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Abstract

Magnetic reconnection is a ubiquitous plasma pedsich plays a vital role in a wide
range of phenomena in the universe, including #hexation events of fusion plasmas, the
dynamics of Earth’s magnetosphere and the evolaiaolar flares. All these phenomena
exhibit an impulsive magnetic reconnection, whéuee glow build up phase is followed by
an abrupt release of magnetic energy, resulting sudden increase of the reconnection
rate. Tearing mode and sawtooth crashes are theatypxamples of the impulsive
reconnection in fusion plasmas. This thesis is ttegoted to understand the complex
nonlinear dynamics of the tearing instability undarious plasma conditions.

In the limit of large instability parametaf (strongly driven regime), the nonlinear
dynamics of resistive tearing mode exhibit an abgrpwth phase after the Rutherford’'s
slow nonlinear phase, which is accompanied by dapsé of the typical X-point
configuration to Y-type current sheet. The triggeechanism for the X-point collapse,
leading to the explosive growth dynamics is stillumresolved problem. Furthermore, the
role of viscosity in the transition from the slowogth phase to the abrupt phase has not
been considered in the previous works. One parthi thesis is thus dedicated to
investigate the trigger mechanism for the X-pomwitapse and the role of viscosity in such
process. For this purpose, we propose a secondatgbility analysis based on the
guasilinear modification of the equilibrium profikey the zonal current. The results show
that the current peaking effect is plausibly resiole for the onset of the X-point collapse
and the current sheet formation, leading to thdosipe growth of reconnected flux. The
effect of viscosity is then explored directly thgbulinear and nonlinear simulations. It is
observed that in the presence of finite viscoshg, scaling of critical island width for the
X-point collapseA’w, with the resistivity gets modified. A transitionHaior is revealed

at B. ~ 1 for the viscosity dependence&fiv, and the linear tearing instability.

In the other main part of this thesis, we analymeeffects of an imposed dynamic flow
on the magnetic reconnection process. Results stmat while the linear stability
properties of the resistive tearing maate moderately affected by the dynamic flow, the



nonlinear evolution is significantly modified byetladial parity, frequency and amplitude
of the dynamic flow. After the Rutherford’s slownimear stage, the reconnection process
is found to progress in two phases by including dgeamic flow. A Sweet-Parker like
current sheet is formed in the first phase andnpbéd instability is triggered in the second
phase, where multiple plasmoids are continuoushegged and ejected along the current
sheet, leading to a bursty impulsive reconnectiois. observed that onset and evolution of
the plasmoid instability are strongly influenced the frequency and radial parity of the
dynamic flow. Most importantly, the effective recmction rate is found to be independent

of resistivity by including the dynamic flow.

Keywords: Magnetic reconnection, resistive tearing mode,oip collapse, secondary

instability, dynamic flow, plasmoid instability, jpalsive reconnection.
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Chapter 1

Introduction

The energy crisis is one of the biggest challengddnis facing in the 21st century. The
energy demand by the mankind is continuously irgineadue to the growing world

population and fast industrial development of threesging countries.

At present, most of the world energy is producgdbrning the fossil fuels. Besides
being limited resources, fossil fuels are seriousffgcting earth’s climate. It has been
found that burning of fossil fuels is the largestike of carbon dioxide emission, which
leads to global warming. To meet the energy neédiseogrowing world population in a
sustained manner, we have to look for alternativergy resources which are virtually
unlimited, worldwide accessible and most imporggnthose minimum threat to our
environment. Fusion energy is one of the best cates for supplying the future energy
demands in a safe and clean manner. Fusion energynsidered as the best promising
future energy option because it can provide saf@ eran energy, with many other
important advantages. These include: practicakxliraustible and globally accessible fuel
resources; no emission of green house gases; lemssumption of the fuel than the other
energy resources for producing the same amountnefgg; no issue of long lived
radioactive waste (compared to the fission energgyl inherently safe. Current studies
predict that the cost of electricity generated bg fusion could be comparable to that

obtained from other energy resour¢ts

In the next 20-30 years, the nuclear fusion teabmplis expected to establish itself
through the development of ITER (International Thenuclear Experimental Reactor)
and DEMO (Demonstration Power Plant). Thus in thregirun, fusion power is likely to
become commercially available and play a signifigate in supplying the future energy

demands of the world.



1.1.The Basics of Nuclear Fusion

The stars and the sun are excellent examples ¢éaruitision around us. The sun is made
of hot dense plasma confined by its gravity, radiat tremendous amount of energy to the
earth which is produced by fusion reactions. Bdlgicauclear fusion is the process in
which two light nuclei combine or fuse to form amadightly bound heavier nucleus. As a
result, considerable amount of energy is releabkd.total mass after the nuclear reaction
is less than before and the missing masa™appears in the form of energy according to

the well known Einstein’s lawE = Amc?.
1.1.1.Fusion Reactions

The most promising fusion reaction to carry out ttoe energy production in the present
day magnetic fusion devices, is that between theediem D (3H) and tritium T éH). The

possible reactions involving D and T are as foll¢g2v4]:

D+T — JHe +n +17.6MeV (1.1)
D+D — T +p +4.03MeV (1.2)
D+D — 3He +n +3.27MeV (1.3)
D+ 3He — 4He +p + 18.3MeV (1.4)

In the D-T reaction a total energy of 17.6MeV isguced which comes out in the form of
kinetic energy of neutron (14.1MeV) and alpha p#&t(3.5MeV). Deuterium can be easily
extracted from the sea water, where it exists @5B%, representing an unlimited fuel
source. The other element needed for the D-T i@ads tritium. Tritium undergoes beta
decay with a half life of 12.5 years and thus isauailable naturally, but can be produced
artificially from lithium [2-4]. Fortunately $Li is an abundant isotope, consisting 7.5% of

the naturally occurring lithium. The nuclear reans for tritium production arR]:
n+S$Li — T +4He (1.5)

n+8Li — T +3He+n (1.6)
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Figure 1.1: Fusion cross-section of various fuseactions against the kinetic enerdy o
the incident particle. Data for the D-D reactiontaken from ENDF databadé],

whereas D-T and D-He cross-sections are calculagiedy NRL plasma formularig].

In order to induce the fusion reaction, the twoleumust have enough kinetic energy
to overcome the strong electrostatic repulsive doecting between them and must
approach each other close enough that the shoge ratrong nuclear force becomes
dominant. The probability of collision between tyarticles is usually described in terms
of the reaction cross-section)( The collision cross-section curves for the nmsnhmon
fusion reactions are plotted kigure 1.1 which shows that the D-T reaction has the largest
cross-section at around 100keV; much higher thanpisak cross-sections of the other
reactions. This means that for a significant fusite, the D-T fuel must be heated to very
high temperatures of the order of 100 million deg@e At such high temperatures, the gas
consists in the form of ions and free electronsictvlis known as plasma. Thus, heating
the plasma to very high temperatures and confiitifgr a sufficiently long time, are the

two major scientific challenges in achieving conbnsly stable fusion energg-4].



1.1.2.Confinement of Fusion Plasma

In case of sun, the plasma is dense enough todedkie required gravitational force for
confinement. However, this method of plasma comfieet is not appropriate in fusion
reactors on earth, where the gravitational forcenish weaker. Therefore, to confine the
hot plasma for fusion energy, new ways had to bgloezd. At present, mainly two
experimental approaches are being studied for ibgila fusion reactor: inertial and

magnetic confinement.

In inertial confinement, a small pellet containiingion fuel is compressed and heated
by the high power lasers or particle beams so dyittlat it reaches the conditions required
for the fusion reaction. The inertia of the fuetésponsible for the confinement; hence it is
named the inertial confinement fusion (ICF). Thesidm reactor based on inertial
confinement would work in pulsed manner. Howewveis tethod still needs more efforts

to make the fusion power commercially available.

In magnetic confinement, strong magnetic fields @ed to confine the hot plasma.
Basically, this utilizes the ability of a steady gnatic field to allow the motion of charged
particles in plasma along the magnetic lines otdoand restricts their motion in the
transverse direction. Hence, in magnetized plasraacharged particles would follow the
magnetic field lines and gyrate around them. Aofgprogress has been made in the area of
magnetically confined fusion. The most successéwiiak for confining the fusion plasma

has been developed by the magnetic confinemerdrfussed on the concept of Tokamak.
1.1.3.The Tokamak Concept

Tokamak is considered as the most successful de¥ipeesent days for harnessing the
fusion power. The schematic diagram of a tokamaligoration is shown irFigure 1.2
The outer ring-like coils, arranged in the formaotorus, produces the toroidal magnetic
field, B. This toroidal field confines the plasma in toslmpe. However, additional field
is required in the poloidal direction, to elimindbte charge separation due to the particle
drifts. Such a poloidal magnetic fieR}, is produced by a central solenoid. Actually, the

solenoid induces plasma current along the torusutiir transformer action, which then



Inner Poloidal field coils
(Primary transformer circuit)

Poloidal magnetic field Quter Poloidal field coils
(for plasma positioning and shaping)

Resulting Helical Magnetic field Toroidal field coils

Plasma electric current Toroidal magnetic field
(secondary transformer circuit)

Figure 1.2: Schematic of a tokamak. Figure fromofitgion websitg7].

gives rise to the poloidal magnetic field. The cambon of the toroidal and poloidal
magnetic fields results in a net helical magnastdf which confines the hot plasma. In
addition to the toroidal field coils and solenogdjuilibrium field coils are also needed to
provide a radially inward force on the plasma tdabee the hoop force. At higher
temperatures the ohmic heating becomes less efeatid is limited up to 1kef2]. Thus

additional heating sources such as ion cyclotrasomance heating (ICRH), electron
cyclotron resonance heating (ECRH) and neutral begation (NBI) are required to raise

the plasma temperatures to fusion relevant tempest

In order to commercialize the fusion reactor, ies&sential to achieve a net positive
energy balance, that is described in terms ofus®h energy gain factd, defined by the
ratio of fusion power to input power, i.@.= Pf/P;,, where the conditio@ = 1 is known
as breakeven. In 1991, the joint European toru$)(3Euated in Unite Kingdom, achieved

the world’s first release of the controlled fusiemergy. Currently, it is the only tokamak in



Figure 1.3: Schematic of ITE tokamak. The figure is taken from ITER organizat
website[8].

the world, using the & fuel. In 1997, JET achieve@ = 0.65 with an output power c
16MW [9]. Soon after, in 1998, -60U in Japan, achievegl= 1.25 [10]. The next
generation tokamaKkTER, is designed to achiev@ = 10 with a power of 500 MW.
ITER is a large scale scientific project that inwes international collaboration amo
China, the EU, Japan, India, Korea, Russia andJtlieed States. In June 2005, the se
ITER Members decided to build the next generatieactor t Cadarche, France. Tl
schematic of ITER tokamak is shown Figure 1.3 ITER is notthe end; the next
generation commercial reactor, DEMO is in the cptecal phase and is expected

become operational in 203([8].

Although thetokamakconfiguration is promising folnarnessing the fusion pov, the
stable confinement of hot plasma is still an unlke=b issue. Magnetic reconnecti
changes the magnefiield topology; resulting in the formation of magieasland:, which
can ggnificantly degrade the plasnconfinementby increasing the transport of heat ¢
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particles across the radial direction. Tearing madd sawtooth crashes are the classic
examples of magnetic reconnection in fusion devidd43. Understanding the complex
dynamics of resistive instabilities in plasma coafnent devices is of utmost importance
for the efficient and stable operation of the ngemeration large scale fusion reactors such
as ITER. The remaining part of this chapter is deddo an overview of the magnetic

reconnection problem, focusing on the resistiveinganode dynamics.
1.2.Magnetic Reconnection

Magnetic fields are observed in almost every plaatall scales in the universe, from the
magnetosphere to the interstellar medium and diglalaxy clusters. The existence of
these fields in dynamic plasmas leads to the psooésmagnetic reconnection, which
causes rearrangement of the topological structitheomagnetic field lines. During this
process, magnetic energy is converted to kinetat #wermal energies of the charged
particles. Magnetic reconnection is the key medrarbehind many astrophysical events
such as the solar flares, coronal mass ejectiomaghetospheric substorms. The aurorae
are also believed to be related to the magnetionreection in the Earth’s magnetosphere
[12-15].

Magnetic reconnection is considered to be resptn$io the occurrence of sawtooth
crashes in tokamak4d.¢-18. Moreover, it occurs in relaxation processesewerse field
pinch (RFP) and spheromak plasnmia8, 20]. The concept of magnetic reconnection was
first proposed by Giovanelli in 194R21], to explain the mechanism for the abundant
release of magnetic energy in the solar flaresceSthen, magnetic reconnection has been
recognized as one of the fundamental processeseanntagnetized plasmas and has
attracted extensive research efforts.

1.2.1.When does the Magnetic Reconnection Occur?

To understand the basic concept of the magnetenreaction, let us first explicate the
magnetic flux freezing constraint. In the case @hly conducting plasma (i.e. ideal
MHD), the magnetic field lines are frozen to thagsha in which it is embedded. It means

that as the plasma moves, the field lines followritl the topology of the magnetic field

7
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Figurel.4: The magnetic field lines configuratiorai plasma tube.

remain invariant: this phenomenon is known as thg freezing. In order to prove the
validity of flux freezing condition, we consider ethtime behavior of the magnetic
flux @,,, through an open surface S bounded by a cGras shown irFigure 1.4 The

magnetic flux though surfacis defined a$l3-14}
P, = fSB -dA (1.7)

The rate of change of this magnetic flux dependghentime variation of the magnetic

field itself and the change of the cui@ealue to the plasma motion; i.e.,

dq)m—faB dA x B-dl 1.8
dt ~ J ot v (1.8)
S C

Using the Stokes’ theorem, the above equation eae\ritten as:

dbm _ (0B dA fo x B)- dA
dt ) ot (v xB)
S S
0B
=I(E—VX(UXB))'(1A (19)

S
According to the ideal MHD description of plasma Ohm’s law is given by:
E+vxB=0. (1.10)

8



The Faraday’s law is written as:

VXE= o8 1.11
- atl (' )

Taking the curl of Ohm’s law and combining with &day’s law results in the well known
induction equation of magnetic field:

oB
E—Vx(va)zo. (112)

Combining equation (1.9) with equation (1.12), giwes:

dq)m—f(aB V X xB) dA =0 1.13
S

This implies that the magnetic flux through a ctbfleid elementremains constant as it
moves with the plasma. Therefore, the magneticdielre said to be “frozen in” to the
plasma. This implies that the field lines can't @together and touch at a single point.
Thus, in ideal MHD, there is no possibility for tmeagnetic reconnection to happen.
Hence, the breaking and reconnecting of the filedsl at some point can happen only if

the “frozen in” condition is violatefl3-14].

In this study we are mostly concerned with how nedigntopology can change, but
equation (1.13) shows that the field line topologsains invariant. Basically, this result is
a consequence of the ideal Ohm’s law, however,omes situation, it is necessary to
consider non-ideal effects such as resistivity arstosity. Further details of different
types of non-ideal effects will be discussed indlescription of generalized Ohm’s law in
the next chapter. In the presence of such non-ieléatts, it is possible for the magnetic
field lines to come together and reconnect, thusating the “frozen in” condition.
Although, the non-ideal effects are significantsimall region around the magnetic null
point, however, the effects of reconnection arebglovia changing the overall

configuration of the field lines.

The basic process of magnetic reconnection, causiegearrangement of the field
lines configuration is illustrated iRigure 1.5 The non-ideal effects come into play in the

small area, called the diffusion region (markedngej, where the pair of field lines



(@) (b)

Figure 1.5: Schematic view of magnetic reconnectimmocess. (a) Before the
reconnection, two oppositely directed field linggm@ach each other. The non-ideal
effects into play in the diffusion region (markeg fink color). (b) after reconnection
the field lines are pulled away from the diffusi@gion. As a result magnetic energy is

converted to particle energy.

approaching each other break and reconnect. Aniéhdy reconnected field lines with
higher magnetic tension, move out of the diffusi@gion, they release the magnetic
energy into kinetic energy of the charged particlegs accelerating them. Thus,
reconnection can spontaneously increase the radredport of particles and energy, which

can degrade the plasma confinement in case of rtiadasion plasmas.

To summarize the overall picture of magnetic reemtion, we can say that it is a
global process which involves the topological raagement of the magnetic field lines,
releasing magnetic energy into a large scale volofmglasma. It is noteworthy that the
field lines connectivity is modified locally, due the non-ideal effects. The fact that global
properties of the plasma are strongly dependeth@tocal conditions makes the magnetic
reconnection event even more perplexing. Answetmghe question that how local
changes (for example the occurrence of X-pointap@ié) can modify the global behavior
(for example the magnetic island width or reconioectate) of magnetic reconnection is

one of the prime objectives of this research.
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1.2.2.Magnetic Reconnection in Nature

In order to have an overview of the historical depement of the theory of magnetic
reconnection, it's essential to examine the recomoe events occurring in nature. In this
section, we will cover only a few key examples @onnection in nature. Further detailed
reviews on the topic can be found in the book “M&tgnReconnection” by Biskanip3];
the 2009 review paper by Zweibel and Yamada (“Mé&grieeconnection in Astrophysical
and Laboratory Plasmas[22], and the 2010 review paper by Yamadaal. (“Magnetic

Reconnection”]23].

1.2.2.1.Magnetic Reconnection in Solar Flares

Solar flares exhibit the clearest visual displayr@gnetic reconnection in nature and have
been intensively investigated during the 20th centHiistorically, they are defined as a
sudden, rapid and intense variation in the briggrebserved over the Sun’s surface. It is
now widely accepted that solar flares result froma@d release of magnetic energy stored
in solar magnetic field through the process of netignreconnection. As the magnetic
energy being released, particles are heated areleaated in the solar atmosphere (solar
corona). The Sun’s image during the solar stornviag 12, 2013, is shown iRigure 1.6
This is actually a multi-wavelength (131 angstroamsl 171 angstroms) snapshot in the
extreme ultraviolet (EUV) radiation zone, clasdglfias the X-1.7 class solar flare (Solar
flares are classified as A, B, C, M and X, wherelXss represents the biggest and
strongest solar flares). The first solar flare weygorted independently by Carrington and
Hodgson in 185924, 25] Since then many theories and models have beeziaped to

understand the basic physical mechanism for suplogixe events.

There are different types of eruptions observethe solar atmosphere, such as the
coronal mass ejections (CMEs), eruptive flares praminence eruptions. The coronal
mass ejections involve large scale ejections of smasd magnetic flux into the
interplanetary space. During the active period oh,Sone CME is observed per day;
carrying 10°> Wb of flux and 16° Kg of plasma mass into the spa@s]. Different
theories have been adopted to explain the fundanhemchanisms of CMEs. However,

the most standard model has been proposed by CGaehiSturrock-Hirayama-Kopp-

11



Figure 1.6: Multi-wavelength (171 and 13hgstroms) image of the Sun’s solar flare
from NASA'’s Solar Dynamics Observatory (SDO). Then@rupted with an X1.¢kass
solar flare, recorded on May 12, 2013.

Figure Credit: NASA/SDO/AIA (www.nasa.gov)

Pneuman, known as CSHKP mol&$-29]. The CME shows a clear demonstration of the
reconnection event, where the magnetic field liaes pulled out as the mass is ejected
from the solar surface. The field lines reconndctha X-point, directing the field lines

downward and the associated plasma particles anfidtion on hitting the solar surface.

In short, solar flares exhibit many of the charastes of the magnetic reconnection
such as, fast particles, topological rearrangemérthe magnetic field lines and sudden

release of magnetic energy. Thus, understandingflre physics is very useful in

12
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Magnetotail

Solar

Wind Plasmasheet

Figure 1.7 A sketch of the Earth’s magnetosphere, intergctiith the solar winc
coming from the left sideMagnetic reconnection takes place at the magnesepanc

the magnetotail. Figure frorhttp://mms.gsfc.nasa.gov/science.

exploring the mysteries of magnetic reconnection. To achieves thoal, detailes
observation of solar activity has been started bydemn satellites such as Yohk
(Sunbeam in Japanese), SOHO (Solar and Heliospbéservatory), Hinode (Sunrise
Japanese) and TRACHTransition Region and Coronal Exploi [23]. However, man
issues stilkremains unresolved, such as the mechanism forrtbet of the exlosive phase

of the solar flare andopulation of the energetic particles during theufsive flare.

1.2.2.2.Magnetic Reconnection in the larth’s Magnetosphere

The magnetosphere of Earth is the region of space wiherd=arth geomagnetic field
dominant. Its shape is determined by the geomagfield, the interplanetary magne
field (IMF) and the solar wind. The interaction sdlar wind leads to the comprion of

geomagnetic field lines on the day side, resulimg supersonic shock wave, also knc
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Figure 1.8: This is an amazing picture of auroraseoved across the sky near the town
of Yellowknife in northern Canada. These auroras@aoduced due to solar winds and
blasts of charged particles from the Sun during P@&L3.

Image Credit: Courtesy ¢dwon, O Chul (TWAN).

as the bow shock. Whereas on the night side, #ie lines are stretched, forming a long
tail, called the magnetotail. This situation isigirated inFigure 1.7 where the solar wind

from the left side, interacts with the Earth’s metym field. The dynamic interaction

between the solar wind and geomagnetic field isegoed by the magnetic reconnection.
The reconnection occurs both on the day side (ntagaase) and night side as originally
suggested by Dungd$0]. At the magnetopause, the reconnection resulttseinransfer of

magnetic flux and particle energy into the tailisTanergy is stored in the magnetic field
of the magnetotail. Reconnection also takes pladheamagnetotail, where the magnetic
flux and plasma is released into the inner magpé®. Such intermittent release of
plasma and flux, results in the onset of geomagrstbstorms. It is believed that during

the substorms, energy is released into the magrtetos which is then emitted from it
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though the magnetic reconnection. The geomagnaistearms lead to the formation of the

spectacular aurorae in the high latitude of theaskghown irFigure 1.8.

The first concrete morphological study of auroraswdone by Loomis in 186@1].
Since then a lot of research efforts have been doties area. The modern morphology of
auroral substorm was described by Akasofu in 1824. It is now believed that, the
auroral substrom consists of three phases, thetlyy@xpansion and recovery phase. The
sudden brightening of the equatorward arc at thanight is considered as the signature of
the aurora onset. Although many aspects of theralusubstrom have been intensively
investigated, still there are several open questfon example the ten questions asked by
Akasofu[33].

