \text{ V, } \text{[dioxane]}_0 = 40 \text{ mg} \cdot \text{L}^{-1}, \text{[Fe(III)]}_0 = 0.5, 1.0, 2.0 \text{ mM} \] として, ジオキサン水溶液に対してエレクトロフェントン酸化を行い, [Fe(III)]₀ がジオキサンの分解に与える影響を検討した。[dioxane]₀と[H₂O₂]₀の経時変化を図2.9に示す。[Fe(III)]₀が高いほど, H₂O₂消費速度とジオキサンの分解速度が大きかった。これは, 2.3.1節で示したように, [Fe(III)]₀が大きいほど, 電極表面での Fe(III)の還元反応速度が大きくなり, フェントン酸化が促進されたためであると推測される。

![図2.9 ジオキサン分解に及ぼす[Fe(III)]₀の影響](image)
2.3.3(d) 初期ジオキサン濃度の影響

\[\text{[Fe(III)]}_0 = 1.0 \text{ mM}, \ [\text{H}_2\text{O}_2]_0 = 2.0 \text{ mM}, \ V_c = -0.1 \text{ V} \] とし、\[\text{[dioxane]}_0 = 40, 100, 200 \text{ mg · L}^{-1}\]のジオキサン水溶液に対してエレクトロフェントン酸化を行い、この手法のジオキサンの分解能力を検討した。\[\text{[dioxane]}_0 = 200 \text{ mg · L}^{-1}\]では、\[\text{H}_2\text{O}_2\]の不足を防ぐために、反応時間300分、480分で\[\text{H}_2\text{O}_2\]を追加した。\[\text{[dioxane]}\]と\[\text{[H}_2\text{O}_2]\]の経時変化を図2.10に示す。

ジオキサンの分解挙動を見ると、反応の初期と後期で異なる分解挙動を示した。反応初期のジオキサン分解速度は、\[\text{[dioxane]}_0 = 40, 100, 200 \text{ mg · L}^{-1}\]では、\[3.7 \times 10^{-1} \text{ mg · L}^{-1} · \text{min}^{-1}\]である。

\[\text{[Fe(III)]}_0 = 1.0 \text{ mM}, \ [\text{H}_2\text{O}_2]_0 = 2.0 \text{ mM}, \ V_c = -0.1 \text{ V (vs Ag/AgCl)}\]

図2.10 ジオキサン濃度による分解挙動の違い

ジオキサンの分解挙動を見ると、反応の初期と後期で異なる分解挙動を示した。反応初期のジオキサン分解速度は、\[\text{[dioxane]}_0 = 40, 100, 200 \text{ mg · L}^{-1}\]では、\[3.7 \times 10^{-1} \text{ mg · L}^{-1} · \text{min}^{-1}\]である。
であり，[dioxane]₀に関らずほぼ同じであった。これは，ジオキサンと OH ラジカルの反応性が非常に高く，生成した OH ラジカルが優先的にジオキサンと反応したためであると考えられる。しかし，ジオキサンの分解が進行した分解後期では，[dioxane]₀によって，明らかに分解速度が異なっている。[dioxane] = 40 mg · L⁻¹における分解速度を比較すると，[dioxane]₀ = 40 mg · L⁻¹では 3.7 × 10⁻¹ mg · L⁻¹ · min⁻¹であるのに対し，[dioxane]₀ = 100, 200 mg · L⁻¹ではそれぞれ，3.0 × 10⁻¹, 2.7 × 10⁻¹ mg · L⁻¹ · min⁻¹であり，[dioxane]₀が高いと，ジオキサンの分解速度が低くなっている。これは，[dioxane]₀が高い条件では，[dioxane] = 40 mg · L⁻¹まで分解が進行すると，分解生成物が溶液内に存在しており，残留している有機物中の分解生成物の割合が高いため，OH ラジカルと分解生成物との反応の選択性が高くなり，ジオキサンの分解反応が阻害されたためであると考えられる。Suh らもジオキサンの分解生成物の影響でジオキサンの分解速度が低下すると報告している(9)。

ここで，[dioxane]₀ = 40 mg · L⁻¹でのエレクトロフェントン酸化での，[dioxane]と TOC 濃度の経時変化を図 2.11 に示す。TOC 濃度は，120 分程度までは，ほとんど低下がみられないが，それ以降は減少がみられる。120 分では，[dioxane] ≤ 1.0 mg · L⁻¹となっているので，ジオキサンの OH ラジカルとの反応速度は大きく低下していると考えられる。そのため，生成した OH ラジカルは，分解生成物と反応し，無機化が進行すると言われる。

ジオキサンのエレクトロフェントン酸化における分解生成物に関して，これまでの考察をまとめると，以下のとおりである。

(1) 電極表面での Fe(III)還元速度を，有機物を含まない溶液と，ジオキサンの分解生成物を
含んだ溶液とで比較したところ、Fe(III)還元速度に違いは見られなかった。このことから、分解生成物は電極でのFe(III)還元反応に影響を与えないと考える。

(2) [dioxane] = 40, 100, 200 mg·L⁻¹の条件で[dioxane] = 40 mg·L⁻¹でのジオキサン分解速度を比較すると、[dioxane]が高いほどジオキサンの分解速度が大きかった。そのため、[dioxane]に対する分解生成物の比率が高い条件では、分解生成物とOHラジカルの反応も考慮する必要がある。

(3) TOC濃度の減少が、[dioxane] ≤ 1 mg·L⁻¹までジオキサンの分解が進行しないとみられなかったことから、ジオキサンとOHラジカルの反応性は分解生成物に比べて非常に高い。

2.3.4 ジオキサン分解モデルの構築

前節までは、ジオキサン、H₂O₂の分解挙動を実験結果から定性的に説明することができたが、定量的な検討はできていない。これは、実験による濃度測定が困難な活性ラジカル種が反応に関与しているためである。そこで、ジオキサンの分解モデルを構築し、シミュレーションからジオキサンとH₂O₂の分解挙動を定量的に検討する。

まず、フェントン酸化に関する既往の研究[10-12]から、分解モデル構築のために以下の反応式を選定した。本章ではFe(III)として鉄を投入するため、OHラジカルの生成は、電極でのFe(III)の還元反応が律連段階となり、反応溶液中のラジカル種は低濃度であると考えられるため、ラジカル種同士の反応は除外した。反応速度定数はすべて文献値を用いる。

\[\text{Fe}^{2+} + \text{H}_2\text{O}_2 \rightarrow \text{Fe}^{3+} + \bullet \text{OH} + \text{OH}^- \quad k_3 = 7.0 \times 10^7 \text{M}^{-1} \cdot \text{s}^{-1} [10] \] (2.3)

\[\text{Fe}^{3+} + \text{H}_2\text{O}_2 \rightarrow \text{Fe}^{2+} + \text{HO}_2^\bullet + \text{H}^+ \quad k_4 = 2.0 \times 10^3 \text{M}^{-1} \cdot \text{s}^{-1} [11] \] (2.4)

\[\text{Fe}^{2+} + \bullet \text{OH} \rightarrow \text{Fe}^{3+} + \text{OH}^- \quad k_5 = 2.7 \times 10^8 \text{M}^{-1} \cdot \text{s}^{-1} [12] \] (2.5)

\[\text{Fe}^{2+} + \text{HO}_2^\bullet \rightarrow \text{Fe}^{3+} + \text{HO}_2^- \quad k_6 = 1.2 \times 10^6 \text{M}^{-1} \cdot \text{s}^{-1} [12] \] (2.6)

\[\text{Fe}^{3+} + \text{HO}_2^\bullet \rightarrow \text{Fe}^{2+} + \text{O}_2 + \text{H}^+ \quad k_7 = 2.0 \times 10^4 \text{M}^{-1} \cdot \text{s}^{-1} [12] \] (2.7)

\[\bullet \text{OH} + \text{H}_2\text{O}_2 \rightarrow \text{HO}_2^\bullet + \text{H}_2\text{O} \quad k_8 = 3.3 \times 10^7 \text{M}^{-1} \cdot \text{s}^{-1} [12] \] (2.8)

\[\text{HO}_2^\bullet + \text{H}_2\text{O}_2 \rightarrow \bullet \text{OH} + \text{O}_2 + \text{H}_2\text{O} \quad k_9 = 5.0 \times 10^3 \text{M}^{-1} \cdot \text{s}^{-1} [12] \] (2.9)

さらに、これらに加えてFe(III)の電極上での還元反応
第2章

Fe^{3+} + e^- \rightarrow Fe^{2+} \quad k_{10} = 3.48 \times 10^{-3} \text{ min}^{-1} \quad (2.10)

を組み込んだ。この電極反応では、反応速度定数 k_{10} として Fe(III)還元実験で算出した値を用いた。また、ジオキサンの分解に関しては、

\[
dioxidane + \cdot \text{OH} \rightarrow \text{P1} \quad k_{11} = 1.1 \times 10^9 \text{ M}^{-1} \cdot \text{s}^{-1} \quad (2.11)
\]

\[
\text{P1} + 2\cdot \text{OH} \rightarrow \text{P2} \quad k_{12} = 4.6 \times 10^7 \text{ M}^{-1} \cdot \text{s}^{-1} \quad (2.12)
\]

の2式で表現すると、反応速度定数はフィッティングで求めた。

上述の式を用いると、H$_2$O$_2$、Fe(II), OH ラジカル、HO$_2$ ラジカル、ジオキサン、P1についての微分方程式は次のようにになる。

\[
\frac{d[H_2O_2]}{dt} = -k_3[\text{Fe(II)}][H_2O_2] - k_4[\text{Fe(III)}][H_2O_2] - k_8[H_2O_2][\cdot \text{OH}]
\]

\[
- k_9[\text{HO}_2\cdot][H_2O_2] \quad (2.13)
\]

\[
\frac{d[\text{Fe(II)}]}{dt} = -k_3[\text{Fe(II)}][H_2O_2] + k_4[\text{Fe(III)}][H_2O_2] - k_5[\text{Fe(II)}][\cdot \text{OH}]
\]

\[
- k_6[\text{Fe(II)}][\text{HO}_2\cdot] + k_7[\text{Fe(III)}][\text{HO}_2\cdot] + k_{10}[\text{Fe(III)}] \quad (2.14)
\]

\[
\frac{d[\cdot \text{OH}]}{dt} = k_3[\text{Fe(II)}][H_2O_2] - k_5[\text{Fe(II)}][\cdot \text{OH}] - k_8[H_2O_2][\cdot \text{OH}]
\]

\[
+ k_9[\text{HO}_2\cdot][H_2O_2] - k_{11}[\text{dioxidane}][\cdot \text{OH}] - k_{12}[\text{P1}][\cdot \text{OH}] \quad (2.15)
\]

\[
\frac{d[\text{HO}_2\cdot]}{dt} = k_4[\text{Fe(III)}][H_2O_2] - k_5[\text{Fe(II)}][\text{HO}_2\cdot] - k_7[\text{Fe(III)}][\text{HO}_2\cdot]
\]

\[
+ k_8[H_2O_2][\cdot \text{OH}] - k_9[\text{HO}_2\cdot][H_2O_2] \quad (2.16)
\]

\[
\frac{d[\text{dioxidane}]}{dt} = -k_{11}[\text{dioxidane}][\cdot \text{OH}] \quad (2.17)
\]

\[
\frac{d[\text{P1}]}{dt} = -k_{11}[\text{dioxidane}][\cdot \text{OH}] - k_{12}[\text{P1}][\cdot \text{OH}] \quad (2.18)
\]

OH ラジカルと HO$_2$ ラジカルは反応性が高く、溶液中の濃度は非常に低いと考えられる。そこで、OH ラジカルと HO$_2$ ラジカルに対して定常状態近似を適用し、$[\cdot \text{OH}]$、$[\text{HO}_2\cdot]$を次のように導出した。
Runge-Kutta-Gill 法を用いて、[H₂O₂], [Fe(II)], [dioxane], [P1]に関する連立常微分方程式を解き、[H₂O₂], [dioxane]の経時変化を求めた。

まずは、[H₂O₂]₀ = 2.0 mM、[Fe(II)]₀ = 0.5，1.0 mM、V_c = −0.1 V の条件でジオキサンを含まない溶液に対してフェントン酸化を行い[H₂O₂]の経時変化をシミュレーションし、実験結果と比較したものを図 2.12 に示す。シミュレーションでも、[Fe(III)]₀が高いほうが H₂O₂ の消費速度も高く、計算結果も実験の結果を良く再現できている。これは、モデル構築の際に選定した反応式でエレクトロフェントン酸化を十分に表現できていることを示している。

次に、[H₂O₂]₀ = 2.0 mM、[Fe(II)]₀ = 1.0 mM、V_c = −0.1 V の条件で、[dioxane]₀ = 40 mg·L⁻¹のジオキサン水溶液をエレクトロフェントン酸化した場合のシミュレーションを実施した。[dioxane]と[H₂O₂]の経時変化を図 2.13 に示す。比較のため、同じ条件で実験を行った結果もあわせて示す。フィッティングにより、k_11 = 1.1 × 10⁹ M⁻¹·s⁻¹、k_12 = 4.6 × 10⁷ M⁻¹·s⁻¹ を得た。
シミュレーション結果と実験値との比較を見ると、[dioxane]と[H₂O₂]ともシミュレーションは実験結果をよく再現している。特に[H₂O₂]については、分解の後半でH₂O₂消費速度が高くなる傾向も良く表している。

[dioxane]₀ = 40 mg · L⁻¹, [Fe(III)]₀ = 1.0 mM, [H₂O₂]₀ = 2.0 mM, \(V_c = -0.1 \text{ V (vs Ag/AgCl)}\)

図2.13 構築したモデルによるシミュレーション結果と実験結果との比較

[dioxane]₀ = 40 mg · L⁻¹, [Fe(III)]₀ = 1.0 mM, [H₂O₂]₀ = 2.0 mM, \(V_c = -0.1 \text{ V (vs Ag/AgCl)}\)

図2.14 シミュレーションで計算した[•OH], [HO₂•], [Fe(II)]
この時の, [•OH], [HO₂•], [Fe(II)]の経時変化をシミュレーションから計算した(図 2.14).
[•OH]は, 反応開始直後から反応中期まで, 1.2 × 10⁻¹⁰ ~4.0 × 10⁻¹⁰ mM と低濃度のまま, ほぼ
変化しないが, 反応後期に急激に濃度が増加しており 180 分では 3.0 × 10⁻⁸ mM まで増加する
ことが分かった. [HO₂•], [Fe(II)]でも同様の傾向がみられ, [•OH]の増加とともに, [HO₂•]
[Fe(II)]も分解後半に濃度が増加していることがシミュレーションから明らかとなった.
さらに, 反応速度定数 \(k_{11} = 1.1 \times 10^9 \) M⁻¹ · s⁻¹, \(k_{12} = 4.6 \times 10^7 \) M⁻¹ · s⁻¹ を用いて, [dioxane]₀ = 100 mg · L⁻¹ としてシミュレーションを行った. [dioxane], [H₂O₂]の経時変化を実験結果ともに図
2.15 に示す. 分解後の[H₂O₂]は, シミュレーションと実験結果とでやや違いがみられるが, 速度パラメータは[dioxane]₀ = 40 mg · L⁻¹で算出したものから変更を加えていないにも関わらず, [dioxane]₀ = 100 mg · L⁻¹でも実験結果を良好に再現できているといえる.

