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Preface

Nonlinear semidefinite programming (SDP) is a comparatively new problem which began to be

studied from the 2000s. It is a natural extension of linear SDP, and includes a wide class of

mathematical programming problems. In fact, nonlinear SDP represents not only linear SDP but

also linear programming, second-order cone programming and nonlinear programming. There

exist many applications that are formulated as nonlinear SDP, but cannot be represented as

linear SDP. Thus, it is worth studying on optimization methods for nonlinear SDP in order to

deal with such applications.

In this thesis, we focus on optimization methods for nonlinear SDP. Until now, some re-

searchers have proposed solution methods for nonlinear SDP. Basically, these methods are

derived from the existing methods for nonlinear programming, such as sequential quadratic

programming methods, successive linearization methods, augmented Lagrangian methods and

primal-dual interior point methods. Correa and Ramı́rez proposed a sequential semidefinite

programming method which is an extension of a sequential quadratic programming method.

Kanzow, Nagel, Kato and Fukushima presented a successive linearization method. Luo, Wu and

Chen presented an augmented Lagrangian method. Yamashita, Yabe and Harada proposed a

primal-dual interior point method. Although these methods can solve a certain nonlinear SDP,

they still have theoretical and practical drawbacks. These methods have the global convergence

property, which ensures to get a solution from an arbitrary initial point. However, these global

convergence properties have been proven under some restrictive assumptions. To make mat-

ters worse, the assumptions include the boundedness of some generated sequences, which is not

verified in advance.

The main purpose of this thesis is to propose efficient solution methods for nonlinear SDP

and prove its convergence property under reasonable and clear assumptions. First, we propose

a primal-dual interior point method with a Newton-type method. Moreover, we also propose

a differentiable merit function, and we show some useful properties of the merit function. Es-

pecially, we prove that the level set of the merit function is bounded under some reasonable

assumptions. The level boundedness of the merit function is not given in the literature related

to nonlinear SDP. As the result, we show the global convergence of the proposed method with

the merit function under some milder assumptions. Secondly, we present a two-step primal-dual

interior point method for nonlinear SDP which is a modification of the first method proposed

by Yamashita and Yabe. We prove its local and superlinear convergence. Note that two-step

implies that two Newton equations are solved at each iteration. Yamashita and Yabe’s two-step

method has to solve two different Newton equations at each iteration. Although the proposed



method also has to solve two different Newton equations at each iteration, the coefficient matrix

in the second Newton equation is equal to that in the first one. Thus, we can expect to reduce the

computational cost to about half compared with that of Yamashita and Yabe’s two-step method.

In addition, we prove that the proposed method converges to a solution superlinearly under the

same assumption as Yamashita and Yabe if we choose an initial point near the solution.

The second purpose of the thesis is to propose an efficient method for maximum likelihood

estimation problems for mixture distributions. The estimation problems arise from various fields

such as pattern recognition and machine learning. These problems are expressed as nonlinear

SDP if mixture distributions are Gaussian mixtures. Recently, some researchers have considered

the maximum likelihood estimation of a single Gaussian distribution with the L1 regularization

and/or some constraints on parameters. We present a general class of maximum likelihood

estimation problems for mixture distributions that includes such regularized/constrained maxi-

mum likelihood estimation problems as a special case. Moreover, we propose a block coordinate

descent (BCD) method for the general class. The BCD method sequentially solves small sub-

problems such that the objective function is minimized with respect to a few variables while

all the other variables are fixed. In fact, this method is efficient if the subproblems are solved

quickly. Thus, we propose some efficient methods for the subproblems when the problem has

special structures.

The author hopes that the results of this thesis make some contributions to further studies

on optimization methods for nonlinear semidefinite programming problems.

Yuya Yamakawa

January 2015
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Notations

R the set of real numbers

Rn the set of n-dimensional real vectors

Rm×n the set of m× n real matrices

Sp the set of p× p real symmetric matrices

⊤ the transposition of vectors or matrices

I the identity matrix

vi the i-th element of a vector v

Mij the (i, j)-th element of a matrix M

rank(M) the rank of a matrix M

tr(M) the trace of a square matrix M

det(M) the determinant of a square matrix M

∥ · ∥ the Euclidean norm

∥ · ∥F the Frobenius norm

M ⪰ 0 M is real symmetric positive semidefinite

M ≻ 0 M is real symmetric positive definite

A ⪰ B A−B is real symmetric positive semidefinite

A ≻ B A−B is real symmetric positive definite

λi(M) the eigenvalues of a real symmetric matrix M

λmin(M) the minimum eigenvalue of a symmetric matrix M

λmax(M) the maximum eigenvalue of a symmetric matrix M

∇f(x) the gradient of a function f at x

∇2f(x) the Hessian of a function f at x

log(x) the natural logarithm of a positive real number x

exp(x) e (Napier’s constant) raised to the power of a real number x





Chapter 1

Introduction

1.1 Nonlinear semidefinite programming problems and its ap-

plications

In this thesis, we consider the following nonlinear semidefinite programming (SDP) problem:

minimize
x∈Rn

f(x),

subject to g(x) = 0, X(x) ⪰ 0,
(1.1.1)

where f : Rn → R, g : Rn → Rm and X : Rn → Sp are twice continuously differentiable

functions. Since nonlinear SDP (1.1.1) can be reduced to linear SDP if the functions f , g and

X are all affine, we can say that nonlinear SDP (1.1.1) is a natural extension of linear SDP.

Nonlinear SDP is a comparatively new problem which began to be studied from the 2000s

[4, 13, 19, 22, 29, 31, 32, 33, 34, 36, 49, 55, 56, 57, 58, 59, 65, 68, 69, 71, 72]. Moreover, it includes

a wide class of mathematical programming problems, and has many applications. For example,

linear programming [15], second-order cone programming [1], linear SDP [64] and nonlinear

programming [6] can all be recast as nonlinear SDP.

Linear SDP has been studied extensively by many researchers [2, 17, 28, 60, 61, 64] because

it arises from several fields such as statistics, finance, combinatorial optimization and control

theory. Especially, primal-dual interior point methods are known as effective solution methods

for linear SDP, and their theoretical and numerical analyses have been frequently done since

the 1990s. However, there exist important formulations and applications that are expressed as

nonlinear SDP, but cannot be reduced to linear SDP. In the following, we give some of such

applications.

Problems with bilinear matrix inequality constraints

There exist optimization problems with bilinear (or biaffine) matrix inequality (BMI) constraints

in many fields such as filtering problems [14] and structural optimization problems [27]. Opti-

mization problems with BMI constraints are called BMI problems [21, 23, 50, 59, 63], which are
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generally defined as

minimize F (x, y),

subject to M(x, y) ⪯ 0,
(1.1.2)

where x ∈ Rn and y ∈ Rm are decision variables, F : Rn+m → R is an objective function, and

M : Rn+m → Sp is a quadratic function defined by

M(x, y) := A0 +

n∑
i=1

xiBi +

m∑
j=1

yjCj +

n∑
i=1

m∑
j=1

xiyjDij

with constant matrices A0, Bi, Cj , Dij ∈ Sp (i = 1, . . . , n, j = 1, . . . ,m). Problem (1.1.2) is

clearly nonlinear SDP (1.1.1).

Nearest correlation matrix problem

We present the following nearest correlation matrix problem with a rank constraint:

minimize 1
2∥X −A∥2F ,

subject to X ⪰ 0,

Xii = 1, i = 1, . . . , p,

rank(X) ≤ r,

(1.1.3)

where X ∈ Sp is a decision variable, A ∈ Sp is a constant matrix, and r ∈ R is a positive integer

constant. The input matrix A is often a known correlation matrix but with rank larger than

r. It is known that this problem has important applications in finance, etc. For further details,

see [25, 74]. If r = p, problem (1.1.3) is equivalent to a standard nearest correlation matrix

problem, that is,

minimize 1
2∥X −A∥2F ,

subject to X ⪰ 0,

Xii = 1, i = 1, . . . , p.

(1.1.4)

Note that problem (1.1.4) is convex, but problem (1.1.3) is nonconvex due to the constraint

rank(X) ≤ r. In general, it is difficult to handle the constraint rank(X) ≤ r directly. Thus,

Li and Qi [37] showed that X∗ ∈ Sp solves problem (1.1.3) if and only if there exists a matrix

U∗ ∈ Sp such that (X∗, U∗) ∈ Sp × Sp solves the following nonlinear SDP problem:

minimize 1
2∥X −A∥2F ,

subject to X ⪰ 0,

Xii = 1, i = 1, . . . , p,

tr(XU) = p,

tr(U) = r,

I ⪰ U ⪰ 0,

where X, U ∈ Sp are decision variables.
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Maximum likelihood estimation problem

We provide applications that arise from the maximum likelihood estimation. In particular, we

focus on the maximum likelihood estimation of parameters αi ∈ R, µi ∈ Rd, Λi ∈ Sd (i =

1, . . . ,m) in Gaussian mixtures [8]:

p(x|α, µ,Λ) :=
m∑
i=1

αiN (x|µi,Λ−1
i ),

where α := [α1, . . . , αm], µ := [µ1, . . . , µm], Λ := [Λ1, . . . ,Λm] and

N (x|µi,Λ−1
i ) :=

√
detΛi

(2π)d/2
exp

[
−1

2
(x− µi)

⊤Λi(x− µi)

]
, i = 1, . . . ,m.