1.2.2.3.Sawtooth Reconnection in Tokamaks

Sawtooth oscillations are a typical example of @bgl magnetic reconnection in fusion
plasmas. They were discovered by Goedral. in 1974 [34] during the tokamak
discharges. The sawtooth oscillation can be chawiaetd as a periodic repetition of the
peaking and flattening of the electron temperapnile [16, 17] The name sawtooth
comes from the fact that usually they are meastineough soft x-ray diagnostics in
plasmas and the observed X-ray have the shapembbath as depicted iigure 1.9 In
general, the complete cycle of sawtooth oscillaioan be divided into three phases: the
ramp phase, during which the plasma density angéeesmture rises almost linearly in time;
the second phase is called the precursor oscillgiltase, which consists of sinusoidal
oscillation imposed on the sawtooth structure;lndhe collapse phase, during this phase
the plasma temperature and density abruptly dezsed$e collapse occurs much faster
(~10Quy than the ramp phase (~10§, as illustrated inFigure 1.9 (a) The two
dimensional electron temperature profiles during dbove mentioned three phases of the
sawtooth cycle are shown liigure 1.9 (b)

In 1975, Kadomtsev [16] suggested an excellent explanation for the sawtoot
oscillation. According to his theory, the first geaof the sawtooth oscillation (ramp-up
phase) is continued until the value of safety facjo= rB;/RyBp becomes less than
unity. Note that her®, andB, are the toroidal and poloidal magnetic fieldgndR, are
the minor and major radii, respectively. Actualltythe plasma center, the temperature
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Fig. 1.9: Sawtooth oscillation measured in fusitasma. (a) A longer build-up phase is
followed by a short crash phase (b) The 2D electemmperature profile during the

crash. (c) Magnetic reconnection during the sawtastillation at the resonant surface

of g = 1. Figure is taken from Yamada, 2(34].

increases due to ohmic heating, causing the nasgjstio fall. For the resistivity to
decrease, the current has to increase, so thaextegnal electric field is maintained
constant. Consequently, the poloidal magnetic fialkcteases, which causes the safety
factor value to drop below unity. This instigatesiaternal MHD kink mode in the plasma,
which drives the magnetic reconnectiomat 1 resonant surface. This leads to flattening
of the temperature profile at the plasma centacesthe g value is now raised above unity.
The reconnection process continues until g excabdse unity everywhere. This process
is repeated again and again because of the comsnobmic heating. Although this
explanation was initially widely accepted howeMater the experimental results showed
16



disagreement with the theory. First of all, the &iandsev predicted collapse time, based on
the Sweet Parker mod¢B6, 37] is much longer than that observed in the tokamak
experimentg18, 38] This signifies the importance of the speed up reection in case of
sawtooth oscillations, for which the mechanism ist yunknown. Secondly, the
experimental measurement of the safety factor shtbasits value remains below unity
after the crash, which means the reconnectiondsniplete. Finally, the transition from
slow build up phase to the fast collapse phaset danjustified by the classical tearing
mode theory. Sawtooth oscillations are a good elarop the fast reconnection event,
where the reconnection evolves slowly for a lomgetiand then suddenly collapses in a
very short period of time due to fast reconnectionderstanding the physical trigger
mechanism for such a fast reconnection is a hoeigsthe present plasma research. In this
thesis, we will explore the trigger mechanism fairailar kind of fast reconnection event

in 2D plasmas.
1.2.3.Magnetic Reconnection Models

1.2.3.1.Current Sheet Formation

Neutral points are defined as the locations of spalsere the magnetic field is zero and
also called the null points. Such points resulte tlu the simultaneous coexistence of
several sources of magnetic fields. On the othedh#he current sheets appear in a
conducting medium like plasma and are defined d®wndary between two plasmas,
where the magnetic field is tangential on eithdeof the boundary and involves a change
in the magnetic field direction. The current shemts be generated in a number of ways,
such as follows; (I) the region near the X-type tredupoint can collapse, leading to the
current sheet. (II) A current sheet is formed whea magnetic fields with different field
lines topologies are pushed together. (lll) Curisheet occurs when there is no magnetic
equilibrium or become unstable either due to idealresistive MHD equilibrium
instabilities[13-14].
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Figure 1.10: The field line topolody (a) with anpéint at the center and, (b) narrow

current sheet, replacing the X-point geometry.

The current sheet formed due to the collapse pbit involves a complex analytical
theory. Let consider a 2D field line topology wdh X-point as shown ifrigure 1.10(a)
where the magnetic field is expressed asB,, + iBy. If the equilibrium is disturbed, the
field line will move to a new configuration withraagnetic fieldB, + iB, = (z? + L*)*/2,
where the current sheet exist betwees —iL to z = il as shown inFigure 1.10 (b)
suggested by Green 19659]. In 1976, Syrovatskii and Somd40] presented a more
general solution for the X-point collapsé®, + iB, = (z2 + a*)/(z? + L*)*/*. The
conditions for the X-point collapse will be rigosiy investigated in our nonlinear
numerical analyses, because of its global impacthenplasma dynamics. Some of the

major properties of the current sheet [d&& 14}

* In the absence of flow, a current sheet of witltwill diffuse at a speeay/l. The
magnetic field is annihilated and the magnetic gnés converted into heat energy.

» The magnetic field is effectively frozen to the it outside the current sheet. The
plasma and magnetic flux can be brought towardsctineent sheet at speed The
current will expand ifv; < n/l and the sheet becomes thinnerpif> n/l. For the

condition v; = n/l, a steady state is maintained.
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» At the centre of the sheet, the higher pressursasathe plasma particles to be ejected
from the current sheet at the Alfvén speed, depgndn the external magnetic field.
Magnetic flux is ejected along the plasma, and e of the effects is to reconnect
the field. In 2D, the centre of the sheet referthtoX-point.

The free energy associated with these current slcaetlead to the magnetic reconnection.
Such a reconnection process evolves either in & sleady manner or impulsively.
Though a general consensus on reconnection ctzd&in is not possible; however, the

following reconnection categorization is quite coamn practice.
» Steady State vs. Impulsive:

In steady state reconnection, the magnetic eneyggleased at almost constant rate.
The magnetic reconnection on the dayside magnesepas explained by Dung¢30] is
an example of steady release of solar energy hartagnetosphere. On the contrary, in
impulsive magnetic reconnection the long and slavidbup phase is followed by an
abrupt growth of reconnection. The tearing modetaedsawtooth crashes in tokamaks are
the examples of the impulsive reconnection in fagasmas. The solar flares and CMEs
are the examples of this kind of reconnection itroghysical plasmas. Actually, the
impulsive tearing mode reconnection, with emphasisits trigger mechanism, will be
rigorously investigated in this thesis.

e 2-Dvs. 3-D Reconnection:

Most of the previous analytical and numerical rewation analyses have been limited
to the simplified 2-D plasma geometries. At presemte of the big questions in
reconnection studies is how to convert the exis@a@ models into 3-D. Also, it is
believed that 3-D reconnection may be differenintithe 2-D reconnectiofdl]. For
example, the secondary islands formed during thentg mode reconnection becomes flux
ropes in 3-D, which interact with each other in waypossible in 2-D. In addition to the
formation of the flux ropes (magnetic island), th@re many other 3D processes, which
can potentially modify the behavior of magneticameection e.g. streaming instability,
low-hybrid drift instability and kinetic instabilés [42-45]. The 3-D analysis of magnetic

reconnection is considered important for understanthe complex geometries such as
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solar flares. However, the importance of 2-D re@mtion cannot be reputed since it plays

the pivoting role in improving our insight of thadic reconnection processes.

1.2.3.2.Sweet Parker Model

The simplest and oldest model of the steady stafgnetic reconnection was proposed by
Sweet[36] and Parkef37] to explain the solar flare process. They introduite concept

of current sheet of much smaller widitthan the system sidze The model assumes the
steady state condition and a simplified geometryegsicted inFigure 1.11 where the
plasma is ejected out of the sheet due to the sxafethe magnetic pressure. Hetg(x)
andv,,;(y) denote the mean inflow and outflow. In the sanshitan, the magnetic field is
expressed a8, = (B;,(x), Bou:(¥)). The conservation of mass implies that the plasma

mass entering the sheet must be equal to thatedjeathich can be written as follows:

Vin Vout
—_—= , 1.14

where,§ andL.s are the current sheet width and length respegtivgbom the induction

equation (1.12), we obtain:

17irLBin - 17outBin
s &2

(1.15)

This gives,v;, = n/8§, which means the plasma is carrying as much magfietd as

being diffused. Combining this relation with (1.14)e get:

5= ("Lcs)l/z. (1.16)

Vout

The Lorentz force accelerates the plasma along cimeent sheet to the outflow
velocityv,,;. It's reasonable to assume, « v,,;, since the flows are zero at the X-point
and the outflow is of the order of Alfvénic spedéthus inertia can be neglected in x-

component of the momentum equation. Hence, fitim + B2, /2u,) = 0, we get:

2

B:
2—';7:)=Pm_Pin, (117)
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Figure 1.11: The magnetic field geometry in the &aRarker model, where opposite
magnetic field lines reconnect in the narrow (réifusion region.

where,P,, is the maximum pressure at the centre of the sdreb®;,, is the pressure at the
inflow. Consider the force balance along the midplaf the current sheet. The magnetic
force vanishes, sincB, is negligible. Thus the only force present alorgxis is the
pressure force, which accelerates the plasma,pi®,dv, = —d,p; integrating this
relation along the current sheet, we get:

2
vgut = ,0_ (Pm - Pout)- (1-18)
0

Combining the last equation with (1.17), we get:
2 (B
vgut = a(z_’:; + Pin - Pout)-
= vgut"'vji (~ Pipn = Poye) (1.19)

This means that flows are accelerated to Alfvépieesls by the pressure gradient force
along the current sheets. The outflow magneticdfiehn also be estimated®,,; =
B;,,S~%/%. The ratio of the current sheet width to lengthiohihis also known as the aspect

ratio of the current sheet is obtained from equetio16) as follows:
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5= (77L05> _ L S S i (1.20)
Vai (LLCS) Les
n

where, S is Lundquist number of the current sheet (not glpland A is known as the
aspect ratio of the current sheetBJf,and L are of the order of global scale, théns the
global Lundquist number. The relati@iyL.s = S~/? is very important in steady state
plasma analysis and is known as the Sweet-Park@)y ¢8aling of reconnection. The
reconnection time of the SP model can now be egptkasrsy, = Lgs/vi,. Using the
relations (1.15) and (1.16), we get another impantasult;zs, = \/T,]—TA, wheret, andz,

are the resistive and Alfvén times. Thus, the taoale of the Sweet Parker reconnection is

faster than resistive but slower than Alfvénic ttime

Although the Sweet Parker model explains the stassate reconnection, however, in
case of fast reconnection (for example in solaefieor substorms), the reconnection is
very fast and it fails to justify the higher recewtion rates. For example, in solar corona
the Lundquist number can easily be of the orderSe10!*, the corresponding
reconnection rate is of the order dfo~7 (reconnection rateS~'/?). However,
observations of solar flares suggest the recororecttes in the range.001 — 0.1. One
of the reasons for this failure may be the Spitesistivity used in the model, which is not
quite realistic in solar systems. The introductadnranomalous resistivity might improve
the validity of SP model. In short, the Sweet Parkedel is a quite simple reconnection
model, which can describe the slowly evolving rewmstion phenomenon and gives a
good general understanding of the fundamental resxiion process.

1.2.3.3.Petscheck Model

In 1964, PetschedKk6] introduced another reconnection model to justify st release of
energy. The model is known as Petscheck model snllustrated inFigure 1.12.The

discrepancy of the SP model seemed to be resotvéltis model by allowing the faster
reconnection. The central idea of the Petscheckemigdthe introduction of slow mode
shocks into the outflow regions as depictedrigure 1.12 The double Y-shaped diffusion

region is replaced by an X-shaped region, promptitegfaster reconnection. Petscheck
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Figure 1.12:Magentic field geometry for Petschek@del. The diffusion layer is very
short compared to that of SP model.

assumed that the resistivity is important in amarregion around the magnetic null. Thus,
the new diffusion region is much smaller than tlabgl scale length, i.d..s < L.

According to the Petscheck model, the maximum a&elhike reconnection rate is of the
order of (InS)™1, that shows a very week dependence on resisthidityvever, simulation
studies invalidated the Petscheck model of recdiore¢l13]. The smallness of the
diffusion in the Petschek’s model suggests thataly stimulate the non-MHD effects in
such small diffusion region. It has been shown tiwaen the classical resistivity is
replaced by the anomalous resistivity, it leadth®Petscheck’s like X-point reconnection.

However, the source for triggering such anomalessstivity is not clearly understood.

From analytical point of view, the critical defiaey of this model is the inappropriate
treatment of the diffusion region. A correct theoeguires the boundary layer solution by
matching the inner resistive solutions to the exdérdeal solutions. Therefore, in limit of
small resistivity or high Lundquist number, Petsiti® model is not a self-consistent
reconnection model.
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1.3.Background and Motivation

1.3.1.The Trigger Problem

In laboratory, space and astrophysical plasmas taer numerous examples of magnetic
reconnection phenomena where the magnetic configaravolves slowly for a long
period of time and followed by a sudden changewerg short time. This is often referred
to as the trigger-problem. The reconnection prazess/olved are categorized as bursty or
explosive. In such scenarios, the steady state imof&Sweet Parker and Petscheck can'’t
justify the abrupt growths of reconnection rateslaf flares, CMEs, substorms and
sawtooth activity are the typical examples of ezple reconnection. Tearing mode
reconnection is another well known example of hunsagnetic reconnection in fusion and

astrophysical plasmas.

In order to have an explosive growth of the re@mtion, there must be a trigger which
abruptly starts the faster reconnection and alssetimust be a free energy source to
maintain the faster reconnection. This poses sdralenging questions for the theoretical
modeling. For example, what restricts the reconaegbrocess to evolve slowly without
triggering the onset of faster reconnection? Wikathie trigger mechanism of the fast
reconnection? This thesis study is mainly devotedrtswer these challenging questions
and also identify the critical conditions necesdarythe onset of the fast reconnection. In
this section we briefly review the previous resuktated to the trigger problem of the

nonlinear resistive tearing mode.
1.3.2.Explosive Growths in Double Tearing Mode (DTM)

Explosive nonlinear growth of the magnetic flux goldsma flow perturbations occurs
more conspicuously for the resistive double tearmage (DTM). In cylindrical plasmas,
Ishii et al, [47] reported that instead of nonlinear saturatiomeihtermediate regime, the
DTM can evolve explosively with much weaker deperodeon resistivity. Further, Isheit

al. [48] proposed that the triangularity of magnetic iskm@ehd the strong current point
formation are responsible for the explosive growghthe DTM. The contour plots of the

magnetic flux, showing the current point formatiduring the nonlinear DTM evolution,
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Figure 1.13: Example of Double Tearing Mode in juidd plane of 3D-plasma.
Figure is adapted from ishet al, 2000[47].

are depicted irFigure 1.13 In another attempt, the intrinsic localized shigawvs in slab
geometry due to magnetic island deformation weggested to be the reason of the fast
reconnection even49]. Moreover, a secondary structure-driven instabittie to the
triangular deformation of the magnetic islands labsconfiguration was also proposed to
explain the explosive nonlinear growth of the magneslands[50, 51] In the last
mentioned analysis of the explosive DTM, the 1-Dtiah equilibrium is modified
quasilinearly into 2-D structure by the slowly giogr magnetic island in the Rutherford
regime, probably leading to a secondary instabilith the same DTM parity. Such a
nonlinear feedback of the secondary instabilityhveih exponential of exponential growth
was considered to trigger the explosive reconnedtiacase of DTM50, 51] Figure 1.14
shows the triangularity of the magnetic island dgrihe nonlinear evolution of DTM.

1.3.3.Impulsive Reconnection in Nonlinear Resistive Teang Mode

1.3.3.1.Brief History of the Resistive Tearing Mode Instability

Tearing mode instability is one of the main meckars behind the magnetic reconnection
both at small scales such as tokamak and at laajesssuch as space plasmas. The tearing
mode instability was first analyzed by Furth, Kéfe and Rosenbluth (FKR), using 2D
reduced-MHD (RMHD) in slab geomet{$2]. They established the linear tearing mode
theory and defined the instability criteridki> 0. Rutherford[53] developed a theory of
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Figure 1.14: Flux contours at different times dgrithe nonlinear evolution for the cases
of (@)L, = 0.75 and, (b)L, = 0.76, where strong triangularization is observed.
Figure is taken from Mihet al, 2011[51].

the nonlinear evolution and showed that the expialegrowth of the mode in the linear
stage is replaced by a slowly evolving phase wttergsland width grows according to the
simple equationdw/dt = 1.22nA’. White et al. [54] developed the saturation theory of
the magnetic island by extending the Rutherfordmeln both of these nonlinear theories,
the constanty approximation is the basic assumption, which isdvanly for very thin

islands A'w « 1). Militello and Porcelli [55] claimed more exact expression for the
saturation island width for the symmetric case & results does not rely on the quasi-
linear approximation. According tb5, 56] in the limit of thin island and low', the

saturation island widthw(,) is given byw, = 2.44b%A’, whereb is the characteristic

current gradient length = \/—J,(0) /] (0) and this formula of the saturation island width

is also known as POEM formula (named after the &authors).

The earliest numerical studies of the tearing modtide the work by Biskamp and
Welter [57], White et al. [58] and, Steinolfson and Van Hovefp9]. All these authors
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obtained a general agreement with FKR and Ruthetfegory. A rather rigorous review of
numerical verification of the Rutherford nonlinedow growth and nonlinear saturation of
the magnetic island has been reported by Biskamp him book (“Nonlinear

Magnetohydrodynamics’[B0].

1.3.3.2.Scaling of the Magnetic Island in the Limit of Large A’

In general, the theoretical study of tearing moee been restricted to low'. However,
kinetic effects can increase the instability crderto A’> A’. [61], highlighting the
relevance of largd’ tearing modes. Another argument in favor of thgsital relevance
of large but finiteA’ tearing mode is that during the nonlinear evolutid tearing mode,
narrow current sheets can form which can be unstabltearing modes. Thus, the
stabilizing influence of flows along the currentesh may change the instability criterion
A'> 0 [62]. In the limit of larged’, the constanis approximation is no more valid and the
Rutherford theory breaks down. Waelbro¢6R] predicted that for larga’, the magnetic
island undergoes an X-point collapse instead ofiraton, leading to a current sheet
formation. The X-point collapse happens when thents width is larger than a critical
value, namelyw > w, = 25/A’. Actually, the X-point collapse triggers the onsétthe
abrupt reconnection phase and that's why it has Iltee focus of several reconnection
studies. The theoretical predictions of Waelbrogk 64] were numerically testified by
Jemellaet al.,[65, 66]. Through numerical simulations in slab geometryythealyzed the
magnetic island width dependence on the instahplitsameteA’. For smallA’, the results
were in agreement with the Rutherford nonlineaotilehowever, for large values af’
the current sheets were observed that triggeredfasier growth of magnetic island.
Furthermore, it was found that the dominance ofSweet-Parker reconnection in resistive
MHD simulation is due to the singular nature of timelerlying ideal reconnected st{#é,
66], which is consistent with the equilibrium theofMdaelbroec63, 64].

Louriero et al. [67] formulated the transition criteria from the algabrslow growth
phase to the faster Sweet Parker phase, in terntiseo€ritical island widthw, with a
scalingA’'w, = 82+ f(A")n. They found that after island width exceeds thiicet
width, the X-point collapse occurs and the curshet is developed which is unstable to

plasmoid instability, followed by island coelleased finally saturation. The narrow
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Figure 1.15: Flux contours of magnetic flux, shogvithe current sheet instability,

resulting in secondary island formation. Figuréaleen from Loureireet al,2005[67].

current sheet after the X-point collapse and semgndland (plasmoid) formation are
depicted inFigure 1.15 However, in such studies the effect of viscosityexternal flows
were not considered, which can significantly modife critical condition of X-point

collapse and the reconnection rate in the abruplimear growth phase.

1.3.3.3.Effects of Viscosity on the Abrupt Growth Dynamicsof Tearing Mode

The critical island width for the X-point collapsea signature for the onset of the abrupt
reconnection stage, which has been shown to depenbe resistivity and the instability
parameterd’ [67]. How the viscosity can affect the critical islamitith, is still an open
guestion. Generally, the viscosity plays a disggpatole in the MHD fluctuations while
the resistivity determines the singular layer dyieanof the tearing mode. It is not always
weak as compared to the resistivity in laboratarg astrophysical plasmas because micro-
scale turbulence can enhance the visc¢8Ry70]. The turbulent viscosity is usually larger
than the collisional value and is given py,,, = 10T3/2/B? [m?s~'], where T is the
temperature in keV and is the magnetic field in Teslg1]. However, the collisional
resistivity is given by the well-known Spitzer r&t$iity [72], n = 0.05T ~3/2[m?s~1], by
assuming weak dependence on turbulence. Henceageetic Prandtl numbe®. = u/n

is of the order ofP. = 20073 /B2, which shows a strong dependence of temperatore. F

typical magnetic fusion plasma with= 1Tesla and T = 1keV, B.is of the order of 200.
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Porcelli [73] emphasized the role of the viscosity by performengomprehensive linear
analysis of tearing mode. It has been shown thatenlimit of lowA’, the usual tearing
scaling of the growth ratg~n3/5 gets modified in the case of finite viscosity audles as
y~n2/3 p.~Y¢ which was termed as the visco-tearing mode. énlithit of A’— oo, the
growth rate scales as~n/3 B.~*/® and is known as the visco-resistive kink mode.sEhe
scalings were numerically confirmed in differengirees[71]. Grasscet al. [74] showed
that for moderate values gfand B. ~0(1), there exists a criticad’ .. for the linear tearing
mode. Militello et al. [75] developed the visco-asymmetric tearing mode, whighifies
that the critical stability threshold is pushed nwch higher value for asymmetric
equilibrium in visco-resistive regime. Furthermowgscous effects are very essential in
tearing mode with shear flow36, 77} Therefore, viscosity may significantly affect the

evolution of resistive tearing mode instability.

In the limit of high Lundquist number S, it is fadithat the Sweet parker current sheet
is replaced with multiple islands (plasmoids) aldhng current sheet and the corresponding
instability is called the plasmoid instabilify8-85]. The plasmoid instability leads to
higher reconnection rates than the SP rates. Tdreret’s important to briefly introduce

the underlying mechanism of the plasmoid instahifitthe resistive tearing mode.

1.3.3.4.The Plasmoid Instability

Recently, there has been a renewal of interestarréconnection of Sweet-Parker current
sheet in the limit of high Lundquist numb&r> 10*, where a much faster reconnection
has been reporte{’8-85] The continuous formation and ejection of the iplasis
observed in these studies, has been identifietheakey mechanism responsible for the
faster growth of the reconnection rates. This mehatsthe SP scaling of the reconnection
rateS~'/2, is no longer valid at high Lundquist numbers #r&reconnection progresses at
much higher rate, almost independent of the plasessstivity. The linear theory of
plasmoid instability was proposed by Loureatoal [84], predicting the maximum growth
rate scaling ofS'/* and the number of plasmoids &%%, with a current sheet width
scaling asS'/8. This theory was later extended with a more gdizedicase, including the

viscosity effect485].
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Figure 1.16: Phase diagram of magnetic reconnecioowing five phases in the
parameter space of S and= L/d;, whered; is the ion inertial length .
Figure is taken from Huaret al, 2013[86].

Depending on the parameter regime, the plasmoice doemed in the original
collisional secondary current sheet, may lead ttraasition to the fast collisionless
reconnection (Hall). The transition from collisidrta kinetic regime occurs when the
current sheet width approach the ion kinetic sdadedsp < d;, whered; is the ion inertial
length[87]. On the other hand, if the plasma remains in tikswonal regime, then long
chain of plasmoids form along the narrow currergeshin a recent studg6], the phase
diagram of the various possible reconnection phhassheen reported in parameter space
and is shown inFigure 1.16.The phase diagram depicts the five distinct phaxes
reconnection, namely, the collisional Sweet-Parkesllisional plasmoid dominated,
collisionless Hall, plasmoid induced Hall and imtediate regime.Despite all this
progress, there are still some unresolved issues @v the limit of moderate S. For

example, what triggers the onset of X-point colapad the formation of narrow current
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sheet? What are the effects of viscosity on suchpmonlinear processes? How the small
scale turbulence might affect the reconnectionsfatEnese questions provide us the main

inspiration for carrying out this study.