![図 2.15 100 mg · L⁻¹のジオキサン分解実験における実験結果とシミュレーション結果との比較](image)

このように, 構築した反応モデルで, ジオキサンと H₂O₂の消費挙動をシミュレートすること
cに成功した. ここでは, 実験での定量分析が困難で, 反応中での生成挙動の検証が難しい
活性ラジカル種について, シミュレーションより濃度を推定し, 生成および消費挙動につい
tての考察を行う. そのため, [Fe(II)]₀ = 1.0 mM, [H₂O₂]₀ = 2.0 mM, \(V_c = -0.1 \) V (vs Ag/AgCl)

[dioxane]₀ = 100 mg · L⁻¹, [Fe(III)]₀ = 1.0 mM, [H₂O₂]₀ = 2.0 mM, \(V_c = -0.1 \) V の条件で,
[dioxane]₀ = 40 mg · L⁻¹のジオキサン水溶液をエレクトロフェントン法で分解する実験をシ
ミュレートした. ジオキサン分解の反応初期, 中期, 後期の状態を検討するため, 反応時間
が 10, 60, 120 分における各反応の速度を算出した. それぞれの時間におけるジオキサンの
分解率は, 0.084, 0.50, 0.92 である. 生成速度は, OH ラジカル, HO₂ラジカル, Fe(II)につい
第2章

て、消費速度は、OHラジカル、HO₂ラジカル、H₂O₂について、各反応の速度をバーグラフで示した（図2.16）。

![バーグラフ](image)

\[\text{Fe}^{2+} + \text{H}_2\text{O}_2 \rightarrow \text{Fe}^{3+} + \bullet \text{OH} + \text{OH}^- \] (2.3)

図2.16 反応の前期、中期、後期でのラジカル種の生成速度、消費速度の数値シミュレーション

OHラジカルの生成は、ほとんどが以下のフェントン反応によるものである。

\[\text{Fe}^{2+} + \text{H}_2\text{O}_2 \rightarrow \text{Fe}^{3+} + \bullet \text{OH} + \text{OH}^- \] (2.3)
生成速度は、反応初期と反応中期であり変わりがなく、反応後期での OH ラジカルの生成速度が大きくなり、つまり、反応後期での Fe(II)の生成速度が大きいと言える。その Fe(II)の生成について見ると、電気化学的な還元による生成以外に、以下の HO2 ラジカルによる Fe(III)の還元からの生成の寄与が大きい。

\[
Fe^{3+} + HO_2 \rightarrow Fe^{2+} + O_2 + H^+ \quad (2.7)
\]

一方、H2O2 による Fe(III)の還元からの生成は、予想通り無視できるほど小さい。Fe(III)の電気化学的な還元の速度は一定であるので、Fe(II)の生成速度の変化は、KO2 ラジカルの生成速度の変化によるものと考えることができ、反応後期での Fe(II)の生成速度の増加は、KO2 ラジカルの生成速度の増加によるものである。

反応後期における KO2 ラジカルの生成速度の増加について検討する。KO2 ラジカルの生成は、H2O2 による Fe(III)の還元からの生成と以下の H2O2 と OH ラジカルの反応による生成があるが、ほとんどは後者によるものである。

\[
\bullet OH + H_2O_2 \rightarrow HO_2 \bullet + H_2O \quad (2.8)
\]

この反応が、反応後期で促進される理由は、H2O2 は消費されるだけなので、OH ラジカルの生成速度の増加によるものである。OH ラジカルの生成速度の増加は、先に述べたように Fe(II)の還元速度の増加と関係するが、要因については、OH ラジカルの消費速度から検討できる。OH ラジカルの消費速度の内訳を見ると、反応初期と反応中は、ジオキサンとの反応によるものが大きいが、反応後期になると、ジオキサン濃度が低くなるために、ジオキサンとの反応による消費速度が大きく低下する。一方、H2O2 の濃度低下はジオキサンの濃度ほど大きくないので、相対的に H2O2 との反応で消費される OH ラジカルの割合は高くなる。そのため、上記の反応(2.8)による HO2 ラジカルの生成が促進され、その結果、反応(2.7)による Fe(III)の還元速度が大きくなり、反応(2.3)による OH ラジカルの生成も促進されることになっている。

本章で構築したモデルによるシミュレーション結果から、実験では測定困難で定量的な評価の難しい OH ラジカルや OH2 ラジカルの反応経路を定量的に評価することに成功した。また、H2O2 の消費がジオキサンの分解の進行で促進される要因についても、定量的な説明を行うことができた。最後に H2O2 濃度の最適化について検討する。H2O2 は、フェントン酸化では比較的コストのかかる薬剤であり、処理に伴い消費されてしまうので、なるべく消費を抑えてジオキサンを分解させることが求められる。先の検討により、ジオキサンの分解率が高くなると、H2O2 の分解に消費される OH ラジカルの割合が大きくなっていることがわかった。そこで、OH ラジカルの消費における、ジオキサン、分解生成物、H2O2 の分解反応の選択率
2章

S_dioxane, S_{P1}, S_{H2O2} の経時変化を図 2.17 にプロットした。図の右軸には、比較のため[dioxane] もプロットした。

反応時間 140 min でジオキサン濃度は 0.5 mg · L^{-1} 以下になっている。また、H_2O_2 の消費量は 0.76 mM であった。S_dioxane は時間の経過とともに緩やかに減少しているが、ジオキサンの分解が進むと[dioxane]が 10 mg · L^{-1} 以下になると急激に低下しており、S_{H2O2} は[dioxane]が 10 mg · L^{-1} 以下になると急激に増加している。Sn も増加しており、分解生成物と OH ラジカルの反応の選択率も増加しているが、それ以上に S_{H2O2} の増加が大きく、H_2O_2 が有機物の分解に利用されずに消費されているといえる。エレクトロファントン酸化を用いたジオキサンの処理で H_2O_2 の消費を抑制するためには、ジオキサンの濃度が 10 mg · L^{-1} 以下になる反応後期で、液中の H_2O_2 の濃度を低く抑える必要があると言える。そのためには、分解開始時に投入する H_2O_2 の量を少なくして反応後期ではほとんど消費されるようにし、その後は H_2O_2 を少しずつ供給して H_2O_2 を低い濃度に保つ必要がある。このような方法として、空気をバブリングしながら溶存酸素の還元で H_2O_2 を供給する方法も有効と考えられる。

図 2.17 計算で求めたジオキサン濃度と分解反応の選択率の経時変化

そこで、[H_2O_2]_0 = 0.5 mM とし、[H_2O_2] ≤ 0.1 mM では[H_2O_2] = 0.1 mM で固定してシミュレーションを行った。[dioxane], [H_2O_2], S_{dioxane}, S_{P1}, S_{H2O2} の経時変化を、図 2.18 に示す。ジオキサンの分解は、反応後期で大きく低下することなく進行し、0.5 mg · L^{-1} 以下まで[dioxane]は低減されている。[dioxane]が 0.5 mg · L^{-1} になる反応時間は 160 min であり、この時の H_2O_2 の消費量は 0.56 mM であり、図 2.17 のシミュレーションと比べて H_2O_2 の消費量を減らすこ
とが出来た。さらに、このシミュレーションでは、図 2.17 のシミュレーション結果と比べて、
[dioxane] ≤ 10 mg · L⁻¹ での \(S_{\text{H}_2\text{O}_2} \) の増加が大きく抑えられている。分解後期では、[dioxane]
が低下するため \(S_{\text{dioxane}} \) も低下するが、\(S_{\text{P}_1} \) が増加しており、生成した OH ラジカルが有機物の
分解反応で消費されていることが示されている。分解開始時に投入する \(\text{H}_2\text{O}_2 \) の量を少なくする
提案法によって、\(\text{H}_2\text{O}_2 \) の消費を抑えて、ジオキサンや分解生成物の分解を進めることができると考えられる。

\[
[d\text{o}x\text{a}n\text{e}]_0 = 40 \text{ mg} \cdot \text{L}^{-1}, [\text{Fe(III)}]_0 = 1.0 \text{ mM}, [\text{H}_2\text{O}_2]_0 = 0.5 \text{ mM}, V_c = -0.1 \text{ V} \ (\text{vs} \ \text{Ag/AgCl})
\]

図 2.18 提案法による分解での[dioxane]、[H₂O₂] と反応の選択性の経時変化

2.4 結言

本章では、電気化学的な反応を利用するエレクトロフェントン酸化をジオキサンの分解に
用いた。フェントン酸化では、分解初期にジオキサンの分解が迅速に進行するが、Fe(III) の還
元反応がほとんど進行しないため、すぐにジオキサンの分解が止まってしまう。そのため、
電極上で Fe(III)の還元反応を行って継続的に Fe(II)の供給を試みたところ、ジオキサンを継続的
的に分解できることが分かった。酸化剤である H2O2 は、陰極上で溶存酸素を還元することで
も供給できる。しかし、H2O2 を外部から添加せず、陰極での生成のみでフェントン酸化を行う
と、空気をバブルして常に酸素を供給した条件でも、溶液中の H2O2 の濃度は非常に低
く、H2O2 の供給律速となっていた。そのため、ジオキサンを迅速に分解するには、H2O2 を外
部から供給することが有効であるとわかった。また、H2O2 を外部から供給した条件下では、
電極反応としては、Fe(III)の還元反応がジオキサンの分解速度に大きな影響を与えると言える。

H2O2 濃度、Fe(III)濃度、ジオキサン濃度が分解に与える影響についての検討を行った。ジ
オキサンの分解速度に対し、H2O2 濃度には最適値が存在することが分かった。H2O2 濃度が高
い条件では、生成した OH ラジカルが H2O2 と反応するため、ジオキサンの分解を妨げる。
Fe(III)濃度が高いと、電極上での Fe(III)還元反応の反応速度が高くなり、フェントン酸化が促
進され、ジオキサンの分解反応も多発する。ジオキサンと OH ラジカルの反応性が非常に高
いため、分解初期の分解速度はジオキサン濃度に関係なく一定である。一方、分解後期では、
ジオキサンに対して生成生成物の生成が高くなるため、生成生成物が OH ラジカルを消費し、
ジオキサンの分解速度を低下させる要因となる。また、TOC 濃度の変化をみると、ジオキサ
ンが 1 mg·L⁻¹ 以下という、非常に低い値になるまで、TOC 濃度がほとんど変化しないこと
が分かった。

エレクトロフェントン酸化によるジオキサンの分解について、既往の研究から選定した反
応式と電極上での Fe(III)の還元反応式を用いて、反応モデルを構築した。構築した反応モデ
ルを用いたシミュレーションによる計算で、実験結果を良好に再現できた。そこで、実験で
は定量的な測定が困難なラジカル種の挙動について、シミュレーションを用いて考察を行っ
た。OH ラジカルの生成は、ほぼフェントン反応によって行われることが分かった。また、
反応後期に OH ラジカルの生成速度が高くなることが明らかとなった。この要因は、分解後
期には OH ラジカルが低濃度になったジオキサンよりも H2O2 と優先的に反応するためであ
る。その結果、生成した HO2 ラジカルは、Fe(III)を還元して Fe(II)を生成するため、フェント
ン反応で新たな OH ラジカルを生成する。このような連鎖反応が促進されるため、分解後期
で Fe(II)と活性ラジカル種の濃度が高くなっている。これは、H2O2 が過剰に供給されている
ことを示唆している。そこで、初期の H2O2 供給量を少量にした反応条件を提案し、シミュレ
ーションで有効性を検討した。提案法では、分解の後期でも、OH ラジカルと H2O2 の反応の
選択率を抑えたままジオキサンの分解が進行することを示した。また、ジオキサンを規制値
(0.5 mg·L⁻¹) 以下まで分解するために必要な H2O2 の量を削減可能であることを示した。

参考文献

第3章 銅イオンによる鉄イオンの触媒的還元を利用したフェントン酸化の促進

3.1 緒言

フェントン酸化を用いて有機物を含んだ廃水を処理する際には、Fe(III)の還元反応が遅いことか問題となる。フェントン反応以外の共存物質は、Fe(III)の還元反応に影響を与えることが知られている。Duesterbergらは、p-ヒドロキシ安息香酸をフェントン酸化した際に生成する、キノンやキノンに類似の構造を持つ中間生成物は、強い還元力をもち、Fe(III)を還元するため、p-ヒドロキシ安息香酸の分解が促進されると報告している。また、Nakagawaらは、フェノールの分解で生成するシュウ酸は、Fe(III)と安定な錯体を形成し、Fe(III)の還元反応を阻害することを報告している。このように、分解で生成する中間生成物には、Fe(III)の還元反応を促進するものと、阻害するものがある。

フェントン酸化を促進するためには、Fe(III)の還元反応を促進すればよいと考えられる。フェントン試薬とともに、還元剤を添加する手法が試みられている。Chenらは、Fe(III)の還元剤として、ヒドロキシルアミンを添加すると、フェントン酸化におけるFe(II)/Fe(III)の酸化還元サイクルが促進され、OHラジカルの生成速度が速くなると報告している。還元剤を添加することで、有機物の分解を促進することが期待できるが、還元剤はFe(III)の還元とともに消費される。また、Cu(II)をフェントン試薬とともに添加すると、フェントン酸化が促進され、H₂O₂の消費量が増加することが報告されている。Cu(II)を添加したフェントン酸化では、フェントン酸化と比べて、アトラジンやイソプロピルアルコール等のアルコール類の分解率が増加すると報告されている。Cu(II)添加による分解率の増加は、H₂O₂および還元性の分解生成物がCu(II)を還元して生成するCu(I)による、OHラジカルの生成式(3.1)が要因であると考えられている。Cu(II)添加は、還元剤添加と異なり、有機物の分解が進行してもCu(II)は溶液内に残留するため、触媒的にフェントン酸化を促進していると考えられる。しかし、Cu(II)添加が有機物の分解に与える影響は、上述の式(3.1)によるOHラジカルの生成反応が報告されている程度で、分解生成物に与える影響などはあまり検討されていない。

\[\text{Cu}^{+} + \text{H}_2\text{O}_2 + \text{H}^+ \rightarrow \text{Cu}^{2+} + \bullet \text{OH} + \text{H}_2\text{O} \] (3.1)