In the maximum likelihood estimation, a log-likelihood function is maximized with respect to

parameters, that is,

maximize
n∑

k=1

log

(
m∑
i=1

αiN (xk|µi,Λ−1
i )

)
,

subject to α ∈ Ω, Λi ⪰ 0, i = 1, . . . ,m,

(1.1.5)

where αi ∈ R, µi ∈ Rd, Λi ∈ Sd (i = 1, . . . ,m) are decision variables, Ω is a certain set, and

xk ∈ Rd (k = 1, . . . , n) are observational data.

In addition, some researchers [38, 73] have recently investigated the maximum likelihood

estimation of a single Gaussian distribution with the L1 regularization and/or some constraints.

In Chapter 5, we consider the following more general maximum likelihood estimation problem

for Gaussian mixtures:

maximize

n∑
k=1

log

(
m∑
i=1

αiN (xk|µi,Λ−1
i )

)
− f0(α)−

m∑
i=1

[
fµi (µi) + fΛi (Λi)

]
,

subject to α ∈ Ω, Λi ⪰ 0, i = 1, . . . ,m,

(1.1.6)

where f0, f
µ
i and fΛi are proper lower semicontinuous quasiconvex functions, such as indicator

functions of sets which express constraints on α, µi and Λi. If we choose appropriate functions

f0, f
µ
i and fΛi according to additional constraints that we want to impose, we can obtain a

maximum likelihood estimator that satisfies such constraints by solving problem (1.1.6). Note

that problems (1.1.5) and (1.1.6) are nonlinear SDP.

Minimization of the maximal eigenvalue problem

The following minimization of the maximal eigenvalue problem arises mainly from the H∞

controller design problem [10]:

minimize λmax(M(v)),

subject to v ∈ Q,
(1.1.7)

where v ∈ Rn is a decision variable, M is a function from Q into Sp, and Q ⊂ Rn is a constraint

set. Note that M is not necessarily an affine function. Note also that λmax(M(v)) ≤ η if and
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only if λmax(M(v)− ηI) ≤ 0, i.e., λmin(ηI −M(v)) ≥ 0. Thus, problem (1.1.7) is equivalent to

the following nonlinear SDP:

minimize η,

subject to ηI −M(v) ⪰ 0,

v ∈ Q,

where η ∈ R and v ∈ Rn are decision variables.

Static output feedback control problem

In the static output feedback control, there exists the following SOF-H∞ type problem:

minimize γ,

subject to Q ⪰ 0,

γ ≥ 0, A(F )⊤Q+QA(F ) QB(F ) C(F )⊤

B(F )⊤Q −γI D(F )⊤

C(F ) D(F ) −γI

 ⪯ 0,

(1.1.8)

where γ ∈ R, F ∈ Rnu×ny and Q ∈ Snx are decision variables, and the functions A, B, C and

D are defined by

A(F ) := A+BFC,

B(F ) := B1 +BFD21,

C(F ) := C1 +D12FC,

D(F ) := D11 +D12FD21,

with given constant matrices A ∈ Rnx×nx , B ∈ Rnx×nu , B1 ∈ Rnx×nw , C ∈ Rny×nx , C1 ∈
Rnz×nx , D11 ∈ Rnz×nw , D12 ∈ Rnz×nu and D21 ∈ Rny×nw . Furthermore, there also exists the

following SOF-H2 type problem:

minimize tr(X),

subject to Q ⪰ 0,

A(F )Q+QA(F )⊤ +B1B
⊤
1 ⪯ 0,[

X C(F )Q

QC(F )⊤ Q

]
⪰ 0,

(1.1.9)

where X ∈ Snz , F ∈ Rnu×ny and Q ∈ Snx are decision variables. Note that problems (1.1.8)

and (1.1.9) have BMI constraints.

1.2 Solution methods for nonlinear semidefinite programming

problems

The main goal of solution methods for nonlinear SDP (1.1.1) is to find a point that satisfies

the first-order necessary optimality conditions for (1.1.1). The first-order necessary optimality
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conditions are called the Karush-Kuhn-Tucker (KKT) conditions given by

 ∇xL(x, y, Z)

g(x)

X(x)Z

 =

 0

0

0

 , X(x) ⪰ 0, Z ⪰ 0, (1.2.1)

where L : Rn × Rm × Sp → R is the Lagrangian function defined by L(x, y, Z) = f(x) −
g(x)⊤y − tr(X(x)Z), and y ∈ Rm and Z ∈ Sp are Lagrange multipliers for g(x) = 0 and

X(x) ⪰ 0, respectively. Note that (x, y, Z) is called a KKT point of nonlinear SDP (1.1.1) if

(x, y, Z) satisfies the KKT conditions (1.2.1). Note also that x is called a stationary point of

nonlinear SDP (1.1.1) if there exist Lagrange multipliers y and Z such that (x, y, Z) is a KKT

point. When a problem is convex, a stationary point is a global optimal solution. When a

problem is nonconvex, it is difficult to find a global optimal solution, and hence we consider a

method that finds a KKT point in general.

1.2.1 Overview of solution methods

Until now, some researchers have studied solution methods for nonlinear SDP since the 2000s.

Basically, these methods are extensions of the existing methods for nonlinear programming.

Correa and Ramı́rez [13] proposed a sequential semidefinite programming method for nonlin-

ear SDP. This method is an extension of a sequential quadratic programming method. It solves

the following subproblem at the k-th iteration to get a search direction:

minimize
d∈Rn

∇f(xk)⊤d+
1

2
d⊤Mkd,

subject to g(xk) + Jg(xk)d = 0,

X(xk) +

n∑
i=1

diAi(xk) ⪰ 0,

(1.2.2)

where xk is the k-th iteration point,Mk is a certain symmetric positive definite matrix containing

the second-order information of (1.1.1), Jg(xk) is a Jacobian of g at xk, and Ai(xk) is a partial

derivative of X at xk with respect to its i-th component. SinceMk is symmetric positive definite,

subproblem (1.2.2) has a unique global minimizer dk. Using dk, we get the next iteration point

xk+1. We often exploit the line search strategy in order to guarantee the global convergence,

that is, we set xk+1 := xk + tkdk, where tk is a step size. In fact, Correa and Ramı́rez [13] used

the line search strategy, and gave some conditions under which the proposed method is globally

convergent. One of the conditions is the boundedness of the sequence {xk}. However, they did

not provide concrete sufficient conditions under which the sequence {xk} is bounded.

Kanzow, Nagel, Kato and Fukushima [33] presented a successive linearization method for

nonlinear SDP. Although this method is essentially the same as the above sequential semidefi-

nite programming method, it solves subproblem (1.2.2) with Mk = ckI, where ck is a positive
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parameter. Such a subproblem is equivalent to the following linear SDP:

minimize
(d,t)∈Rn×R

t,

subject to g(xk) + Jg(xk)d = 0,

X(xk) +
n∑

i=1

diAi(xk) ⪰ 0,[
I

√
ckd

√
ckd

⊤ t−∇f(xk)⊤d

]
⪰ 0.

Moreover, this method has no line search strategy. Instead, it adjusts the length of the search

direction dk by selecting the parameter ck appropriately. However, they showed the global

convergence of the proposed method under rather strong assumptions on generated sequences.

Meanwhile, it is generally known that such a method has a slow convergence rate because

subproblem (1.2.2) with Mk = ckI does not contain the second-order information of (1.1.1).

Luo, Wu and Chen [41] presented augmented Lagrangian methods for nonlinear SDP. First,

these methods obtain a new primal variable xk by solving the following unconstrained minimiza-

tion subproblem at each iteration:

minimize
x∈Rn

Lck(x, yk, Zk),

where ck is a positive parameter, and Lc : Rn × Rm × Sp → R is an augmented Lagrangian

function defined by

Lc(x, y, Z) := f(x) +
1

2c

(
tr([Z + cX(x)]2+)− tr(Z2)

)
+ g(x)⊤y +

c

2
∥g(x)∥2,

where [ · ]+ : Sp → Sp is a operator defined by

[A]+ := P


max{0, λ1(A)} 0

. . .

0 max{0, λp(A)}

P⊤,

and P is an orthogonal matrix in an orthogonal decomposition of A. Secondly, the methods

update the positive parameter ck and the Lagrange multipliers yk and Zk appropriately. The

augmented Lagrangian methods get a solution by repeating such two procedures.

Luo, Wu and Chen [41] gave various types of updating methods associated with the positive

parameter ck and the Lagrange multipliers yk and Zk for the global convergence of the augmented

Lagrangian methods. Furthermore, they proved the global convergence of the proposed methods

under some assumptions which include that the sequence {xk} is bounded and the sequence {ck}
diverges to ∞. However, we are anxious about becoming numerically unstable by the second

assumption. On the other hand, it is generally known that augmented Lagrangian methods have

a slow convergence rate.

Recently, several researchers have proposed primal-dual interior point methods for nonlinear

SDP [34, 71, 72]. We give details of these methods in the next subsection.

In nonlinear programming, block coordinate descent (BCD) methods are often used for

solving large-scale problems. They sequentially solve small subproblems such that the objective
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function is minimized with respect to a few variables while all the other variables are fixed.