Magnetic reconnection usually occurs in turbulentimnment, which can modify the
reconnection behavior through direct nonlinearratgon with the magnetic island. The
turbulence can be a driven turbulence or spontame®mce the turbulence is known to
influence many processes, then it is natural to @k question to what extent the
background turbulence can affect the magnetic meection process. Therefore, it is

essential to discuss the recent progress regatteniyirbulent magnetic reconnection.
1.3.4.Turbulent Reconnection

For weakly collisional plasmas, the Lundquist numieis usually very large, (e.g.
$~10'2—10'* in the solar corona anfi~10% in tokamaks). The observed reconnection
rates in these environments are much faster th@setpredicted by the classical SP model.
Thus, the prime challenge of the present-day resction research is to identify the key
physical mechanism that can justify the observesi faconnection rates. From several
theoretical and numerical studies, it is now eviddat non-classical effects such as the
Hall MHD involving two fluid effects in laminar fis [87-93] and anomalous resistivity
due to micro-turbulence[94-98], result in Petscheck-likg46] fast collisionless
reconnection. However, the Petschek’s mechanisls ifailimits of resistive MHD[99-
102]. For the fast collisionless reconnection to takace the resistive width of the
reconnection layer is small compared to the relekeretic scale. However, in most of the
situations, this condition is not satisfied. Thieans that neither the Sweet-Parker nor the
Petschek models present a universally acceptabmection mechanism. Small scale
turbulence is one of the possible candidates ggéri the fast reconnection rates and hence

fill the gap between the theory and observations.

Significant progress has already been made regattie theory and simulations of
turbulent reconnection[103-111] The pioneering numerical study of magnetic
reconnection in the presence of turbulence waopadd by Matthaeus & Lamkifi03].

Lazarian and Vishniafd04] proposed the first analytical model of turbulestannection,
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Figure 1.17: Contour plots of the current densityddferent times of the turbulent

reconnection phase. Figure is taken from Louretral, 2009[107].

suggesting that turbulence can significantly enbatiee reconnection rate by exciting
multiple reconnection sites along the current snee2D simulations, the enhancement of
reconnection rates in the presence of backgroumdlience was numerically confirmed by
Loureiro et al. in (2009) [107]. The contour plots of current density in preseonte
turbulence obtained by them are shown in Figlir®Z Actually, in presence of turbulence
the plasmoid instability can occur even at higraugs of resistivityy~10~3, compared to
the critical resistivityn < 10™* in the case of without turbulend&8-85]. This implies
that turbulence may act as a trigger for the oosghpulsive fast reconnection.

Instead of applying the external turbulence forcinghe form of random noise, it
may be interesting to consider a finite frequenggamic turbulent flow, similar to ion
temperature gradient (ITG) driven small scale tlehoe, in the tearing mode
reconnection[112]. Actually, the coexistence of MHD activities incladi the tearing
mode and ion temperature gradient (ITG) drivent dwdive have been reported to occur

commonly in magnetic fusion plasmfkl3-115] The nonlinear interaction mechanism
32



and the exchange of kinetic and magnetic energissich a mixed MHD and micro-scale
turbulence lead to very complex nonlinear dynamiase of the main objectives of this

study is to investigate the effects of backgroumtbulent dynamic flow on the magnetic

reconnection behavior of resistive tearing mode. ths purpose, we suggest a dynamic
flow with finite frequency and wave numbey which may modify the reconnection

properties most probably through direct nonlinederactions with the magnetic island.

Further details will be discussed in the later péthis thesis.

1.4.Dissertation Objectives

This thesis is devoted to the study of the resstearing mode in the framework of two
dimensional, resistive RMHD. The key objectives are

1. To explore the basic mechanism responsible footiset the X-point collapse, leading
to the abrupt nonlinear growth dynamics of thestag tearing mode.

2. To investigate the effects of viscosity on the geg mechanism of such abrupt

nonlinear processes.

3. To estimate the effects of the self-generated zdiedd and zonal current on the

nonlinear bursty reconnection.

4. To determine how a background dynamic turbulent fleill affect the reconnection
behavior?

5. To analyze the dependence of impulsive bursty mection on the dynamic flow

properties, such as radial-parity, amplitude aeddency.

33



1.5.Summary and Outline

This dissertation provides a detailed study ofrtbelinear behavior of the resistive tearing
mode, particularly in strongly driven regime, idéatl by A’'W~1. Actually, the nonlinear
dynamics of the resistive tearing mode is signiftga modified for large values of the
instability parameter\’, where the usual X-point geometry collapses t@mmon current
sheet. The critical island width for the X-pointllepse is a signature for the onset of
abrupt reconnection stage. The trigger mechanisthefX-point collapse as well as the
dependence of the critical conditions for the qudla on the plasma properties, are still
poorly understood issues.

The self-generated zonal currents during the neal evolution of the tearing mode
modify the equilibrium current profile, where thechl current peaking is speculated to be
responsible for the onset of the abrupt growth eh#és order to testify such an idea, a
secondary instability analysis is proposed in teiady, in which the zonal current
guasilinearly modifies the equilibrium current pkef Note that here the eigen mode
characteristics of the secondary instability are shme as those of the primary tearing
mode due to the same type of drive force (curreatignt). Such coincidence of the
fluctuations can directly enhance the nonlinearingamode to trigger the X-point collapse
and then give rise to a current sheet formatioougih positive feedback of the zonal
current. This kind of secondary instability maydmnsidered as a special case of general
ones, which are usually different from the primane. The local current peaking effect
due to the zonal current provides a positive feeklb increase the tearing mode
fluctuations, signifying a probable mechanism fbe tonset of X-point collapse and
explosive nonlinear growth. Furthermore, a systenstidy of the viscosity effects on the
nonlinear dynamics of the tearing mode is perform#h a focus on the?. dependence of
the critical island widthA'w, for the X-point collapse and the abrupt growth bé t
reconnected flux in the SP regime. It is found thatpresence of finite viscosity modifies
the scaling of critical island width. A prominemansition is observed & = 1 for the
onset of the X-point collapse. The growth ratehaf teconnected flux in the speed-up stage
remains unaffected unti®. > 1 after which it decreases with viscosity, in aceorck with

the existing theory.
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In the above mentioned analyses, we assumed lanmmg@nnection; however,
magnetic reconnection usually occurs in turbulenvirenment, which can probably
modify the tearing mode reconnection through diraonlinear interaction with the
magnetic island. How the background small scaléulence affects the reconnection
behavior in resistive tearing mode is one of theg lkdjectives of this study. An
independently evolving dynamic turbulent flow isupted with the RMHD equations
through Poisson brackets. A two phase reconnewiohserved by including the dynamic
flow. A relatively slowly evolving SP current sheist generated in the first phase and
plasmoid instability is triggered in the second ghawhere multiple plasmoids are
continuously generated and ejected along the dusieeet, leading to bursty impulsive
reconnection. The onset and evolution of the plagnmstability are strongly modified by
the frequency and radial parity of the flow. In gparlar, the scaling of reconnection rates
is found to be independent of resistivity, confingiithat plasmoid dominated reconnection

is truly fast reconnection.

This dissertation consists of six main chapterstanee appendixes, which are outlined as

follows:

Chapter 1: The basics of nuclear fusion and the magneticigenfent in fusion
devices are briefly introduced. The fundamental cept of magnetic reconnection
phenomenon as well as its examples in the universdaborated. The important steady
state reconnection models are discussed in détaibverview of the existing theories as
well as simulation studies of the resistive tearmape is presented, focusing on the trigger
problem in the limit large instability parametaf. The relevance of large viscosity in
fusion and astrophysical plasmas, and its impactthen magnetic island evolution is
explicated. The problem of plasmoid-dominated i@ fast reconnection in the
presence of preexisting turbulence is reviewedalRinthe key objectives and summary of

this dissertation are presented.

Chapter 2: Here, we derive and study the physical simulatioodel used in this
thesis. The magnetohydrodynamics (MHD) equatiortesyss introduced both for ideal
and resistive cases. The generalized Ohm’s lavhas tiscussed briefly to notify the

physical significance of each term, in particulze terms missing from the resistive MHD
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description of the Ohm’s law. Then, the MHD equasi@re reduced to the incompressible
two-field resistive RMHD equations by the orderimgthod. Finally, the RMHD equations

are normalized.

Chapter 3: This chapter presents a comprehensive linear sisatf the resistive
tearing instability. The classical linear theory (iFurth-Killeen-Rosenbluth (FKR) theory)
of the resistive tearing mode is detailed for tl@stanty) case. The linearized RMHD
equations are solved by dividing the plasma inteermand outer regimes and the solutions
are compared at the boundary of the resistive layae validity of FKR theory is
discussed for different possible situations. Intipalar, the linear analysis is repeated for
the non-constanj» case. Then, the initial equilibrium profiles ane i calculations are
detailed. The simulation model and the numericdiestes used in this thesis are
described. Finally, the simulation code is benchkaarfor the typical linear growth rate

scaling of the resistive tearing mode wjtm\" andk,,.

Chapter 4: Here, we discuss the probable physical triggerhaeism responsible
for the abrupt growth dynamics of the resistiveriteainstability in the strongly driven
regime (i.e. largd’). First, we introduce a typical nonlinear simwaticase, where the
abrupt growth dynamics of the perturbation quastiis illustrated. Second, we propose a
secondary instability analysis based on the queesily modification of the equilibrium
current profile by the zonal perturbation currefhe results suggest that the current
peaking effect due to the zonal current resulta monlinear positive feedback to enhance
the tearing mode fluctuations and can be a probaglehanism for the onset of X-point
collapse, leading to the explosive growth dynam#&ssimilar tendency is observed by
including a finite viscosity. FoP. > 1, the secondary growth rates are reduced with the
viscosity, showing a transition in the tendencyPat 1. On the other hand, effect of
viscosity on the onset of the X-point collapse d&ne abrupt nonlinear reconnection is
investigated directly through linear and nonlinsamulations. The linear growth rate
dependence on viscosity is analyzed, showing asitran at B- =1. Then, a systematic
investigation of the viscosity dependence of thicat island widthA'w, for the X-point
collapse is performed. A new transition criterienproposed for the critical island width

scaling by including the viscosity dependence. Télee of the critical island width in the
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limit of zero resistivity is modified due to finiteiscosity. Most importantly, a transition
behavior is observed for the critical island widitaling with the viscosity at magnetic
Prandtl numberP. =1. The reconnection rate in the abrupt growth phassgnificantly

reduced with the viscosity in the regime Bf> 1.

Chapter 5: In this chapter, we analyze the reconnection biehaf the resistive
tearing mode in the presence of preexisting dyndtoig. The independently evolving
dynamic flow is coupled with the RMHD equationsaiagh the Poisson brackets. Linear
stability properties of the tearing mode are foumde fairly modified with the dynamic
flow, depending on the features of the dynamic fl@pecifically, the linear stabilization
effect is evidently weakened by the finite frequerithe nonlinear analysis of the resistive
tearing mode with dynamic flow reveals two phasmmmection. A current sheet is formed
in the first phase and is followed by the plasmioistability in the second phase, where
multiple plasmoids are continuously generated ajetted. The onset time of the
plasmoid-dominate impulsive reconnection is strgngbdified with the flow frequency
and amplitude. By including the dynamic flow, th&eetive reconnection rate is
considerably enhanced in the regime of low restgti@s compared to the case of slower
SP reconnection. Scaling of the effective reconoratate is found to be independent of
resistivity.

Chapter 6: This chapter summarizes the key problems addreastis PhD study
and reports the new findings suggested in thisarebe The significance of the key
findings of the study in fusion plasmas is discds$enally, we discuss about the different

possible ways to extend this research in future.
Appendix A: The normalization of the two field RMHD equatidegletailed.

Appendix B: Full length calculations of the instability paraereA’ are detailed in
this appendix. The instability paramet&ris calculated for the two most commonly used

equilibrium profiles, namely the Harris equilibrivend1/cosh? (ax) equilibrium.

Appendix C: Finally, the scientific contributions during thishP study are

presented.
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Chapter 2

The 2D Reduced MHD Model

2.1.Introduction

Controlling the MHD instabilities in the magnetigsfon devices (such as tokamaks) is the
one of the prime objectives of the current fusiesearch. A physical model is essential to
investigate the dynamics of any plasma instabiligpending on the particular plasma and
the specific phenomena under consideration, varigpss of models are adopted to
describe the fundamental physical dynamics. In ttiesis, we study the abrupt nonlinear
dynamics of the resistive tearing modes using #dtuced MHD (RMHD) model. The

model is named as RMHD because of the fact thavilves fewer fields than the full

MHD equations.

In this chapter, we first derive the RMHD equatiostarting from the single fluid
MHD description of plasma. Finally, we describe tltoemalization of the equation system.
In deriving the RMHD equations, we mostly follonetiwvork of Strausgl16]. For further
reading we recommend the books of Friedberg (“Id&dD”) [117], Hazeltine and Meiss

(“Plasma Confinement])L 18] and Biskamp (“Nonlinear Magnetohydrodynamid§y)].
2.2.The MHD Equations

The idea of magneto-hydro-dynamics or MHD is thaignetic fields can induce currents

in a moving conducting fluid, which in turn exedrées on the fluid itself. Thus we can

say that MHD is a model that describes the macmsdmehavior of the plasma. Actually,

the plasma is composed of a very large numberrf and electrons, and to estimate the

plasma properties we have to follow these indivighzaticles, which is the basic principal

of the kinetic approach. However, in MHD descriptibe plasma is considered as a single
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fluid that is controlled by electromagnetic forcasd hence it is possible to describe
macroscopic behavior of the plasma without havigrtow the position and the velocity
of individual particles. The MHD model consists ®daxwell equations and the

conservation equations of mass, momentum, and er&rghe plasma. Under certain

conditions, the fully ionized plasma can be con®deas a single fluid described by the
following ideal MHD equation§0, 116-118]

Conservation of mass:

0
a_’; +V.(pv) =0, (2.1)

wherep andv represent the mass density and velocity of thenpda respectively.
Conservation of momentum:

dv

p=IxB-Vp, (2.2)

wherelJ is the current density argl the magnetic field, andis the plasma pressure. Note
that the symbold/dt = d/dt + v . V denote the total time derivative.

Conservation of Energy: In the adiabatic limitg #nergy equation reduces to;

%(pﬁy) —0, (2.3)

where, y represents the ratio of the specific heats.
Ohm’s Law: In the ideal limit the Ohm'’s law is givas follows;
E+v xB=0, (2.4)

where, E is the electric field. Note that in the above emmtthe displacement current is

neglected because the plasma speed is much lbasethe speed of light.

Faraday’'s Law:

VXE=—— (2.5)

Ampere’s Law:

VX B = p,d, (2.6)



Finally, the divergence of the magnetic field ise. e. magnetic monopoles don't exist:
V-B=0. (2.7)

The ideal Ohm’s law (equation (2.4)), is sometinreaned as perfect conductivity
equation and sometimes referred to as the fluxziingeequation. The ideal Ohm’s law
implies that in the conducting plasma the electiétd is zero in the reference frame
moving with the plasma. The electric field can @msly from the Lorentz transformation.
This means that the magnetic field is frozen ithe plasma, and hence the magnetic flux
moves with plasma and remain unchanged. Thus ial iMHD approximation, the
magnetic flux can’t break or reconnect; means gomgection. The fact that magnetic flux
remains conserved in ideal MHD limit is straightviard and is detailed in first chapter.
On the other hand, if we consider a finite plasmsistivity, the ideal Ohm’s law gets

modified as follows:
E+vxB=nd (2.8)

wheren is the plasma resistivity. This equation is simpglled the Ohm’s law, which
allows the magnetic field diffusion and magneticarenection; violating the frozen-in flux
condition. For example in the presence of the ciirsbeet, strong electric field exists and
hence the ideal MHD approximation is not valid angre. Under such circumstances, we
need to take resistivity into account, leadinghe tesistive MHD description. Now, let

take curl of equation (2.8), we obtain:
VXE+VX (v xB)=n(VxJ) (2.9)
Now let combine this equation with Faraday’'s andp&ne’s law, we get the induction

equation;

B vxwxB)+- Ly 2.10

The first term on the right hand side of the abegaation represents the advection of the
magnetic field while the second term is the diftusior resistive term. The ratio of the

advective and diffusive terms is called the magnegynolds number defined as:

R =22, (2.11)
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where, L. and v, are the characteristic scale length and charatitewelocity of the

plasma flow.
2.3.Generalized Ohm'’s Law

In the previous section, we reported the Ohm’s tbmith for the ideal and resistive MHD
cases (equations (2.4) and (2.8) respectively). évew because of the central role of
Ohm’s law in magnetic reconnection, it is essertbamention the neglected terms with
relevant simplification assumptions. Basically, gemeralized Ohm’s law is obtained from
the momentum equations of electron and ion basetth@wo fluid MHD description of
plasma. Thus, with the sole assumption of noniesdic limit (neglecting the
displacement current), the generalized Ohm’s |&eddhe fornf117,119]

JxB v m, dv
Pe y el ym, (2.12)

E+vxB= nJ +
1 en en e dt

where p,, is the electron pressure aflg is the electron viscosity tensor. The significaht

each term on the right hand side of equation (dsl&xplicated as follows:

* The first term on the right hand side of equati@rl?) appears due to the plasma
resistivity. In case of ideal MHD this term beconzeso but is vital for the resistive
MHD description.

* The second and third term on the right hand sidegoftion (2.12) represent the Hall
MHD and electron pressure gradient respectivelyséhwo terms can be ignored only
if we assume the low frequency MHD approximation.

» The fourth term on the right hand side of equaf{2d?2) is due to the electron inertia,
which can be neglected.

* The last term presents the electron viscosity daution. To neglect this term we have
to make the assumption that the plasma particldengo sufficient collisions to make
the distribution nearly Maxwellian; also the macmsic lengths are assumed to be
much longer than the mean free path. Under suahrgggons, the high order moments
can be expressed in terms of low-order moments mr@ésured by transport
coefficients[120].
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2.4.Reduced MHD

The MHD equations discussed in the previous sectian be further simplified by
assuming that the plasma is immersed in a strdngysa constant magnetic field in the
axial direction. Here, by strong magnetic field mean that both the kinetic and internal
energy densities are much smaller than the mageety, i.e.,

BZ

pre~p K — (2.13)
Ho

This equation also implies that the value of bgfeig much smaller than unity, i.e.;

B =p/(B*/uo) < 1) (2.14)

Under such conditions, we will derive the simplifie#ersion of the MHD model that
describes the plasma dynamics in the plane perpdadito the strong guide magnetic
field. The resulting simplified model is called teg¢d MHD. In this derivation, we mostly
follow the work of StrausglL16].

2.4.1.0rdering

The variables in the MHD equations are orderedtnespower of the small parameter

Only the terms with small power of are retained. Since we have assumed that the axial
component of the magnetic fielB,, is much larger than the other components, thus we
can write;

B
=<1, (2.15)
BZO

whereB, represents the components of the magnetic fielpgmelicular to the strong axial
field. In the present coordinate system, thesetlaex and y components. Following the

equation (2.14), we can get;
B,~€, B,o~1. (2.16)

To remove the fastest time scales, we assume ttezing d/dt~€. The other necessary

ordering is as follows:
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) 2 2
V,~1, 0, ~€, B,~€“, p~€*, v~€, N ~€,

whereB, denotes the small changes in the magnetic fieldgathe z-axis. Note th&t, and

d, represent the derivative in the perpendicular paucllel direction of the strong guide
field. Moreover, the flow is assumed to be incorspiigle which leads to the
equipartitioning of the energy, i.pv 2 ~ p~B? /u,~ €. The incompressibility of the flow

allows us to presume the plasma density as congantconstant= 1).

The total magnetic field can be expressed as tmemsiion of the parallel and
perpendicular components, iB.= B, + B,e,. In general the magnetic field can be

written in the form of vector potentidl, so that;

This implies that the parallel and perpendiculamponents of the magnetic field can be

written by;B, =V, X 4, andB,e, =V, XA,.
We now define a magnetic flux functias, = —y and express the total magnetic field in
terms of it;

B = B,e,+e, x (V. y) (2.17)
Note that the magnetic field in this form stilliséies the zero divergence condition, i.e.

V.B=¢393,B,~0. (2.18)
Next, we derive the ordering of the current densgiyng the ampere’s law as follows:

Uod =V XB
= ue(de,+3) = (V. +V))x(B, +B
= fod&, =V, XB,

=eV, x(e,x V)
=eVpe, 2)~c¢

Also;
MOJJ_ = VJ_ X BZeZ+ aZeZ X BJ_
= €2V, X B,e, + €%0,e, x B,
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=J, ~ €2
The incompressibility of the velocity field allows to define a stream functiap:
v, =¢ x(V.9) (2.19)
Another convenient form of the perpendicular valpcan be expressed as;
< Uy ) _ ( —0y )
V) 0,
From the above definition, it's straight forwardgmve that the flow is incompressible in

perpendicular plane;

VJ_.VJ_ = VJ_. (ez X VJ_(!)) = 0 (220)
2.4.2.Derivation of the incompressible two field equatios

2.4.2.1.0hm’s law

In order to derive the Ohm'’s law, we start from Bagaday’s law:

B 0B, 0B,e,
VXE= -3 T T T Tae

0 0B, e,
——a(ezxvﬂl))— 5%

oY &
= Vx( 5t )—V><El

S E="Z4E, (2.21)

Let insert equation (2.21) into equation (2.8),ye¢

0
—‘gtez FE, = —vxB+nd (2.22)

The ordering of the above equation is given a®vedt

9] -
62%+€3El = _GVJ_ X Bzer_EZVJ_ X BJ__ GSVJ_ XBZeZ

—e?v,e, x B, + €3nd, + €?nl,e,
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Considering the second order terthge?):

Y &

ke —€?v, x B, —€?v,e, x B, + €?nl,e, (2.23)

The parallel component of equation (2.23) is giasriollows:

W

0 VL X B, —v.6, X B, +1n)e (2.24)

Using the fact that,uy,J, = V23 and B, = e,xV,3 , the above equation can be

reformulated to get the Ohm’s law:

% _ v, x (&, XV, 1)) ~ 1,8, X (&, X V. ) +—— Ve, (2.25)
ot z z Ho
iy _ N o
> 5=~ DY+ VY (2.26)

The first term on the right hand of the above eigmatan be expressed in the form of
Poisson bracket using the property;

(v -WA = ((g, x V) - V)A = [¢,A],
where, the Poisson bracket is defined As B] = 0,A9,,B — 0,,A0,B.

Finally, the Ohm’s is written as follows:

a7

5 = lol+ - v, 227)

This equation basically determines the evolutiothef magnetic fluxp. In order to solve

this equation, we also need the kinetic flgwywhich is discussed next.