そこで、本章では、Cu(II)の触媒作用について検討を行うため、分解生成物の中でもシュウ酸に着目した。様々な反応条件でのフェノールの分解実験を行い、反応条件が無機化率やシュ酸生成量に与える影響を検討した。さらに、Fe(III)、Cu(II)、シュウ酸の相互作用について
て検討し、Cu(II)添加によってフェントン酸化が促進される要因を考察した。また、Cu(II)添加が他の有機物をフェントン酸化する際にも有効であるかの検討を行った。

3.2 実験

3.2.1 試薬

実験で用いた試薬はすべて和光純薬工業株式会社から購入した。本章では分解対象の有機物をフェノール(PNL), オレンジ II (OGII), ビスフェノール A (BPA), 4-ニトロフェノール (4-NP), 2,4-ジクロロフェノキシ酢酸(2,4-D)とした。鉄イオンとして Fe(II)を用いる場合は、実験開始の直前に調製した 0.25 M の FeSO₄ 水溶液をイオン源とした。Fe(III)を用いる場合は、あらかじめ 0.25 M に調製した Fe₂(SO₄)₃ 水溶液を用いた。H₂O₂は実験開始の直前に調製した 15 wt%の H₂O₂を用いた。pH 調整のためには、1.0 M の硫酸を用いた。

3.2.2 実験手順

手順として、フェノール溶液のフェントン酸化実験の手順を示す。

300 mL のパイレックス製のビーカーを反応器として用い、マグネティックスターラーで攪拌しながら回分系での実験を行った。100 mg · L⁻¹に調製したフェノール水溶液 250 mL を 1.0 M の硫酸を用いて、pH 3.0 ± 0.1 となるように pH 調整した。ここに、実験条件に合わせて 0.1 ～1.0 mM の濃度となるように Fe(II) もしくは Fe(III) を加えた。遷移金属を添加する実験では、さらに遷移金属も 0.1 ～1.0 mM となるように添加した。この溶液に 20 mM となるように H₂O₂を加えてフェントン酸化による分解を開始した。実験は外部からの光の影響を遮断するため、暗室内において室温条件(23 ± 2°C)で行った。

3.2.3 分析

3.2.3(a) 全有機炭素(TOC)濃度測定

全有機炭素(TOC)濃度は、TOC 計(TOC-VCSH, Shimadzu)を用いて測定した。全炭素(TC)濃度と全無機炭素(IC)濃度をそれぞれ測定し、その差を TOC 濃度とした。有機物をどれだけ CO₂と H₂O にまで分解できたかの指標として、反応時間 t における無機化率を、実験開始時の TOC 濃度([TOC]₀)と反応時間 t での TOC 濃度([TOC]ₜ)を用いて次のように定義した。

\[\text{無機化率} = 1 - \frac{[TOC]}{[TOC]₀} \] (3.2)
第3章

3.2.3(b) フェノール（PNL）、過酸化水素（H₂O₂）、鉄イオン（Fe(II), Fe(III)) 濃度測定

<table>
<thead>
<tr>
<th>Sample</th>
<th>Phenol</th>
<th>H₂O₂</th>
<th>Fe(II)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>Red</td>
<td>Yellow</td>
<td>Red</td>
</tr>
<tr>
<td>Wavelength (nm)</td>
<td>507</td>
<td>350</td>
<td>534</td>
</tr>
</tbody>
</table>

PNL，H₂O₂，Fe(II)，Fe(III)濃度は、紫外可視分光光度計(UVmini-1240, Shimadzu)を用いて比色分析法を用いて分析を行った。フェノール濃度の測定には、4-アミノアンチピリン法を用いて溶液を発色させ、λ = 507 nm の波長の吸光度を測定した。発色試薬として、市販の水質測定試薬(LR-PNL, 共立理化学研究所)を用いた。H₂O₂濃度の測定にはアイオダイド法を用いて溶液を発色させ、λ = 350 nm の波長の吸光度を測定した[8]。Fe(II)濃度の測定には、過酸化水素を用いて溶液を発色させ、λ = 534 nm の波長の吸光度を測定した[9]。また、Fe(III)濃度は、塩化ヒドロキシアミンを測定溶液に加え、Fe(III)をFe(II)に還元し、バソフェナントロリン法で溶液中の全鉄イオン濃度を測定し、Fe(II)濃度の測定結果との差分をFe(III)濃度とした。表3.1には、発色させた測定溶液の写真と、測定波長をまとめた。

3.2.3(c) シュウ酸濃度測定

有機酸の定量測定には、ノンサプレッサータイプのイオンクロマトグラフを用いて行った。カラムは、Shim-pack IC-A1 (長さ 100 mm)を用いた。フタル酸(2.5 mM)とトリスヒドロキシメチルアミノメタン(2.4 mM)の水溶液を移動相として用いて、流量は1.5 mL・min⁻¹とし、分解で生成するシュウ酸は、Fe(III)と錯体を形成する。そのため、溶液中にFe(III)が存在していると、ノンサプレッサー型のイオンクロマトグラフでは、シュウ酸を定量的に測定することができない。本研究では、前処理として固相抽出を行い、Fe(III)をシュウ酸から除去した。この前処理によって、シュウ酸は全て溶液中に残したまま、Fe(III)を除去でき、シュウ酸の定量分析が可能となる。

前処理として、弱塩基性の固相抽出カートリッジ(NH₂, STRATHA)を用いた。まず、固相抽出カートリッジに0.1 M 硫酸を通液した後に、0.1 M 水酸化ナトリウム水溶液を通液させ、カートリッジのコンディショニングを行った。ここに、分析したい試料を一定量通液させることで、固相中に鉄イオンが析出するとともにシュウ酸が保持される。その後、水酸化ナト
リウム水溶液を通液させることで、カートリッジ内に保持されているシュウ酸を溶出させる。この時、ほぼ全量のシュウ酸が溶出するように水酸化ナトリウムの量を決定した。溶出したシュウ酸が適当な濃度になるよう希釈してからイオンクロマトグラフで分析した。本手法の有効性については、Nakagawaらの論文に詳しい[2]。

3.3 結果と考察

3.3.1 フェントン酸化によるフェノールの分解挙動

図3.1 様々な[Fe(II)]₀でのフェノール分解実験における TOC残留率と H₂O₂濃度の経時変化

フェントン酸化によって、フェノールの酸化分解を行った。鉄イオンは Fe(II)として加え、初期 Fe(II)濃度[Fe(II)]₀ = 0.1 ~ 1.0 mMとした。また、初期 H₂O₂濃度[H₂O₂]₀ = 20 mM、初期フェノール濃度[PNL]₀ = 100 mg · L⁻¹とした。図3.1には TOC残留率と H₂O₂濃度[H₂O₂]の経時変化を示した。また、[Fe(II)]₀ = 1.0 mMでのフェノール収率 Y PNＬの経時変化も示した。まず、
フェノール収率の経時変化を見ると、反応開始時に迅速にフェノールの分解が進み、反応時間3分で9割以上のフェノールが分解しており、30分では完全にフェノールが分解していた。フェノールはフェントン酸化によって迅速に分解されるといえる。次に、TOC 残留率と[H₂O₂]の経時変化をみる。鉄イオンのみでフェントン酸化を行うと、どの条件でも分解開始時には迅速にTOC 残留率が減少するとともに[H₂O₂]も減少していることから、フェントン酸化によってフェノールが酸化分解され、水と二酸化炭素まで無機化が進行していることが分かる。しかし、反応時間が120分を過ぎると、どの条件でも、TOC 残留率の減少はほとんど起こらない。また、[Fe(II)]₀ = 1.0 mM を除いては、H₂O₂ もほとんど消費されていないことが分かる。これらの結果から、120分以降では、フェントン酸化による有機物の酸化分解が停止していると考えられる。そのため、[Fe(II)]₀ = 0.3 mM の240分でのTOC 残留率は 0.65 mg-C · mg-C⁻¹ であり、H₂O₂ 濃度は、[H₂O₂] = 12 mM であった。溶液中に H₂O₂ が残留しているにも関わらず、フェントン酸化が停止しており、炭素基準で65%以上が有機物として液中に残留している。120分以降で無機化が進まない原因は、分解で生成したシュウ酸が Fe(III) と非常に強い錯体を形成し、そのため Fe(III) の還元反応が著しく抑制されてしまうためである [2]。[Fe(II)]₀ = 1.0 mM で H₂O₂ の消費が継続して進行している点については、後で考察する。

図3.2 様々な初期鉄イオン濃度での TOC 残留率と、シュウ酸収率（反応時間360分）
第 3 章

表 3.2 生成したシュウ酸濃度と初期鉄イオン濃度のモル比 [Ox]/[Fe(II)]

<table>
<thead>
<tr>
<th>[Fe(II)]₀ (mM)</th>
<th>0.1</th>
<th>0.3</th>
<th>0.5</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Ox]/[Fe(II)]₀ (–)</td>
<td>3.0</td>
<td>2.3</td>
<td>2.1</td>
<td>1.5</td>
</tr>
</tbody>
</table>

そこで、分解生成物であるシュウ酸と Fe(III)が錯体を形成することによってフェントン酸化での有機物分解が停止する現象についてもう少し詳しく見る。図 3.2 には、反応時間 360 分での TOC 残留率とシュウ酸収率 Y₀x を [Fe(II)]₀ ごとに比較した。この図より、TOC 残留率には [Fe(II)]₀ によって大きな違いは無いが、Y₀x は大きく異なっており、[Fe(II)]₀ が高いほど、Y₀x も高くなっている。このことから、TOC 残留率がほぼ同じであっても、残留している有機物の構成は異なっていることが分かる。シュウ酸の生成はフェノールのフェントン酸化で無機化が進む中で最終段階である[10]。[Fe(II)]₀ が低いと、分解で生成したシュウ酸の収率は低く、残留している有機物の多くはシュウ酸以外の有機物である。[Fe(II)]₀ が高い条件では、生成したシュウ酸が少量であっても、溶液中の Fe(III) のほとんどがシュウ酸と錯体を形成した状態となるため、フェントン酸化による有機物の分解が抑制されると考えられる。そのため有機物の多くがシュウ酸まで分解される前にフェントン酸化が停止したと考えられる。そこで、[Fe(II)]₀ に対する、生成したシュウ酸濃度 [Ox]のモル比を各条件で比較したものを表 3.2 に示す。図 3.1 で 120 分以降、H₂O₂ の消費がほとんどない条件である [Fe(II)]₀ ≤ 0.5 mM では、[Ox]/[Fe(II)]₀ ≥ 2.1 であった。1 モルの Fe(III) に対して、2 モルのシュウ酸が配位することで、Fe(III) の還元反応が抑制され、フェントン反応が停止していると考えられる。[Fe(II)]₀ = 0.1 mM では、[Ox]/[Fe(II)]₀ = 3.0 と 1 モルの Fe(III) に 3 モルのシュウ酸が配位するまで分解が進んでいるが、これはフェノールの分解初期に生成する還元力の強い中間生成物によって、錯体中の Fe(III) を還元して分解が進んだためと考えられる。

一方で、[Fe(II)]₀ = 1.0 mM では、[Ox]/[Fe(II)]₀ = 1.5 であった。1 モルの Fe(III) に対するシュウ酸の配位しているモル数が低いため、完全には還元反応が停止せず、120 分以降も H₂O₂ が消費され続けるといった実験結果になったと考えられる。H₂O₂ が消費されているため、フェントン反応による OH ラジカルの生成も継続して進行していると考えられる。しかし、TOC 残留率は他の条件とほぼ同じであり、120 分以降で無機化の進行がほぼ起きていない。これは、残留している有機物がほぼシュウ酸であり、OH ラジカルであっても Fe(III) と錯体を形成したシュウ酸を分解することが出来ないため、無機化は進行しないと考えられる。実際に様々な有機物がフェントン酸化で分解できるかを調べた Bigda によると、シュウ酸はフェントン酸化では酸化分解できない有機物として挙げられている[11]。

これらの結果より、フェントン酸化による無機化の停滞には 2 つの要因が挙げられる。1 つは、シュウ酸と錯体を形成した Fe(III) を還元することが出来ないので、Fe(II) の供給が止まり、OH ラジカルを生成できないこと。もう 1 つは、Fe(III) とシュウ酸の錯体は OH ラジカル
でも分解できないほど安定であり，フェントン酸化による無機化が進まなくなることの2つである。

3.3.2 遷移金属添加によるFe(III)の還元の促進

フェントン酸化停止の要因の1つは，Fe(III)が還元されなくなることである。そこで，Fe(III)還元反応の触媒として作用する物質を外部から添加して，フェントン酸化の促進を試みた。触媒として作用する物質は遷移金属イオンの中から探索した。

図3.3 遷移金属を添加したフェノール分解実験でのTOC残留率とH₂O₂濃度の経時変化
第3章

遷移金属イオンとして、マンガンイオン(Mn(II)), コバルトイオン(Co(II)), ニッケルイオン(Ni(II)), 銅イオン(Cu(II))を添加して、フェントン酸化によるフェノールの分解を行った。反応条件は, \([\text{PNL}]_0 = 100 \text{ mg} \cdot \text{L}^{-1}, \ [\text{H}_2\text{O}_2]_0 = 20 \text{ mM}, \ [\text{Fe(II)}]_0 = 0.3 \text{ mM}\)、初期遷移金属イオン濃度 \([M(II)]_0 = 0.3 \text{ mM}\) とした。図3.3にTOC残留率と, \([\text{H}_2\text{O}_2]\)の経時変化を示した。また、比較のために、遷移金属イオンを加えずに、Fe(II)のみでフェントン酸化を行った実験結果もあわせて示した。結果をみると、Cu(II)を添加した条件でのみ、TOC残留率の減少が大幅に促進されている。Cu(II)以外の遷移金属イオンを添加した条件では、TOC残留率、\([\text{H}_2\text{O}_2]\)ともに、Fe(II)のみでフェントン酸化を行った場合の結果と差はなく、これらの遷移金属イオンには、Fe(III)の還元反応を促進する作用がなく、フェノールの分解に影響を与えないことが分かった。一方で、Cu(II)を添加した分解実験では、反応時間30分でのTOC残留率が0.50mg-C・mg-C^{-1}まで低下し、30分以降も分解が停止することなく進行し、120分でTOC残留率は0.26mg-C・mg-C^{-1}まで低下した。\([\text{H}_2\text{O}_2]\)の消費も大幅に促進され、120分でほとんどすべての\([\text{H}_2\text{O}_2]\)が消費されていた。\([\text{H}_2\text{O}_2]\)がほとんど無くなっている120分の時点でさらに\([\text{H}_2\text{O}_2]\)を加えだが、TOC残留率に変化はなく\([\text{H}_2\text{O}_2]\)も消費されなかった。この条件において120分以降で分解が進行していないのは\([\text{H}_2\text{O}_2]\)が不足したためではないと考えられる。