Thus, BCD methods are efficient for large-scale problems if the subproblems are solved quickly.

Although several types of BCD methods [3, 66] have recently been proposed for linear SDP,

such methods have not yet been studied for nonlinear SDP. We will propose a BCD method for

nonlinear SDP derived from maximum likelihood estimation problems for mixture distributions.

1.2.2 Primal-dual interior point methods

Although there exist several solution methods described above, we mainly focus on primal-dual

interior point methods. In particular, there exist roughly two primal-dual interior point methods.

One is a method based on the following barrier KKT conditions:

r0(x, y, Z, µ) :=

 ∇xL(x, y, Z)

g(x)

X(x)Z − µI

 =

 0

0

0

 , X(x) ≻ 0, Z ≻ 0, (1.2.3)

where µ > 0 is called a barrier parameter. The primal-dual interior point methods proposed by

Yamashita and Yabe [71] and Yamashita, Yabe and Harada [72] are based on the barrier KKT

conditions (1.2.3). Another is a method based on the following shifted barrier KKT conditions:

r1(x, y, Z, µ) :=

 ∇xL(x, y, Z)

g(x) + µy

X(x)Z − µI

 =

 0

0

0

 , X(x) ≻ 0, Z ≻ 0. (1.2.4)

The primal-dual interior point method proposed by Kato, Yabe and Yamashita [34] is based on

the shifted barrier KKT conditions (1.2.4). Note that a point (x, y, Z) satisfying X(x) ≻ 0 and

Z ≻ 0 is called an interior point. Note also that a point (x, y, Z) satisfying (1.2.3) or (1.2.4) is

an interior point.

When µ → 0 in (1.2.3) and (1.2.4), a point which satisfies the (shifted) barrier KKT con-

ditions comes close to a KKT point which satisfies the KKT conditions (1.2.1). Therefore, the

primal-dual interior point methods described above generate an interior point which satisfies the

(shifted) barrier KKT conditions approximately for a given barrier parameter µk, and update

the barrier parameter so as to satisfy 0 < µk+1 < µk at each iteration. Summing up the above

discussion, we give a framework of a primal-dual interior point method. To this end, we use the

following notations:

ρ(x, y, Z) :=

√√√√∥∥∥∥∥
[

∇xL(x, y, Z)

g(x)

]∥∥∥∥∥
2

+ ∥X(x)Z∥2F ,

ρ0(x, y, Z, µ) :=

√√√√∥∥∥∥∥
[

∇xL(x, y, Z)

g(x)

]∥∥∥∥∥
2

+ ∥X(x)Z − µI∥2F ,

ρ1(x, y, Z, µ) :=

√√√√∥∥∥∥∥
[

∇xL(x, y, Z)

g(x) + µy

]∥∥∥∥∥
2

+ ∥X(x)Z − µI∥2F .
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Primal-dual interior point method

Step 0. Choose positive constants ε and σ. Select a positive sequence {µk} converging to 0.

Set k := 0.

Step 1. Find an interior point (xk+1, yk+1, Zk+1) which satisfies the (shifted) barrier KKT

conditions approximately for µk, i.e.,

X(xk+1) ≻ 0, Zk+1 ≻ 0, ρ0(xk+1, yk+1, Zk+1, µk) ≤ σµk (ρ1(xk+1, yk+1, Zk+1, µk) ≤ σµk).

Step 2. If ρ(xk+1, yk+1, Zk+1) ≤ ε is satisfied, then stop.

Step 3. Set k := k + 1 and go to Step 1. □

In the above method, we have to find an interior point which satisfies the (shifted) barrier KKT

conditions approximately for µk. In order to find such a point, a Newton-type method is used

in [34, 71, 72].

Newton equations in the Newton-type method are generated from r0(x, y, Z, µ) = 0 or

r1(x, y, Z, µ) = 0. Before we present the concrete Newton equations, we introduce scaling.

Scaling is frequently exploited in order to solve Newton equations efficiently as seen later. In-

stead of X(x) and Z, we deal with matrices X̃(x) := TX(x)T⊤ and Z̃ := T−⊤ZT−1, where a

nonsingular scaling matrix T satisfies that

TX(x)T⊤T−⊤ZT−1 = T−⊤ZT−1TX(x)T⊤. (1.2.5)

Then, X̃(x)Z̃ = Z̃X̃(x) from (1.2.5). Moreover, we replace the matrices X(x) and Z in (1.2.3)

and (1.2.4) with X̃(x) and Z̃, respectively. Then, we define the scaled barrier KKT conditions

as

r̃0(x, y, Z, µ) :=

 ∇xL(x, y, Z)

g(x)

X̃(x)Z̃ − µI

 =

 0

0

0

 , X̃(x) ≻ 0, Z̃ ≻ 0.

Similarly, we define the scaled shifted barrier KKT conditions as

r̃1(x, y, Z, µ) :=

 ∇xL(x, y, Z)

g(x) + µy

X̃(x)Z̃ − µI

 =

 0

0

0

 , X̃(x) ≻ 0, Z̃ ≻ 0.

Note that the scaled (shifted) barrier KKT conditions are equivalent to the (shifted) barrier

KKT conditions.

Next, we present Newton equations. Newton equations are generated by r̃0(x, y, Z, µ) = 0

or r̃1(x, y, Z, µ) = 0. When we generate Newton equations from r̃0(x, y, Z, µ) = 0, they are

expressed as[
G+H −Jg(x)⊤

Jg(x) 0

][
∆x

∆y

]
=

[
−∇f(x) + Jg(x)

⊤y + µA∗(x)X(x)−1

−g(x)

]
, (1.2.6)

(T⊤ ⊙ T⊤)(X̃(x)⊙ I)−1(Z̃ ⊙ I)(T ⊙ T )A(x)∆x+∆Z = µX(x)−1 − Z, (1.2.7)
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where

(∆x,∆y,∆Z) ∈ Rn ×Rm × Sp is the Newton direction,

G ∈ Sn is ∇2
xxL(x, y, Z) or its approximation,

Jg(x) ∈ Rm×n is a Jacobian of g at x,

A(x) : Rn → Sp is an operator such that v 7→
∑n

i=1 viAi(x), where Ai(x) :=
∂
∂xi
X(x),

A∗(x) : Sp → Rn is an adjoint operator of A(x) such that U 7→ [tr(A1(x)U), . . . , tr(An(x)U)]⊤,

(P ⊙Q) : Sp → Sp is an operator such that U 7→ 1
2(PUQ

⊤ +QUP⊤), where P, Q ∈ Rp×p,

and H ∈ Rn×n is a matrix whose (i, j)-th element is given by

Hij := tr
[
Ai(x)(T

⊤ ⊙ T⊤)(X̃(x)⊙ I)−1(Z̃ ⊙ I)(T ⊙ T )Aj(x)
]
. (1.2.8)

Note that these Newton equations are used in [71] and [72]. Similarly, when we generate Newton

equations from r̃1(x, y, Z, µ) = 0, they are expressed as[
G+H −Jg(x)⊤

Jg(x) µI

][
∆x

∆y

]
=

[
−∇f(x) + Jg(x)

⊤y + µA∗(x)X(x)−1

−g(x)− µy

]
,

(T⊤ ⊙ T⊤)(X̃(x)⊙ I)−1(Z̃ ⊙ I)(T ⊙ T )A(x)∆x+∆Z = µX(x)−1 − Z.

Note that these Newton equations are exploited in [34].

The operator (X̃(x) ⊙ I)−1 in the Newton equations are usually difficult to handle. This

is because when we calculate (X̃(x) ⊙ I)−1U = V , we have to solve a Lyapunov equation

X(x)V +V X(x) = 2U with respect to V . However, note that the operator (X̃(x)⊙I)−1 appears

as (X̃(x)⊙ I)−1(Z̃ ⊙ I). Thus, when X̃(x) = I, it is clear that (X̃(x)⊙ I)−1(Z̃ ⊙ I) = (Z̃ ⊙ I)

and X̃(x)Z̃ = Z̃X̃(x). On the other hand, when X̃(x) = Z̃, we see that (X̃(x)⊙ I)−1(Z̃ ⊙ I) is

the identity mapping, and X̃(x)Z̃ = Z̃X̃(x). Therefore, if we choose the scaling matrix T such

that X̃(x) = I or X̃(x) = Z̃, we do not have to solve the Lyapunov equation. If we do not use

scaling, that is, T = I, then we have to solve the Lyapunov equation. This is one of reasons

why we exploit scaling.

Yamashita, Yabe and Harada [72] presented a nondifferentiable L1 merit function, and

showed the global convergence of the proposed method with their merit function under some

unclear assumptions regarding a generated sequence. Kato, Yabe and Yamashita [34] proposed

a differentiable merit function, and proved the global convergence of the proposed method with

their merit function under some weaker assumptions compared with those of [72]. However, since

the proposed merit function is rather complicated, the convergence analysis is also complicated.

Furthermore, it might not be easy to implement the proposed method with their merit function.

Note that [34] and [72] do not investigate the rate of convergence of their methods.

Yamashita and Yabe [71] investigated the superlinear convergence of the primal-dual interior

point method. They presented two methods. One is a method with scaling. Another is a method

without scaling. In general, since scaling is frequently exploited in order to solve the Newton

equation effectively as mentioned above, the method with scaling is more important than the

method without scaling.