2.4.2.2 Derivation of the equation of motion
We start from the equation of motion (2.2):

D IxB_v
dt P

where we have applied the constant density assampte.p = constant= 1. Using the

ampere’s lawy x B = p,J and the identity:
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1
(VxB)xB=(B:V)B—--—VB?
29

The equation of motion can be rewritten as:

v
S T W.Vv=(B-VB- —v32 — Wp. (2.28)

Expressing each term inorders; the second ordeDd €2) in the perpendicular direction

gives:
av
6_tl+ (v, .Vv,
1 1
=M—(BL-VL)BL +M—Bzo(aZB —-V,B,) - VLBL -Vip.  (229)
0 0

From the fourth order@ €*) of equation (2.28) results B, = V. B,; equation (2.29) is

rearranged using this property:

ov
a_tl + (v, .V, =— (BJ_ V,)B, — _VJ_BJ_ - V.p. (2.30)

The above equation is operated"by- V x "on both sides, so that the unnecessary terms

of hydromagnetic and magnetic pressure are elimihat

\% 1
e "V, X —+ e (Vyx(v .V)v)= ,u_(ez -V, x(B,-V,)B)) (2.30)
0

Jt

Each term of this equation is simplified separatsyollows:

First term on right hand side of equation (2.30) is

av,

eV, X—
Z 1 at

0
=65 (VX (& X V.9),
(V $)

where the term in parenthesis is defined as thalphcomponent of the vorticity, i.e.;
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w=¢e- (V. xVv)=Vig. (2.31)
Second term on right hand side of equation (2.30):
& (Vix (v, .Vv) =e (V. x(exV.$.V,) (e, %XV, )
=&, (V% (g,x Vi))(e X V.$.V.))
= (e, (Vipe))(e,xV,p.V,)

=(g,xV, 9.V )Vig

The term on left hand side of equation (2.30):

1 1
(e x (B VB = = (e (T x (6, X Vu) V1)(e, x V)

1
= (e (Vo x (6, x Vaw))(e, X Vi V)
1 2
= (e Viye)(e, x Vupp -V
1 2
= .U_o (e, xV. - -V)Viy
Applying these simplifications into equation (2.3@g obtain:

0 1
3t (Vi8) + (e X V.9 .V)Vig = = (e, x Vi V)VEY. (2.32)

Introducing the Poisson brackets and adding theosity term:

(V%)
at

1
[, V2] + e [, V2] + uv?(V2¢) (2.37)

0
This equation gives the evolution of the plasmaflavhich can also be expressed in terms
of parallel component of the plasma vorticity:

Jw

1
= =- [¥, 3] + V2w (2:38)

[¢; (‘)] + E

Thus the reduced MHD equations (2.27) and (2.38)satved simultaneously to find out

the evolution of the magnetic flux and plasma ot
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2.5.Normalizations

The two field reduced MHD equations obtained in finevious section are normalized

with the following considerations:

* Lengths are normalized to some characteristic keg(layer width of the current
carrying region near the singular surface).

* Time is normalized to the Alfvén time, = a / v4, Wherev, is Alfvén velocity

defined byv, = By/\/topo = Bo/+[1o (@ssuming that, = 1) .

* The magnetic field is normalized to the in-plan&gumagnetic field,,.

With these normalizations, the fields are represgas follows:

~ Y ~_ ¢
Y =—, ¢=—
aB, avy
- A Boy )
k, = ak,, Boy(x) = é’ox

Implementing the above normalization (gggendix A), the RMHD equations are:
0 = —[d, 9] + V%Y, (2.39)
0:(V2¢) = —, V28] + [, 72| + uV*(729), (2:40)
where,n =n/ugav, =1/ S, (Srepresents the Lundquist number and is also difase
the ratio of the resistive to Alfvén times). In &dxh, the diffusion of the equilibrium
magnetic field in the Ohm’s is prevented by addamgexternally applied electric field

E, = —nV?%y, to the right-hand side of equation (3). Thus, ging the hats, the final

form of the normalized RMHD equations is given @aofvs:
atlp = _[¢' lp] + 7772 (lp - l/)()), (241)
0,(V2¢) = —[, V2] + [, V2] + uv?(V?¢). (2.42)

The above two equations are actually solved in $ioulation studies to analyze the

evolution of the perturbed flux and plasma flow.
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2.6. Summary

In this chapter, we derived the reduced MHD equatistarting from the full length MHD
equation system. Before, presenting the rigorous/atéon details of the reduced MHD
eguations, we present the comparison of the sim@liOhm’s law and its generalized
form. The terms which are missing from the simptfiOhm’s law are described one by
one. The significance of each term and the cormdipg assumptions for their omission
are detailed. The variables in the MHD equatioresthen ordered to some power of the
small parameteke . A strong axial component of the magnetic fiddg, is assumed in the
system. In deriving the reduced MHD equations, ttee Ohm’s law and equation of
motion, we introduce the stream functign and the magnetic flux functiap. After
deriving the two field RMHD equations, the variablare normalized to the system
physical parameters. Finally, we obtain the norrealiRMHD equations, which can be
solved through simulations to find out the time laetion of the plasma vorticity and

magnetic flux instantaneously.
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Chapter 3

Resistive Tearing Mode Instability

3.1.Introduction

According to the classical tearing mode theory, tering mode evolution consists of
three distinct stages: first is the linear stagescdbed by the well known Furth-Killeen-
Rosenbluth (FKR) theorj52]. During this phase, the reconnection grows expian
and the magnetic island widii also grows at the same rate. When the island wslth
comparable to resistive layer width, nonlinear @ecomes into play and the FKR theory
is no more valid. In this stage of evolution, thagmetic island grows linearly in time,
i.e.dW/dt ~ nA', wheren is the plasma resistivity ad is the instability parameter. This
second slow phase of the tearing mode growth isvknas Rutherford regimgs3].
Finally, the magnetic island growth gets satura®ganost of the available magnetic flux is

reconnected. This phase of evolution is callecsttaration stage.

In this chapter, we analyze the standard lineasrthef the resistive tearing mode. The
validity of the FKR model is discussed under vasiaonditions. Then, we derive the
instability parameter for different equilibrium pites. After the analytical description, we
introduce the simulation model for solving the RMRstem and elaborate the relevant
numerical schemes. Finally, a comparison of thaikition results with theory is presented

for the linear tearing mode evolution.
3.2.Linear Tearing Mode Theory

This analysis is based on the original work of Rettal.[52] and we reproduce their final

results following the style dfL21]. We start our analysis from the RMHD equation&72.
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and (2.38), derived in the previous chapter. Thegseequations are linearized by splitting

the magnetic fluxp and plasma flowp into the equilibrium and perturbation parts, i.e.
ll)(x, t) = lpO(xﬁ t) + lpl(xi t)' (31)
¢(x, t) = (l)o(x, t) + ¢1(xi t) (32)
The initial equilibrium of plasma isBy, = (dy,/0x)e, = B, f(x)e, and ¢, = 0, which
means that plasma is considered to be stationguyili@ium flows are zero).Note that
f(x) is chosen to be odd function i.¢(—x) = —f(x). Suppose that all perturbations are
expressed ag(x, t) = A(x)e’ ¥ *¥t then the flux and flow can be expressed as falow
l)b(x’ y' t) = Ebo(x) + l)bl(x)eikyy-'-},tJ (33)
¢>(x, Y, t) = d)l (x)eikyy+]/t’ (34)
wherey is the linear growth rate of the tearing instapilWith these expressions of the
magnetic flux and plasma flow, the ohm’s law (eguraf2.27)) is rewritten as:

oy 090y 090y _ n (aZ(w—wo) azw)

at 55 _Wax T U 0x? +6y2

(3.5)
= 0r(1ho + P17 + 0, (9167071, 0y (o + 1TV — 0, (P
9 ikyy+yty — 1 62 62 tkyy+yty _ 62
(Yo + e ) P (x+ y)(lp0+lple ) — N0y,
0
>y wleikyyﬂ/t + ((l)ieikyyﬂ/t)(iky wleikyyﬂ/t) _ (iky¢1€ikyy+yt)(l,b(’) + wi)eikyy”t
— ‘ul (lp&’eikyyﬂ/t _ k§ lpleikyyﬂ/t)

Note that here, the prime represents derivativagalo By taking the first order of the

above equation, we obtain:

Y lpleikyyﬂ/t _ (iky¢1€ikyy+yt)l[)6 — l (lpireikyyﬂ/t _ k§ l[)leikyyﬂ/t)
Ho
. ! n 1 2
>y P —ikyd Yo = E(llh — k5 lp1)

=y, — ikydy By f(x) = %(a,% —Kk2)yY,  (3.6)

52



Next, we linearize the equation of motion in themeananner:
0 (V) + 0,.0,V2p — .0, V2p = Dy1h. D, V2 — 1. D, V2P
= (1 — k3™ = il Yo (i — kG 1 )e™ IV — ik i oy ety
= )/(6,? - k321)¢1 = iky’/’é(l/)i’ - k321 lpl) —ikyy Py
= y(af - kf,)d)l = ikyEO f(x)(@,? - kf,) Py - ikyEO ") Yy,

where, we have used the definitiogig, = B, f(x) and ¥}’ = B, f"'(x).

= (0% - 3) (52) = FG(02 I3 ¥ - "GOy

J 1
= vta(d: — k) (%) (aky §0> =f'OY— @ -K) ¥ BT

Let introduce the hydromagnetic and resistive timgs= 1/(ak, B, ) andt, = poa®/n

into the equations (3.6) and (3.7) along with timepdification, i¢, /yty = ¢4, we finally

get:
yrha(o} —k3)gs = /¥~ FO@ ~ k)Y (BB)
2
i =L20, =@ - i) . (39)

Thus, the linearized RMHD equations (3.8) and (2 solved to calculate the Eigen
functionsy, and ¢, corresponding to Eigen-valge However, before proceeding further,

it is important to consider some assumptions:
The tearing mode grows on a hybrid time scaleschvis much small tham, but much
greater thany, i.e. 1/ Ty Ky L 1/ T, Note that the plasma resistivity is importantyonl

in a small region of widtlh « a, near thex = 0. Thus the plasma can be divided into two

regions: outer region and inner region.
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3.2.1.0uter Region

The whole plasma domain outside the thin residayer is called the outer region, i.e.
|x| > 8. In this region, the contribution of plasma resist and inertia can be ignored.
Thus, neglecting the plasma inertia (left-hand siflequation (3.8)) and plasma resistivity

(right-hand side of equation (3.9)), these two ¢igua are reduced to the following form:

£~ FCI(E k) y = 0 (310)
_
= feora R

Let simplify Equation (3.10) further, we obtain:
fe) Py = )07 — k3) Pu
= ") ¥ = FCY) — kS Py

" f”(x)
= Y = T Yy + k3

" X
= P = (kf, + B—Zy) P, (3.12)

Equation (3.12) describes the flux freezing conditiwhere the plasma is bound to the
magnetic field lines. Actually, this equation isethinearized form of the static force
balance criteria, i.eV x (Jx B) = 0. Note that equations (3.11) and (3.12) are thalide
MHD equations and valid in most region of the plasexcept in the vicinity of (x) = 0,

i.e., where the magnetic field reverses directisrslaown inFigure. (3.1) Thus there is a
thin layer in the vicinity ofx = 0, where the plasma inertia and resistivity becomes

important and can’t be neglected.
3.2.2.Inner Region

In the inner thin regiorjx| «< 1, the plasma inertia and resistivity can no longer
neglected. Thus we have to solve the full versibthe linearized RMHD equations (3.8)

and (3.9). The inner region solution is then matche the boundary layer to the outer
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solution of equations (3.11) and (3.12). Making abthe fact thatl/dx >» k and f(x) =

x, the linearized equations in the inner thin lagetuces to:

V1 ——¢1 =—¢ (3.13)

Y1y
2,2 411 x 17
Y TgPr = _alpl (3.14)

Let us consider the solution of ideal MHD equati@l2) at large positiver, which
satisfies the physical boundary conditionscas 0 and integrate this solution to the inner
layer boundary ak = 0,. In the same way, we could consider the solutibhagge
negativex and integrate this solution to= 0_. Now, we have to multiply some factors to
make sure that the magnetic flux matches on baessf the thin layer. Thus, the problem
becomes very simple, just finding these constamherical factors. Note that the flux
derivate 1; is discontinuous at the two sides of the resistayer. This jump in the
logarithmic derivative of the fluxp; to the left and right of the layer is expressedhsy

parameteA’ as follows:

[ 1mp1] (3.15)

X=0_

The parameted’ is known as the plasma instability parameter, tioly depends on the
plasma equilibrium and the wave number. This israldmental quantity in tearing mode
theory. It has been shown by Fudhal.[52] that the linear tearing mode is unstable only
and only if A’> 0.

» Constanty approximation:

The flux variation inside the resistive tearingdays given by:

5
B Bis s

Y1 P

For small enoughA’, the A’§ < 1 can be assumed to be approximately constant in the
tearing layer. The assumption that the magneticifigide the resistive layer is constant is

known as the constagt- approximation. The validity of this approximatiosill be
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discussed later in this chapter. With the constamtpproximation, equation (3.13) takes

the following form:

r(0) =Sy =y (3.16)
1 a 1 y,[_n 1 .

A matching condition for the exterior and intergmlutions can be obtained by integrating
equation (3.14) over the inner region

+x ¢)” +x
—y%t3 f ﬁdx = f Yy dx. (3.17)
—-X

—X

Let note that the right hand side integral canitmplfied further as:

+x
f Wrdx =il — Pilox = 1 ()L 3.18)

Using this relation in equation (3.17), we get:

2.2 Y
Y Ty (0}

T ) a® T G149

Let combine equations (3.13) and (3.16) to gebgmession forg, :
Yih o, X x
L] OB (320)

To simplify the above expression we introduce tiilowing transformation of variables:

2\ 1/4
() (321)
n
2\ —1/4
¢1=<yrﬁ> Y, (0)x (3.22)
n

With the above transformation, equation (3.20) banreduced to the following simple

form:

x'—wiy=w (3.23)
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The solution of the above equation was given in[R22)].

/2

w w?cos6
x(w) = -5 f sin'/29 exp <— > >d9 (3.24)
0

In terms of the new variables, the matching coadjtequation (3.19) is rewritten as:

3 dw
)/5/4‘[,1_1/21,?;/4 ‘[7)(// =Aa (325)
Note that in deriving the above expression we heezl the fact that the limits of equation
(3.19) can be extended to infinity with a minimumoe. Now the terny” (w)/w can be
truncated atv = 2 with a minimum error. Hence, the tearing layertidan be expressed

as:

5 2\ 1/4
—2 <@> (3.26)

a Ty

When the range of integration is truncatedvat= 2, the integral in equation (3.25) can be

approximated by:

%WX” = gﬁ T3/ (7/4) ~ 2.1 (3.27)

Inserting this into equation (3.25), after simpl#tion we finally obtain the scaling of the
growth rate and resistive layer width:

y ~ 0.55 7,735 1;*/% (0'a) #/5 (3.28)

Q| o

~ 1721, 25 t2/° (0'a) V/® (3.29)
Alternatively these scalings can be written as:
y ~ 0.55n3/5 (kBy)/5 A"*/* (3.30)

§ ~ 1.72n%/5 (kBy)~%/5 A'*/° (3.31)
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Note that for the case of our chosen equilibriBg= 21, = 2, (~ P, =1). The
validity of the constanty approximation can now be assessed. As defineceddr the
constanty approximation to hold it has to satisfy the coioditA’6 <« 1. This means that
the resistive diffusion time across the tearingefagnust be shorter than the instability

growth time:

82 1
”‘;7 < (3.32)

T,75 =

Using expressions (3.30) and (3.31), we finallyagiot

1

N ——
(kBy)-1a"°

(3.33)

In the same the regime of validity of the FRK lingheory can be estimated using

expressions (3.38) and (3.29), which results in:

a3/?

n <« —TH GE

(3.34)

3.3.Non- constanty Case

The constantyp approximation cannot be used if the condition¥Bi8 not valid. The inner
region problem has to be solved now without thestaimtz) approximation. The procedure
we adopt to solve the non-constaptease is almost the same as given by Cepl.
[123], except that the matching condition is differemt the internal kink mode. We start

from the same equations as the previous case stawn), repeated here:

X g =Xy 3.35

b= = (335)
2.2 401 X 14

Y TgPr = _51/)1 (3.36)

Let introduce an auxiliary function defined as:

x () = x1p1(x) — s (x) (3.37)

Differentiating the above equation and combininthvequation (3.36), we get:
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x'(x) = xpy’ (x) (3.38)

x' () = —ay*ti;¢y (3.39)
Integrating the above equation with respect,tae obtain:

x(x) = —ay’t§$1(x) + Yoo (3.40)

where y., is an integration constant. An expression figr(x) can be obtained from

equation (3.38):
x !
, X
P1(x) = f — ax (3.41)
0
Integrating it once more with respecttpwe get:
x !
X
@) = [ £ dx (0 (342)
0

Inserting thap;' (x) andy, (x) into equation (3.35) and divide it by we obtain:

X
! !

X X a X
L dx — 4 — = 3.43
b[x/a */a & YTy */a)? ( )
Differentiating the above equation with respect tove get:
2
142 " X
P8 (ax" - 20 ) - [/ + Vet = 1l (a4d)
Tr/ /(1
Applying the same transformation (equations (3&1g (3.22)), we obtain:
2
X'W) == x'w) — (w* + B2 = —xoow? (3.45)
Where 1 = yt2/°¢;/2.
The solution of the above equation can be exprassategral form as follows:
/13/2 1 13/2_g 13/245 _
)% —1-S- [ a-o"T a+nT A e /s dt (3.46)
o 0
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We now match the inner and the outer solution. Ikoge enough value of, equation

(3.42) can be rewritten as:
wl(x)=xf%dx—xw—xf%dx (3.42)
0 x
The third term on the RHS of this equation can églected, resulting in:
X,
Y,(x) = xf ~ dx — Yoo (3.42)
0

In the overlap region, we can ugéx) =~ x and simplifying equation (3.12) yields:

Y1(2) = 151 + 21;1 (3.43)
2
$1(2) = x/a (3.44)

Using the definition of instability paramet&f, we easily obtain:

_2th
ap,

Comparison of equation (3.42) and (3.43) resulhénfollowing correspondence:

A (3.45)

Y1 2 Yoo (3.46)
D, > j x%dx (3.47)

Thus using the above relations, the matching cammd{equation (3.45)) becomes:

[ee]

ANa= 2 X d 3.48
T ™ (3.48)
0
In terms ofw, this can be written as:
2 (yi2\ "Vt [ w)
A= ——<—H> f—dw (3.49)
Xoo \ Ty w
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Evaluating the integral, finally we obtain:

N = — Sy l/23/4 r{(#2-1)/4]
H 71 F[(A3/2 + 5)/4]

- (3.50)

The FKR scaling is recovered fbrk 1:
Y =0551,°"°1;*° (a'a)¥/ (3.51)
Next consider the limiting casé — 17:

From the series expansion of the gamma functionkmesv thatI'(z) = 1/z. Therefore,

for small argument value, we can write;

3 4
F[(Az - 1) e p—— (3.52)
e
Equation (3.50) can now be rewritten as:
. 5/4.1/2_3/4 4
Aa——8y Ty Tp 3 (3.53)
I'(3/2) (/12 - 1)
2 P23/ 1
=>——F(3/2)Aay T = (3.54)

n 3
(72-1)
2/3_1/3

Using the definitiom = yt,/"7,"” the above equation is further simplified as fokow

_ 1 - 1
= ——F(3/2)A a7 1> o By R = (3.55)
(12 -1)
2 _ /15/4
S r(3/2)A'aT§/3 A (3.56)

K 3
(12-1)
Let considerd = 1 — ¢, this gives:
5

ﬁ = - -i(1-0- e)%)_l ~— (1—5¢/4)(3e/2)!
:_
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. GA-D) 2 2
T4 31-1)  3(1-1

Hence, equation (3.56) can now be written as:

2 1/3_-1/3 2
= ——T(3/2)A’ === 3.57
By solving fory after some simple manipulation, we finally obtain:
y=1"0,% - 1180 @) 1;! (3.58)

For A"> 1, the second term can be neglected and we rechgewr¢ll known scaling for

the resistive kink mode, originally derived in R&23].
y =1 (3.59)

Finally, theA > 1 case corresponds to negative valuea’pfor which the tearing mode

instability does not happen.
3.4.Initial Equilibrium Profiles and A’ Calculations

The initial equilibrium that we have selected todst is defined as follows:

1
cosh?(x)

PYo(x) = (3.60)

$o(x) =0 (3.61)

This means that the plasma is considered to haveitrad flow. The analytical expressions

for the corresponding magnetic field and curremisity are listed below.

)

o) = —2 sech?(x) tanh(x) (3.62)

BOy (x) = (

0?1,
Joz (%) = ( 22 ) = 2 sech*(x) [cosh(2x) — 2] (3.63)

The equilibrium profiles ofp,(x), By, (x) and Jy,(x) are plotted inFigure 3.1 This
equilibrium is unstable to tearing mode only at teeonant surface& = 0 and hence

produces only one tearing layer inside the simatatiomain.
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Amplitude

Figure 3.1: The equilibrium profiles of magnetiaxX| field and electrict current.

We now calculate the instability paramet&f as defined by equation (3.15). For this
purpose, equation (3.12) has to be solved for #r¢ugbation fluxiy,. Note that such
analysis is basically the same as briefly repomeld21], however, we here provide more

details and also discuss the case of generaliagiticeym as given imMAppendix B

For the sake of convenience, we repeat the equéiag):

JI
i (x) — <k§ + B—") Y1 (x) =0 (3.64)
oy
Applying the initial equilibrium (Equation (3.60)hto the above equation, we obtain:
8 sech®(x)sinh(x)[3 — cosh®(x)]
" _ 2 —
Y1 (%) <k3’ + —2 sech?(x) tanh(x) Ya() =0 (3.65)
Simplifying the above equation results in:
! - (kz - L) =0 3.66
lpl (x) 1 COShZ(X) lrbl(x) - ( ' )

Here, ki = k3 + 4, and k,, = 2mm/l,,. Note that here m represents the poloidal mode

number and,, is the length of the simulation domain in the ysax

63



Let introduce the following transformation:
z = cosh™2(x)
Y@ = Uy @)z 2.
Equation (3.66) is transformed into the Gauss’ mgeometric equation:

K2k,

21 = 29 + |1 - k) - (5-#) 2| wi - <Z -2- 3) =0 (367

The solution of this equation can be expresseceimg of the Gauss hyper-geometric
functions[124].

3k, Ky
l.|J1(Z) = ClF (____,2 __,1 _kl,Z)

2 2 2
(3 kK
+CZZ 1F(—5+?,2+7,1+k1,2) (368)

The solution can be expressed in terms of theraigiariabley, (x) as follows:

3 k k
1 (x) = Cycosh® (x)F (—5 - ?1, 2 — 71, 1- kl,cosh‘z(x))
3 k k
+Cycosh™ 1 (x)F (— 5 + 71 2+ 71 1+ kyq, cosh‘z(x)) (3.69)

To get the solution for large we setC; = 0 and C, = 1, we obtain:

k 3 kl kl —
P1(x) = cosh™ ™ (x)F ot 2+ 14 ky, cosh™2(x) (3.70)

It is now straight forward to estimate the instépilparameterA’ using its definition
(equation (3.15)). Details of the complete dermatifor two generalized equilibrium
profiles are given iM\ppendix B

_$iO0) - P05 40+

A RO BEEAC)

(3.71)

Where, we have used the fact tijgt(x) is an even function. After some manipulation,

finally we obtain the relation foA’:
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A=2 6k — 9 k 3.72
I ACED (3.72)

For the tearing mode to be unstatle> 0, which implies thatk? < 9 or k <+/5. In the

limit of k « 1, an asymptotic expression can be derivedAor

15

AINﬁ

(3.73)

Let remind the reader that throughout this thedisis modified by changing the domain

size in the y-direction i.€.,,.
3.5. Simulation Setup

We next implement the reduced magneto-hydrodyna(R&4HD) model to describe the
evolution of nonlinear tearing mode in slab geometith B=By,e,+e, X Viy,. Heree, is
unit vector of the strong guide magnetic figlg,. The total magnetic flux functiog and

the stream functio in the plane perpendicular to the guide fieldgiven as follows:
0y = [, Y] +nV?y, (3.74)
0u(V2¢) = —[¢, V2] + [, V2] + pv2(V24). (3.75)
Note that here, the Poisson bracket is definddag] = 9,40, B — d,,Ad,B. The lengths
are normalized by the scale length of the equiitrfielda and the time is normalized by
the Alfvén time,z, = a / v,, wherev, is Alfvén velocity defined aw, = By,/\/41p, -

The magnetic field is normalized by the guide fiBjd. The equilibrium configuration

employed in these simulations is representedypyx) = 1/cosh?(x) and ¢, = 0.