Fe(II)は加えずにCu(II)と\([\text{H}_2\text{O}_2]\)でフェノールの分解実験を行った。結果を図3.3に併せて示す。TOC残留率は全く減少しておらず、\([\text{H}_2\text{O}_2]\)もほとんど消費されていなかった。銅イオンは、緒言で述べたようにFe(II)と同じように\([\text{H}_2\text{O}_2]\)と反応して、活性なOHラジカルを生成することが報告されているが、Cu(II)として加えたこの実験条件下では、分解反応が進行しないと考えられる。これらの結果から、Cu(II)を添加することで、フェントン酸化が促進され、フェノールの無機化率が大幅に上昇したと考えられる。

Friedrichらは、10mM (=941mg・L^{-1})という非常に高濃度のフェノールをフェントン酸化で分解する際に、Cu(II)を添加することで、無機化率が大幅に上昇したと報告している\([9]\)。ただし、その報告における試薬濃度は、\([\text{Fe(II)}]_0 = 0.5 \text{ mM}, \ [\text{Cu(II)}]_0 = 50 \text{ mM}\)であり、フェノール濃度を含め本研究とは大きく異なる濃度条件である。本研究の反応条件\([\text{Cu(II)}]_0 = 1.0 \text{ mM}\)のような、金属のスラッジを生成しないような濃度条件で、無機化を大幅に促進させた報告はこれまでにない。

3.3.3 無機化条件の最適化

Cu(II)がフェントン酸化の触媒として作用し、フェノールの無機化を大幅に促進することが分かった。より無機化を促進させることができると考えられる反応条件を探索するため、\([\text{Fe(II)}]_0 \)と\([\text{Cu(II)}]_0 \)がフェノールの無機化に及ぼす影響を検討する。まず、\([\text{PNL}]_0 = 100 \text{ mg} \cdot \text{L}^{-1}, \ [\text{H}_2\text{O}_2]_0 = 20 \text{ mM}, \ [\text{Cu(II)}]_0 = 0.3 \text{ mM}\)とし、\([\text{Fe(II)}]_0 \)を変化させて分解を行った。TOC残留率の経時変化を図3.4に示す。3.3.1節でCu(II)を添加せずに同様の実験を行った際には、30分の時点で最も分解が進んでいたのは、\([\text{Fe(II)}]_0 = 1.0 \text{ mM}\)の条件で、TOC残留率は0.85mg-C・mg-C^{-1}であった。その後、どの条件でも120分ほどで無機化の進行が止まって240分でのTOC残留率は0.65
第3章

mg-C・mg-C⁻¹程度であり、無機化挙動は[Fe(II)]₀によらず、ほぼ同じであった。一方、Cu(II)を添加した場合では、[Fe(II)]₀によって無機化挙動が大きく異なっている。まず、反応初期の挙動に着目し30分でのTOC残留率をみると、[Fe(II)]₀ ≤ 0.5 mMの条件では、[Fe(II)]₀が高いほど、TOC残留率は低い値となっており、より無機化が進行している。しかし、[Fe(II)]₀ = 1.0 mMの条件では、30分でのTOC残留率は0.52 mg-C・mg-C⁻¹であり、[Fe(II)]₀ = 0.3 mMの30分でのTOC残留率0.50 mg-C・mg-C⁻¹よりも高い値である。また、[Fe(II)]₀ = 0.1, 0.3 mMでは、30分以降も無機化が進行したが、[Fe(II)]₀ = 0.5, 1.0 mMでは、ほとんど無機化が進行しなかった。そのため、240分で最も無機化が進むのは[Fe(II)]₀ = 0.3 mMであり、TOC残留率は0.25 mg-C・mg-C⁻¹であった。30分以降も無機化が継続的に進行する理由については、3.3.5節で詳細に検討する。

図3.4 フェノールのCu(II)添加フェントン酸化における[Fe(II)]₀が無機化挙動に及ぼす影響

次に、[Cu(II)]₀の影響についての検討を行う。H₂O₂、Fe(II)についてはそれぞれ、[H₂O₂]₀ = 20 mM、[Fe(II)]₀ = 0.1, 1.0 mMとし、[Cu(II)]₀を変化させた。100 mg・L⁻¹のフェノールを分解したときの、TOC残留率の経時変化を図3.5に示す。[Fe(II)]₀ = 0.1 mMの条件では、反応時間30分でのTOC残留率は、[Cu(II)]₀ = 0, 0.1, 0.5, 1.0 mMでそれぞれ、0.93, 0.79, 0.71, 0.55 mg-C・mg-C⁻¹と、[Cu(II)]₀が高いほど無機化が進むしている。さらに[Cu(II)]₀ = 0.5, 1.0 mMでは、反応時間240分まで分解が継続して進行しており、特に[Cu(II)]₀ = 1.0 mMでは、TOC残留率が0.06 mg-C・mg-C⁻¹となるまで無機化が進行した。すなわち、無機化率94%と非常
に高い無機化率を達成したといえる。試薬として投入した金属種がスラッジを生成しないような比較的低濃度の反応条件でありながら、外部からエネルギーを投入することなく、このように高い無機化率を達成した報告は、他にはない。[Cu(II)]₀ = 0.5 mM でも、240 分での TOC 残留率を大幅に下げ、無機化を進行させることができた。

[Fe(II)]₀ = 1.0 mM の条件では、分解の初期段階では Cu(II) 添加によって分解が促進されているが、反応時間 30 分以降は明らかに分解が進行しなくなっている。そのため、240 分でも炭素基準で約 40%もの有機物が分解されずに残留している。これらの分解条件では、初期 Fe(II) 濃度が高くなると負の影響がみられたといえる。

![図3.5 フェノールのCu(II)添加フェントン酸化における[Cu(II)]₀が無機化挙動に及ぼす影響](image)

3.3.4 シュウ酸の生成挙動

Cu(II)イオンの添加によって無機化率の向上を達成できた要因を検討するため、フェントン酸化を停止させる要因であるシュウ酸の定量的な分析を行った。図3.6 には、[Fe(II)]₀ = 0.1 mM もしくは 1.0 mM とし、[Cu(II)]₀を変化させて、100 mg · L⁻¹のフェノールの分解実験を行った際のYOxの経時変化を示した。[Fe(II)]₀ = 0.1 mM、[Cu(II)]₀ = 0 mM では、YOx は 120 分以降ほとんど変化なく、240 分で YOx = 0.09 mg-C · mg-C⁻¹であった。これは、[Ox] = 0.29 mM に相当する。この条件では、120 分以降、H₂O₂もほとんど消費されていなかった。すなわち、
第3章

0.29 mMのシュウ酸により、0.1 mMのFe(III)が還元されなくなり、分解が進行しなくなった。つまり、Fe(III)が不活性化されたと考えられる。一方、[Fe(II)]₀ = 0.1 mMに[Cu(II)]₀ = 0.1 mMでCu(II)を添加すると、シュウ酸の生成量が増加し、240分ではYₐₐ = 0.16 mg-C·mg-C⁻¹ととなった。これは、[Ox] = 0.51 mMであり、Cu(II)を添加することによって、[Ox] = 0.29 mM以上でもFe(III)が還元されて、フェントン酸化による分解が進行し、シュウ酸が生成するとともに無機化も進行したと考えられる。つまり、Cu(II)を添加することによって、シュウ酸とFe(III)の錯体形成に伴うFe(III)の不活性化が抑制されていると考えられる。添加するCu(II)を増加させて[Cu(II)]₀ = 0.3 mMすると、シュウ酸の生成量も増加した。さらに、[Cu(II)]₀ = 0.5, 1.0 mMとすると、それぞれ60, 30分にYₐₐが最大値となり、それ以降はYₐₐが著しく減少しており、シュウ酸が顕著に分解している結果が得られた。これらの条件では、H₂O₂の消費速度も増加していた。240分でのYₐₐは、いずれの条件でも0.04 mg-C·mg-C⁻¹以下となった。紫外線照射等を併用せずに、フェントン酸化だけでシュウ酸を分解することは出来ないと考えられていたが、この結果は、Cu(II)存在下ではフェントン酸化によってシュウ酸を分解、無機化することが可能ですいうことを示している。

一方、[Fe(II)]₀ = 1.0 mMでは、[Cu(II)]₀ = 0.5, 1.0 mMのいずれの条件においても、反応開始から30分以内に大量のシュウ酸を生成し、それからは分解することなく溶液中に残留した。30分でのYₐₐを[Fe(II)]₀ = 0.1 mMと比較すると、[Fe(II)]₀ = 1.0 mMの条件では共にYₐₐ = 0.31 mg-C·mg-C⁻¹であった。一方、[Fe(II)]₀ = 0.1 mMでは最もYₐₐが高い[Cu(II)]₀ = 0.5 mMの条件でもYₐₐ = 0.15 mg-C·mg-C⁻¹であった。[Fe(II)]₀ = 1.0 mMの条件では、シュウ酸収率が非常に高いことも特徴であるといえる。Cu(II)添加の結果と比較すると、[Fe(II)]₀ = 1.0 mMでは、60分以降はほとんど酸化分解が進行していないと言う。先述したように、酸化分解が進行していない原因は、H₂O₂の不足ではないので、[Fe(II)]₀ = 0.1 mMとは明らかに無機化の挙動が異なっていると言える。

これらの結果より、シュウ酸の生成速度は、[Fe(II)]₀に大きな影響を受けることが分かった。そこで、[Fe(II)]₀についての検討をさらに行う。図3.7には、異なる[Fe(II)]₀でフェノールを分解した際の、30分におけるTOC残留率、Yₐₐ、H₂O₂と比較した。[Fe(II)]₀ = 0.1 mMもしくは1.0 mMとし、[PNL]₀ = 100 mg·L⁻¹、[Cu(II)]₀ = 1.0 mM、H₂O₂₀ = 20 mMとした。[Fe(II)]₀ = 1.0 mMではTOC残留率は0.42 mg-C·mg-C⁻¹であり、残留している有機物のうち炭素基準で74%がシュウ酸であった。H₂O₂はほぼ全て消費されていた。一方、[Fe(II)]₀ = 0.1 mMでは、TOC残留率は0.52 mg-C·mg-C⁻¹であり、[Fe(II)]₀ = 1.0 mMの場合よりもやや大きい程度である。しかしながら、残留している有機物のうちシュウ酸が占める割合は、わずか24%であり、H₂O₂も53%残っている。H₂O₂の消費量からも明らかのように、[Fe(II)]₀ = 1.0 mMでは反応時間30分までの分解の初期段階でフェントン酸化による有機物の分解速度が、[Fe(II)]₀ = 0.1 mMと比較して非常に激しく、残留している有機物がシュウ酸のようなフェノール分解の後半に生成する有機物が大半となり、有機物の分解が進行している。つまり、残留している有機物の酸化の程度が著しく高いと言える。
第3章

図3.6 様々な条件でフェノール分解を行った際のシュウ酸生成量の経時変化

図3.7 TOC残留率、シュウ酸収率、H₂O₂濃度の比較（反応時間30分）
第3章

3.3.5 還元性の分解生成物のフェントン酸化への影響

前節で、[Cu(II)]0 = 1.0 mM で、[Fe(II)]0 = 0.1, 1.0 mM の反応時間 30 分での TOC 残留率、Y0, [H2O2] を比較して、TOC 残留率は同程度であっても、残存している有機物の酸化分解の程度が大きく異なることを示した。一般的に、有機物の還元力は酸化分解と共に低下してい る。還元性の有機物が分解に与える影響としては、緒言でも述べたように、還元力の強い中間生成物が Fe(II) を還元し、フェントン酸化を促進することが知られている。また、Cu(II) を添加した分解実験を行った Friedrich らは、分解で生成するカテコールやヒドロキノンといったフェノールの分解で中間生成物として生成する物質の持つ還元作用によって Cu(II) が還元され、式(3.1)の反応が起こり、有機物の酸化分解を行ったと報告している。この反応によって OH ラジカルが生成して、有機物の分解が促進する可能性は考えられるが、この反応だけでは、[Fe(II)] の高い条件で、Cu(II) を添加しても 30 分以内に分解反応が停止してしまい、[Fe(II)] の低い条件よりも無機化の促進効果が小さいことの説明は困難である。

本節では、シュウ酸分解における中間生成物と Cu(II) の影響を検討する。中間生成物としてはヒドロキノンに着目した。ヒドロキノンはフェントン酸化でフェノールを分解すると、分解の最初期の段階で中間生成物として生成することが知られている。また、ヒドロキノンは、Fe(III) を還元する作用をもつ還元性の有機物である。ヒドロキノンと Cu(II) のシュウ酸分解への影響を検討するため、初期シュウ酸濃度 [Ox]0 = 20 mg-C · L−1、[Fe(III)]0 = 0.1 mM、[H2O2]0 = 20 mM として、シュウ酸の分解実験を行った。ここでは、フェノールの分解反応中の溶液を再現するため、鉄イオンを Fe(III) として加えた。フェントン酸化を行っている溶液中の鉄イオンは、そのほとんどが Fe(III) として存在しており、シュウ酸の分解が見られた条件である[Fe(III)]0 = 0.1 mM、[Cu(II)]0 = 1.0 mM での 30 分以降の溶液も、存在している鉄イオンのほとんどは、Fe(III)であると考えられる。図3.8には、[TOC]の経時変化を示している。ヒドロキノンを添加せず、Cu(II) を [Cu(II)]0 = 1.0 mM で添加した条件では、[TOC]は全く減少しなかった。フェントン酸化に Cu(II) を加えただけでは、シュウ酸を分解することはできないと考えられる。次に、初期ヒドロキノン濃度 [HQ]0 = 10 mg-C · L−1、すなわち [TOC]0 = 30 mg-C · L−1 として、Cu(II) は添加せずにシュウ酸の分解実験を行った。この条件でも TOC 濃度の減少は見られず、シュウ酸の分解を観測することはできなかった。ヒドロキノンは、シュウ酸が存在しない条件下では、容易に Fe(II) を還元することができたが、シュウ酸と錯体を形成した Fe(III) は還元することができず、シュウ酸の分解を進行させることは困難であると推測できる。これは、フェノールのフェントン酸化において、シュウ酸の生成で酸化分解の進行が停止してしまっている状態を示している。一方で、ヒドロキノン、Cu(II) の両方を添加した条件では、[TOC]の著しい減少が見られた。120 分で [TOC] = 10 mg-C · L−1 であり、分解開始時に含まれていたシュウ酸が示す[TOC]の 50% であり、シュウ酸濃度を測定したところ、120 分で残留している有機物のうち炭素基準で 90%がシュウ酸であった。これらの結果より、ヒドロキノンと Cu(II)が共存した条件でのみ、シュウ酸であってもフェントン酸化によって分解し、無機化が進行することが明らかとなった。一方、ヒドロキノンを加えた溶
液に、Fe(III)は加えず、Cu(II)のみを添加して、分解が進行するか検討した。TOC濃度に変化は見られず、Cu(II)とヒドロキノンではシュウ酸を分解できないといえる。この実験条件では、式(3.1)の反応によるOHラジカルの生成は、ほとんど寄与していないといえる。