However, although the method without scaling may only solve one Newton equation in a

single iteration, the method with scaling has to solve two different Newton equations in a single
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iteration. Thus, the method with scaling is called a two-step primal-dual interior point method.

At the first part of the k-th iteration in the two-step primal-dual interior point method, we

obtain the Newton direction (∆xk,∆yk,∆Zk) from the Newton equations (1.2.6) and (1.2.7)

as (x, y, Z) = (xk, yk, Zk), and update (xk+ 1
2
, yk+ 1

2
, Zk+ 1

2
) = (xk + ∆xk, yk + ∆yk, Zk + ∆Zk),

where (xk, yk, Zk) denotes the k-th iteration point. Furthermore, at the second part of the k-th

iteration, we obtain the Newton direction (∆xk+ 1
2
,∆yk+ 1

2
,∆Zk+ 1

2
) from the Newton equations

(1.2.6) and (1.2.7) as (x, y, Z) = (xk+ 1
2
, yk+ 1

2
, Zk+ 1

2
), update (xk+1, yk+1, Zk+1) = (xk+ 1

2
+

∆xk+ 1
2
, yk+ 1

2
+∆yk+ 1

2
, Zk+ 1

2
+∆Zk+ 1

2
), and go to the next iteration. Then, the main calculation

is to obtain the Newton directions (∆xk,∆yk,∆Zk) and (∆xk+ 1
2
,∆yk+ 1

2
,∆Zk+ 1

2
). In particular,

it is known that a construction of the matrix H is the biggest burden, and its calculation time

is O(np3 + n2p2) from (1.2.8). In summary, the two-step primal-dual interior point method has

to construct the matrix H twice in a single iteration.

1.3 Motivations and contributions

As mentioned in Section 1.1, there exist many applications of nonlinear SDP. Moreover, although

some researchers have studied primal-dual interior point methods for nonlinear SDP, there still

exist a lot of issues which should be studied. On the other hand, since primal-dual interior

point methods are based on Newton-type methods, they may not be suitable to some large-scale

nonlinear SDP.

Therefore, such many applications and issues motivate us to study solution methods for

nonlinear SDP. In the following, we describe concrete aims and contributions of this study.

(1) To propose a primal-dual interior point method that is convergent globally under

milder conditions

One of aims on this study is to propose a primal-dual interior point method for nonlinear SDP

(1.1.1) that is convergent globally under milder conditions compared with the existing methods

described in Section 1.2. In particular, there exist some unclear assumptions on a generated

sequence in [34] and [72]. We specify conditions for the global convergence related to the problem

data, i.e., f, g and X of (1.1.1).

Moreover, we also present a differentiable merit function F which has some nice properties

compared with those of [34]. This function is an extension of a merit function proposed by

Forsgren and Gill [18] developed for nonlinear programming, and it consists of simple functions,

such as log-determinant and trace. Thus, it is easy to implement the proposed method with the

merit function F . We show the following important properties of the merit function F :

(i) The merit function F is differentiable;

(ii) Any stationary point of the merit function F is a shifted barrier KKT point;

(iii) The level set of the merit function F is bounded under some reasonable assumptions.
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Kato, Yabe and Yamashita [34] also showed that their merit function satisfies the properties (i)

and (ii), but they did not show the property (iii). These properties mean that we can find a

point that satisfies the shifted barrier KKT conditions by minimizing the merit function F .

(2) To propose a superlinear convergent two-step primal-dual interior point method

that exploits scaling but its computational cost at each iteration is almost same as

that of a one-step primal-dual interior point method

Next, we present a primal-dual interior point method for nonlinear SDP (1.1.1) which has the

local and superlinear convergence property. As already mentioned in Section 1.2, Yamashita and

Yabe [71] proposed a two-step primal-dual interior point method with scaling, which has to solve

two different Newton equations in a single iteration. In this thesis, we also present a two-step

primal-dual interior point method with scaling. However, in order to reduce calculations, we

replace the coefficient matrix in the second equation with that in the first one. Thus, we can

solve the second equation more rapidly using some computational results obtained by solving the

first equation. Recall that the great portion of the computational time is to construct the matrix

H defined by (1.2.8), and its computational time is O(np3 + n2p2) as described in Section 1.2.

Although the method proposed by [71] has to construct the matrix H twice in a single iteration,

the method proposed by this thesis calculates the matrix H only once in a single iteration. In

other words, its computational cost at each iteration is almost same as that of a one-step primal-

dual interior point method. As the result, we can expect to reduce the computational cost to

about half compared with that of Yamashita and Yabe’s two-step method [71]. In addition, we

show the superlinear convergence under the same assumptions as [71] despite this change.

(3) To model a general maximum likelihood estimation problem, and give a block

coordinate descent method for the problem

Finally, we consider an efficient solution method for a concrete application of nonlinear SDP.

Then, we focus on maximum likelihood estimation problems for mixture distributions. Re-

cently, some researchers have studied the maximum likelihood estimation of a single Gaussian

distribution with the L1 regularization and/or some constraints. We present a general class of

maximum likelihood estimation problems for mixture distributions that includes such regular-

ized/constrained maximum likelihood estimation problems as a special case. Such a general class

is reduced to nonlinear SDP when the mixture distribution is the Gaussian mixtures. However,

it may not be suitable to solve the problem by the primal-dual interior point method when the

problem is large-scale. As described in Subsection 1.2.1, BCD methods are efficient for large-

scale problems, and hence we propose a BCD method for the general class of maximum likelihood

estimation problems for mixture distributions. Since the proposed BCD method has to solve

simple subproblems at each iteration, we also propose efficient methods for such subproblems

by exploiting their special structure.
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1.4 Outline of the thesis

This thesis is organized as follows.

In Chapter 2, we first introduce some notations and definitions. Secondly, we provide several

basic properties of mathematics. Moreover, we present some optimality conditions and barrier

KKT conditions for nonlinear SDP (1.1.1). Finally, we give some concepts related to BCD

methods for general nonlinear programming.

In Chapter 3, we first give a framework of a primal-dual interior point method based on

the shifted barrier KKT conditions. Next, we propose a differentiable merit function F for

the shifted barrier KKT conditions, and prove some nice properties of the merit function F .

Moreover, we construct a Newton-type method for minimizing the merit function F , and show

its global convergence under milder conditions. Finally, we report some numerical experiments

for the proposed method.

In Chapter 4, we present a two-step primal-dual interior point method with scaling which

solves two different Newton equations in a single iteration. Then, we argue that the proposed

method is expected to find the next point faster than Yamashita and Yabe’s two-step method

[71] at each iteration because the two equations have the same coefficient matrices. Moreover, we

prove the superlinear convergence of the proposed method under the same assumptions as those

of Yamashita and Yabe [71]. Finally, we report some numerical experiments for the proposed

method.

In Chapter 5, we consider maximum likelihood estimation problems for mixture distributions.

Then, we mention that maximum likelihood estimation problems are written as nonlinear SDP

when the mixture distribution is Gaussian mixtures. Moreover, we propose a general class

of maximum likelihood estimation problems for mixture distributions that includes maximum

likelihood estimation problems with the L1 regularization and/or some constraints as a special

case, and we present a BCD method for the general class. Then, since we must solve some

subproblems generated in the proposed BCD method, we give efficient solution methods for such

subproblems. Finally, we report some numerical experiments related to maximum likelihood

estimation problems for Gaussian mixtures.

In Chapter 6, we give some concluding remarks, and state future works.



Chapter 2

Preliminaries

In this chapter, we introduce some mathematical notations, definitions and concepts. Note that

propositions and theorems with proof are new results of this thesis.

2.1 Notations and definitions

We introduce some sets in the following. Let m, n, p be positive integers.

R the set of real numbers

Rn the set of n-dimensional real vectors

Rm×n the set of m× n real matrices

Sp the set of p× p real symmetric matrices

We use the following notations.

⊤ the transposition of vectors or matrices

I the identity matrix

In the n× n identity matrix

vi the i-th element of a vector v

Mij the (i, j)-th element of a matrix M

rank(M) the rank of a matrix M

tr(M) the trace of a square matrix M

det(M) the determinant of a square matrix M

Moreover, we define some subsets of Rn and Rm×n.

Rn
+ := { v ∈ Rn | vi ≥ 0, i = 1, . . . , n },

Rn
++ := { v ∈ Rn | vi > 0, i = 1, . . . , n },

Rm×n
+ := { M ∈ Rm×n | Mij ≥ 0, i = 1, . . . ,m, j = 1, . . . , n },

Rm×n
++ := { M ∈ Rm×n | Mij > 0, i = 1, . . . ,m, j = 1, . . . , n }.

We introduce some definitions in basic mathematics. Vectors v1, . . . , vn are called linearly

independent if there exists no set of scalars t1, . . . , tn, at least one of which is nonzero, such that
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t1v1 + · · · + tnvn = 0. Matrices M1, . . . ,Mn are called linearly independent if there exists no

set of scalars t1, . . . , tn, at least one of which is nonzero, such that t1M1 + · · · + tnMn = 0. A

square matrix M is called singular if det(M) = 0. A square matrix M is called nonsingular or

invertible if det(M) ̸= 0. A square matrix M is called the inverse of a nonsingular matrix N ,

and it is denoted by N−1 if MN = NM = I. A square matrix U is called an orthogonal matrix

if U⊤U = UU⊤ = I.