Equations (1) and (2) are solved as an initial @goblem. A spectral code using Fourier

decomposition along direction with simulation domaif, 2rL, | is applied, namely,

fx,y, t)~%{f(x,y)exp(imy/Ly) +c.c}, (3.76)

where,mis the mode number idirection anct.c stands for the complex conjugate of the
corresponding field. In this study, we usually fhe mode numbers of the ordar~50.

However, we also confirm the numerical resolutidrite simulations even with higher
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number of poloidal modes. Here the wave numberefined ask, =m/L,. A second
order finite difference method is employed in hdirection with a box size df5, 5] and
mesh number of 2048. A semi-implicit Crank-Nicolswmerical scheme is implemented
to solve the equations in the radial direction. éNdhat the control parameters in
simulations are the instability parametér the plasma resistivity and the viscosity.
Note that the value od’ is varied by changing the wave numligr using the equation

(3.72).
3.6.Linear Simulation Results

In this section, we report the linear analysis lté tesistive tearing mode via computer
simulation of the two field resistive RMHD equat®(B.74) and (3.75). Although, the
main focus of this thesis is the investigation ohimear evolution phase of the tearing
mode, however, it may useful to first benchmark cadle by validating the FKR theory.
The key parameters in the simulation &'eand n. The effect of finitely large viscosity is

not considered here and will be included in the iognchapters.

Before starting the linear analysis of the teanngde, it is important to define the
linear growth ratey;;,,. In the simulations, we calculate the mean squemeurbation
electrostatic potential (E, = (¢?)/2) and mean square perturbation magnetic
potential E,,, = (?)/2, where$ andy are the perturbation electrostatic potential and
perturbation magnetic flux respectively. Note tkta¢ symbol() represents the space
averaged quantities. Since the magnetic flux ameétid flow are Fourier transformed
along y-axis, therefore, more precisely we can esprthe mean square perturbation

guantities as follows:

Ec=) a2, (3.77)
En =) T3/2 (378)
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Figure 3.2: Scaling of the linear grwoth rate ver&s instability parametek’ for two
cases of resistivities, and verses (b) resistiyitgr two fixed values of A’. The dashed

lines, represents the theoritical scalings of thedr growth rate as predicted by FRK.

where, Y ,,, is the summation of the contributions from all ffadoidal harmonics. In the
linear regime of tearing instability, the pertuibat flow and magnetic flux grow
exponentially, i.e. @, p~exp (y,int). Note that the linear growth rate of the mean sgua
electrostatic potential and magnetic potentialwe times the linear growth rate of the
perturbation flow and flux. In this thesis, we witiostly plot the mean square perturbation
potentials to describe the time evolution of thariteg mode. To describe the nonlinear

evolution, we will later define the nonlinear instaneous growth rate

The dependence of the linear growth rates of thertg mode omA’ andn is depicted
in Figure 3.2 In Figure 3.2(a) we plot the linear growth rate verses tkie for two
different resistivities. The dashed lines show EKR theoretical growth rate for each
resistivity. It is evident that the simulation résuare in good agreement with the FKR
theory for low enough values df' and not only reproduce the correct slopes but tso
actual values of the growth rate predicted by beoty for small enoughy. The deviation
from the FKR theory is caused by largeor largeA’. This is because at large the
resistive layer width increases and can become aoabfe to the plasma scale length. In

such situation, the resistive dissipation becomgsortant in the whole regime and thus
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the assumptions, on which the theory is basednarenger valid. Similarly, the growth
rate scaling witly as shown irFigure 3.2 (b)deviates from the theory by larger extent at
larger A’. This is because of the fact that at large enaffghthe constanty

approximation is not valid.
3.7.Summary

In this chapter, we reviewed the classical resestearing mode theory. A systematic
derivation of the FKR theory is performed both floe case of constanf- as well as non-
constanti. In both the cases, the plasma domain is dividéal the inner resistive layer
and outer ideal layer. The inner region solutionthen matched with the outer layer
solution, obtaining the FKR relation. Then, we acluce the equilibrium profiles used in
this study and derive the instability parameter ifoAfter the analytical description, we
introduce the simulation model for solving the RMHstem and elaborate the relevant
numerical schemes. Finally, we present a compaa$dhe linear simulation results with
the FKR theory to benchmark our simulation code. phbticular, we illustrate the
dependence of the linear growth rates of the tgarinde on the instability parametaf
and plasma resistivity. The simulation results are found to be in goocagent with the
theory in the regime ofA” and small enoughy. The linear growth rate scaling deviated
from the theory by larger extent at largk, because at large enoudh, the constantp

approximation is not valid.
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Chapter 4

Abrupt Growth Dynamics of Nonlinear

Resistive Tearing Mode and Viscosity Effects

4.1.Introduction

The nonlinear evolution of the resistive tearingdeexhibits an abrupt growth for large
enough values of the instability parametéronce the magnetic island exceeds a certain
critical width A'w,.. Actually, the transition from slow growth phasethe faster phase is
accompanied by change of X-point magnetic flux mpmhtion at the rational surface into
Y-type current shed63-67]. In this work, we investigate the underlying mauke of the
X-point collapse, which leads to the faster curgmet instability phase. To achieve this
goal, we suggest a secondary instability, basedhenquasilinear modification of the
equilibrium current profile due to the zonal cutrelh is noteworthy that this analysis is
similar to the secondary instability analysis ie tase of DTM51]; however, the driving
force for the secondary instability is differenta€l zonal current is found to modify the
equilibrium current profile in two ways, peakingthe rational surface and broadening in
the outer region. Thus, we explore the effects wéhszonal current peaking and
broadening through the secondary instability ang/yeparately. The secondary instability
analysis is also performed for the cases of fipitatge viscosity.

Another key objective of this study is to clarifye role of viscosity in the transition
from the slow Rutherford regime to the abrupt rewmtion phase during the non-linear
evolution of the resistive tearing instability. 8ncritical island width is a signature for the
onset of abrupt reconnection phase, thereforeait be useful to analyze the dependence

of the critical island width for the X-point collap on the viscosity. Though, previously
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the scaling of critical island width had been amaty[67], however, the effect of finite
viscosity was not included in that work. Generalhg viscosity plays a dissipation role in
the MHD fluctuations while the resistivity deterragithe singular layer dynamics of the
tearing mode. It is noteworthy that viscosity ist rabways weak as compared to the
resistivity in laboratory and astrophysical plasnieesause micro-scale turbulence can
enhance the viscosif$8-70]. The turbulent viscosity is usually larger thae tollisional
value and depends on the temperature and maginatic Hence, the magnetic Prandtl
number P. = u/n is of the order of2. = 200T3/B?, which shows a strong dependence
of temperature. For a typical magnetic fusion plasmith B = 4Tesla andT = 2keV,
P.is of the order of 100. Therefore, it is worthwhiteexamine the role of finitely large

viscosity in the evolution of resistive tearingtatsility.

The content of this chapter (adopted mostly froef [R25]) is organized as follows:
First, we introduce a typical simulation resultpaéing the abrupt nonlinear evolution of
the resistive tearing mode. The zonal modificatidrthe equilibrium current profile is
delineated for a typical case and the basic questibvolved in the analysis are defined.
The effects of current peaking at the rational azefand current broadening in the outer
region are separately investigated, both for nesisind viscous cases through secondary
instability analysis. After the investigation ofethtrigger mechanism of the X-point
collapse, we analyze the effects of viscosity anlthear growths of the tearing mode in a
broad viscosity range. It is followed by the scglamalysis of critical island width through
nonlinear simulations, including the viscosity etie Finally, the effects of viscosity on
the abrupt reconnection are examined by measumnmgetconnected flux during the abrupt

reconnection phase after the X-point collapse.
4.2.Nonlinear Tearing Mode Evolution for Different A’

Nonlinear simulations are performed for differerglues of the resistivityy and the
instability parameted’. It is observed that for low’, the mean square electrostatic
potential (E, = (¢?)/2) and mean square magnetic potenti), & (1)?)/2), after the
linear FKR region, grow slowly in the Rutherford'®nlinear growth phasg?2, 53]

Actually, for such low values od’, the magnetic island finally stops growing furttzed
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Figure 4.1: Time history of the mean square elstitec and magnetic potentig} and
E,, (a) and theiinstantaneous growth rates #r= 9.32 (b) Time history ofE, and
E,, for the case A' = 24.5 (c) and theirinstantaneous growth rates (d). Other

parameters arg = 2.8 x 10™* andu = 0.

gets saturated. These different stages of thengpamiode evolution are depicted in the
Figure 4.1 (afor a case of lowA". After the linear stage (l), the evolution goe®tigh the
slow Rutherford stage (Il) and finally the islarel saturated (Ill). The dynamics of the
perturbation quantities is more evident by plottingir instantaneous growth rates, defined
by Yim = 0.(In Ey ), as shown irFigure 4.1(b) However for sufficiently large\’, the
evolution of magnetic island does not saturate thedperturbation quantities grow again
after the slow Rutherford regime. This situatiorsli®wn inFigure 4.1 (c)and(d) for the

case of larga’. The time of abrupt nonlinear destabilization &fimed as the critical
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Figure 4.2: Time history of the mean square elstatec potentiaE;,, and mean square
magnetic potenta#l,, (&) and theirinstantaneous growth rates (b). Parameters are:
A'=173,n=14x10"*andu = 0.

timety., at whichd,(y,) = 0. This time actually corresponds to the point dleiction in
the evolution of kinetic energy. It is noteworthyat after this critical time, the mean
square perturbation potential grows again and cdmege higher growth rate than the

linear growths for sufficiently low values of, as shown irFigure 4.1(d)
4.3.The Abrupt Nonlinear Growth Phase and X-point Collgpse

In order to explicate the nonlinear dynamics of ib&stive tearing mode in the regime of
large A’, we consider a typical simulation case of smatiesistivityn = 1.4 x 107%,
where the instantaneous growth rate, defineghas = d,(In Ey ,,,), increases again after
the slow nonlinear evolution as depicted Figure 4.2. To further strengthen our
understanding of the actual dynamics, we plot thgmetic flux contours at different times
in the nonlinear evolution stage. It is observedttlat the critical time,,., at
whichd,(y,,) = 0, the X-point configuration collapses to a currsheet as depicted in
Figure 4.3 The narrow current sheet then leads to the secgridland generation at the
previous X-point. This change of configuration ajothe rational surface, leads to a
dynamical change in the magnetic reconnection ggda this chapter we only focus on

such transition phase from the slow nonlinear ghofthhe X-point configuration) to the
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Figure 4.3: 2D contour plots ofalcurrent, merged with the magnetic flux lines iy

the nonlinear evolution of Figure. 4.2.

faster reconnection (Y-type current sheet). Thandlwidth corresponding to the X-point
collapse is defined as the critical island width, which is a precursor to enter the
explosive nonlinear growth stage. Although, thistamility has recently been rigorously
investigated, however, the driving mechanism fag K-point collapse is still a less

understood problem. Thus, it is worthwhile to dlathe trigger mechanism of the X-point

collapse, resulting in the formation of secondaayrow current sheet which leads to the
abrupt growth phase.

4.4.Secondary Instability Analysis for Inviscid Case

Although, the abrupt nonlinear growth of the megunase perturbations in both classical
and double tearing modes is quite analogous to et in feature, however the magnetic
flux configuration is quite different. In the casé DTM, the formation of triangular
structure of the magnetic island was identified b® responsible for triggering the
explosive dynamic$§s0, 51] On the other hand, the single tearing mode inréigeme of
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Figure 4.4: (a) Current profiles modified by thenabcurrent at different times during
the nonlinear evolution in the simulation of Figdrd. (b)The structure of zonal current
at timet = 410. The pairs of inner and outer dashed liabgllthe local peaking and
global broadening regions, respectively.

large A’, is characterized by a current sheet formatiom@lthe single resonant surface
following the X-point collapsg63-67]. We here propose a secondary instability, which
originates from the quasilinear modification of #agilibrium current profile by the zonal
perturbation current, to analyze the X-point cdlaplt's noteworthy that such zonal
current perturbations results from the nonlineauptiog of the poloidal modes. We
perform the secondary instability analysis for im&scid and viscous cases separately to
get clear understanding of the results.

First, we consider the case of resistive tearinglenio the inviscid limit g = 0). In
general, the equilibrium profile gets flattenedhe early Rutherford’s regime as depicted
in Figure 4.4(a)and this actually leads to the stabilization &f growth rateHowever, at
the critical timest,. ., (after the Rutherford regime), the equilibrium remt is mainly
modified in the inner region. These modificatioms eaused by the generation of the zonal
current. The profile of zonal component of the pdration current is plotted iRigure

4.4(b)at a given time in the evolution &fgure 4.2 The dashed lines mark the inner and
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outer region corresponding to the peaking and leoag effects respectively. It is
speculated that such a current modification mayaro@ the magnetic island width and
plasma flow if it can destabilize the tearing modle.verify such an idea, we implement a
secondary instability analysis by assuming a gstesidy equilibrium state involving the
zonal currentThus the new equilibrium is composed of two patttg, initial current at

time t=0 and the zonal current at the tirtvey during the explosive nonlinear growth

phase, which can be expressed as,

lpE(xi Y t) = ll)()(x,t = 0) + lpm=0(xit = tO) ) (41)
JeQo,y:t) = Jo(x,t = 0) + Jip=o(x, t = tp) . (4.2)

The RMHD equations are modified with the new egpilim and are rewritten here for the

sake of convenience.

0 = —ld, el + V3 (4.3)

0,V?¢p = —[g, VY] + [, V2] +uv?(V?¢) (4.4)
We perform linear simulations through the RMHD egures (4.3) and (4.4), involving the
instantaneous modifications of the equilibrium peoby the zonal current at different
times during the nonlinear evolution. The growthesaof the mean square linear
perturbationsy, = d,(InE;,) = d;(InE,,,) of the most unstable=1 component in the
secondary instability analysis are the same asn$tantaneous growth rateg,, in the
linear phase of the primary tearing mode sinceztital current is too weak as described in
Figure 4.5 Note thaty, should be twice the linear growth rate of the pdtions in usual
instability analysis, in which the latter one isfided by the perturbation itself. In the
Rutherford regime, the secondary growth rate téodsecrease but be higher thag,,,
showing that except for the quasilinear stabil@atdue to current profile relaxation, the
nonlinear mechanisms such as the mode couplingatsaystabilize the primary tearing
mode. Howevery, starts to increase from the critical timg. This increasing tendency
suggests that the current modification due to theak current can excite a secondary
instability to provide a positive destabilizatiometiback for the abrupt nonlinear growth.
The secondary instability may trigger the X-poiotlapse aroundt,,. and then enhance
the current sheet formation. In order to verifytsacworking hypothesis, we examine the
effect of local and global modification due to ttanal current.
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Figure 4.5: Time history of the secondary growttesaof perturbation energy due to
zonal current, current peaking and current broadgiiiepresented by, y; and y,,
respectively) along with the growth rates of theamequare electrostatic and magnetic

potential ,,, and y;). The simulatoin parameters are the same as uré-i) 2.

4.4.1.Secondary Instability due to Current Peaking and Boadening

As shown inFigure 4.4(a)the initial equilibrium current profile is mainiyodified in two
ways: locally peaked near the resonant surfaceglolmhlly broadened in the outer region
far from the resistive layer. Both of these effeget stronger with time during the
nonlinear evolution. We separately consider thea$f of current peaking and broadening
on the secondary instability. The peaking heigfatand broadening widthw are defined
through the structure of the zonal current compomenthe difference of the amplitude
between points A and E (or B and E) and the prigech thex direction between points A
and C (or B and D), respectively, as depicteBigure 4.4(b)Using this methodology, we
estimate the secondary growth raggsandy,, of the perturbation energy due to the zonal
current peaking and broadening effects separalély.results are comparedkigure 4.5
The current peaking effect destabilizes the seagnetecitation of the fluctuations, while

the current broadening plays a stabilizing roletifd late stage of the explosive growing
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Figure 4.6: Secondary growth rates (a) due to threent peaking versus the peaking
height (b) and broadening width verses the broagenidth. Parameters arg = 17.3,
n=28x10"*andu = 0.

phase, the secondary growth ratg due to the current peaking effect tends to be
compatible withy,, showing that the peaking effect of zonal curretgty be plausibly
responsible for the explosive dynamics.

To further elucidate the current peaking and beoaty effectsFigure 4.6(aplots the
instantaneous values of the peaking heifhtind the broadening widdw of the current
profile corresponding to different times in the hoear evolution. The fitted dashed lines
indicate the exponential growth of both the curigerking height and broadening width in

time, which can be expressed as:
Sh~ exp(ah(t - tmc)), (4.3),
Sw~ exp(a,, (t — tme))- (4.4)
The dependence of secondary growth rates on thkingeaeight 5h and broadening
width éw is depicted inFigure 4.6(b)and 4.6(c) A proportional relation is revealed for

both current peaking height and broadening width as
Y ~ Bn (6h — Shy), (4.5)

Yw ~ Bw (6W — dwy). (4.6)
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Figure 4.7: Time evolution of the (a) secondarywgtorates due to the zonal current
modifications and (b) the zonal current modificatiaf the equilibium current profiles.

The simulation parameters axe= 17.3,n = u = 2.8 X 107%.

Here B, > 0 and B, < 0, which represent the destabilizing role of therent peaking
and the stabilizing role of the current broadereffgcts, respectively. Hergh, and dw,
correspond to the critical peaking height and beoéty width at the X-point collapse, as
marked inFigure 4.6(a)Hence, the secondary instability due to the curpeaking effect
may trigger the X-point collapse. Equations (4.8) 44.5) combinedly exhibit a much
faster growth of the tearing mode fluctuations thlhe exponential evolution, namely,
exponential of exponential growth as follows:

Y, b~ exp(Brexp (apt)) . (4.7)

This suggests that the current peaking effect neplausibly responsible for driving the
explosive dynamics of the nonlinear tearing modexgiting a secondary instability, which
may cause a fast magnetic reconnection. Note #ratthe secondary fluctuations are of the
same mode features as the primary tearing indtahilie to the quasilinearly modified
current peaking effect. Interestingly, the lineawperties of the system can be embodied in
the nonlinear dynamics through the secondary iigyalanalysis. It is probably such

secondary instability that triggers the X-pointlapte and the positive feedback effect of the
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Figure 4.8: Time evolution of (a) current peakingdght and (b) broadening width for

different values of viscosity\'= 17.3,n = 2.8 X 107,

same secondary fluctuation that nonlinearly gives to a current sheet formation, namely

explosive growth dynamics.
4.5.Secondary Instability Analysis for Viscous Case

Next, we perform the secondary instability analys@uding the finitely large viscosity. It
is important to consider the effects of viscosity the evolution of the tearing mode
instability, since viscosity is not always smalllan the resistivity. Usually, viscosity
plays a stabilizing role, reducing the outflows amcleasing the current sheet width of the
resistive tearing mode. Thus, it may be worthwkileeonsider the effects of viscosity on
the X-point collapse, which triggers the faster lm@ar reconnection stage. First, we
describe a typical nonlinear simulation casePof= 1, with n = u=4.8x 107*, as
depicted inFigure 4.7.The instantaneous growth rates of the mean squenteirped
magnetic potential and electrostatic potential shibve similar explosive nature in
nonlinear growth phase as observed in the resistigse. Furthermore, the peak growth rate
of the magnetic potential grows higher than thedmnphase. The secondary instability
analysis results are also plotted Figure 4.7 (a)In general, the secondary instability
analysis results follow the same tendency as obddrvthe inviscid case iRigure 4.5.n

the explosive growth phase, the secondary growth daee to the zonal current peaking
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Figure 4.9: Growth rates of the peaking height Brehdening width versus viscosity.
The dashed and solid lines are for referente.17.3 andn = 2.8 x 107,

matches the nonlinear perturbation growth rate.sTthe zonal current peaking may act as
trigger for the onset of the explosive growth dyim@n The modification of the
equilibrium current due to the zonal current iswhan Figure 4.7 (b)for some selected

times during the nonlinear evolution and is comgavéh the initial equilibrium profile.

Next, we scan the zonal current modification é¢fen a broad range of viscosity=
0.0 to 0.001 at fixed values ofy = 4.8 x 10™* and A’= 17.3. The nonlinear simulation
results reveal that similar to the inviscid cades instantaneous peaking height and
broadening width éw in the explosive growth phase grow exponentiadly,shown in
Figure 4.8(apnd4.8(b) It is noticed that the current peaking height Brmadening width
at the time of X-point collapse, defined &k, and éw, respectively, increase with the
viscosity at the critical time,,.. This tendency may result from the viscosity dffance at
the onset of the X-point collapse, larger curreeéking is required to compensate the
viscous dissipation and then drive the secondataiility. The growth rates, anda,, of
both §h andéw roughly remain constant for weak viscosity. Howevmth growth rates
decrease as the viscosity increases in l@gegion with the same scaling, as explicitly

depicted inFigure 4.9showing a transition of the viscosity dependemoerd P, = 1.
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Figure 4.10: Secondary growth rate versus the pgakeight(a) and the broadening
width(b) for different viscosity. (c) Proportiondactors of the peaking height and
broadening width against viscosity/= 17.3 andn = 2.8 x 107*.

To inspect separately the effects of the localrenur peaking and global current
broadening on the secondary instability including viscous effects, we perform secondary
instability analysis for the same simulation seftiras that ofFigure 4.9 The results show
that local current peaking effect remarkably ddabrals the secondary tearing mode, while
the global broadening effect plays a strong stabdi role, as illustrated iRigure 4.101t is
observed that the growth rates of the secondatghility are proportional to the peaking
height and inversely to broadening width. The coration of these two dependences can
lead to fluctuation evolution ag;, ¢s~ exp(Bnwexp (anwt)). Identical to theh, = 0
case, the current peaking can possibly drive tipdosive (i.e., exponential of exponential)
growth of the secondary instability, which may @atlse abrupt growth of the reconnection
rate. However, the dependence of the secondarytiymate on both the current peaking and
broadening becomes weaker as the viscosity insedbés tendency is represented by the
proportional factorg,,, versus the viscosity, as shown kigure 4.10(c) for A'=17.3
andn = 2.8E — 4. Remarkably, the magnitudes gf,, decrease quickly in the region of

P. <1 while they decrease slightly fa. > 1, showing a transition of the viscosity
dependence. Furthermore, the secondary growth gate®duced with increasing viscosity

at the same evolution phase, exhibiting a stabdizffect of the viscosity. Comparisons
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Figure 4.11: Time history of the instantaneous dghovates of (a) the mean square
electrostatic potentialy, and (b) the mean square mangetic potentgil, The
simulation parameters areA\’ = 17.3, n =2.8x 10™*, u =0, 2.8 x 10"*and 2.8 X
1073 corresponding ta?. = 0,1 and 10 respectively.

with the nonlinear growth rate of the instantanedusanddéw (Figure 4.§ may imply that
the explosive growth of the tearing mode is a puneinlinear process in nature although the

quasilinear secondary instability may provide aipilale trigger mechanism.