以上の結果より、[Fe(II)]₀が高いと、Cu(II)を添加しても無機化の促進効果は、[Fe(II)]₀の低い場合よりも小さいことが説明できる。[Fe(II)]₀が高いと、フェントン酸化による分解が迅速に進行するため、生成した還元性の強い有機物も迅速に分解されてしまう。このため、溶液内に還元性の有機物が不足し、Cu(II)添加によるシュウ酸の分解がほとんど進行しない状況になっている。すなわち、フェントン酸化で有機物を無機化する際には、還元性の有機物の存在下でフェントン酸化が進行するように[Fe(II)]₀、[Cu(II)]₀を設定することが、重要であるといえる。

![図3.8 Cu(II)とヒドロキノンを添加してのシュウ酸分解実験におけるTOC濃度の経時変化](image)

これまでの結果より、Cu(II)を添加することで、シュウ酸と錯体を形成したFe(III)であっても還元性の有機物で還元することが出来ると考えられる。そこで、Cu(II)とヒドロキノン存在下でシュウ酸と錯体を形成したFe(III)が還元できるかを実験で確認した。実験ではH₂O₂を加えず、他の条件は図3.8のシュウ酸分解実験と同じ条件とし、還元で生成したFe(II)と消費されたヒドロキノンの濃度を測定した。それらの経時変化を図3.9に示す。まず、Cu(II)を添加せず、ヒドロキノンのみを添加した条件では、先に推測したようにFe(III)の還元はほとんど起こらず、120分の時点で、[Fe(II)] < 0.002 mMであった。また、ヒドロキノンもほとんど消費されていなかった。一方、Cu(II)とヒドロキノンを共に添加した条件では、Fe(III)が還元さ
第3章

れFe(II)濃度が徐々に高くなっており、120分では[Fe(II)] = 0.033 mM となった。この時、Fe(III)の還元と共にヒドロキノンも消費されており、ヒドロキノンがFe(III)の還元剤として作用したと考えられる。この条件では、モル基準でヒドロキノンの消費量の約2倍のFe(III)が還元されていた。これらの結果より、Cu(II)はヒドロキノンによるFe(III)の還元反応の触媒として作用したと考えられる。

図3.9 Fe(II)の生成量とヒドロキノンの消費量の経時変化

Cu(II)添加がFe(III)とシュウ酸との相互作用にどのような影響を与えるかを検討するため、Fe(III)、Cu(II)、シュウ酸を含んだ溶液の吸光度測定を行った。測定波長として、後述するように錯体形成に伴う吸光度の変化が顕著に見られるλ = 250 nm を選んだ。様々な条件での吸光度測定を行った結果を図3.10にまとめた。Fe(III)に対するシュウ酸のモル比は2.7で固定した。Fe(III)とシュウ酸を含んだ条件(Fe/Ox)では、ほとんどのFe(III)がシュウ酸と錯体を形成していると考えられ、この条件での吸光度は、A_{250} = 0.57 であった。Fe(III)、Cu(II)、シュウ酸を含んだ条件(Fe/Cu/Ox)での吸光度は、A_{250} = 0.71 であり、Fe/Oxよりも高い吸光度を示した。もし、Cu(II)とシュウ酸に相互作用が何もなく、Cu(II)を添加してもFe(III)とシュウ酸との相互作用に何ら影響を与えないならば、Cu(II)単独での吸光度（A_{250} = 0.04）が単純に加算された吸光度になるはずであるが、Cu(II)添加によって吸光度はそれ以上に増加した。Cu(II)とシュウ酸を含んだ条件(Cu/Ox)の吸光度が、Fe/Oxの吸光度とほぼ同程度であること、Fe(III)のみを含む条件(Fe)の吸光度がA_{250} = 0.32 であることを考えると、この結果は、Fe(III)単独での吸光度の寄与があったためであると考えられる。つまり、シュウ酸錯体としては、
第3章

Cu(II)であってもFe(III)の場合とほとんど吸光度に変化はないが、Cu(II)とシュウ酸が錯体を形成することで、シュウ酸と錯体を形成していたFe(III)がシュウ酸と錯体を形成しないフリーのFe(III)として存在するため、溶液全体での吸光度が増加したと考えられる。よって、Cu(II)が還元性有機物によるFe(III)の還元を促進する触媒として作用するのは、Cu(II)添加によってシュウ酸とFe(III)の結合が弱まるためであり、フェントン酸化でのフェノールの無機化率向上にもつながったと考えることが出来る。

図3.10 Cu(II)添加がFe(III)とシュウ酸の相互作用に与える影響

3.3.6 様々な有機物への銅イオン添加の適用

フェノールをフェントン酸化で分解する際に、Cu(II)を添加すると無機化が大幅に進行することが分かった。本手法が他の有機物をフェントン酸化で処理する場合に有効であるかを検討する。分解対象とした有機物は、OGII、4-NP、2,4-D、BPAである。これらは、いずれも処理が困難な汚染物質として知られており、フェントン酸化の適用が試みられている物質でもある。しかし、十分に無機化を進行させるには、UV照射を併用した手法が必要となると報告されている[13-16]。

これらの有機物に対して、Cu(II)を添加してのフェントン酸化を行った。$[ext{H}_2\text{O}_2]_0 = 20$ mMとして、$[ext{Fe(II)}]_0 = 0.1 \sim 1.0$ mM、$[ext{Cu(II)}]_0 = 0.1 \sim 1.0$ mMの間で変化させた。また、有機物の初期濃度は、$[\text{OGII}]_0 = [4\text{-NP}]_0 = [2,4\text{-D}]_0 = 100$ mg · L$^{-1}$、$[\text{BPA}]_0 = 50$ mg · L$^{-1}$とした。最も無機化が進行した条件の120分での無機化率を図3.11に示した。比較として、Cu(II)を添加せず
にフェントン酸化を行った条件での無機化率を併せて示した。

最も高い無機化率を達成できた条件は、どの有機物でも\([Cu(II)]_0 = 1.0 \text{ mM}\) であり、Cu(II)濃度が高いほど、無機化が促進されていた。一方で、[Fe(II)]₀の最適値は分解対象とする有機物によって異なった。OGII、4-NP、2,4-Dを分解した際には、[Fe(II)]₀ = 0.3 mMで最も無機化が進行した。BPAでは、[Fe(II)]₀ = 0.5 mMで最も無機化が進行した。これらの有機物の中でも、Cu(II)添加によって最も無機化が促進したのは、4-NPである。Cu(II)を添加しない条件では無機化率は0.33 mg-C · mg-C⁻¹であったが、Cu(II)添加によって0.81 mg-C · mg-C⁻¹となるまで無機化が進行した。Cu(II)を添加することによって、添加しない条件から大幅な無機化率の向上を達成できたといえる。他の有機物についても、Cu(II)添加時の無機化率をみると、OGIIでは0.77 mg-C · mg-C⁻¹、2,4-Dでは0.76 mg-C · mg-C⁻¹、BPAでは0.65 mg-C · mg-C⁻¹であった。いずれの有機物もCu(II)添加によって無機化率が大きく向上している。Cu(II)添加は様々な有機物の分解に有効であると考えられる。

図3.11 銅イオンを添加したフェントン酸化による種々の有機物の分解

3.4 結言

Fe(III)の還元反応を促進する作用を持つ触媒を添加することで、フェントン酸化での無機化率の向上を試み、その有効性を様々な有機物で検討した。検討した遷移金属イオンの中で、Cu(II)を添加するとフェノールのフェントン酸化において、無機化率が大幅に向上することを見出した。通常のフェントン酸化では、120分以降の無機化速度は非常に遅く、240分後で無
第3章

機化率は約40%であるが、Cu(II)を加えたフェントン酸化では継続的に無機化が進行し、TOC残留率を大きく低減できた。最も無機化が進行したのは、[Fe(II)]₀ = 0.1 mM、[Cu(II)]₀ = 1.0 mMの条件で、無機化率94%を達成した。

大幅な無機化の向上を達成できた理由を検討するため、フェントン酸化では分解することできず、Fe(III)の還元反応を阻害してフェントン酸化を停止させる要因であるシュウ酸を定量的的に分析した。無機化が大幅に進行した条件では、シュウ酸濃度に明確なピークが見られ、シュウ酸も分解して無機化できることを見出した。シュウ酸を分解できる条件を検討したところ、Cu(II)以外に還元性有機物の共存が必要なことが示唆された。還元性有機物のモデル化合物として、フェノールの初期分解生成物であるヒドロキノンを加えたところ、シュウ酸が分解し、無機化が大きく促進されることを見出した。無機化が大きく促進されることを検証したとき、Cu(II)と還元性有機物の存在下では、還元性有機物によって錯体中のFe(III)を還元され、シュウ酸も分解可能となるため、無機化が促進することが示唆された。

Cu(II)添加によるフェントン酸化の高効率化が、他の有機物に対しても有効であるか、OGLI、4-NP、2,4-D、BPAを用いて検討した。フェントン酸化のみでは高い無機化率を達成できず、十分な無機化には紫外線照射が必要であると考えられているこれらの物質に対しても、Cu(II)添加で無機化率を向上させることに成功した。Cu(II)を添加しない条件では、いずれの有機物も無機化率は30～40%程度であったが、Cu(II)を添加すると、4-NPでは無機化率81%と無機化が大幅に進行した。同様にOGLI、2,4-D、BPAの無機化率は、77、76、65%となっており、Cu(II)添加によって無機化を進行させることに成功した。

参考文献

第4章 光化学還元と銅イオン添加を併用した
難分解性有機物の無機化の促進

4.1 緒言

第3章でも用いたビスフェノールA(BPA)と2,4-ジクロロフェノキシン酢酸(2,4-D)は、生物分解性に乏しい難分解性有機物であることが報告されており[1-2]、生物学的な分解手法である活性汚泥法では分解することが出来ない。そのため、これらを含んだ廃液を処理するために、促進酸化法の利用が検討されている。BPAを分解対象とした研究では、オゾン酸化や[3-4]、光フェントン酸化[5-6]によって高い分解率を達成できると報告されている。また、特に光フェントン酸化を利用した分解では、BPAが10分程度で完全に分解されるだけでなく、無機化も進行することが報告されており、Palmaらの研究では最も無機化が進んだ条件では炭素基準で94％をCO₂にまで分解することに成功している。また、2,4-Dを分解対象とした研究では、Sunらが[7]、フェントン酸化と光フェントン酸化を比較した研究を行っており[7]、フェントン酸化では炭素基準で40％をCO₂にまで分解して無機化が停止してしまうが、紫外線照射を併用すれば、完全に無機化することが出来ることを示している。しかし、Palmaらの研究では反応時間が4時間と長時間必要であった[5]。そのため、実用化においては、照射コストが課題となると考えられる。

そこで、本章では、BPAや2,4-Dを短時間、または少ない消費電力で分解するために、第1章で扱った光化学還元を併用する光フェントン酸化と、第3章で扱った銅イオンの触媒作用を併用したフェントン酸化を組み合わせた新たな手法を試みる。本章では光化学還元で消費されるシュウ酸を外部から添加せず、分解対象の有機物から分解生成物として生成するシュウ酸を用いる。まず、紫外線、可視光を光源として用いた光化学還元によるFe(III)の還元について、光源が与える影響についての検討を行う。そして、光化学還元とCu(II)添加を併用した手法を用いて有機物の分解を行い、光源種やCu(II)添加が分解に与える影響を検討する。

4.2 試薬と実験手順

4.2.1 試薬と実験装置

実験で用いた試薬はすべて和光純薬工業株式会社から購入した。本章では分解対象の有機物をビスフェノールA(BPA), 2,4-ジクロロフェノキシン酢酸(2,4-D)とした。銅イオンとしてFe(II)を用いる場合は、実験開始の直前に0.25 MのFeSO₄水溶液を調製した。Fe(III)を用いる場合は、あらかじめ0.25 Mに調製したFe(SO₄)₃水溶液を用いた。H₂O₂は実験開始の直
前に 15 wt% の H₂O₂ 水溶液を調製した。pH 調整のために、1.0 M の硫酸を用いた。

光照射を行う実験では、紫外線、可視光のいずれかを照射した。紫外線の光源として UVA のケミカルランプ (UVAランプ)、可視光の光源として白色 LED、青色 LED、黄色 LED のいずれかを使用した。表 4.1 にはこれらの光源の主波長、波長域、消費電力をまとめた。

<table>
<thead>
<tr>
<th>光源</th>
<th>主波長 (nm)</th>
<th>波長域 (nm)</th>
<th>消費電力 (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UVA</td>
<td>352</td>
<td>300 - 450</td>
<td>6.0</td>
</tr>
<tr>
<td>White LED</td>
<td>468, 570</td>
<td>430 - 725</td>
<td>1.8</td>
</tr>
<tr>
<td>Blue LED</td>
<td>468</td>
<td>430 - 530</td>
<td>0.72</td>
</tr>
<tr>
<td>Yellow LED</td>
<td>590</td>
<td>550 - 650</td>
<td>2.2</td>
</tr>
</tbody>
</table>

4.2.2 実験手順

300 mL のパイレックス製のビーカーに攪拌子を入れたものを反応器として用いた。所定の濃度の BPA 水溶液もしくは 2,4-D 水溶液 250 mL を pH 3.0 ± 0.1 となるように硫酸で調整し、実験条件に合わせて 0.1 mM ～ 1.0 mM の濃度となるように Fe(II) を加えた。さらに、Cu(II) を添加する条件では、このタイミングで Cu(II) を実験条件に合わせて添加した。ここに 2.5 ～ 20 mM となるように 15% H₂O₂ を加えてフェントン酸化による分解を行った。H₂O₂ 濃度 [H₂O₂] は 15 分ごとに測定し、溶液内で H₂O₂ が不足しないように適宜追加した。初期 H₂O₂ 濃度 [H₂O₂]₀ = 2.5 mM の条件では、[H₂O₂] < 0.25 mM となったら、新たに 2.5 mM の H₂O₂ を添加し、[H₂O₂]₀ = 20 mM の条件では、[H₂O₂] < 2.5 mM となったら、新たに 10 mM の H₂O₂ を添加した。実験は外部からの光の影響を遮断するため、暗室内において室温条件 (23 ± 2°C) で行った。紫外線もしくは可視光を照射する際は、ビーカーの側面に光源を設置して光照射を行った。

4.2.3 分析

4.2.3(a) 全有機炭素(TOC)濃度測定

全有機炭素 (TOC) 濃度は、TOC 計 (TOC-VCSH, Shimadzu) を用いて測定した。全炭素 (TC) 濃度と全無機炭素 (IC) 濃度をそれぞれ測定し、その差分を TOC 濃度とした。有機物の CO₂ と H₂O への転換率の指標として、反応時間 t における無機化率を、実験開始時の TOC 濃度 ([TOC]₀) と反応時間 t での TOC 濃度 ([TOC] t) とを用いて次のように定義した。
第 4 章

無機化率 $= 1 - \frac{[TOC]}{[TOC]_0}$ (4.1)