We define an inner product ⟨·, ·⟩ and a norm ∥·∥ on Rn as follows: For any vectors a, b ∈ Rn,

⟨a, b⟩ := a⊤b, ∥a∥ :=
√

⟨a, a⟩,

respectively, where the norm is called the Euclidean norm. We define an inner product ⟨·, ·⟩ and
norms ∥ · ∥F , ∥ · ∥1 and ∥ · ∥2 on Rm×n as follows: For any matrices A, B ∈ Rm×n,

⟨A,B⟩ := tr(A⊤B), ∥A∥F :=
√

⟨A,A⟩, ∥A∥1 =
m∑
i=1

n∑
j=1

|Aij |, ∥A∥2 := sup
v∈Rn\{0}

∥Av∥
∥v∥

, (2.1.1)

respectively, where the first norm is called the Frobenius norm, the second norm is called the

L1 norm, and the last norm is called the operator norm. We define an inner product ⟨·, ·⟩ and
norms ∥ · ∥F , ∥ · ∥1 and ∥ · ∥2 on Sp as (2.1.1). In the following, we call a set with an inner

product ⟨·, ·⟩, such as Rn, Rm×n and Sp, an inner product space. Unless otherwise noted, we

define a norm ∥ · ∥ on an inner product space as ∥ · ∥ :=
√

⟨·, ·⟩.
Let S1, . . . , Sn be sets. We define the Cartesian product of S1, . . . , Sn as

S1 × · · · × Sn := { [s1, . . . , sn] | s1 ∈ S1, . . . , sn ∈ Sn }.

For any element s ∈ S1 × · · · × Sn, we use the following notations by using certain elements

s1 ∈ S1, . . . , sn ∈ Sn:

s =


s1
...

sn

 , s = [s1, . . . , sn].

Moreover, let [s1, . . . , sn], [t1, . . . , tn] ∈ S1 × · · · × Sn. We say that [s1, . . . , sn] and [t1, . . . , tn]

are equal if s1 = t1, . . . , sn = tn.

Let V1, . . . ,Vn be inner product spaces. We define an inner product ⟨·, ·⟩ on V1 × · · · × Vn as

follows: For any elements v = [v1, . . . , vn], w = [w1, . . . , wn] ∈ V1 × · · · × Vn,

⟨v, w⟩ := ⟨v1, w1⟩+ · · ·+ ⟨vn, wn⟩.

We define the positive semidefiniteness and definiteness of real symmetric matrices. A real

symmetric matrix M ∈ Sp is called positive semidefinite if

⟨Mv, v⟩ ≥ 0 for all v ∈ Rn.

A real symmetric matrix M ∈ Sp is called positive definite if

⟨Mv, v⟩ > 0 for all v ∈ Rn\{0}.
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Then, we define the following notations related to the positive semidefiniteness and definiteness

of real symmetric matrices.

Sp
+ the set of p× p real symmetric positive semidefinite matrices

Sp
++ the set of p× p real symmetric positive definite matrices

M ⪰ 0 M is real symmetric positive semidefinite

M ≻ 0 M is real symmetric positive definite

A ⪰ B A−B is real symmetric positive semidefinite

A ≻ B A−B is real symmetric positive definite

Moreover, we define the following notations related to eigenvalues of real symmetric matrices.

λi(M) the eigenvalue of a real symmetric matrix M

λmin(M) the minimum eigenvalue of a real symmetric matrix M

λmax(M) the maximum eigenvalue of a real symmetric matrix M

For d1, . . . , dp ∈ R, we define

diag(d1, . . . , dp) :=


d1 O

. . .

O dp

 .
For a matrix V ∈ Sp

+ (∈ Sp
++), V

1
2 denotes a real symmetric positive semidefinite (definite)

matrix such that V = V
1
2V

1
2 , that is,

V
1
2 := UΛU⊤, Λ := diag

[
(λ1(V ))

1
2 , . . . , (λp(V ))

1
2

]
,

where U is a certain orthogonal matrix such that V = UΛ2U⊤.

Let V, W and X be inner product spaces, such as Rn, Rm×n and Sp. For x ∈ V and r > 0,

we define

B(x, r) := { v ∈ V | ∥v − x∥ < r } ⊂ V.

We say that a set S ⊂ V is bounded if

∃x ∈ V , ∃r ∈ (0,∞) such that S ⊂ B(x, r);

a set S ⊂ V is open if

∀v ∈ S, ∃r > 0 such that B(v, r) ⊂ S;

a set S ⊂ V is closed if V\S is open; a set S ⊂ V is compact if S is bounded and closed. Let

φ : S → W be a function, where S ⊂ V is a set. We say that the function φ is continuous at

x ∈ S if

∀ε > 0, ∃δ > 0 such that ∥φ(x)− φ(y)∥ < ε, ∀y ∈ B(x, δ) ∩ S;



16 2 Preliminaries

the function φ is continuous on S if φ is continuous at all x ∈ S. When S = V, we say that the

function φ is continuous if φ is continuous at all x ∈ V . When W = R, we say that the function

φ is lower semicontinuous at x ∈ S if

∀ε > 0, ∃δ > 0 such that φ(x) < φ(y) + ε, ∀y ∈ B(x, δ) ∩ S;

the function φ is lower semicontinuous on S if φ is lower semicontinuous at all x ∈ S. When S =

V and W = R, we say that the function φ is lower semicontinuous if φ is lower semicontinuous

at all x ∈ V.
Let ϕ : B(v, r) → W and ψ : B(v, r) → X be functions, where r > 0 and v ∈ V. If the

functions ϕ and ψ satisfy that

lim
h→v

∥ϕ(h)∥
∥ψ(h)∥

= 0, (2.1.2)

we express (2.1.2) as ϕ(h) = o(ψ(h)) (h→ v). If the functions ϕ and ψ satisfy that there exists

a positive constant c ∈ R such that

lim
h→v

∥ϕ(h)∥
∥ψ(h)∥

= c, (2.1.3)

we express (2.1.3) as ϕ(h) = O(ψ(h)) (h→ v).

For sets S and T , we denote a set of linear bounded operators from S into T by L(S, T ).

Let Φ : D → W be a function, where D ⊂ V is an open set. The function Φ is called Fréchet

differentiable at x ∈ D if there exists Ax ∈ L(V,W) such that, for any ∆x ∈ V with x+∆x ∈ D,

Φ(x+∆x) = Φ(x) +Ax(∆x) + o(∥∆x∥) (∥∆x∥ → 0).

The function Φ is called Fréchet differentiable on D if Φ is Fréchet differentiable at all x ∈ D.

When D = V, the function Φ is called Fréchet differentiable if Φ is Fréchet differentiable at all

x ∈ V. Note that if Φ is Fréchet differentiable on D, the linear operator Ax is unique for each

x ∈ D. Thus, let DΦ : D → L(V,W) be a function such that DΦ(x) = Ax. The function Φ

is called continuously Fréchet differentiable on D if Φ is Fréchet differentiable on D and DΦ

is continuous on D. When D = V, the function Φ is called continuously Fréchet differentiable

if Φ is continuously Fréchet differentiable on V. If Φ : D ⊂ V → R is Fréchet differentiable

at x ∈ D, then DΦ(x) is a bounded linear operator such that DΦ(x) : ∆x 7→ ⟨∇Φ(x),∆x⟩,
where ∇Φ(x) ∈ V. Then, we call ∇Φ(x) a gradient of Φ at x. In particular, when V = R,

∇Φ(x) = Φ′(x), where Φ′(x) denotes a derivative of Φ at x; when V = Rn,

∇Φ(x) =


∂

∂x1
Φ(x)
...

∂
∂xn

Φ(x)

 ,
where ∂

∂xi
Φ(x) denotes a partial derivative of Φ at x with respect to its i-th component. In

addition, if Φ : D ⊂ Rn → Rm is a function such that Φ(x) := [Φ1(x), . . . ,Φm(x)]⊤ and it is

Fréchet differentiable at x ∈ D, then DΦ(x) is a bounded linear operator such that DΦ(x) :
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∆x 7→ JΦ(x)∆x, where

JΦ(x) =


∂

∂x1
Φ1(x)

∂
∂x2

Φ1(x) · · · ∂
∂xn

Φ1(x)
∂

∂x1
Φ2(x)

∂
∂x2

Φ2(x) · · · ∂
∂xn

Φ2(x)
...

...
. . .

...
∂

∂x1
Φm(x) ∂

∂x2
Φm(x) · · · ∂

∂xn
Φm(x)

 .

Then, we call JΦ(x) a Jacobian of Φ at x. If Φ : D ⊂ Rn → R is twice Fréchet differentiable at

x ∈ D, ∇2Φ(x) denotes a Jacobian of ∇Φ at x, that is,

∇2Φ(x) =


∂2

∂x2
1
Φ(x) ∂2

∂x2∂x1
Φ(x) · · · ∂

∂xn∂x1
Φ(x)

∂2

∂x1∂x2
Φ(x) ∂2

∂x2
2
Φ(x) · · · ∂2

∂xn∂x2
Φ(x)

...
...

. . .
...

∂2

∂x1∂xn
Φ(x) ∂2

∂x2∂xn
Φ(x) · · · ∂2

∂x2
n
Φ(x)

 .