Next, we examine the effect of viscosity on the o{Ap collapse more directly through
nonlinear simulations and explore the role of v&styoon the critical widths of the magnetic

island for the X-point collapse.
4.6.The Effect of Viscosity on the Tearing Mode Evolutin

Before scanning the parametric dependence of vigoms the tearing mode evolution, we
would like to quickly overview its effects on théakility of linear as well as nonlinear
evolution of the tearing mode. Generally, the vistgo plays a dissipation role in the
resistive tearing mode evolution while the resigtivdetermines the singular layer
dynamics of the tearing mode. The magnetic Prandtiber B = u/n can be as high as

of the order of 100 for typical parameters of thsidn device due to the microturbulence
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effects. In the limit of lowA’, the usual tearing scaling of the growth raten3/s is
modified in the case of finite viscosity and scasy~n2/3 B. ~/® which was termed as
83



the visco-tearing modg/1]. On the other hand, in the limit @ — o, the growth rate

scales ag~n'/3 P. 7% and is known as the visco-resistive kink mode.sTiscosity can
significantly affect the linear stability of thesistive tearing instability. However, the

impact of viscosity on nonlinear dynamics of tharteg mode is still poorly understood.

To have an overview of the linear stabilizatiorwasd| as nonlinear effects of finitely

large values of viscosity, we perform nonlineardetions atA’= 17.3 andn = 2.8E — 4

for different values of viscosity, corresponding B = 0,1 and 10 as depicted ifrigure

4.11 In the linear stage, the growth rate is signifiba reduced as we increase the
viscosity. This linear stabilization also delay® tbnset of the abrupt nonlinear growth
phase after the slow Rutherford regime. This ingptleat viscosity may play an important
role in the onset criteria for the abrupt reconiecphase, which will be discussed later in
detail. Comparing the instantaneous growth rateb@perturbation potentials, it is seems
that viscosity may reduce the reconnection ratéheabrupt growth phase after the X-
point collapse. However, the ratio of the peak im@ar growth rate to the linear growth

rate seems to be enhanced with the viscosity.

The effect of viscosity has been investigated previous study in the case of slowly
evolving current sheet, which concluded that itéases the current sheet width and slows
the outflows[126]. This means that by including large viscosity, terent sheet will
remain stable for longer time compared to the midi€ase, until it becomes thin enough
to be unstable to the secondary island formati@ancdnfirm this understanding, we plot
the contours of the current sheet merged with tagnatic flux lines at different times in
the nonlinear evolution of the tearing mode, asiaddeg in Figure 4.12.For the sake of
comparison, we plot the current sheets at simiages of the nonlinear evolution for the
inviscid (P, = 0) and viscous(P. = 10) cases. The times, represent the time at which
the perturbed potential attains peak valtg,is the time at which the current sheet aspect
ratio is maximum just before the formation of tee@ndary island and; is the time after
the secondary island formation. The comparisorheftivo cases, quite evidently reveals
that the current sheet width is significantly irased by including large viscositg.(> 1).
This implies that for large viscosity case, theoseary current sheet remains stable for

longer time, which can be clearly observed for tfseous case (lower panel), where the
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Figure 4.13: Linear growth rates versus viscosityfour different resistivity cases and

A" = 17.3. The dashed line with arrow labels the= 1 for reference.

secondary island is generated much later aftemiagnetic potential peak. Meanwhile, the
current sheet length is also increases sufficienthyil it reaches the maximum length so
that the critical aspect ratio of the current sHeethe collapse is achieved. Thus, finitely
large viscosity may not only stabilize the lineaaring mode but also affect its nonlinear

dynamics.
4.7.Viscosity Dependence of the Linear Growth Rates

Before elaborating the nonlinear features, firstbniefly discuss the viscosity effect on the
linear growth rate by performing a parametric seath four different resistivity) and a
broad range of viscosity (10~° to 1072) for given instability paramete’ = 17.3. The
linear growth rates versus the viscosity for défem values are plotted iRigure 4.13 It

is obvious that increasing the viscosity genenahjuces the linear growth rates because of
the viscous dissipation, which opposes the registigstabilization73]. However, the
trend of viscosity dependence of the linear growdkes apparently shows a slight

transition atP. = 1. The growth rates fo, > 1 decrease with the viscosity faster than
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Figure 4.14: Critical island widthA'w, versus;, for differentA’. (@) u =0, (b) u =
2.8x 1073,

those in the region of. <1, similar to the observation in Harris current gshee
configuration[71]. Actually for B. > 1, the resistive tearing mode becomes the visco-
tearing mode and its growth rate scaling is estohasy,;,,~ u~'/> , which is a bit
different from the theoretical prediction pf,~u~'/¢. However, the theory is valid for

very smallA” and highB. .
4.8.Role of Viscosity in the Onset of X-Point Collapse

The critical island width for the X-point collapgea precursor for the onset of the abrupt
reconnection stage, which previously has been sli6Wrno depend on the resistivity and
the instability parameteA’. However, the effects of viscosity were not anatymn such
studies. Therefore, we comprehensively investigaeaole of the viscosity in the onset of
the X-point collapse and the abrupt nonlinear reeation dynamics. As described in Sec.
Il (A), the X-point configuration collapses to arcent sheet, which causes an abrupt
increase in the growth rate of the perturbationrgiee when the island width exceeds a
certain critical valuev.. We perform a systematic investigation of the ety

dependence of the critical island width in termsAdf, in the limit of lown and large
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Figure 4.15: Factor§(u) (a) andg( A', ) (b) against the viscosity\’ = 17.3.

enough’ = 17.3. First, nonlinear simulations are performed byyirag n andA’ for the
case of . = 0 to validate the previous scaling of the criticdand width. The results are
depicted inFigure 4.14(a)where A'w, is plotted versus the resistivity for differentwes

of A’, showing a proportional dependence of the critisiaind width on the resistivity. In
the limit of n — 0, A'w, converges to the same value of 8.2 for differetties of A’, thus
verifying the scaling of Loureiret al.[67]. Note that in this analysis, the island width is
calculated numerically through the identificatidrtloe positions of X and O-points.

Next, we investigate the effect of viscosity on thiical island widthA'w,. Nonlinear
simulations are performed by including viscosityaitbroad rangel(~° to1072). Figure
4.14(b)depicts the scaling of critical island widfw,. versus the resistivity at constant
value of viscosity: = 2.8 X103 and three different values a&f. Comparison ofigures
4.14(a)and 4.14(b) suggests that viscosity modifies the scaling dfcad island width
mainly in two ways: reducing the slopes&iv, scaling and up-shifting the value of the
critical island width in the limit of zero resisiiy. It indicates that the viscosity plays an
important role in determining the critical islandbii for the X-point collapse. We propose
that the critical island width scaling gets modifie the presence of viscosity and can be
expressed as:
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Awe, = C(u) + g, wn. (4.8)
Here,C(p) is the value ofA'w, in the limit of zero resistivity and it dependslyion the
viscosity. The slope of the scaling(A’, 1) is not only the function of\’ as observed
previously by Loureircet-al., [67] but also exhibit a strong dependenceuoiio further
explain the viscosity dependence of the limitingueeof critical island widthC (1) and the
slope functiorg (4’, u), we plot these two quantities against the visgadsifFigure 4.15(a)
and4.15(b).It is observed that in the limit of low viscositypth the function€ (u) and
g(4', u) are more sensitive to the viscosity variation vétklight transition. On the other
hand,C(p) is linearly increasing bu(A’, ) is slightly decreasing versus the viscosity for

large enough values.

Viscosity dependence of the critical island widtiw, for four cases with different
resistivity and constant value @f can be further exhibited figure 4.16 The results can
be interpreted in terms of the magnetic Prandtl mem.. We observe thatt'w, is

inversely proportional tqu in the region ofB. < 1, whilst proportional forB. > 1. An
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obvious scaling transition is revealedRat = 1. In the region of large viscosityR. > 1),
the critical island width is increased almost ligavith the viscosity, since viscosity
damps the inflows and outflows. However, the effgfctiscosity in theP,. < 1 regime is
not so obvious. It seems that the current sheahwsdincreased and the flow is reduced,
but since the flux and flow are decoupled in tl@gime, there may an imbalance in the
flux to flow ratio, which may reduce the criticaland width for the X-point collapse. The
results also show that for a given viscosity, thiécal width A'w, increases with the

resistivity, which is in accordance with the newlsty (equation (4.8)).
4.9.Viscosity Effects on the Speed-up Reconnection S&ag

Finally, it is interesting to extend our investigats on the viscosity effects to the abrupt
reconnection stage after the X-point collapse. Note Parket al [126] predicted that the

viscosity can modify the Sweet-Parker type recotioec leading to a scaling of the

89



reconnection rate ag,~n'/? P, “* for P. » 1, wherey is the change rate of the
magnetic flux at the X-point. To demonstrate thecwebity effects on the magnetic
reconnection more clearly, we evaluate the scatihghe growth rate of reconnected
flux, ysp, Which is defined aspre. — Weou = exp(¥sp(t — tme)). Here, ¥, is the
reconnected flux, which is measured as the diffexrdretween the maximal and minimal
fluxes through the X-point along the current she#t.,; is the reconnected flux at the
critical time t,,., which corresponds to the X-point collapse. Foe ttase without
viscosity, we confirm the Sweet-Parker scalingyas~n*/?. However, the viscosity
modifies it to deviate from the index of 1/2. Mastportantly, it is observed thak, is
almost independent of the viscosity fBr < 1 in a wide resistivity range, as shown in
Figure 4.17.The value of theg, moderately decreases arouhd-1. However, the
viscosity effect is prominent fa. > 1, showing a scaling law agp~u~/* in a wide
resistivity range. Hence, similar to the linearwgtio rates and critical island widthgp in

the explosive growth phase also exhibits a trasibehavior arounf]. =~ 1.
4.10.Summary

We have performed a comprehensive investigatiotheftrigger mechanism for the
onset of the X-point collapse and the drive foréghe abrupt nonlinear growth of the
resistive tearing mode for sufficiently large iristiy parameterd’. The X-point collapse
occurs when the magnetic island exceeds a critigdth A'w, in the late Rutherford
regime. Afterwards, the tearing mode grows expklgito form a current sheet, leading to
fast magnetic reconnection. To explore the oridisuzh processes, a secondary instability
analysis has been proposed, in which the zonalewurgquasilinearly modifies the
equilibrium current profile. The peaking and broaidg effects of the current profile due
to the zonal current have further been examinedor@kary instability analyses show that
the local current peaking due to the zonal curgamteration remarkably destabilizes the
tearing mode in the inviscid limit. The combinatiohthe secondary instability with the
exponentially growing current peaking effect resuft a positive nonlinear feedback to
enhance the tearing mode fluctuations, suggestiplgusible mechanism responsible for

the onset of X-point collapse and explosive nomirgrowth. Nonlinear simulations with a
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parametric scan in a broad range of viscosity ifcedf values of A’ and n show that the
zonal current peaking height and broadening widthw still grow exponentially in time
in viscous tearing modes. The growth rates areddarbe independent of the viscosity in
low viscosity region corresponding B < 1, while they decrease with increasing
viscosity for B. > 1, exhibiting a scaling transition arourRl = 1. On the other hand, the
secondary instability due to the current peakinigatfis weakened, but mainly in the

region of P. < 1, also showing a transition of the viscosity depard around,. = 1.

Furthermore, the viscosity effects on the nonlinggnamics as well as the linear
instability of the tearing mode have been inspeetéd a focus on the scaling transition
versus the magnetic Prandtl numBer It is observed that the viscosity dependencdef t
linear resistive tearing mode instability is chaesiced by a scaling transition noticeably
at B. = 1. The linear growth rate fol?. > 1 decreases faster than that in the region
of B. <1 as the viscosity increases. Most importantlysifaund that in the presence of
finite viscosity, the critical island width for thé-point collapse is modified as expressed
by A'w, = C(p) + g(4', w)n. We found that the scaling of critical island viidd'w,
versus the viscosity, exhibit a transition behawwrmagnetic Prandtl numbBr = 1.
However, the explosive growth seems to be indepgndkthe viscosity in thé. <1

regime, while large viscosity plays a strong diasige role.
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Chapter 5

Impulsive Magnetic Reconnection with the

Dynamic Flow Effects

5.1.Introduction

So far we have assumed the laminar tearing modmmnection without any turbulence
effects. However, the astrophysical and helioplsysitvironments where the reconnection
occurs are usually turbulent because of the higin®ds numbersSince the turbulence
occurs in various plasmas and can change the manmlprocesses, then it is essential and
relevant to the real physical systems to investighe impact of background small scale
turbulence on the magnetic reconnection processnibw well established that turbulence
can enhance the reconnection process by genetagngultiple reconnection sites along
the current shedil03-111] In most of these studies the turbulence wasdnuired in the
form of random noise. However, there is still naoversal agreement on the role of added

noise.

Besides the turbulence effects, shear flows msg play important role in the linear
and nonlinear evolution of the magnetic island.eNibiat the shear flows can stabilize the
resistive tearing modand reduce the saturation island wifitB7]. Moreover, symmetric
flows (potential) with radial even-parity can produce considerablghbr stabilization
effect compared to the antisymmetric ones. The 8bear at the rational surface can make
the effective instability parametet’ more negative, playing a stabilizing rol&28].
Recently, the shear flow effects have been consitler the case of plasmoid instability

[129], which concluded that the effect of flow sheanegjligible for fast growing modes in
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the limit of high Lundquist numbe® However, it became important at low&mnwhere the

instantaneous growth rate of the perturbation fkas found to decay in time.

Instead of applying the turbulence forcing in foem of random noise or a static
shear flow, it may be interesting to consider aaigic turbulent flow with finite
frequency, similar to ion temperature gradient (JTd@Biven small scale turbulence in
the tearing mode reconnectifitil2]. Such dynamic flows can be realized in magnetically
confined fusion plasmas where the MHD activitieshsas the tearing mode and ITG
driven drift wave coexist simultaneously. We comesitdoth symmetric (even-parity) and
anti-symmetric (odd-parity) dynamic flows, which nemonly exist in real turbulent
plasma environment. It is expected that the dyndlovwes with different radial parity can
not only affect the linear stability property ofethresistive tearing mode, but most
importantly may also contribute to the fast magnegiconnection through the nonlinear
interaction processes. It is expected that the drackd turbulence will facilitate the
triggering of the plasmoid instability, leadingttee fast reconnection. It will be interesting
to explore how the dynamics of the plasmoids iscéd with the flow features such as the
radial parity and frequency of the dynamic turbtifidow. This chapter is thus devoted to
the study of the tearing mode reconnection with diggamic flow. The reconnection
behavior is examined verses the dynamic flow proger such as the radial parity,
frequency and amplitude. The content of this chaptemostly adopted frorf125, 130].

The organization of this chapter is as followseTiodeling details as well as the
definitions of key parameters are presented. Beftageting the rigorous analysis, we
introduce the typical simulation results, exhilgtinthe plasmoid-dominated fast
reconnection. Dynamics of the multiple plasmoidugher explicated by plotting the 2D
flux contours for several cases. The dependendbeoplasmoids dynamics on the radial
parity and frequency of the dynamic flow is explézh by the contour plots of the flux.
Then, we present the linear stability analysishef tearing mode with the dynamic flow.
After that we comprehensively analyze the onsetditimm of the impulsive bursty
reconnection as a function of the dynamic flow mties, such as radial parity, amplitude
and frequency. The effective reconnection ratén@glasmoid-dominate fast reconnection
phase is measured and scaling with resistivitydded.

93



5.2.Physical Model of the Dynamic Flow

In order to investigate the resistive tearing maeeonnection behavior with the
background dynamic flow, we assumealynamic flow ¢°F, similar to the electrostatic

ITG eigenmode, which evolve independently and psegented as followjd12],
¢DF(t’ X, ky) =A (ﬁ(")(x)e'mt“"gpy_ (5.1)

Where, 4 is the constant amplitude factor of the dynamiwfland ¢ represents the
radial eigen-function corresponding to the eigemiency? and the wave numbéec)”.
The eigen-function is expressed by titk Hermite function, which determines the parity
of the dynamic flow, whether odd/even, dependingtlo® value ofn odd/even. The
independently evolving dynamic flow is includedtie RMHD equations through Poisson
brackets, i.e¢ = pMHP + $PF undergoing poloidal mode coupling with the pdsation
flux and stream function. We here consider both regtnic (even-parity) and anti-
symmetric (odd-parity) dynamic flows, which commprxist in real turbulent plasma
environment. It is expected that the dynamic flovith different radial parity can not only
affect the linear stability property of the resistitearing mode, but most importantly may
also contribute to the fast magnetic reconnectibrough the nonlinear interaction
processes. The radial profiles of dynamic flow wathen- and odd-parity cases at a given
time are depicted ifrigure 5.1 The local flow shear (second derivate of the tedstatic
potential) at the rational surface= 0, is maximum for the radial even-parity flow and is
zero for the radial odd-parity flow. This differenin the flow shear at the rational surface
may play a key role in the linear and nonlinearleton of the resistive tearing mode,
which we will discuss further in later part of thibapter. In addition to the radial profile
dependence, this flow has a dynamic behavior i fjhaving finite frequency), which is

another key factor that can affect the tearing megennection process.

The ultimate goal of this study is to determine thehavior of the resistive tearing
mode reconnection during the impulsive nonline@ommection phase. For this purpose,
we will explore the effective reconnection rdigy during the abrupt nonlinear growth
phase of the tearing mode in six-dimensional patamspace, i.eE.g(n, u, parity,

ky,A, 2). However, in this study we will investigate the pact of only four
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Figure 5.1: (a) Radial profiles of dynamic flog/{") at a given time for radial even-
and odd-parity cases (b) Time evolution of the meanare dynamic flow at a fixed

positionx = 0. Simulation parameters are= 2.8 x 10™*, A'= 17.3,and k¥ = 2.75.

parameters), parity, A and 2. We assume a constant wave numbgf = 2.75, set
the amplitude of flow ast = 1071° to 10~3 and the frequency of flow in the range 0.02 to
2.0, based on the corresponding realistic frequerenyime observed in the direct

multiscale ITG and tearing mode simulati¢gh$2].
5.3. The Onset of Plasmoid Instability with the DynamicFlow

We start our simulations from the case withoutdkternal dynamic flow. After the linear
Furth-Killeen-Rosenbluth (FKR) growth phage], the magnetic island enters the slowly
evolving Rutherford stagd3]. Note that for sufficiently large valug’, the usual X-point
configuration is replaced by secondary current shieading to the formation of the
secondary islanf67, 125] Similarly, for our selected instability parameAér= 17.3, the
X-point collapses to a narrow current sheet, wHiohlly results in a secondary island
formation at the original X-point position. In ord® analyze the effects of background
dynamic flow on the magnetic island evolution, veenpare the simulation results of the
tearing mode in the cases with and without dyndhowe. The time history of mean square

perturbations, i.e. mean square electrostatic piate, = < $2 >/2) and mean square
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Figure 5.2: Time history of the mean square peéddrkelectrostatic potentidl;, =
< ¢? >/2 (a) and magnetic potentidl,, = < ? >/2 (b) for the radial even-parity
dynamic flows with different frequency. Simulatigparameters arg@ = 2.8 x 1074,
A'=17.3, kf,)F =275 and A =8x 107,

magnetic potentiak,, = <)% >/2, are plotted inFigure 5.2 for three different
frequencies of the dynamic flow with radial evenifya(corresponding to the Hermite
function of ordern = 2). The linear stability of tearing mode is quitedantly affected by
the dynamic flows with a strong dependence on lthe frequency. In the linear evolution
phase, moderate stabilization is observed for loegudency? = 0.12. However by
increasing the flow frequency, the stabilizatiordeef gets reduced and then a little
destabilization effect is observed at higher fremye? = 0.48, compared to the case
without flow. Actually by increasing the flow freqocy, the effective flow shear (which
mainly reduces the linear growth rates of the tepmstability) gets reduced and this leads
to the reduction in the linear stabilization impatthe flow. Finally, the growth rate of the

tearing mode tends to approach to the case wiffmutat 2 = 2.0.

The key objective of this study is to examine #ftects of dynamic flow on the
magnetic reconnection process of the resistivenganodes. A common feature observed
in the nonlinear evolution phase is that the n@admmagnetic reconnection processes
proceed in two phases: in the first phase, a namawent sheet is generated with the SP

scaling, and a plasmoid instability is triggered the second phase where multiple
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Figure 5.3: Contour plots of magnetic flux at diéfet times in the simulations &fgure

5.2, with frequency? = 0.48 (upper panel) and® = 2.0 (lower panel), respectively.

plasmoids are continuously generated and ejectedgathe narrow current sheet, as
depicted for the cases a? = 0.48 (upper panel) and? = 2.0 (lower panel) inFigure.

5.3 During the bursty reconnection phase, small ptadsngrow in size, coalesce with
each other, occasionally form big monster plasmaiu$ eventually shift along the current
sheet to merge with the primary island. Meanwhilew plasmoids are being constantly

generated and this process is repeated many thmas.Figure 5.3 it is observed that the
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direction of the plasmoids ejection depends onfribguency as well as radial parity of the
dynamic flow. In the case of even-parity, the eg@ctdirection alternates after the half
period of the flow oscillation. Alternation of tlrection of the plasmoids ejection tends

to be fast as the flow frequency increases.

The impact of odd-parity flow on the linear and lo@ar evolution of the tearing
mode is quite different from the even-parity floase as depicted Figure. 5.4 The linear
growth rate is almost not affected. This is du¢hfact that the flow shear at the rational
surface is quite low (almost zero) in the odd-gactse. However, in the nonlinear
evolution of the tearing instability, the odd-pwriflow also leads to the plasmoid
instability, similar to the case with even-paritgvi. Comparison of the plasmoid evolution
(contour plots of magnetic flux) during the impuisireconnection phase for both even-
and odd-parity flows is shown figure. 5.5 Due to small value of the flow frequency, we
can see that plasmoids are ejected only in upwiaedttbn in the case of even-parity flow
(upper panel). However, in the case of odd-patiitg,flow has no effect on the direction of
plasmoid ejection. This means the plasmoid wilepexted either in upward or downward
direction, depending on its position where it issd@ to the upper or lower end of the
current sheet. Interestingly, this behavior is sehe consistent with previous simulation
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have confirmed that in the linear growth phase pllasmoids grow exponentially and then
enter the complex nonlinear stage once the plasmath grows larger than the current
sheet width. The plasmoids may be formed with ckifié sizes and at different positions
along the current sheet. The small plasmoids hhw# &fetime and are quickly coalesced
with the bigger plasmoids. The monster plasmoidseweccasionally observed with
maximum width ofw,,,, = E:f/sz~0.1L, whereE s andL are the effective reconnection
rate and length of the secondary current sheeectsply. In this study, we observe quite
similar behavior of the plasmoid instability, wharatially small plasmoids are formed
along the current sheet, which then coalesce veith @ther, forming larger plasmoids. In
general, the monster plasmoid appears only if dversdary island is created at the center
of the narrow secondary current sheet. Our obsensatsuggest that monster plasmoids
are generated, more probably in the case of evety-flaw with intermediate frequencies.

The maximum size of the monster plasmoid can behiguestimated asv,,,, =

ng/sz~O.164, which is close to the observed valuewy,,~0.17, for the even-parity
case of 2~0.48 in Figure 5.3.Here the effective reconnection rate in the pladmo
dominated stage i8¢ ~0.027 and the current sheet length-1.0. Thus, the plasmoid
instability with the dynamic flow roughly followshé same tendency as observed in the
previous cases without flow81, 83] In addition to the frequency and radial paritieet

of the dynamic flow on the plasmoid dynamics, manportantly the critical condition for

the plasmoid instability, i.€5. > 10%, is relaxed.