4.2.3(b) シュウ酸濃度測定

シュウ酸の定量測定は、サプレッサー付きのイオンクロマトグラフ (ICS-1100, DIONEX) を用いて行った。カラムは、Dionex IonPac AG22 を用いた。炭酸ナトリウム (5.0 mM) と炭酸水素ナトリウム (1.4 mM) の水溶液を移動相として用いた。

4.2.3(c) 過酸化水素 (H₂O₂) 濃度測定

H₂O₂ は、紫外可視分光光度計 (UV-1800, Shimadzu) を用いて比色分析法を用いて分析を行った。H₂O₂ 濃度の測定にはアイオダイド法を用いて溶液を発色させ、$\lambda = 350$ nm の波長の吸光度を測定した

4.3 結果と考察

4.3.1 フェントン酸化における BPA, 2,4-D の分解

初期 Fe(II) 濃度 [Fe(II)]₀ = 0.5 mM, [H₂O₂]₀ = 20 mM として初期 BPA 濃度 [BPA]₀ = 50 mg · L⁻¹ の BPA 水溶液、初期 2,4-D 濃度 [2,4-D]₀ = 100 mg · L⁻¹ の 2,4-D 水溶液をフェントン酸化で分解した。無機化率とシュウ酸収率 Y_{Ox} の経時変化を図 4.1 に示す。60 分での無機化率は BPA, 2,4-D でそれぞれ 0.30, 0.34 mg-C · mg-C⁻¹ であり、どちらも炭素基準で 70% 程度の有機物が分解されずに残留していた。また、60 分以降は無機化があまり進行せず、H₂O₂ の消費速度も大きく低下していた。よって、反応時間を長くしてもこれ以上の無機化率の向上はあまり期待できないと考えられる。ここで、60 分の Y_{Ox} に着目すると、BPA では $Y_{Ox} = 0.28$ mg-C · mg-C⁻¹, 2,4-D では $Y_{Ox} = 0.31$ mg-C · mg-C⁻¹ である。炭素基準で残留している有機物のうち 40 ~ 50% がシュウ酸であることから、シュウ酸が分解の中心主生成物であるが、他の有機物も多く残存していることがわかる。そこで、光照射と Cu(II) 添加を併用して、第 1 章で用いた光化学還元と、第 3 章で用いた触媒的還元を利用することを考えた。光化学還元によって、Fe(III) が還元されるとともに、フェントン酸化では分解困難なシュウ酸が分解され、継続的にフェントン酸化による有機物分解が進行することが期待できる。また、シュウ酸とともに還元性有機物が残留していれば、Cu(II) による Fe(III) の触媒的還元によってフェントン酸化の促進による有機物のさらなる分解が期待できる。これらの作用により、無機化率の向上を試みる。
第4章

図 4.1 フェントン酸化による分解での無機化率とシュウ酸収率

4.3.2 光源種による光化学還元速度の比較

Fe(III)の光化学還元を併用したフェントン酸化を行うため、光源の違いが、光化学還元の速度に与える影響を検討する。光源として、UVA ランプ、白色 LED、青色 LED、黄色 LED を用いた。まず、[H₂O₂]₀ = 2.5 mM、初期 Fe(III)濃度 [Fe(III)]₀ = 0.5 mM、初期シュウ酸濃度 [Ox]₀ = 0.5 mM、白色 LED 照射下で、光化学還元によるシュウ酸の分解を行った。[TOC]とシュウ酸濃度 [Ox]の経時変化を図 4.2 に示す。シュウ酸は、光照射によって無機的に分解しており、濃度は 60 分で 1/3 に、120 分で 1/9 程度まで低減した。本条件では、[TOC]と [Ox]の経時変化

[BPA]₀ = 50 mg · L⁻¹, [2,4-D]₀ = 100 mg · L⁻¹, [Fe(II)]₀ = 0.5 mM, [H₂O₂]₀ = 20 mM
第 4 章

はほとんど一致しており、[TOC]で[Ox]を評価できることが分かった。また、Cu(II)を添加した実験([Cu(II)]₀ = 0.5 mM)での[TOC]の経時変化もあわせて示したが、Cu(II)を添加しても、[TOC]に変化はなく、Cu(II)はシュウ酸を用いたFe(III)の光化学還元に影響を与えないと考えられる。

次に、[H₂O₂]₀ = 2.5 mM、[Ox]₀/[Fe(III)]₀ = 1.0 として、種々の光源を用いて[Fe(II)]₀ = 0.5 mM における光化学還元の実験を実施した。光源としては UVA、白色 LED に加えて、波長の依存性を評価するため、青色 LED と黄色 LED を用いた。それぞれの光源種を用いた場合の[TOC]の経時変化を図 4.3 に示す。黄色 LED では[TOC]が変化しておらず、黄色 LED では光化学還元は起こらないといえる。一方で、白色 LED、青色 LED では[TOC]が減少しており、光化学還元によってシュウ酸が分解したと考えられる。[TOC]の減少速度は、青色 LED がわずかに高いものの、ほとんど同じ速度であるが、ランプ出力は青色 LED が 0.72 W であるのに対し、白色 LED は 1.8 W であり、青色 LED の方が大幅に低く、各 LED ランプの波長域についてみてみると、青色 LED の主波長は 468 nm であるが、黄色 LED では、λ < 550 nm を含んでいない。このことから、光化学還元には λ < 550 nm の波長、すなわち可視光としては青色 LED の光が必要であると考えられる。白色 LED には、青色 LED の光も含まれているので、光化学還元は進行したが、青色以外の光も含まれているため、同じ分解率を得るために、より高い消費電力が必要だと考えられる。

図 4.2 Ox 測定と TOC 測定との比較、Cu 添加の光化学還元への影響
第4章

図4.3 光化学還元の反応速度の検討（LED照射）

次に、[Fe(III)]₀の影響についての検討を行う。白色LED照射下で[Fe(III)]₀ = 0.25, 0.5, 1.0 mMでの光化学還元における[TOC]の経時変化を比較すると、[Fe(III)]₀が高いほど反応初期の[TOC]減少速度が高かった。ここで、光化学還元の速度を解析するため、[Ox]に対して1次反応であると仮定すると、[Ox]は[TOC]で評価できるため、

\[\frac{d[TOC]}{dt} = k_{LED} [TOC] \]

と表される。\(k_{LED} \)は1次反応速度定数(min⁻¹)である。両辺を積分して以下の関係式が得られ

\[\ln \left(\frac{[TOC]}{[TOC]₀} \right) \text{ (–)} \]

\[\text{LED} \]

\[Time (\text{min}) \]

\[\text{[Ox]₀/}[Fe(\text{II})]₀ = 1, [H₂O₂]₀ = 2.5 \text{ mM} \]

\[[\text{Fe(III)}]₀ = 1.0 \text{ mM (White)} \]

\[0.5 \text{ mM (Yellow)} \]

\[0.5 \text{ mM (White)} \]

\[0.5 \text{ mM (Blue)} \]

\[0.25 \text{ mM (White)} \]

\[0.25 \text{ mM (Yellow)} \]

\[0.5 \text{ mM (Blue)} \]

\[k_{LED} = 1.59 \times 10^{-2} \text{ min}^{-1} \]

\[0.25 \text{ mM (White)} \]

\[0.5 \text{ mM (White)} \]

\[0.5 \text{ mM (Yellow)} \]

\[[\text{Fe(III)}]₀ = 1.0 \text{ mM (White)} \]
実験で得られた結果から \(\ln \left(\frac{[\text{TOC}]}{[\text{TOC}]_0} \right) \) を算出して時間 \(t \) に対してプロットを行った（図 4.3）。実験結果から算出した \(\ln \left(\frac{[\text{TOC}]}{[\text{TOC}]_0} \right) \) が、[Fe(III)]₀ に関係なく、同一の直線で表されている。これは、光化学還元の速度が [Ox] に対して 1 次反応的に進行していることを示している。更に直線の傾きから、1 次反応速度定数 \(k_{LED} = 1.59 \times 10^{-2} \text{ min}^{-1} \) が得られた。

\[
\ln \left(\frac{[\text{TOC}]}{[\text{TOC}]_0} \right) = -k_{LED} t \tag{4.2}
\]
同様に、UVA 照射下での [Fe(III)]_0 濃度の影響を検討する。[TOC] の経時変化と光化学還元が 1 次反応であると仮定して速度解析を行った結果を図 4.4 に示す。まず、速度解析の結果を見ると、異なる [Fe(III)]_0 での実験結果をプロットしたところ、実験結果は同一の直線では表せなかった。そのため、UVA 照射下では、光化学還元は [Ox] に対して 1 次反応ではないといえる。次に、0 次反応であると仮定して、分解初期の [TOC] の傾きを -k_UV として 5 分までの結果から 0 次反応速度定数 k_UV を求めた。[Fe(III)]_0 = 0.25, 0.5, 1.0 mM で、それぞれ k_UV = 0.535, 0.609, 0.626 mg-C・L⁻¹・min⁻¹ であり、[TOC] の減少速度は一定に近く、UVA 照射では、光化学還元反応が [Ox] に対して 0 次反応に進行していると考えられる。Fe(III) とシュウ酸の水溶液の光の吸収スペクトルを見ると(図 4.5)、UVA の主波長 352 nm での吸光度 A_352 は 0.632 であり、白色 LED の主波長 468 nm での吸光度 A_468 は 0.016 と比べて、非常に大きいことがわかる。そのため、[Fe(III)]_0 = 0.25 mM でも照射された光をほぼ全て吸収しており、[Fe(III)]_0 による Fe(III) 還元速度に違いが見られないと考えられる。

以下では、用いる光源として、白色 LED と UVA ランプを使用した。LED の中で白色 LED を選定した理由は、室内照明を光源として利用することを想定しているためである。

図 4.5 Fe(III) とシュウ酸の混合溶液の吸光スペクトル

4.3.3 LED 照射を併用した BPA のフェントン酸化

光化学還元が有機物のフェントン酸化を促進することができるか、BPA と 2,4-D を用いて検討する。まず、LED 照射を併用したフェントン酸化で BPA の分解実験を行った。[BPA]_0 =
50 mg·L⁻¹，[H₂O₂]₀ = 20 mM とし白色 LED 照射下で，[Fe(II)]₀ = 0.25, 0.5 mM でのフェントン酸化での無機化率と Y₀x の経時変化を図 4.6 に示した。LED 照射を行わない暗室条件下では，反応時間 15 分以降，無機化速度は大幅に低下しており，[Fe(II)]₀ = 0.25, 0.5 mM の 120 分での無機化率は，それぞれ 0.28, 0.36 mg-C·mg-C⁻¹ であった。一方，LED 照射を併用した場合は，15 分以降も無機化が継続的に進行し，[Fe(II)]₀ = 0.25, 0.5 mM の 120 分での無機化率は，それぞれ 0.61, 0.83 mg-C·mg-C⁻¹ となるまで無機化が進行した。また，[Fe(II)]₀ = 0.5 mM では，Y₀x が15 分以降減少しており，シュウ酸の明確な分解がみられたが，[Fe(II)]₀ = 0.25 mM では，30 分以降も少量ではあるが Y₀x が増加している。この条件においても，シュウ酸による光化学還元は起こっていると考えられるため，光化学還元によってシュウ酸が分解するが，この時 Fe(III)の還元で生成した Fe(II)と H₂O₂ によってフェントン酸化が進行し，残留している有機物を分解することで中間生成物として新たにシュウ酸が生成していると考えられる。
4.3.4 銅イオン添加と LED 照射を併用した BPA のフェントン酸化

前節では、LED 照射によって BPA の無機化が促進されることが分かった。本節では、有機物の分解処理のさらなる短縮、無機化率を向上させるため、Cu(II)添加の併用も試みた。まず、\([\text{BPA}_0 = 50 \text{ mg·L}^{-1}], \text{初期Cu(II)濃度} [\text{Cu(II)}_0] = 0.5 \text{ mM}, \text{H}_2\text{O}_2]_0 = 20 \text{ mM} \)として、\([\text{Fe(II)}_0] = 0.25, 0.5, 1.0 \text{ mM} \)でのBPA分解実験を行い、\([\text{Fe(II)}_0]\)の影響を検討した。無機化率、\(Y_{\text{Ox}}\)の経時変化を図4.7に示した。比較のためCu(II)を添加しない分解実験もあわせて示した。

![図4.7 Cu(II)添加と光化学還元を併用したBPA分解([Fe(II)]の影響)](image)

\([\text{Fe(II)}_0] = 0.5 \text{ mM} \)において、120分での無機化率を比較すると、LED照射を行い、Cu(II)を添加しない条件では、無機化率0.83 mg-C·mg-C\(^{-1}\)であったのが、Cu(II)を添加すると無機化がより進行して、無機化率は0.92 mg-C·mg-C\(^{-1}\)となった。また、\([\text{Fe(II)}_0]\)の影響を見ると、
第4章

[Fe(II)]₀ = 0.25 mM に比べて、[Fe(II)]₀ = 0.5, 1.0 mM では、反応初期での無機化速度が高く、15 分での無機化率を比較すると、[Fe(II)]₀ = 0.25 mM では、0.25 mg-C · mg-C⁻¹ であり、[Fe(II)]₀ = 0.5, 1.0 mM では、無機化率はどちらも 0.43 mg-C · mg-C⁻¹ であり、無機化がより進行した。しかし、[Fe(II)]₀ = 0.25, 0.5, 1.0 mM の 60 分での無機化率は、ほぼ同じであり、60 分以降の無機化率の経時変化にも違いが見られない。特に、[Fe(II)]₀ = 0.5, 1.0 mM では、分解開始から、無機化率はほとんど同じように変化している。一方で、Yox は[Fe(II)]₀ に大きく依存しており、[Fe(II)]₀ が高い方が、Yox も高い傾向がみられた。無機化率では、[Fe(II)]₀ の影響が見られなかったが、溶液内で進行している有機物の分解挙動は明らかに異なっていると考えられる。そこで、[Fe(II)]₀ が BPA の分解に与える影響について、光化学還元の速度解析で得られたジュウ酸の分解に対する反応速度定数 ₖLED = 1.59 × 10⁻² min⁻¹ を用いて検討を行う。[Fe(II)]₀ = 0.5, 1.0 mM での反応時間 15 分~30 分の結果に着目すると、[TOC] の減少速度はどちらも同程度であり、[Fe(II)]₀ = 0.5 mM では、

\[-\frac{\Delta \text{[TOC]}}{\Delta t} = 4.02 \times 10⁻¹ \text{ mg · C · L}⁻¹ · \text{min}⁻¹\]

であり、[Fe(II)]₀ = 1.0 mM では、

\[-\frac{\Delta \text{[TOC]}}{\Delta t} = 3.85 \times 10⁻¹ \text{ mg · C · L}⁻¹ · \text{min}⁻¹\]