Then, we call ∇2Φ(x) a Hessian of Φ at x. Let Ψ : D×E → X be a function, where D ⊂ V and

E ⊂ W are sets, and let y ∈ E. If X = R and Ψ(·, y) : D → R is Fréchet differentiable at x ∈ D,

∇xΨ(x, y) denotes a gradient of Ψ at (x, y) with respect to x. If X = Rm and Ψ(·, y) : D → Rm

is Fréchet differentiable at x ∈ D, ∂xΨ(x, y) denotes a Jacobian of Ψ at (x, y) with respect to

x. If X = R and Ψ(·, y) : D → R is twice Fréchet differentiable at x ∈ D, ∇2
xxΨ(x, y) denotes

a Hessian of Ψ at (x, y) with respect to x. Unless otherwise noted, differentiable means Fréchet

differentiable.

Finally, in what follows, we list other notations that appear in the thesis.

• ∅: the empty set

• clS: the closure of a set S (the smallest closed set containing S)

• intS: the interior of a set S (the largest open set contained in S)

• log(x): the natural logarithm of a positive real number x

• exp(x): e (Napier’s constant) raised to the power of a real number x

• argmin{h(x)|x ∈ D}: the set of minimizers of a function h over a nonempty set D

• argmax{h(x)|x ∈ D}: the set of maximizers of a function h over a nonempty set D

2.2 Fundamental mathematics

2.2.1 Linear algebra and analysis

We present some well-known facts which are exploited in the thesis. First, we give some results

related to linear algebra.

Proposition 2.2.1. [5, 24, 30, 54] The following statements hold.

(a) Let A ∈ Rm×n. Then, ∥A∥2 ≤ ∥A∥F ≤
√
n∥A∥2.
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(b) Let A,B ∈ Sn be matrices such that 0 ≺ B ⪯ A. Then, detB ≤ detA.

(c) Let A,B ∈ Sn. Then, λmin(A)tr(B) ≤ tr(AB).

(d) Let A ∈ Sn be a matrix such that ∥A∥F < 1. Then, I − A is nonsingular. Moreover,

∥(I −A)−1∥F ≤ n
1−∥A∥F .

(e) Let A1, . . . Am ∈ Sn be matrices such that they commute mutually. Then, there exists

an orthogonal matrix U ∈ Rn×n such that U⊤AiU = diag[λ1(Ai), . . . , λn(Ai)] for all

i = 1, . . . ,m. □

Secondly, we give some results associated with analysis.

Proposition 2.2.2. [46] The following statements hold.

(a) Let Φ : D ⊂ Rn → Rm be continuously differentiable on a convex set D0 ⊂ D. Suppose

that there exists L > 0 such that

∥JΦ(u)− JΦ(v)∥F ≤ L∥u− v∥ for all u, v ∈ D0.

Then, we have

∥Φ(y)− Φ(x)− JΦ(x)(y − x)∥ ≤ L

2
∥x− y∥2 for all x, y ∈ D0.

(b) Let Ψ : D ⊂ R → R be twice continuously differentiable on a bounded convex set D0 ⊂ D.

Then, we have

|Ψ(u)−Ψ(v)−Ψ′(v)(u− v)| ≤ C|u− v|2 for all u, v ∈ D0,

where C := sup{ |Ψ′(x)| | x ∈ D0 }. □

Finally, we give the mean value theorem and the implicit function theorem.

Theorem 2.2.1. [46] Let Φ : D ⊂ Rn → R be differentiable on a convex set D0 ⊂ D. Then,

for any x, y ∈ D0, there exists t ∈ (0, 1) such that Φ(y)− Φ(x) = ⟨∇Φ(tx+ (1− t)y), y − x⟩. □

Theorem 2.2.2. [46] Suppose that Φ : D ⊂ Rn ×Rm → Rn is continuous on an open neigh-

borhood D0 ⊂ D of a point (x0, y0) such that Φ(x0, y0) = 0. Suppose also that ∂xΦ exists in

a neighborhood of (x0, y0) and is continuous at (x0, y0) and ∂xΦ(x0, y0) is nonsingular. Then,

there exist open neighborhoods P ⊂ Rn and Q ⊂ Rm of x0 and y0, respectively, such that, for

any y ∈ clQ, the equation Φ(x, y) = 0 has a unique solution x = Ψ(y) ∈ clP , and the function

Ψ : Q → Rn is continuous on Q. Moreover, if ∂yΦ(x0, y0) exists, then Ψ is differentiable at y0

and JΨ(y0) = − [∂xΦ(x0, y0)]
−1 ∂yΦ(x0, y0). □
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2.2.2 Convex analysis

In this section, we provide some properties related to convex analysis. To begin with, we define

the convexity of sets and functions. Let V be an inner product space, such as Rn, Rm×n and

Sp. A set C ⊂ V is called convex if

λx+ (1− λ)y ∈ C for all λ ∈ [0, 1] and x, y ∈ C.

Let C ⊂ V be a convex set, and let f : C → R be a function. The function f is called convex

on C if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) for all λ ∈ [0, 1] and x, y ∈ C.

The function f is called strictly convex on C if

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y) for all λ ∈ (0, 1) and x, y ∈ C such that x ̸= y.

When C = V, the function f is called (strictly) convex if f is (strictly) convex on V. The

function f is called (strictly) concave on C if −f is (strictly) convex on C. When C = V, the
function f is called (strictly) concave if −f is (strictly) convex on V.

The following proposition gives a necessary and sufficient condition for a differentiable func-

tion to be convex.

Proposition 2.2.3. [7, 52] Let C ⊂ V be a nonempty open convex set and let f : C → (−∞,∞]

be a differentiable function on C. Then, the function f is convex on C if and only if

⟨∇f(x), y − x⟩ ≤ f(y)− f(x) for all x, y ∈ C.

Moreover, the function f is strictly convex on C if and only if the above inequality is strict

whenever x ̸= y. □

Next, we define the effective domain, the properness and the directional differentiability of

functions. Let S ⊂ V be a set, and let f : S → R be a function. We define the effective domain

of f by

domf := { x ∈ V | f(x) <∞ }.

We say that the function f is proper if domf ̸= ∅. For any x ∈ domf and d ∈ V, we define the

(lower) directional derivative of f at x in the direction d by

f ′(x; d) := lim inf
λ→+0

f(x+ λd)− f(x)

λ
.

The next proposition provides several properties of the directional derivative for convex

functions.

Proposition 2.2.4. [7, 52] Let f : V → (−∞,∞] be a proper convex function. Moreover, let

x ∈ domf and d ∈ V with d ̸= 0. Then, the difference quotient in the definition of f ′(x; d) is a

nondecreasing function of λ > 0, so that

f ′(x; d) = lim
λ→+0

f(x+ λd)− f(x)

λ
= inf

λ>0

f(x+ λd)− f(x)

λ
.

Furthermore, if there exists ε > 0 such that x + td ∈ domf for all t ∈ (0, ε], then f ′(x; d) is

finite. □
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We consider the following optimization problem:

minimize f(x),

subject to x ∈ S,
(2.2.1)

where f : V → (−∞,∞] is a proper function and S ⊂ V is a nonempty closed set. By using the

directional derivative of f , we provide a necessary condition for optimality in problem (2.2.1).

Proposition 2.2.5. Let f and S be the function and the set in problem (2.2.1), respectively.

Suppose that S is a convex set. Then, if x ∈ S is a local minimum of problem (2.2.1),

f ′(x;x− x) ≥ 0 for all x ∈ S. (2.2.2)

Proof. Let x ∈ S be arbitrary. It follows from the convexity of S that x+ λ(x− x) ∈ S for any

λ ∈ [0, 1]. Then, since x ∈ S is a local minimum of problem (2.2.1), there exists ε ∈ (0, 1] such

that f(x+ t(x− x))− f(x) ≥ 0 for all t ∈ (0, ε]. Dividing both sides by t ∈ (0, ε], we obtain

f(x+ t(x− x))− f(x)

t
≥ 0 for all t ∈ (0, ε].

Therefore, we have from t→ +0 that f ′(x;x− x) ≥ 0 for all x ∈ S. □

From Proposition 2.2.5, we see that (2.2.2) is a necessary condition for optimality in problem

(2.2.1). In the remainder of this thesis, we say that x ∈ S is a stationary point of problem (2.2.1)

if x satisfies the condition (2.2.2). Note that if f is differentiable at x and S = V, (2.2.2) is

equivalent to ∇f(x) = 0. Moreover, if problem (2.2.1) is convex, then (2.2.2) is a necessary and

sufficient condition for optimality in problem (2.2.1). We show this fact in the next proposition.

Proposition 2.2.6. Let f and S be the function and the set in problem (2.2.1), respectively.

Suppose that S is a convex set, and f is a proper convex function on S. Suppose also that (2.2.1)

has a nonempty optimal solution set. Then, a stationary of (2.2.1) is also a global minimum

of (2.2.1). In addition, if the function f is strictly convex on S, then the global minimum of

(2.2.1) is unique.