The difference between even and odd-parity flowsiigher illustrated by plotting the
full pictures of the flux contours as depictedFigure 5.6 The primary magnetic island
exhibits rotation in the case of even-parity flovithwa frequency equal to that of the
imposed dynamic flow. One complete cycle of the neig island oscillation is plotted
from t=281 to t=293 (one time period is= 2 /Q = 131,. The magnetic island rotation
is evidently reversed after half of the time periofi the flow oscillation. Such an
oscillatory behavior of the magnetic island in cadeeven-parity dynamic flow may
plausibly be responsible for the altering the plashdirection of plasmoid ejection along
the current sheet. Actually, this kind of oscilkets may come from the finitely large flow

shear at the rational surface. This understandirigrther substantiated by the fact that the
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Figure 5.6: Contour plots of magnetic flux at diffet times during the nonline
simulations for even-parity (upper panel) and oddtp (lower panel), respectively.

The other simulation parameters ares 2.8 x 107*, A = 8 x 10~* andQ = 0.48.

magnetic island oscillation effect is absent in¢hse of odd-parity flow as depicted in the
lower panel ofFigure 5.6 That's why in case of odd-parity flow, the plasdhdirection is

not influenced by the dynamic flow.

It is noteworthy that the primary magnetic islasdperfectly symmetric along the

axis in the tearing mode evolution without flowshere the O-point of the single
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secondary island coincides with the X-point of ghignary island. However, including the
dynamic flow with a finiték)*, symmetries of the primary magnetic island alonthix-
andy-axes are affected significantly. The primary islas actually shifted either upward
or downward along thg-axis and exhibits slight oscillations alorgandy-axes in the
plasmoid dominated regime, depending on the floaperties. In the following, we will
elaborate the linear stability analyses of theitgamode by scanning the parametric
dependence of the dynamic flows and quantify thewfleffect on the magnetic

reconnection by measuring the reconnected fluXfectve reconnection rates.
5.4.Linear Stability Analysis

Though the main focus of our study is to explore ttynamics of impulsive nonlinear
reconnection phase, however, it may be helpfulaeha quick look at the linear stability
properties of the tearing mode under the influeot@a background dynamic flow. It is
evident fromFigure 5.4that dynamic flows with even radial parity modifye linear
growth rates of the tearing mode. However, in aafsedd radial parity flows, the linear
growths remain almost unaffected. This differerspnse is identified to result from the
local flow shear at the rational surface= 0, which is maximum for the even parity flow
and zero for the odd parity dynamic flow. To chatifiis mechanism, we simulate the cases
by artificially changing the local flow shear aethational surface, confirming that as long
as the local flow shear is strong in the resistaxger, the linear growth of the mode is
significantly stabilized. Therefore, we limit thaeéar stability analysis of the tearing mode
to even radial parity flow only. However, duringethonlinear evolution of tearing mode

both even and odd parity flows are effective in ifyadg the reconnection properties.
5.4.1. Linear Growth Rate Dependence on the Dynamic Flowmplitude

The dependence of linear tearing mode on the dyn#iaw amplituded, is investigated in
the range ofd = 107> ~ 1073, Simulations at a fixed frequen@y= 0.08 show that
linear stabilization of the tearing mode is effeetfor the flow amplituded > 10~*. The
maximum amplitude of the dynamic flow is choserb&ocomparable to the level of the

plasma flow.Figure 5.7(a)plots the growth rate verses the flow amplitude tioree
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Figure 5.7: Linear growth rates of the tearing mudeses the amplitude of even radial

parity dynamic flow for different values gf (a) and different values af’ (b).

resistivity cases at fixed'= 17.3 . The stabilization effect due to the backgroundadyic
flow gets enhanced with the flow amplitude and gditshtly stronger at lower resistivity.
This is due to the fact that flow shear stabilizatis more effective in narrow resistive
layer (corresponding to lowey). Figure 5.7 (bplots the growth rate verses the amplitude
for three values of\’ at a fixed resistivityy = 2.8 x 10™*, showing similar stabilization

dependence.
5.4.2.Linear Growth Rate Dependence on the Dynamic Flowréquency

Next, we analyze the frequency effect of the dymafitow. Note that it is the finite
frequency andk, dependence of this flow, which distinguishes wnir the usually
considered random flows in turbulent reconnectiéor. the radial even parity flow with
fixed k,, linear simulations are performed in a broad fesmy region withf =

0.0 ~ 2.0, as shown irFigure 5.8,where the linear growth rates are plotted verkes t
turbulent flow frequency for three constant amplés. It seems reasonable to divide the
entire frequency domain into three sub-regions:L@Ww frequency region, where the
growth rate is remarkably reduced by the evenafibw (even with negligible

frequency), the stabilization weekly depends on fteguency. (II) Medium frequency
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represent the case with odd-parity flow. The hariab dashed line references the
growth rate in the case without flow; vertical dagtines partition the parameter region
with different physical dependence. Simulation paeters aren = 2.8 X 107*,
A'=17.3 and k;)F = 2.75.

region withQ > Q. where the impact of dynamic turbulent flow beceme

~ Ymup’
measurable. The critical frequenQy in Fig. 4 is aboui.04. The tearing mode instability
is significantly affected by the dynamic flow inighregion. Specifically, the stabilization
effect is evidently weakened by the finite frequenthis influence of the finite frequency
flows on tearing mode instability is quite analogda that of time dependeitx B flows

in micro-turbulence[131, 132] where the flow frequency can reduce its role in
suppressing the turbulence. (Ill) High frequencgioa with Q > v, ..., where the flow
stabilization effect almost disappears, and evehtsbestabilization takes place. In this
region, the dependence of the dynamic flow effecth@ flow frequency tends to be weak,
suggesting that the macro-scale tearing mode ations hardly response directly to the

micro-scale turbulent flow. However, high frequentgnamic flows may play vital role in
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determining the onset criteria for the nonlineaputsive reconnection phase even if they
are linearly non-relevant. In addition, the grow#tes verses the flow frequency for the
case with odd-parity dynamic flow are also illugtchin Figure 5.8(labeled by the blue
triangular marks) for comparison, showing almostimpact of the odd-parity dynamic

flow on the tearing mode instability.
5.5. Effective Reconnection Rates in Plasmoid-Dominatedhase

In order to explicate the two phase reconnectioocgss in the presence of dynamic
turbulent flow, we evaluate the magnetic reconoeectby measuring the effective
reconnection rat€.; so that the flow effect can be quantitatively digsel. For the
tearing mode without the external flow, the recartios rate is defined in usual way as the
rate of change of the reconnected magnetic fluwnglthe current sheet, i.Eq; =
dy,.../dt, wherey,.. is the reconnected flux, measured along the cuskeet atx =

y = 0. However, in the presence of background dynanow,flthis diagnostic is not
applicable as it is, because of the turbulent nmstiof the current sheet and the plasmoids.
In this case, reconnected magnetic flyx... is defined instead as the difference of
maximum (O-point) and minimum (X-point) fluxes afpthe current sheek (= 0). Thus
the maximum and the minimum fluxes are evaluateglaah time step to account for the
dynamic behavior of the system. From this recorate€iux, instantaneous reconnection

rateE is defined as follows:

d rec d 3
% = (max(y(0,y,t)) — min(¥(0,y,1))). (5.2)

In the plasmoid dominated impulsive reconnectiomime, we get a fluctuating

E(t) =

reconnection rate, which average value is defiretha effective reconnection raig.
Alternatively, we get the same value of the effeetieconnection rate by fitting slope to
the fluctuating reconnected flux in the plasmoidndtated regime, where the reconnected

flux approximately grows fron0.4 to 0.8 (for example, seEigure 9 (c).

The reconnected flux and the corresponding recdiumecates are calculated for the
dynamic flow with even radial parity and the copesding original tearing mode without

flow, by using this diagnostics and plotted Figure 5.9 (c)and 5.9(d) respectively. In
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Figure 5.9: Time history of mean square perturbegmetic potentiak,, = < ¥? >/2
(a); instantaneous growth rate of the correspondiagnetic flux (b); the reconnected
magnetic flux(c); the reconnection rate (d) in pi¢gl nonlinear simulation with even

parity dynamic flow. Parameters ane= 2.8 x 107, A =4 x 10~* and 2 = 0.08.

Figure 5.9(a)and5.9 (b) we plot the time history of mean square magnatiential and
the instantaneous growth rate of the corresponduggaged magnetic flux. In the linear
stage, the growth rate is stabilized by the dyndioi@, which plausibly delays the onset
of the impulsive reconnection phase as evident fFogure 5.9 (b) After the quasistatic
evolution of the current sheet in the SP reconoacgihase, the plasmoids instability is
triggered at once for the dynamic flow case, whére secondary plasmoids are
continuously generated and ejected from the cuskeét (se€igure 5.3andFigure 5.9.
These plasmoids grow in size, coalesce with edudrotorming big monster plasmoid and

finally coalesce with the primary island. This kinfiplasmoid instability leads to sudden
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Figure 5.10: Time evolution of reconnection rat@sfor even-parity and, (b) odd parity
dynamic flows with different frequencies. Parametaren = 2.8 x 10~* and4 = 8 x

10~*. The symbols of red squares represent onset dagih@econnection phase.

enhancement of the reconnected flux as depictddguare 5.9 (c) The impulsive bursty
reconnection phase can easily be identified byntheked oscillations of the reconnected
flux, which are more evident in the reconnectiote ravolution Figure 5.9 (d). The
corresponding effective reconnection rate in tlasloid dominated phase is 0.027, which

is much higher than the slow SP reconnection rateawpeak reconnection rate of 0.01.
5.6.Impulsive Reconnection as a Function of Flow Frequey

We next examine the onset conditions of the impal&iursty reconnection as a function
of frequency, parity and amplitude of the dynamiant For this purpose, we perform
nonlinear simulations with different flow frequeesj both for odd and even radial
parities. It is observed that the onset of the ilsiga fast reconnection phase is
considerably modified with the frequency of the ayrnc flow, as depicted iRigure 5.10
for three different frequencies cases. The onsst bf the impulsive bursty reconnection
is marked by small squares, which actually indighte start of the plasmoid instability.
The onset time corresponds to the time when thenskecy current sheet (SP type) starts

fragmenting into small size plasmoids, which thetees into complex nonlinear stage.

107



From this time onward there is an evident increasamplitude as well as fluctuations in
the reconnection rate as depictedrigure 10 Such fluctuations of the reconnection rate
evolution correspond to the evolution dynamicshaf plasmoids. The fluctuation level is
modified with the plasmoid size. This fact is mexedent from the magnetic flux contours
of Figure 5.3.In the case of even-parity flow with = 0.48, the monster plamoids are
formed at timet = 292, the corresponding fluctuation level in the receetion rate is
very high as shown ifrigure 5.10 (a)For the higher frequencQ = 2.0, the level of
fluctuation in the reconnection rate is low, beeatise plasmoid size is much smaller
compared to that in the case @f= 0.48. It seems that the fluctuation level scales almost
linearly with plasmoid size however we have notfeared the exact relation. In the case
of the radial even-parity dynamic flowsSigure. 5.10 () it is observed that the plasmoids
dominated fast reconnection is triggered earlighwncreasing the frequency, however,
this tendency is reversed for higher frequency.t@other hand, for radial odd-parity
flow, the onset time of the impulsive reconnectisrdelayed with the flow frequency as
shown inFigure 5.10 (h)

5.7.Dependence of the Impulsive Reconnection on Flow iy

To further clarify the dependence of the plasmaidat on the flow frequency and radial
parity, we plot the onset time of the plasmoid abgity verses the flow frequency in a
broad range of) = 0.04 to 2.0, both for even and odd parity flows as depicte&igure
5.11 For radial even parity dynamic flows, the onskthe impulsive reconnection is
triggered early with the increasing flow frequenamtil Q~0.5, beyond which this
tendency of onset is reversed and becomes alnepémdent of the flow frequency. This
kind of behavior is quite consistent with the linenalysis Figure 5.8, where the
stabilization effect gets reduced with the incregsilow frequency until some critical
value, after which the growth rate comes back &dhginal value (that of without flow
case). The odd radial flow exhibits different freqay dependence, where the onset time
of the impulsive reconnection phase is delayed whth increasing flow frequency in a
narrow frequency regime di.04 < Q < 0.12 and finally not affected. This implies that

the onset of the impulsive reconnection may noty apend on the linear growth
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Figure 5.11: Onset time of the plasmoid dominatetulent reconnection phase verses
the dynamic flow frequency, both for even and oddial parities. Parameters are
n=28x10"%4=8x10"* and Q = 0.08.

behavior but also involve some nonlinear contrifmgi It is important to note that
although the onset condition of the impulsive rewtion is significantly modified by the
flow frequency, the effective peak reconnectiorerat the turbulent phase is almost

independent of the flow frequency, both for eved add parity flows.
5.8.Impulsive Reconnection as a Function of Flow Ampliide

Amplitude of the dynamic flow is another importdattor that can affect the impulsive
reconnection behavior. Simulation results for thadkerent flow amplitudes are presented
in Figure 5.12for both the odd and even radial parities. Comparthe high amplitude
case inFigure 5.9 the two distinct reconnection phases are welasspd for the low
amplitudes flows. Actually, for low amplitude flowshe SP current sheet instead of
directly inducing the plasmoid instability, leads the formation of a single secondary
island, which flows upward or downward, finally tkag to the plasmoid instability. Thus,
the onset time of impulsive bursty reconnectiodetayed by decreasing the amplitude of

the dynamic flow, both for even and odd parity flove difference in the onset time with
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Figure 5.12: Time evolution of the reconnectioresator different dynamic flow with
even (a) or odd (b) radial parity and amplitudgg; = 107%,10~7 and10~1°, Other
parameters arg = 2.8 x 10~* and Q = 0.08.

different flow amplitudes is more obvious for theee radial parity flow. The effective
reconnection rate in case of even parity slightdgrdases by reducing the flow amplitude,
however, the effective reconnection rate is almodependent of the flow amplitude in
case of odd parity dynamic flows. From this analyse can conclude that the plasmoid
instability is very weakly dependent on the turlbaléow amplitude. This is somewhat
consistent with the previous turbulent reconnecstudies107] where they conclude that
the role of the background turbulence is just toetarate the triggering of the plasmoid
instability and even very small amplitude randonssaanay be sufficient for the onset of

the plasmoid instability. However, the role of ertd turbulence forcing and its type is

still a debatable issue and further research igiredj in this regard.
5.9. Scaling Analysis of the Effective Reconnection Rate

Finally, it is worthwhile to confirm that the aboveentioned plasmoid-dominated
reconnection is truly a fast reconnection (whichamgeindependent §). For this purpose,
we perform scaling analysis of the effective reamtion rate with the Lundquist number.
For fixed frequency and amplitude of the dynamicbtlent flow, effective peak
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reconnection rates are estimated for differenstiesty runs with both even and odd radial
parities. The resulting dependence of the effecta@nnection rates on the Lundquist
numberS = 1/7 is depicted inFigure 5.13 For the sake of comparison, we also plot the
reconnection rates of the resistive tearing mod@owt flow, depicting good agreement
with the SP scaling=%/? (represented by dashed line). Note that here ther dars
represent the standard deviation. These resultrlglelemonstrate that the effective
reconnection rate is almost independent of redigthoth for the odd and even parity
flows as shown irFigure 5.13 (g)which implies that the plasmoid dominated turhtile
reconnection is truly fast reconnection. It is matethy that the effective reconnection rate
Ec¢ is higher for the odd radial parity case compdmethe even parity at the same value
of Lundquist number. Th&'s scaling with Lundquist number is also plotted faro
different frequency cases as depictedigure 5.13 (h)A similar tendency is observed for
the effective reconnection scaling with the Lundgumiumber, for both of the frequencies.

However, the effective reconnection rate is sligktihanced for higher frequency.
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5.10.Discussion and Conclusions

We have performed a detailed numerical study oftihe dimensional incompressible
resistive magnetic reconnection with a finite freqay dynamic turbulent flow. We found
that the linear stability properties of the tearmngde are moderately affected by dynamic
flow with different radial parity, amplitude andefjuency. More importantly, a two phase
reconnection process is observed, where the qaasiSIP reconnection takes place in the
first phase and is followed by the plasmoid-domedatast reconnection in the second
phase. The reconnection rate is significantly enbdrin the region of low resistivity for
the typical dynamic flow parameters. In additiohe tonset time of the plasmoid-
dominated impulsive reconnection phase is strongdgified with the flow frequency and
amplitude, and is more sensitive for the radialneparity flows. The scaling of the
effective reconnection rate with the Lundquist nemls showed that the plasmoid-
dominated reconnection is independent of S, whighfians that this is truly a fast
reconnection. The enhancement of the reconnecttas which is observed by including
the dynamic flow may be associated with the dynamidtiple plasmoid generation along
the current sheet, quite similar to the previouseoations in turbulent reconnectid®3-
111]. In most of those studies the turbulent effectsewesually introduced by an external
forcing term in the form of random noise. Howes far there is no universal agreement
on the role of the random noise in the magnetionmeection process. Thus, instead of the
random noise we considered the ITG-like small stiadeulence in our study, which made
it possible to explore the effects of finite freqag and radial parity of the turbulent flow
on the magnetic reconnection process and is qoaigous to the real physical situation
where the MHD tearing mode interacts with the seedlle ITG driven turbulence.

In this study, we did not include the viscosity eets, however small values of
viscosity (Prandtl numbdtr = u/n « 1) are used to avoid numerical problems. The
inclusions of strong viscosityr > 1 might affect the reconnection process by modifying
the onset criteria of the current sheet and thec@kngand therefore may also modify the
impulsive reconnection phase. Therefore, finitelsge values of viscosity may affect the
impulsive reconnection process and is left for fetstudy. Another, feature of the flow not

covered in this study is the wave numbgf. Throughout this study, we kept a constant

112



value of k)F = 2.75 for the dynamic flow. However, in realistic phyaiicsituations, it

may be necessary to consider a broad spectrukjafwhich may add further complexity
to the nonlinear MHD turbulence interactions. Hyalt may be useful to analyze the
impact of changing the boundary conditions andettpeilibrium profiles on the magnetic

reconnection behavior of resistive tearing modehwihe pre-existing small scale
turbulence.
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Chapter 6

Conclusions and Future Work

In the limit of large instability parametaf (strongly driven regime), the nonlinear
dynamics of resistive tearing mode exhibit an abgrpwth phase after the Rutherford’s
slow nonlinear phase, which is accompanied by dapsé of the typical X-point
configuration to Y-type current sheet. The physitadger mechanism for the X-point
collapse, leading to the explosive growth dynamgstill an unresolved issue. Moreover,
the role of viscosity in the transition from slowninear phase to abrupt growth phase has
not been considered in the previous studies. Amotiig issue in the present day
reconnection research is the identification of na@idm responsible for the observed
faster reconnection rates in weakly collisionalsptas with high Lundquist numbér=
1/n, compared to the much slower reconnection rategdigted by the Sweet Parker (SP)
theory. This thesis is thus devoted to the studthefcomplex nonlinear dynamics of the
resistive tearing mode, focusing on the investayabf the trigger mechanism for the X-
point collapse as well as the role of viscosityhe transition from slow growth phase to
the abrupt reconnection phase. Furthermore, thee @asirbulent magnetic reconnection is
also addressed in this study, aiming to get fasteonnection rates by exciting the

dynamic plasmoid instability and hence fill the dmtween theory and observations.

In order to achieve these objectives, the incongioes two field reduced-
magnetohydrodynamics (RMHD) equations are solvedndml value problem in the
simplified two-dimensional slab geometry. The siatidn code is first benchmarked for
the linear growth rate scaling of the resistiveriten instability for various plasma
parameters. The main achievements of this studydes the identification of the physical
trigger mechanism for the X-point collapse, as veslithe role of plasma viscosity on

the critical conditions for the transition from thl®w nonlinear growth phase to the abrupt
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growth phase. A secondary instability analysis wesposed, which testified that zonal
current peaking may plausibly be responsible ferdhset of explosive growth dynamics.
In addition, a new transition criterion for thetwal island width of the X-point collapse
was suggested by performing a comprehensive namlisealing analysis of the critical
island width in terms oA’ W, verses the viscosity. Moreover, by introducinge@xisting
dynamic turbulent flow in the RMHD system, the phaséd-dominated impulsive bursty
reconnection is studied. Through such analysis, astially tried to realize the real
physical situation where the MHD tearing mode iat¢s with the small scale ITG driven
turbulence.

6.1.Conclusions

For the sake of convenience, the key findings &f thsearch study are summarized as

follows:

1. The nonlinear evolution of the resistive tearingdeois investigated in the
framework of RMHD, where the transition from thewl|Rutherford regime to the
Sweet Parker reconnection phase is observed icae of large enough instability
parameteA’ and low values of resistivity. This transition identified by the
change in the magnetic island configuration, whtre X-point geometry is
replaced by a narrow current sheet. The trigger ha@sm of such X-point

collapse is studied in detail.

2. A secondary instability analysis is proposed basedhe quasilinear modification
of the equilibrium current profile due to the zonalrrent. Thus, the new
equilibrium contains two parts, the original eduilum and the instantaneous value
of the zonal current. The zonal current modifies #guilibrium profile in two
ways, by inducing local peaking of the current peokt the rational surface and

broadening of the current profile in the region gram the resistive layer.

3. The secondary instability analysis is applied sajgdy for the zonal current
peaking and broadening effects. The simulationltesaveal that actually it is the
local current peaking effect due to the zonal aurihat results in a nonlinear

positive feedback to enhance the tearing modeuaiitins, signifying a probable
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mechanism for the onset of X-point collapse andastpe nonlinear growth. On
the other hand, flattening of the equilibrium pl®fcauses stabilization of the
growth rates. By including finitely large viscosityhe current peaking and
broadening effect due to the zonal current is redutiowever, from secondary

analysis a similar tendency as found in non-visaas®, is observed.

It is found that the previous scaling of the catiisland width for the X-point
collapseA’w, [67] is modified in the presence of finite viscosity.nAw transition
criterion is suggested for the critical island waidicaling by including the viscosity
dependencfl25]: A'w, = C(u) + g(A', w)n (Equation 4.8)

. Viscosity modifies the scaling of critical islanddth mainly in two ways: reducing
the slopes of its scaling with resistivity and upHing the value of the critical
island width in the limit of zero resistivity. Mosnportantly, a transition behavior

is observed in the critical island width scalingwihe viscosity atB. =1.

. In the speed up reconnection phase, the reconneetie scaling strongly depends
on the plasma viscosity, showing almost no changg. i< 1 regime and strong

stabilization effect inP. > 1 regime.

. The resistive tearing mode reconnection is fountecsignificantly modified by
including a finite frequency dynamic turbulent floguite similar to an electrostatic
ITG wave and is coupled with the stream functio anagnetic flux through
Poisson brackets.

. The linear and nonlinear reconnection propertiethefresistive tearing mode are
analyzed by including a background dynamic turbulBow. Linear stability
properties of the tearing mode are found to be maddly modified with the
dynamic flow, depending on the radial parity, freqay and amplitude of the flow.
In particular, it is observed that by increasing flow frequency beyond a critical

valuei.e. (2= Q; = vyy,p), the stabilization effect of the dynamic flow is

reduced, quite analogous to that of time dependienB flows in micro-
turbulencg131, 132]

116



9.

10.

11.

12.

13.

The linear stability properties of the tearing made found to be modified only in
the case of even-parity dynamic flow. This diffareesponse for even and odd
parity flows is identified to result from the locfllow shear at the rational
surfacex = 0, which is maximum for even-parity flow and zero the odd-parity

dynamic flow.