である。一方で、[Ox] の経時変化には違いがみられる、[Fe(II)]₀ = 1.0 mM では、

\[-\frac{\Delta \text{[Ox]}}{\Delta t} = 2.34 \times 10⁻¹ \text{ mg · C · L}⁻¹ · \text{min}⁻¹\]

であるが、15 分での [Ox] = 13.28 mg-C · L⁻¹ と ₖLED = 1.59 × 10⁻² min⁻¹ を用いて、\(- \frac{d\text{[Ox]}}{dt} = ₖLED · [\text{Ox}]\) を計算すると、

\[-\frac{d\text{[Ox]}}{dt} = 2.11 \times 10⁻¹ \text{ mg · C · L}⁻¹ · \text{min}⁻¹\]

となり、BPA 分解実験でのジュウ酸減少速度と近い値であった。このことから、光化学還元によってジュウ酸が分解されるとともに Fe(III) が還元され、フェントン酸化による無機化が進んでいるといえる。一方で、[Fe(II)]₀ = 0.5 mM では、BPA 分解実験でのジュウ酸減少速度は、
\[-\frac{\Delta [\text{Ox}]}{\Delta t} = 2.80 \times 10^{-2} \text{mg} \cdot \text{C} \cdot \text{L}^{-1} \cdot \text{min}^{-1}\]

であり、15分での[Ox] = 7.90 mg-C·L^{-1}と$k_{LED} = 1.59 \times 10^{-2} \text{min}^{-1}$から、\(- \frac{d[\text{Ox}]}{dt} \) を算出すると,

\[-\frac{d[\text{Ox}]}{dt} = 1.26 \times 10^{-1} \text{mg} \cdot \text{C} \cdot \text{L}^{-1} \cdot \text{min}^{-1}\]

となり、BPA分解実験と光化学還元実験とでは、同じ[Ox]でもシュウ酸の分解速度が大きく異なっている。これは、光化学還元に伴ってシュウ酸は分解されるが、溶液内に残留している有機物の分解でシュウ酸が生成されるため、見かけの上ではシュウ酸の減少がほとんど確認できないと考えることができる。

図 4.8 Cu(II)添加と光化学還元を併用した BPA 分解 ([Cu(II)]₀の影響)
第4章

また、[BPA]₀ = 50 mg · L⁻¹, [Fe(II)]₀ = 0.5 mM, [H₂O₂]₀ = 20 mM として、[Cu(II)]₀ = 0, 0.25, 0.5 mM での BPA 分解実験を行った。無機化率と Y₀ の経時変化を図 4.8 に示した。15 分での無機化率を比較すると、[Cu(II)]₀ = 0 mM では、0.27 mg-C · mg-C⁻¹ であったが、[Cu(II)]₀ = 0.25, 0.5 mM ではそれぞれ 0.40, 0.43 mg-C · mg-C⁻¹ となり、Cu(II) を添加することで、無機化が促進されている。一方で、[Cu(II)]₀ = 0.25 mM と 0.5 mM では、無機化率の経時変化はほとんど同じであった。Y₀ を見ても、[Cu(II)]₀ = 0.25 mM と 0.5 mM ではほとんど違いがなく、これらの場合では、Cu(II) 添加量は [Cu(II)]₀ = 0.25 mM で充分であると考えられる。

4.3.5 銅イオン添加と LED 照射を併用した 2,4-D のフェントン酸化

前節において、BPA に Cu(II) 添加と LED 照射を併用したフェントン酸化を行うことで、無機化率が向上することが分かった。同様に 2,4-D でも Cu(II) 添加の効果を検討した。[2,4-D]₀ = 100 mg · L⁻¹, [Fe(II)]₀ = 0.5 mM, [H₂O₂]₀ = 20 mM, [Cu(II)]₀ = 0, 0.5 mM の条件での無機化率と Y₀ の経時変化を、図 4.9 に示す。比較のため、Cu(II) を添加しない暗室条件下での分解結果も合わせて示す。30 分での無機化率を比較すると、Cu(II) を添加しない暗室条件下では 0.28 mg-C · mg-C⁻¹ であったが、LED 照射を併用すると 0.39 mg-C · mg-C⁻¹ となり、無機化がより進行していることが分かる。さらに Cu(II) を添加すると無機化率は 0.63 mg-C · mg-C⁻¹ となり、大幅に無機化が促進された。そのため、120 分での無機化率、Cu(II) を添加しない暗室条件下では 0.40 であったのに対して、LED 照射を併用すると 0.82 mg-C · mg-C⁻¹、さらに Cu(II) 添加を行うと 0.95 mg-C · mg-C⁻¹ となった。すなわち Cu(II) 添加と LED 照射を併用すれば、反応時間 120 分において 100 mg · L⁻¹ の 2,4-D を炭素基準で 95% も CO₂ まで完全に酸化分解することができた。

LED 照射を行った条件での Y₀ に着目すると、15 分での Y₀ は、Cu(II) 添加なしでは Y₀ = 0.25 mg-C · mg-C⁻¹ で、Cu(II) 添加を行うと Y₀ = 0.31 mg-C · mg-C⁻¹ であった。同样に 30 分では、添加なしでは Y₀ = 0.29 mg-C · mg-C⁻¹ で、Cu(II) 添加を行うと Y₀ = 0.27 mg-C · mg-C⁻¹ であった。これらの時間での Y₀ は、Cu(II) の有無で大きな違いは無いが、無機化率が大きく異なっているため、残留している有機物中のシュウ酸の割合は大きく異なっている。30 分で比較してみると、Cu(II) 添加を行わない実験では、シュウ酸の占める割合は炭素基準で 48% であったのに対し、Cu(II) 添加を行った実験では、73% がシュウ酸であった。2,4-D でも Cu(II) 添加を行うことで、シュウ酸まで有機物の分解を進めるために要する時間を短縮できたと考えられる。

ここで、溶液中に残留している有機物のほとんどがシュウ酸であるなら、溶液中での有機物の分解は光化学還元による分解が支配的となり、[Ox] に対して 1 次反応で進行すると考えられる。そこで、LED 照射を行った実験について、ln([Ox]/[TOC]₀) を算出し、時間に対してプロットしたものを、図 4.10 に示す。1 次反応で分解が進行すると、グラフ上では傾きが一定の結果が得られる。グラフを見てみると、[Cu(II)]₀ = 0.5 mM では、30 分以降で傾きが一定の結果が得られている。先ほど示したように、反応時間 30 分での残留している有機物に占め
第4章

シュウ酸の割合は、73%と非常に高く、光化学還元によるシュウ酸の分解が無機化の支配的要因であると考えられる。一方、[Cu(II)]0 = 0 mM の60分での無機化率は 0.63 mg-C·mg-C^{-1}、Y_{Ox} は 0.27 mg-C·mg-C^{-1} であり、残留している有機物に占めるシュウ酸の割合は 67%と、高い割合を占めているにも関わらず、反応時間60分以降もグラフの傾きが一定とはならなかった。これは、残存している有機物の分解によって、シュウ酸が生成していることを示唆している。これらの結果から、Cu(II)添加には無機化の促進だけでなく、有機物をシュウ酸まで分解する時間を短縮する作用があると考えられる。

図4.9 Cu(II)添加と光化学還元を併用した2,4-Dの分解

[2,4-D]0 = 100 mg · L^{-1}, [Fe(II)]0 = 0.5 mM, [H₂O₂]0 = 20 mM
図 4.10 2,4-D 無機化挙動の検討

4.3.6 銅イオン添加と UVA 照射を併用した BPA，2,4-D のフェントン酸化

これまでは LED 照射下での，Cu(II)添加の影響とともに BPA，2,4-D の分解挙動を検討した。本節では，UVA を照射しての BPA，2,4-D 分解を扱う。[BPA]₀ = 50 mg · L⁻¹，[2,4-D]₀ = 100 mg · L⁻¹，[Fe(II)]₀ = 0.5 mM，[H₂O₂]₀ = 20 mM で一定とし，[Cu(II)]₀ = 0，0.5 mM での UVA 照射下で BPA，2,4-D の分解を行った。反応時間 30 分での無機化率と Yₙ₀ を図 4.11 に示す。比較のため，Cu(II)添加をせずに暗室条件下で分解を行っ</strip>
を算出したところ、UVA 照射のみでは 42%がシュウ酸であったのに対し、Cu(II)添加も行っ
た条件では、74%がシュウ酸となるまで分解が進んでいた。

UVA は白色 LED と比べて吸収率が高いため、光化学還元の反応速度も高くなると考えら
れ、Cu(II)添加なしの条件でも無機化が大きく進んでいた。Cu(II)を添加した条件では、残
留している有機物に占めるシュウ酸の割合が、Cu(II)添加なしの条件と比べると高く、Cu(II)
添加によって有機物がシュウ酸まで分解される反応が速く進行していると考えられる。Cu(II)
添加による分解促進の作用をより明らかにするため、次節では高濃度の 2,4-D を、LED、UVA
照射下で分解する。

図 4.11 Cu(II)添加と光化学還元を併用した BPA、2,4-D の分解（UVA 照射、反応時間 30 分）
4.3.7 高濃度2,4-D溶液のフェントン酸化

図4.12 Cu(II)添加と光化学還元を併用した高濃度2,4-Dの分解

Cu(II)添加の作用を明らかにするため、より高濃度の2,4-D溶液の分解を行った。[2,4-D]₀ = 200 mg · L⁻¹, [Fe(II)]₀ = 0.5 mM, [H₂O₂]₀ = 20 mMとして、白色LED、UVA照射下で[Cu(II)]₀ = 0, 0.5 mMでの分解を行った。無機化率とY₀ₙの経時変化を図4.12に示す。光照射を行わなければ、120分での無機化率は0.26 mg-C · mg-C⁻¹であったが、LED照射を行うと無機化率が0.52 mg-C · mg-C⁻¹まで無機化を進めることを出した。さらにCu(II)を添加すれば無機化率は0.94 mg-C · mg-C⁻¹となった。これは炭素基準で94%の有機物をCO₂まで酸化分解したこと
第4章

を示しており、大幅な無機化率の向上を達成できたといえる。60分でのY_{Ox}は、光照射を行わなければ、$Y_{Ox} = 0.19 \text{mg-C} \cdot \text{mg-C}^{-1}$、LED照射を行うと、$Y_{Ox} = 0.21 \text{mg-C} \cdot \text{mg-C}^{-1}$であり、さらにCu(II)を添加すれば、$Y_{Ox} = 0.18 \text{mg-C} \cdot \text{mg-C}^{-1}$であり、ほぼ同じ値であるが、無機化率が大きく異なるため、残留している有機物に占めるシュウ酸の割合が大きく異なる。照射なしで24%、LED照射で31%であるが、さらにCu(II)添加を行えば60%であった。Cu(II)添加によって、分解が促進され、短時間でほとんどの有機物をシュウ酸まで分解することが出来たといえる。

同様にUVA照射では、無機化率 > 0.99 mg-C · mg-C^{-1}となる時間を、Cu(II)を添加することで90分から60分に短縮することができた。30分でのY_{Ox}同程度であるが、無機化率が大きく異なるため、残留している有機物に占めるシュウ酸の割合も異なっており、UVA照射のみではシュウ酸の割合は30%であったが、Cu(II)添加も併用すると55%がシュウ酸であった。

Cu(II)添加により、$[2,4\text{-D}]_0 = 200 \text{mg} \cdot \text{L}^{-1}$でも、短時間で2,4-Dをシュウ酸まで分解することができた。Cu(II)添加によって廃液処理時間の短縮が期待できる。

4.3.8分解効率の検討

これまで、白色LEDおよびUVA照射を用いて難分解性有機物の分解挙動を検討した。白色LED照射と比べるとUVA照射では光化学還元の反応速度が高かった。そのため有機物の分解速度も高いと考えられる。一方で消費電力は、UVAランプは6.0 Wであるのに対し、白色LEDが1.8 W、青色LEDは0.72 Wと大きく異なる。そこで、式(4.4)で分解効率ηを定義して、反応条件の違いによる、分解効率を反応時間60分で比較検討した(図4.13)。

$$\eta = \frac{\text{the amount of TOC reduced (mg-C)}}{\text{energy consumption (Wh)}} (4.4)$$

白色LED照射下、$[\text{Fe(II)}]_0 = 0.5 \text{mM}$で銅イオンの添加の有無の比較を行うと、$[\text{Cu(II)}]_0 = 0 \text{mM}$では$\eta = 16.2 \text{mg-C} \cdot \text{Wh}^{-1}$であり、$[\text{Cu(II)}]_0 = 0.25 \text{mM}$では$\eta = 20.8 \text{mg-C} \cdot \text{Wh}^{-1}$、$[\text{Cu(II)}]_0 = 0.5 \text{mM}$では$\eta = 21.2 \text{mg-C} \cdot \text{Wh}^{-1}$と銅イオン濃度が高くなると効率も高くなっている。そこで、$[\text{Fe(II)}]_0 = 0.5 \text{mM}$、$[\text{Cu(II)}]_0 = 0.5 \text{mM}$で光源種の違いを比較すると、白色LEDは$\eta = 21.2 \text{mg-C} \cdot \text{Wh}^{-1}$であったのに対して、青色LED、UVAでは$\eta = 60.8, 7.8 \text{mg-C} \cdot \text{Wh}^{-1}$となった。白色LEDと青色LEDで有機物の分解挙動にほとんど違いは無かったが、消費電力の違いが、効率に大きな影響を与えた。白色LEDは青色LEDと同じ$\lambda = 468 \text{nm}$にピークを持つ波長の光に加え、$\lambda = 570 \text{nm}$の光は、4.3.2節で検討した光化学還元に影響を与える波長域($\lambda < 550 \text{nm}$)よりも長波長であり、分解に影響を与えない光を照射するためにもエネルギーを消費している。そのため白色LEDと比べて青色LEDの効率が3倍近く高い結果となったといえる。一方、UVA ラ
第4章

光源は照射時間が短いものの、消費電力が大きいため、白色 LED の効率の 1/3 程度という結果となった。

廃液処理に適した光源は、処理現場で要求されるものによって異なるが、本章で用いた可視光 LED 照射と Cu(II) 添加を併用した手法を用いれば、照射エネルギーの削減が図れるため、光フェントン反応で課題となる照射のためのエネルギー消費量の問題を解決する手法となることが期待される。

![図4.13 反応時間60分での分解効率の比較](image)

4.4 結言

本章では、新たなフェントン酸化法として、光化学還元と Cu(II) 添加を併用した手法を提案し、BPA、2,4-D の分解実験によってその有効性を検討した。光化学還元を様々な光源で行い、光化学還元を利用してフェントン酸化を行う際に利用できる波長域が \(\lambda < 550 \text{ nm} \) であることを明らかにした。この波長の光は青色 LED であるが、白色 LED にも青色 LED の光が含まれているため、室内照明として用いられている白色 LED を光源として利用することができる。さらに光化学還元反応の速度解析から、UVA 照射では \([Ox] \) に対して 0 次反応で、LED 照射では 1 次反応で光化学還元が進行することを明らかにした。