Proof. We show the first part of this proposition. By Proposition 2.2.5, it suffices to show that

(2.2.2) is a sufficient condition for optimality in problem (2.2.1). Suppose that x is a stationary

point of (2.2.1), that is, x satisfies (2.2.2). Let x ∈ S be arbitrary. It follows from Proposition

2.2.4 that

0 ≤ f ′(x;x− x) = inf
λ>0

f(x+ λ(x− x))− f(x)

λ
≤ f(x+ λ(x− x))− f(x)

λ
for all λ > 0.

Then, we have from λ = 1 that f(x) ≤ f(x) for any x ∈ S. Therefore, x is a global minimum of

problem (2.2.1).

We show the second part of this proposition by contradiction. Suppose that f is strictly

convex on S. Suppose also that x and x̃ are two distinct global minima of problem (2.2.1). Let

α be an optimal value of (2.2.1), and let λ ∈ (0, 1). Since the function f is strictly convex on S,

we have

f(λx+ (1− λ)x̃) < λf(x) + (1− λ)f(x̃) = α. (2.2.3)
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It follows from the convexity of S that λx + (1 − λ)x̃ ∈ S, and hence we have by (2.2.3) that

λx+ (1− λ)x̃ is a global minimum of (2.2.1). Therefore, we obtain a contradiction. □

Finally, we consider the following unconstrained optimization problem by using f and S in

problem (2.2.1):

minimize f(x) + δS(x),

subject to x ∈ V,
(2.2.4)

where the function δS : V → (−∞,∞] is an indicator function of S, that is,

δS(x) :=

{
0 if x ∈ S,

+∞ otherwise.

We give a property associated with a stationary point of problems (2.2.1) and (2.2.4).

Proposition 2.2.7. Let f and S be the function and the set in problem (2.2.1), respectively.

Suppose that S is a convex set. If x ∈ S is a stationary point of problem (2.2.4), then x is that

of problem (2.2.1).

Proof. Since x ∈ S is a stationary point of problem (2.2.4),

lim inf
λ→+0

f(x+ λ(x− x))− f(x) + δS(x+ λ(x− x))− δS(x)

λ
≥ 0 for all x ∈ V.

It then follows from S ⊂ V that

lim inf
λ→+0

f(x+ λ(x− x))− f(x) + δS(x+ λ(x− x))− δS(x)

λ
≥ 0 for all x ∈ S. (2.2.5)

On the other hand, we obtain δS(y+ t(z−y)) = 0 for all y, z ∈ S and t ∈ [0, 1] by the convexity

of S. Thus, we have from (2.2.5) that

lim inf
λ→+0

f(x+ λ(x− x))− f(x)

λ
≥ 0 for all x ∈ S.

Therefore, x is a stationary point of problem (2.2.1). □

2.2.3 Symmetrized Kronecker product and its properties

In this section, we define the following notations.

(i) We define a partial derivative of the function X : Rn → Sp at x with respect to its i-th

component as Ai(x) :=
∂
∂xi
X(x).

(ii) Let x ∈ Rn. We define an operator A(x) : Rn → Sp as

A(x)w := w1A1(x) + . . .+ wnAn(x) for all w ∈ Rn.

(iii) Let x ∈ Rn. We define an adjoint operator of A(x) : Rn → Sp as A∗(x) : Sp → Rn, i.e.,

A∗(x)U = [⟨A1(x), U⟩, . . . , ⟨An(x), U⟩]⊤ for all U ∈ Sp.
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(iv) Let P, Q ∈ Rp×p. We define an operator P ⊙Q : Sp → Sp as

(P ⊙Q)U :=
1

2
(PUQ⊤ +QUP⊤) for all U ∈ Sp.

(v) We define an operator svec : Sp → R
p(p+1)

2 as

svec(U) = [U11,
√
2U21, . . . ,

√
2Up1, U22,

√
2U32, . . . ,

√
2Up2, U33, . . . , Upp]

⊤ for all U ∈ Sp.

(vi) Let P, Q ∈ Rp×p. We denote the symmetrized Kronecker product as P ⊗S Q : R
p(p+1)

2 →
R

p(p+1)
2 which satisfies that

(P ⊗S Q)svec(U) = svec((P ⊙Q)U) for all U ∈ Sp.

(vii) We define an operator A : Rn → R
p(p+1)

2
×n as

A(x) := [svec(A1(x)), . . . , svec(An(x))] for all x ∈ Rn.

(viii) We define

U ◦ V :=
UV + V U

2
for all U, V ∈ Sp.

In the following, we give some propositions related to the above definitions.

Proposition 2.2.8. [61, 72] The following statements hold.

(a) For any matrices U, V ∈ Sp,

⟨U, V ⟩ = tr(UV ) = svec(U)⊤svec(V ), ∥U∥F = ∥svec(U)∥.

(b) For any matrices U, V ∈ Sp
+ and µ ∈ R, U ◦ V = µI is equivalent to UV = µI. □

Proposition 2.2.9. [61, 72] Let P and Q be arbitrary nonsingular matrices in Rp×p. Then the

following statements hold.

(a) The operator P ⊙Q is invertible.

(b) For all U, V ∈ Sp,

⟨U, (P ⊙Q)V ⟩ = ⟨(P⊤ ⊙Q⊤)U, V ⟩,
⟨
U, (P ⊙Q)−1V

⟩
= ⟨(P⊤ ⊙Q⊤)−1U, V ⟩.

(c) (P ⊙ P )−1 = (P−1 ⊙ P−1). □

Proposition 2.2.10. Let P and Q be arbitrary matrices in Rp×p, and let C1 :=

√
p(p+1)

2 . Then,

∥P ⊗S Q∥F ≤ C1∥P∥F ∥Q∥F .
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Proof. It follows from Proposition 2.2.1 (a) that

∥P ⊗S Q∥F ≤ C1∥P ⊗S Q∥2. (2.2.6)

Let U ∈ Sp. The definition of the symmetrized Kronecker product and Proposition 2.2.8 (a)

yield that

∥(P ⊗S Q)svec(U)∥ = ∥svec((P ⊙Q)U)∥

= ∥(P ⊙Q)U∥F

=
1

2
∥PUQ⊤ +QUP⊤∥F

≤ ∥P∥F ∥Q∥F ∥U∥F ,

and hence

∥P ⊗S Q∥2 = sup
svec(U) ̸=0

∥(P ⊗S Q)svec(U)∥
∥svec(U)∥

≤ sup
U ̸=0

∥P∥F ∥Q∥F ∥U∥F
∥U∥F

= ∥P∥F ∥Q∥F . (2.2.7)

We have by (2.2.6) and (2.2.7) that ∥P ⊗S Q∥F ≤ C1∥P∥F ∥Q∥F . □

Several interior point methods for SDP employ scaling of X(x) and Z, where Z ∈ Sp corre-

sponds to a Lagrange multiplier matrix for X(x) ⪰ 0 in (1.1.1). The details of Z are given in

Section 2.3. Let T be a nonsingular matrix in Rp×p. We consider the scaled matrices X̃(x) and

Z̃ defined by

X̃(x) := (T ⊙ T )X(x) and Z̃ := (T−⊤ ⊙ T−⊤)Z.

The details of scaling are given in Section 2.4. In the following, we show some useful properties

of X̃(x) and Z̃.

Proposition 2.2.11. The following statements hold.

(a) Suppose that X(x) and Z are symmetric positive definite. Suppose also that X̃(x) and Z̃

commute. Then we have⟨
(Z̃ ⊙ I)(X̃(x)⊙ I)U,U

⟩
≥ 0 for all U ∈ Sp.

Furthermore, the strict inequality holds in the above if and only if U ̸= 0.

(b) Suppose that X̃(x) and Z̃ commute. Then we have

(X̃(x)⊙ I)(Z̃ ⊙ I) = (Z̃ ⊙ I)(X̃(x)⊙ I).

Proof. (a) Since the matrices X(x) and Z are symmetric positive definite, X̃(x) and Z̃ are

also symmetric positive definite. It then follows from the commutativity of X̃(x) and Z̃ that

X̃(x)Z̃ is symmetric positive definite. Thus, there exists (X̃(x)Z̃)
1
2 ∈ Sp

++ such that X̃(x)Z̃ =
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(X̃(x)Z̃)
1
2 (X̃(x)Z̃)

1
2 . Let U ∈ Sp. Then we have⟨

(Z̃ ⊙ I)(X̃(x)⊙ I)U,U
⟩

=
1

4
tr((Z̃X̃(x)U + X̃(x)UZ̃ + Z̃UX̃(x) + UX̃(x)Z̃)U)

=
1

4
tr(X̃(x)UZ̃U) +

1

4
tr(Z̃UX̃(x)U)

+
1

4
tr(UX̃(x)Z̃U) +

1

4
tr(UZ̃X̃(x)U)

=
1

4
tr(X̃(x)

1
2UZ̃

1
2 Z̃

1
2UX̃(x)

1
2 ) +

1

4
tr(Z̃

1
2UX̃(x)

1
2 X̃(x)

1
2UZ̃

1
2 )

+
1

4
tr(UX̃(x)Z̃U) +

1

4
tr(UX̃(x)Z̃U)

=
1

2
tr(X̃(x)

1
2UZ̃

1
2 Z̃

1
2UX̃(x)

1
2 ) +

1

2
tr(U(X̃(x)Z̃)

1
2 (X̃(x)Z̃)

1
2U)

=
1

2
∥X̃(x)

1
2UZ̃

1
2 ∥2F +

1

2
∥(X̃(x)Z̃)

1
2U∥2F

≥ 0,

where the third equality follows from the commutativity of X̃(x) and Z̃. Note that, since X̃(x)
1
2 ,

Z̃
1
2 and (X̃(x)Z̃)

1
2 are positive definite, the strict inequality holds in the above if and only if

U ̸= 0.