Most importantly, the nonlinear evolution of magadsland exhibits two phase
reconnection by including the dynamic flow. A cuntrsheet is formed in the first
phase where slow SP reconnection takes place afallosved by the plasmoid
instability in the second phase, where multiple splaids are continuously
generated and ejected along the current sheetintead a bursty impulsive
reconnection. The onset time of the plasmoid-doteimapulsive reconnection is

strongly modified with the flow frequency and pwrit

The direction of ejection of the plamoids is foutedbe dependent on the radial
flow profile (whether symmetric or anti-symmetri&$ well as the flow frequency.
In the case of even-parity, the ejection directidternates after the half period of
the flow oscillation. Alternation of the directiaf the plasmoids ejection tends to
be fast as the flow frequency increases. Howevethé case of odd-parity, the
flow has no effect on the direction of plasmoidcémn. This implies that the

plasmoid will be ejected either in upward or downdvdirection, depending on its

position where it is close to the upper or lowed ehthe current sheet.

The difference between the radial odd and evenypeaises is further illustrated by
the primary magnetic island dynamic behavior inribalinear phase. The primary
magnetic island exhibit rotation with the radiahsyetric dynamic flows and no
impact for the anti-symmetric flows. The frequergythe island rotation is exactly
the same as that of the imposed turbulent flows Tasult is quite consistent with

the previous simulationd 12].

Another important result is the formation of mongpéasmoid in the impulsive
nonlinear reconnection phase. The monster plasmao&d formed only if the
secondary island is created at the center of th@waecondary current sheet. Our

observations suggest that monster plasmoids ocoue probably in the case of
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even-parity flow with intermediate frequencies. Thaximum size of the monster
plasmoid can be roughly estimated to~#:164, which is close to the observed

value of wy,4,~0.17, for the even-parity case @¢1~0.48 in Figure 5.3

14. Finally, the scaling of reconnection rates is fouade independent of resistivity,
which signify the fact that plasmoid-dominated mmoection is truly fast
reconnection. Thus our results suggest enhanceohéhé reconnection rates with
the inclusion of finite frequency dynamic turbuldidw, most probably by the

generation of multiple dynamic plasmoids alongd¢heent sheet.
6.2. Future Work

6.2.1.Improvement of the Numerical Code

The numerical study of the current sheet and plasmustability require very high
resolution since such instability can only be obedrin the limit of large values of the
instability parameteA” and small resistivityy. Thus, we need to improve the numerical
resolution of our simulation code (in spatial domato unearth the hidden physics of the
nonlinear resistive tearing mode reconnection. Aeotpossible improvement may be
increasing the accuracy of the finite differencénesne by employing higher order
schemes. This will make it easy to increase theamigal resolution along the radial
direction. The tearing mode evolution continuesrfarch longer times for small values
which means it is the waste of computational resesito use fixed mesh size. Therefore,
it will be very useful to implement the adaptive shealgorithm in our simulation code,
which will make it possible to study the more rstdi high Lundquist number regimes. To
further enhance the speed of our simulations, it v@ really helpful to parallelize our

numerical code.
6.2.2.The Multi-scale Problem

In the last part of this thesis, we discussed thpaict of pre-existing dynamic turbulent
flow similar to the ITG-like electrostatic wave, ¢ime resistive tearing mode reconnection

process. Actually, the coexistence of MHD actigtiacluding the tearing mode and ITG
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driven drift wave have been reported to occur comgnm magnetic fusion plasmidd 3-
115] Those studies have revealed that multi-scale utence and resistive MHD
interaction may provide new destabilizing/stabilzimechanism. The fluctuations from
different scales can directly interact with eacheotor indirectly affect through a zonal
flow. Thus, it is quite important to consider thmpact of ITG-turbulence (with full
spectrum of wavelengths) on the impulsive fast neignreconnection in the case of

resistive tearing mode.
6.2.3.Reconnection beyond Resistive-MHD

In this study, we have analyzed the tearing modmmeection in the framework of
resistive MHD, where the nonlinear evolution extsltihe formation of slowly evolving
Sweet Parker type current sheet. However, it has krown for quite some time that such
a current sheet can be unstable to the plasmadabitity at high Lundquist number S with
critical values of the order af~10*. Actually at such high values of S, the resistidD
description is no more valid and the current skaeéth reaches the kinetic scales. Then the
two fluid (Hall) and kinetic effects become impartaFor example, without a guide field,
the transition from the slow collisional (ResistiviéID) to the fast collisionless Hall MHD
occurs if the half thickness of the current sheetligted by SP model is smaller than the
ion skin depth, i.edsp < d;, wheredsp represent the SP current sheet width énis the
ion skin depth and which should be replaced byidheLarmor radius at the sound speed
ps , if the strong guide field is consideré®l7-93]. There are two possibilities, either the
secondary current sheet becomes thin enough tatlglirgigger the collisionless Hall
reconnection or alternatively, the current sheetinstable to the collisional plasmoid
instability, leading to much thinner inter-plasmaigrrent sheets, which can onset the fast
Hall reconnection. Therefore, transition from thdlisional plasmoid instability to the
collisionless Hall reconnection can be a promidirigre reconnection study. Furthermore,
it may be interesting to investigate the impacsmwill scale background turbulence on the

onset of plasmoid-induced Hall reconnection.
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6.2.4.The 3D Effects

The results presented in this thesis are basedostitly. The validity of these results in
the more realistic 3D geometry is still poorly ursteod that needs further investigations.
However, a few 3D studies have recently been pedr using the Harris sheet
equilibrium and including a strong guide fie[d33-134] The main consequence of
incorporating the guide field in the third dimensis that the 2D island now becomes flux
ropes, which can are defined as regions of hefiell. In addition to the formation of the
flux ropes (magnetic island), there are many oti@rprocesses, which can affect the
reconnection, e.g. streaming instability, low-hgbdrift instability and kinetic instabilities.
Therefore, it is worthwhile to explore the physiak fast magnetic reconnection (for
example the plasmoid-dominated impulsive reconasgtin complex but realistic 3D
geometries.
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Appendixes

A.Normalization of the RMHD equations

In this appendix, we describe the normalizationlemented in RMHD equations. The
details are as follows:

* Lengths are normalized to some characteristic kerzgt(layer width of the current
carrying region near the singular surface).

* Time is normalized to the Alfvén time, = a / v4, Wherev, is Alfvén velocity
defined byv, = By/\/topo = Bo/\[1o (assuming thag, = 1).

* The magnetic field is normalized to the in-plan&gumagnetic field,.

For sake of convenience let rewrite the Ohm’s laguétion (2.27)) and equation of
motion (equation (2.37)):

1
0y + [P, 9] = u—anlP, (A.1)
0
1
0,(V2¢) + [p, V2] = e [, V2] + uv?(V2¢) (A.2)
0
With these normalizations, the fields are represetas follows:
~_ P ~_ 9
V= aB,’ ¢= av,’
k, = ak,, Boy(x) = 0y ()
By

Implementing the above normalization, equation J&&dn be written as:

aBydy 1 ~ o n aBy ., ~
M S T ,aB 0| = —— 729, A.3
T, ot + a? [avA¢ a Olp] Lo a? lrb ( )
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10y avy . ) _ n1._. .
—4 aBo {EE'F?[(P,IP]} —aBOE;V l,b (A4)
10y var. ~ 11 .
T ot ;[4’.1,0]—%;‘71# (A.5)
109 1. ., n1._ .
—— +—|p, Y] = ——=72 A.6
> MMM Y (A.6)
alﬁ 1 77 TA o R
= a£+[¢,¢]_gﬁvlp (A.7)
o g N
= af+[¢'¢]_u0avAV P, (A.8)
0P o o oo
= oz +[6.9] =177, (A-9)

Where, 7 = n/ugav, =1 /S (Srepresents the Lundquist number and is also défase
the ratio of the resistive time to Alfvén time).

Now, from the equation of motion we get:

(ﬁygww +—[aved, A 92 = %W%YW—Wﬂ+w—WW%MAm
i%%%w%pgﬁawa=i§mﬁ%hw%ww%) (A.11)

o S20°9) + 15.06] = T 0] B ()

o ST 169 = AR (g, 020] +uTitemg) a1d)

= 57 (729) +6.926] = [0.929] + -72(%9) (A.14)

5 %(m) +[6,028] = [, 0%0] + a02(723). (A.15)

Where, i is the normalized viscosity. In addition, the d#ion of the equilibrium

magnetic field in the Ohm’s law is prevented byiaddan externally applied electric field
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E, = —nV?y, to the right-hand side of equation (A.9). Thusphing the hats, the final
form of the normalized RMHD equations is given @lofvs:

0rh = =, Y] + V2 — o), (A.16)
0:(V29) = —[¢, V2] + [, V2Pl + uV2(V2¢). (A.17)

The above two equations are actually solved in simulation studies to analyze the

evolution of the perturbed flux and plasma flow.
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B. Delta Prime Calculations

In this section, we detail calculations of the awslity parameterA’ for two types of
equilibrium profiles. First, we consider the 1/cbsimd latter will repeat the analysis for

the Harris equilibrium. The basic approach is th@e as reported {A21].
B.1 Equilibrium profile of 1/cosh?(x)

Let consider the equilibrium in generalized fornfakws:

1P0y(x) = 1 sech®(x/a) (B.1)
The analytical expressions for the correspondyg, J,, and J, are given below.
0 2
Boy (x) = < i(:y) = —alpo sech?(x/a) tanh(x/a) (B.2)
02 2
Joz(x) = < a;f;) = ;wo sech*(x/a) [cosh(2x/a) — 2] (B.3)

Joz (%) = % Posech®(x/a) sinh (x/a)[3 — cosh?(x/a)] (B.4)

To calculate the instability paramet¥y we have to solve equation (3.12) for the

perturbation fluxy, . For the sake of convenience, we rewrite the égu#8.12):

/

%
Wi () - <k§ 5 ) Pi(x) = 0 (B.5)
Oy

Inserting the equilibrium expression into the abegaation, we obtain:

- (kz s % Posech®(x/a) sinh (x/a)[3 — cosh?(x/a)]
1(X) —

: Y1) =0 (B.6)
— 7 Yo sech?(x/a) tanh(x/a)

After simplification, we can easily obtain the fmNing equation:

ll’”(x)_(kz"‘i_L) Ph1(x) =0 (B.7)
! Y a2 a?cosh?(x/a)) "'V T '

124



= Py x)—l<atzk2 +4—L) P (x)=0
1 ( a? Y cosh?(x/a) 1) =

= P~ (B~ —s) 1) = 0 (B.8)
1 a? cosh?(x/a)/) 1 '

Where k? = a?k? + 4.

., 4 (k? 3 3
= P (x)—_<z—m> Pi(x) =0 (B.9)

aZ
In order to solve the above equation, we make tifgedollowing transformation;
z = 1/cosh?(x/a) and Y(x) = 1, (x)z*/2
To avoid confusion, we may write it as(x) = ¢,(x)z %2, (i.e.1,(x) = ¢,(x))
Therefore,
0z 2 x x 0z 2
—_— = —— 2 —_ [— —_— i — —
e " sech (a) tanh (a) = % az,/ (1-2),
0%z 4 ( 3 2)
%2 = a2 VA zZ" ).

Now, we can write:

W(x) = ¢, ()22 = ' (x) = Z—fg—iz—k/z - ¢Z§z‘§- Z_i
= ll)(x)—lz ¢>Z—E—¢>] k/2 (B.10)
Similarly we can have,
= P (x) = (z oL+ 2l 12( 1 2%, _El 2", _51212(,52) ,Fk/2
<z ¢>z———z ¢>Z> (—k/2)(z'.z 3 1) (B.11)

After some simplifications, finally we get:
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Y (x) = IZ.Z(l —z)p, + z{(l — E) — (% — E) Z}

+E2 k? E+3E (4) X B.12
d Bl b\ 2)? (B.12)

Putting the values of)’ (x) and y"' (x) into equation (B.12), we obtain:

z(1—z)1p;'+<(1—1€)—(;—1€)z>¢;—<kzz—§—3>1pz=0 (B.13)

This is the well known Gauss’ hypergeometric equgtivhich is easy to solve.
Now, let compare this equation with the generaifof hypergeometric equation:
zA—-2)Y) +(c—(a+ b+ 1)2)Y, —aby, =0 (B.14)

Comparing equations (B.13) and (B.14), we get:

c=1-k (B.15)

b—l;2 k 3 B.16

ab=—-7 (B.16)
3

a+b+1=z—k. (B.17)

Inserting the value dfa" from equation (B.16) into equation (B.15), we det following

guadratic equation.
4b% + (4k —2)b+ (k2 -k —12) =0 (B.18)
Solving this equation, we obtaib:= 2 — k/2 anda = —3/2 — 3k/2
The standard solution of the hypergeometric equndi#14) is given as:
Y (2) = ,Fi(a,b; ¢; x) +x¥ ¢, Fi(la—c+1,b—c+1; 2—c¢; x) (B.19)

In the same, the solution of equation (B.13) iegias follows:

3 k_ k- . 3 k_ k
ka(Z):Clel —E—E,Z—E;l—k;z +CZZ 2F1 —§+E,2+§;1+k;2 (BZO)

In terms of the original variables, equation (B.BOyvritten as:
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Kk 3 k k _ x
Y (x)z2 = €y ,F <_§_§’2_§;1_k;COSh Z(E))

Kk _E E E I -2
+C,z" ,F; 2+2,2+2,1+k, cosh™*(x/a) (B.21)

= Py (x) = C;(cosh™2 (x/a))_k/2 ,F; (—— — — g; 1 — k; cosh™2 (x/a)>

Rj2 % 3 k k _
+Cz(cosh_2(x/a))k/zzk oF (— St 2+ > 1+k; cosh_z(x/a)) (B.22)

To vanish this solution at larggwe assumé; = 0 andC, = 1, thus we get:

= YPrx) = (cosh(x/a))_ﬁ oF; (—%+ ;, 2+ g; 1+ k; cosh_z(x/a)) (B.23)

The instability parameter can now be estimatesbais:

_ WO -9i0-) i)
$:(0) ¥, (0)

A (B.24)

From equation (B. 23) we get:

z(0) = ,F 3+E 2+E-1+1€-1
l)bk — 211 2 2) 2! ’

F(E+1).r<(l€+1)— (—%+§)—(2+

| =1
N———
N—————

2
= Pr(0) = = =
r((E +1) (—%+§)>r<(l€ +1)— (2 +§)>
r(k +1).r (%)
= Yr(0) = — = (B.25)
r(z-1)r(3+3)
2 22
Note that in above manipulations, we have usedialf@ving property:
I['(c).T(c—a—b
i@ bic1) = —Q:e-azb) (B. 26)

I['(c —a)T(c —b)
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Next, each term in equation (B.25) is simplifiedhgsthe properties;

I'(z+1) =zI[(2)

2\m

r(2)r(z+1/2) = 2

I'(22)

Finally in simplified form, the equation (B.25)eégpressed as:

o 2R k(k—-2)
= Px(0) = GG +3) (B.27)
Next, we determinepz (x);
By definition,
, _dy(z)dz
Pr(x) = 7y dx (B. 28)
Now,
Yi(2) = 2% ,F,(a, B3 7; 2)
d d k
V2 - Lzt oria iy )
= dlg(Z) = EZg‘l oFi(a, Bry;z) + zg.ﬁ JFla+1,8+1Ly+1;2) (B.29)
z 2 Y
Since,
dlfiiz) = —%Z\/l -z (B.30)

Putting equations (B.29) and (B.30) into equatiBrg8), we get:

2af
ayﬁz§+1 Ly —ay—Biy+1;2) (B.31)

k
Pr(x) = azk/z V1—2z ,F(a,B;v;2) —
Where we have used, the properties;

Fila,Biy:z) = Fi(y —a,y — By 2)

From equation (B.13) in the limit of » 0% (z - 1), the first term goes to zero, we get;
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. ! . ! zaﬁ
Jim Y01 =lmyp(0%) = ——= R —ay —fiy+Lz)  (B.32)

3k k
2(—7+7)(2+7) E 5k _
— JFil=+==—Lk+2;1 (B.33)
a(1+k)

N

2F(k - 1)(k - 3)

>y (0Y) = — = B.34
Thus the instability parameter can now be calcdlatefollows:
(0 + 2.28(k—1)(k—3) (k+1)(k+3
¥1(0) a(k +2) 2k k(k —2)
2 (k*—10k%+9
= A'= ——( — ) (B.36)
a k(k?—-4)
2 (—k* + 6k? + 4k* — 9
= A= 2 — ) (B.37)
a k(k? —4)
2[ 6k2—9  _
,= B (B,38)
alk(k? —4)

Where, k? = a’k? + 4. This is the instability parameteY’ for the given equilibrium
profile 1oy (x) = 1o sech®(x/a). Note that in this study, we have considered the

equilibrium profile witha = 1 and ¢y, = 1.
B.2 Equilibrium profile of Harris sheet
Let consider Harris sheet equilibrium:

Yoy (x) = atho log[cosh(x/a)] (B.39)

The analytical expressions for the correspondyg, 1, and J, are given below.

Boy (x) = <6§;y> = Potanh(x/a) (B.40)
Jo, (x) = <6;;/)20> = % sech?(x/a) (B.41)
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J,(x) = —% sech?(x/a) tanh(x/a) (B.42)

To calculate the instability paramet¥y we have to solve equation (3.12) for the

perturbation fluxy,. For the sake of convenience, we rewrite the égu#8.12):

/

J
Py (x) - (k§ + B—“) P1(x) =0 (B.43)
0y
Inserting the equilibrium expression into the abegeation, we obtain:

- % sech?(x/a) tanh(x/a)

YI) — |k + oD P10 =0 (B.44)
After simplification, we can easily obtain:
12 2 2
Wi ~ (K ~ agey) V160 =0 (8.45)

4 (a®k} 1 B
;< 4 2cosh2(x/a)> hio =0 (B.46)

= P71 (%) -
4 (k? 1
= P71 (%) —;<Z—W> P1(x) =0 (B.47)
Where k? = a®k;.

In order to solve the above equation, we use sintinsformation as applied in the
previous equilibrium case;

z = 1/cosh?(x/a),

P(x) = P, ()22
To avoid confusion, we may write it ag(x) = ¢,(x)z72, (i.e.y,(x) = ¢,(x))
Therefore,

0z 2

i —;zm,

0%z 4 3,
Wzﬁ(z_iz )
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Thus, we can write:

P(x) = ¢, (x)z7F2
> '@ = [z’¢; - gz—'@] z /2 (B.48)
Z
After some simplifications, we can get:
3
W' (x) = [z.z(l Y z{(l — k) - (E - k) z}

+k2 k? k +3k (4) _% B.49
x T a? Tt |\ 2)? (B.49)

Putting the values of)’ (x) and y"' (x) into equation (B.47), we obtain:

K2k
z(1—z)¢;'+<(1—k)—(%—k)z>¢;—<Z—Z—%>¢Z —0  (B.50)

This is the Gauss’ hypergeometric equation, whecéolved in the same manner as done in

the previous case, by comparing with the generat fo

Comparing equations (B.50) and (B.14), we get:

c=1—k (B.51)

p K _k_g B.52

W=7y (B.52)
1

a+b+1=2—k (B.53)

Solving the above relations farandb, we can easily obtain;

—1kdb—1k
a=-5—5 and b= 5

Now, the solution of the hypergeometric equatiorb(B is given as follows:

(2) =C F( Lk kg k-)
l)ka_lzl 2 2' 2' 'Z
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+C,z* F(—1+E 1+E'1+k'z> (B.54)
2 2401 2 2! 2: ) .

In terms of the original variables, equation (B.BOyvritten as:

e or (il kL h—z(x)
Tt Ty T Ty v

N =

Yy (x)z

3 k k
+Cyz"* ,F, <—§+§,2 +§;1 + k; cosh_z(x/a)> (B.55)

= P (x) = C;(cosh™2 (x/a))_k/2 oF (—— — ;1 — k; cosh™2 (x/a)>

- 3 k k
+Cz(cosh_2(x/a))k/zzk oF (— St 2+ > 1+k; cosh'z(x/a)> (B.56)

At largex, we assumé€; = 0 andC, = 1, thus we get:

= YPrx) = (cosh(x/a))_k -F1 (—%+ g, 2+ ;; 1+ k; cosh_z(x/a)> (B.57)

The instability parameter can now be estimatecbews:

_ PO - pi0-) i)

A ORI 5-59)
1 k k
Yr(0) = ,F (—54‘5'1 o1tk 1)
1
M+ 1.T(3)  2kk
= ) = — 3 T+ 1 (559
rgr(z+y) **Y
Next, we determinep;, (x);
By definition,
d d
pico) = LD Z (B.60)
Now,
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Yr(2) = z*/? Fila, By 2)

dt/)(z)_d{ k }

2 ca
dZ dZ dZ 2F1(a’ﬁlylz)
Finally, we get:

2
ayﬁ P JFy—ay—Bv+1z) (B.61)

k
Y (x) = EZR/Z V1 —2z ,F(a,B;y;2z) —

From equation (B.61) in the limit of » 0% (z - 1), the first term goes to zero, we get;

2
lim ;.(0%) = lim 13 (0) = —aiﬁ Py —ay—By+12) (B.62)
x— z- y
2 k 3k
= lpllc(o-l-):_aif 2F1<§+§,E;k+2}1) (B.63)
2(-14 By (14K Pk +2).T (3
= Pr(0%) = — (_7+7)( +7) (k +2). (7)
1+k k 1\ . (k
o r(z+2)r(z+2)
o 2k —1)
=P (0") = ——— (B. 64)

a
Thus the instability parameter can now be calcdlatefollows:

_ 0 225k - 1)

M=z Y1(0) B a

(B.65)

S A= —2<k—%> (B.66)

Where,k? = azkf,.
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Reviewed Journal Papers

e« Ahmad Ali, Jiquan Li, Yasuaki Kishimoto, “On the abrupt gtbwdynamics of
nonlinear resistive tearing mode and the viscasitgcts”.
Physics of Plasmé&al, 052312 (1-9) (2014).

» Ahmad Ali, Jiquan Li, Yasuaki Kishimoto, “On the magneticagnection of resistive
tearing mode with the dynamic flow effects”.

Accepted for publication in Physics of Plasmas (a4, 2015).

Conference Contributions and Presentations

* Ahmad Alj, Jiquan Li, Yasuaki Kishimoto, “On the magneticaenection of resistive
tearing mode with the dynamic flow effects”, Plas@anference 2014, November 18-

21, 2014, Niigata, Japan (oral presentation), Rydicg of Plasma Conference 2014,
18pC2-7.

Ahmad Ali, Jiquan Li, Yasuaki Kishimoto, “Viscosity effectsn the explosive
growths of nonlinear resistive tearing mode”, tld2International Toki Conference
(ITC-23) November 18-21, 2013, Ceratopia Toki-Citgifu, Japan (poster
presentation), Special Issue 2 (2014), Plasma asifr Research 9, 3401036 (2014),

the 23rd International Toki Conference (ITC-23) barge-Scale Simulation and
Fusion Science.

Ahmad Ali, Jiquan Li, Yasuaki Kishimoto, “Viscosity effeats the explosive growth
dynamics of nonlinear resistive tearing mode”, NNWSrkshop on “Theory and
Simulation for the Stability of Flow in MHD and RtlDynamics”, Dec 18-19, 2013,
NIFS, Japan (oral presentation).
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Ahmad Ali, Jiquan Li, Yasuaki Kishimoto, “Secondary instépibnalysis of current
sheet formation in tearing mode”, Sokendai Asiamtéfi School, Jan 29-Febl, 2013,
NIFS, Japan (poster presentation).

Ahmad Ali, Jiquan Li, Yasuaki Kishimoto, “Numerical study wénlinear explosive
behavior of tearing mode”, 4th GCOE InternationgimPosium, 22-23 May, 2012,
Bangkok, Thailand (poster presentation).
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