そこで、白色 LED と UVA ランプを用いて、BPA、2,4-D の分解実験を様々な条件で行い、反応条件が無機化に与える影響と、分解速度に関する考察を行った。BPA、2,4-D をフェント
第4章

シュウ酸化で分解するとシュウ酸が生成するため、外部からシュウ酸を添加せず、分解の中間生成物であるシュウ酸を利用して光化学還元を進めることができる。そのため、いずれの場合でもフェントン酸化による分解と比較して、UVA 照射、LED 照の併用で無機化率が大きく向上した。さらに Cu(II)も添加すると、更なる無機化率の向上を達成できた。また、Cu(II)添加によって分解速度が速くなり、有機物をシュウ酸まで短時間で分解していた。これは、分解で生成する還元性の有機物と Cu(II)による Fe(III)の還元効果によって、特に分解初期でフェントン酸化が大幅に促進されたためであると考えられる。短時間で有機物の大部分をシュウ酸まで分解できるため、Cu(II)添加によって、廃液処理のための照射時間の短縮が期待できる。

反応条件や光源による違いを評価するため、消費電力あたりの TOC 濃度の減少量を分解効率と定義して、様々な条件での分解効率を比較した。いずれも、Cu(II)添加によって分解効率は上昇していた。UVA は、分解時間は短いが、消費電力が大きいため、分解効率では他の光源に劣っている。白色 LED と青色 LED とを比較すると、青色 LED の効率が 3 倍近く高い。これは、白色 LED には青色 LED の光と \(\lambda = 570 \text{ nm} \) にピークを持つ黄色の光を照射しているが、黄色の光は光化学還元に関与しないため、同じ分解速度を得るために、より高い消費電力が必要であることを示している。

参考文献

総論

難分解性有機物は、生物分解性に乏しいため、ごく微量でも環境中に排出されると、蓄積し将来甚大な被害を及ぼすことが懸念されているが、従来の処理手法では処理が困難である。そこで、難分解性有機物を分解できる廃水処理手法の開発を目標とし、新たな処理手法として酸化活性の高い OH ラジカルを処理に用いる促進酸化法 (AOPs) に着目した。AOPs には様々な手法があるが、フェントン酸化は OH ラジカル源となる酸化剤が、低濃度であれば環境中に排出されても容易に分解される H₂O₂ であり、化学的なエネルギーで H₂O₂ を活性化させるため、他の AOPs と比較してコストや省エネルギーの観点から好ましいと考えられる。一方で、フェントン酸化を実用的に用いる際には、Fe(III) の還元反応が遅いため、大量に Fe(II) を投入しており、廃水中にも生成する水酸化鉄スラッジが問題である。水酸化鉄のスラッジは回収しても再利用することが困難である。Fe(III) 還元反応を促進することができれば、少量の Fe(II) 投入量であっても、継続的に有機物の酸化分解を進めることができ、処理中にスラッジも生成せず、費イオンの回収・再利用も可能になると考えた。そのため、Fe(III) の還元反応に着目し OH ラジカルの継続的な発生促進を通して、難分解有機物を効率よく分解・無害化する手法について検討を行った。

第 1 章では、有効な処理手法が確立していないジオキサンを分解対象とした。まず、従来のフェントン酸化でジオキサンの分解を行い、分解可能なジオキサン濃度や適した反応条件についての検討を行った。フェントン酸化では、低濃度のジオキサン水溶液を迅速に排出基準値 (0.5 mg · L⁻¹) 以下まで処理することが可能である。しかし、分解は継続的に進行せず停止してしまうため、Fe(II) 濃度が 1.0 mM では、排出基準値以下まで処理できるジオキサンの濃度は 10 mg · L⁻¹ までである。そこで、少量の Fe(II) で高濃度のジオキサン水溶液を分解するために、光化学還元反応に着目した。光化学還元反応とは、シュウ酸と Fe(III) の錯体溶液に光を照射することで Fe(III) が還元される反応である。光源として UVA ランプと白色 LED を利用し、ジオキサンを継続的に分解できることを示した。可視光 LED を利用して有機物の分解を試みた研究はこれまでに報告されていない。また、100 mg · L⁻¹ のジオキサン濃度を規制値以下まで分解するのに要した時間は、UVA 照射では 30 分、白色 LED 照射では 50 分であり、光照射のみをフェントン酸化に組み合わせた方法よりも短時間でジオキサンを処理できる。照射する光源の種類がジオキサンの分解に与える影響に関しては、Fe(III) とシュウ酸錯体の溶液は UVA の光を非常に良く吸収するため、光化学還元反応の速度は UVA 照射が白色 LED 照射よりも速い。しかし、Fe(III) の還元量に対するジオキサンの分解量や、H₂O₂、シュウ酸の消費量は、光源に依らないほど同じであり、ジオキサンの分解量は Fe(III) の還元量に依存していると考えられる。また、白色 LED 照射では、シュウ酸濃度と Fe(III) 濃度の比に最適値が存在している。ジオキサンの分解に対するエネルギー効率は、白色 LED を用いる場合の方が、UVA ランプを用いる場合よりも 1.5 倍程度高いことを示した。

第 2 章では、電気化学還元を併用したエレクトロフェントン酸化を利用してジオキサンの
総論

分解を試みた。これまで、エレクトロフェントン酸化によってジオキサンの分解は報告されていなかったが、エレクトロフェントン酸化によってジオキサンを規制値以下まで継続的に分解できることを示した。反応条件の検討により、H₂O₂には最適な濃度が存在しており、Fe(III) 濃度が高い条件で、ジオキサンの分解速度が高いことを示した。ジオキサンと OH ラジカルとの反応性は非常に高く、ジオキサン濃度が 1 mg L⁻¹以下となるまで TOC 濃度はほとんど低下しないが、分解が進行してジオキサン濃度が低くなると、H₂O₂や分解生成物と OH ラジカルとの反応の選択率が高くなり、ジオキサンの分解を阻害する。これらの知見をもとに、電極での Fe(III)の還元反応を含んだジオキサンの分解モデルを構築し、シミュレーションを行った。シミュレーションは、実験結果を良好に再現でき、実験で定量的に測定することが困難なラジカル種などの消費速度、生成速度について考察した。分解後期には、Fe(II)と活性ラジカル種の生成速度が顕著に増加するが、この要因は、OH ラジカルが低濃度になったジオキサンよりも H₂O₂と優先的に反応するためである。その結果、生成した H₂O₂ラジカルは、Fe(III)を還元して Fe(II)を生成するため、フェントン反応で新たな OH ラジカルを生成する。このような連鎖反応が促進されるため、分解後期で、Fe(II)活性ラジカル種の濃度が高くなっている。これは、分解後期で H₂O₂の消費が増大する原因にもなっている。そのため、初期 H₂O₂濃度を低くし、分解後期で不足する H₂O₂を供給するという反応条件を提案し、シミュレーションからその有効性を示した。

第 3 章では、触媒的な還元を併用してフェントン酸化の促進を検討した。遷移金属イオンの中から、銅イオンには触媒としての顕著な作用があることを見出し、継続的にフェノールの無機化を進めることができた。フェントン酸化のみでは、無機化率は 40%程度で無機化が停滞してしまうが、Cu(II)を添加して反応条件を検討したところ、初期 Fe(II)濃度 0.1 mM、初期 Cu(II)濃度 1.0 mM、反応時間 120 分で無機化率 94%を達成することができた。このように高い無機化率を達成できた要因について検討するため、フェントン酸化を停滞させる要因であるシュウ酸に着目した。高い無機化率を達成できた条件では、フェントン酸化では分解できないと考えられているシュウ酸を分解し、無機化が停滞することなく進行する。このシュウ酸の分解には、Cu(II)添加だけでなく、分解の中間生成物のうち、還元性の有機物も必要である。さらに、Fe(III), Cu(II), シュウ酸の相互作用についての検討を行うため、Fe(III), Cu(II), シュウ酸を様々な組み合わせで含む溶液の吸光度を測定した。吸光度測定の結果は、Cu(II)をシュウ酸と Fe(III)の錯体を含む溶液に添加すると、シュウ酸と Fe(III)の結合が弱まることを示唆しており、Cu(II)と還元性の有機物が共存していると、還元性の有機物によって錯体中の Fe(III)を還元するとともに、シュウ酸も分解可能となると考えられる。また、Cu(II)を添加したフェントン酸化が、オレンジ II, 4-ニトロフェノール、ピスフェノール A, 2,4-ジクロロフェノキシ酢酸の分解にも有効であることを示した。最も無機化を促進したのは 4-ニトロフェノールの分解であり、Cu(II)添加なしでは無機化率は 30%程度であったが、Cu(II)を添加することで無機化率が 81%に達する。他有機物に対しても、Cu(II)を添加したフェントン酸化による無機化の促進が期待できる。

第 4 章では、第 1 章で用いた光化学還元と、第 3 章で用いた Cu(II)添加を併用して、ビス
フェノール A と 2,4-ジクロロフェノキシ酢酸について、無機化のさらなる促進を試みた。光化学還元では、\(\lambda < 550 \, \text{nm} \) の波長の光が利用できること、光化学還元反応はシュウ酸濃度に対して、UVA 照射では 0 次反応で、白色 LED 照射では 1 次反応で進行することを示した。ビスフェノール A と 2,4-ジクロロフェノキシ酢酸の分解に関しては、フェントン酸化によりシュウ酸が生成するため、外部からシュウ酸を添加せず、分解の中間生成物であるシュウ酸を利用して光化学還元を進めることができる。そのため、いずれの場合でも、フェントン酸化による分解と比較して、UVA 照射、白色 LED 照射を併用したフェントン酸化による分解で無機化率が大きく向上する。さらに Cu(II) 添加も併用すると、分解時に生成した還元性の有機物による Fe(III) の還元効果により、分解初期におけるフェントン酸化が大きく促進され、残留している有機物のほとんどが短時間でシュウ酸にまで分解されるため、廃液処理のための照射時間を短縮することが期待できる。

以上、本論文では、難分解性有機物を効率よく分解できるプロセスの開発を目的とし、様々な手法の提案を行った。分解手法として、\(\text{H}_2\text{O}_2 \) を Fe(II)で活性化し、酸化力の高い OH ラジカルを発生させるフェントン酸化をベースに、有機リガンドを利用した光化学還元、電気化学還元および還元性有機物を利用した触媒的還元を組み合わせた。いずれも、フェントン酸化で生成する Fe(III)を還元し、継続的に OH ラジカルを生成させるものである。それぞれの手法には特徴があり、廃液性状に合わせた手法を取捨選択する必要はあるが、いずれも少量の鉄イオンの投入で実現できる手法であり、重金属イオンを選択的に吸着できるキレート樹脂等の利用により、鉄イオンや銅イオンの回収・リサイクルも可能となる。また、光照射に関しては、分解効率は光の転換効率に直結しているため、高効率な光源の開発により、さらなる効率の向上も見込める。特に可視光を利用する場合は、室内照明利用による効率向上が見込めるだけでなく、プロセスの安全性の向上も期待できる。
謝辞

本論文は、私が 2010 年に環境安全工学研究室に配属されて以来、2012 年からは環境プロセス工学研究室にて計 5 年間行ったものであります。この間、数多くの方にご支援を賜りました。ここにお世話になった方々への感謝の意を述べさせていただきます。

環境プロセス工学研究室教授 前一廣先生には、環境プロセス工学研究室に配属以前から、研究に対するご助言を頂き、環境プロセス工学研究室に配属以後は、指導教員として懇切丁寧なご指導を賜りました。学会発表や論文執筆の際には、常に建設的な御意見と御指摘を賜り、その知見の深さと広さには度々敬服いたしております。心より感謝申し上げます。

分離工学研究室教授 田門肇先生には、ご多忙のなか、本論文に客観的な視点で適切な御指導を賜りました。また、本論文をまとめることに当たり、研究の独自性や新規性についての有益な御助言を賜りました。厚く御礼申し上げます。

反応工学研究室教授 河瀬元明先生には、化学工学の立場から核心を突いた鋭い御指摘を賜りました。本研究について改めて考えて改善させていただく貴重な機会となりました。また、お忙しい中、本論文を細部まで丁重にご指導いただきました。厚く御礼申し上げます。

環境安全工学研究室准教授 中川浩行先生には、環境安全工学研究室に配属以来 5 年間、熱心なご指導を賜りだけでなく、些細な疑問にもいつも嫌な顔をせず丁重にお答えいただきました。また、ご多忙のなか、研究に関する議論をさせていただくお時間を賜ることが多く、感謝申し上げます。

環境プロセス工学研究室助教 長谷川功先生には、ゼミでのご指摘を賜り、また、マイクロ化学分野の勉強会へのお誘いなど、知見を深める得難い機会を賜りました。感謝申し上げます。

環境プロセス工学研究室秘書 岡野晴子様には、事務手続きで多くのご支援を賜りました。お手数をおかけすることが多々ございましたが、いつも快く引き受けてくださり、安心して研究に臨むことが出来ました。御礼申し上げます。

また、環境安全工学研究室在籍時よりゼミ発表時には、化学工学とは異なる視点からのご指摘を賜りました。京都大学 環境安全保健機構附属環境科学センター教授 酒井伸一先生、准教授 平井康宏先生、助教 浅利美鈴先生、研究支援推進員 矢野順也様に感謝致します。

そして、共に切磋琢磨し、研究室生活を充実したものとしてくださった、環境プロセス工学研究室、環境安全工学研究室、反応工学研究室の皆さまに感謝の意を表します。特に、環境プロセス工学研究室の先輩である福田貴史様（現京都大学）、反応工学研究室の先輩である藤塚大裕様（現京都大学）には、研究を進める中での疑問にいつも丁重なお返事を賜りました。心より御礼申し上げます。また、本論文第 2 章においては環境安全工学研究室の卒業
生である高木翔太様（現サントリーホールディングス）の直接的なご支援を賜りました。ここに深く御礼を申し上げます。また、博士課程に進学して以来、共に励まし合い、頑張ってきた同期の村中陽介氏、宮林圭輔氏に感謝いたします。

最後になりましたが、博士課程の進学まで快く許してくれ、経済的な面のみならず、精神的な面でも多大な支援を惜しまず授けてくれた両親に深く感謝いたします。
本論文に関する著者の発表論文

学術雑誌論文

1) J. Maekawa, K. Mae, H. Nakagawa, "Degradation of 1,4-dioxane by the ferrioxalate-mediated photo-Fenton process using UV or white LED irradiation", (submitted)

2) J. Maekawa, S. Takagi, K. Mae, H. Nakagawa, "Degradation of 1,4-dioxane by the electro-Fenton process using activated carbon anode with modified two-compartment-reactor", (in preparation)

4) J. Maekawa, K. Mae, H. Nakagawa, "photo-Fenton-Cu(II) system using UV or LED irradiation for wastewater treatment", (in preparation)

国際会議