(b) For any U ∈ Sp, we have

(X̃(x)⊙ I)(Z̃ ⊙ I)U =
1

4
(X̃(x)Z̃U + Z̃UX̃(x) + X̃(x)UZ̃ + UZ̃X̃(x))

=
1

4
(Z̃X̃(x)U + X̃(x)UZ̃ + Z̃UX̃(x) + UX̃(x)Z̃)

= (Z̃ ⊙ I)(X̃(x)⊙ I)U,

where the second equality follows from the commutativity of X̃(x) and Z̃. Hence, we obtain

(X̃(x)⊙ I)(Z̃ ⊙ I) = (Z̃ ⊙ I)(X̃(x)⊙ I). □

2.2.4 Properties of a log-determinant function

Let Ω be a set defined by Ω := { x ∈ Rn | X(x) ≻ 0 }. Furthermore, let ϕ : Sp
++ → R and

φ : Ω → R be functions defined by ϕ(M) := − log detM and φ(x) := ϕ(X(x)), respectively. We

first give the differentiability and convexity of ϕ and φ.

Proposition 2.2.12. [60] The following statements hold.

(a) The function ϕ is differentiable on Sp
++, and ∇ϕ(M) = −M−1 for all M ∈ Sp

++.

(b) The function ϕ is strictly convex on Sp
++. □

Proposition 2.2.13. The following statements hold.

(a) The function φ is differentiable on Ω, and ∇φ(x) = −A∗(x)X(x)−1 for all x ∈ Ω.
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(b) Suppose that X is nondifferentiable on Ω, and satisfies that

X(λu+ (1− λ)v)− λX(u)− (1− λ)X(v) ⪰ 0 for all λ ∈ [0, 1] and u, v ∈ Ω. (2.2.8)

Then φ is convex on Ω. Moreover, if X is injective on Ω, then φ is strictly convex.

(c) Suppose that X is differentiable on Ω, and satisfies (2.2.8). Suppose also that A1(x), . . . , An(x)

are linearly independent for all x ∈ Ω. Then φ is strictly convex.

Proof. We have from Proposition 2.2.12 (a) and the chain rule that

∇φ(x) = −A∗(x)X(x)−1. (2.2.9)

(b) It follows from λX(u) + (1− λ)X(v) ≻ 0, (2.2.8) and Proposition 2.2.1 (b) that

det[λX(u) + (1− λ)X(v)] ≤ det[X(λu+ (1− λ)v)].

Since − log is a decreasing function on (0,∞) and ϕ is strictly convex from Proposition 2.2.12

(b), we have

φ(λu+ (1− λ)v) = − log det[X(λu+ (1− λ)v)]

≤ − log det[λX(u) + (1− λ)X(v)]

= ϕ(λX(u) + (1− λ)X(v))

≤ λϕ(X(u)) + (1− λ)ϕ(X(v))

= λφ(u) + (1− λ)φ(v),

and hence φ is convex on Ω.

Suppose that u ̸= v. Then, since X is injective on Ω, X(u) ̸= X(v). Moreover, since ϕ is

strictly convex,

φ(λu+ (1− λ)v) ≤ ϕ(λX(u) + (1− λ)X(v))

< λϕ(X(u)) + (1− λ)ϕ(X(v))

= λφ(u) + (1− λ)φ(v)

for λ ∈ (0, 1). Thus, φ is strictly convex.

(c) Since X is differentiable, X(v + λ(u − v)) − X(v) = λA(v)(u − v) + o(λ) for u, v ∈ Ω and

λ ∈ (0, 1). Then (2.2.8) can be written as λA(v)(u− v)− λ(X(u)−X(v)) + o(λ) ⪰ 0. Dividing

both sides by λ, we have A(v)(u− v)−X(u) +X(v) + o(λ)
λ ⪰ 0. Letting λ→ 0 yields

A(v)(u− v)−X(u) +X(v) ⪰ 0.

Let M := A(v)(u− v)−X(u) +X(v). Since M ∈ Sp
+ and X(v)−1 ∈ Sp

++, there exist M
1
2 and

X(v)−
1
2 . Then we have⟨
X(v)−1,M

⟩
= tr(X(v)−1M) = tr(X(v)−

1
2M

1
2M

1
2X(v)−

1
2 ) = ∥M

1
2X(v)−

1
2 ∥2F .
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It then follows from the definition of φ, Proposition 2.2.12 (a) and (b) that

φ(u)− φ(v) = ϕ(X(u))− ϕ(X(v))

≥
⟨
−X(v)−1, X(u)−X(v)

⟩
=

⟨
X(v)−1,M

⟩
+
⟨
X(v)−1,−A(v)(u− v)

⟩
= ∥M

1
2X(v)−

1
2 ∥2F +

⟨
−A∗(v)X(v)−1, u− v

⟩
≥ ⟨∇φ(v), u− v⟩ , (2.2.10)

where the last inequality follows from (2.2.9).

Since φ is convex by (b), it suffices to show that φ(u) − φ(v) = ⟨∇φ(v), u− v⟩ if and only

if u = v. If u = v, it is clear that φ(u) − φ(v) = ⟨∇φ(v), u− v⟩. Conversely, suppose that

φ(u)− φ(v) = ⟨∇φ(v), u− v⟩. Since the equality holds in (2.2.10), we see that

ϕ(X(u))− ϕ(X(v)) =
⟨
−X(v)−1, X(u)−X(v)

⟩
, ∥M

1
2X(v)−

1
2 ∥F = 0. (2.2.11)

We have from Proposition 2.2.12 (b) and the first equality of (2.2.11) that X(u) = X(v), that is,

M = A(v)(u−v) by the definition ofM . Then, the regularity of X(v)−
1
2 and the second equality

of (2.2.11) yield that 0 =M = A(v)(u− v). Since A1(x), . . . , An(x) are linearly independent for

all x ∈ Ω, we have u = v. □

Note that Proposition 2.2.13 (b) does not assume the differentiability of X.

We next show that matrices in a level set of ϕ are uniformly positive definite.

Proposition 2.2.14. For a given γ ∈ R, let Lϕ(γ) = {U ∈ Sp
++|ϕ(U) ≤ γ}. Let Γ be a bounded

subset of Sp. Then, there exists λ > 0 such that λmin(U) ≥ λ for all U ∈ Lϕ(γ) ∩ Γ.

Proof. Suppose the contrary, that is, there exists a sequence {Uj} ⊂ Lϕ(γ) ∩ Γ such that

λmin(Uj) → 0 as j → ∞. Then

− log λmin(Uj) → ∞ (j → ∞). (2.2.12)

Since Uj ∈ Lϕ(γ), we have γ ≥ ϕ(Uj) = − log detUj = −
∑p

i=1 log λi(Uj). It then follows from

(2.2.12) that there exist an index k and an infinite subset J such that limj→∞,j∈J − log λk(Uj) =

−∞, that is, limj→∞,j∈J λk(Uj) = ∞. However, this is contrary to the boundedness of {Uj}.
Therefore, there exists λ > 0 such that λmin(U) ≥ λ for all U ∈ Lϕ(γ) ∩ Γ. □

2.3 Some optimality conditions for nonlinear SDP

We first introduce the first-order optimality conditions for nonlinear SDP (1.1.1). The La-

grangian function L of (1.1.1) is given by

L(x, y, Z) := f(x)− g(x)⊤y − ⟨X(x), Z⟩ ,

where y ∈ Rm and Z ∈ Sp are the Lagrange multiplier vector and matrix for g(x) = 0 and

X(x) ⪰ 0, respectively. A gradient of the Lagrangian function L with respect to x is given by

∇xL(x, y, Z) = ∇f(x)− Jg(x)
⊤y −A∗(x)Z.
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The Karush-Kuhn-Tucker (KKT) conditions of (1.1.1) are written as ∇xL(x, y, Z)

g(x)

X(x)Z

 =

 0

0

0

 , X(x) ⪰ 0, Z ⪰ 0. (2.3.1)

Next, we introduce definitions of the stationary point, the Mangasarian-Fromovitz constraint

qualification condition, the second-order sufficient condition, the strict complementarity condi-

tion and the nondegeneracy condition.

We say that a point x∗ ∈ Rn is a stationary point of (1.1.1) if there exist Lagrange multipliers

y∗ ∈ Rm and Z∗ ∈ Sp such that (x∗, y∗, Z∗) satisfies the KKT conditions (2.3.1). We say that

the Mangasarian-Fromovitz constraint qualification condition holds at x∗ if rank(Jg(x
∗)) = m

and there exists a vector v ∈ Rn such that

v ̸= 0, Jg(x
∗)v = 0, X(x∗) +

n∑
i=1

viAi(x
∗) ≻ 0.

Then, we present a theorem associated with the Mangasarian-Fromovitz constraint qualification

condition.

Theorem 2.3.1. [13] Let x∗ be a local optimal solution of nonlinear SDP (1.1.1). If the

Mangasarian-Fromovitz constraint qualification condition holds at x∗, there exist Lagrange mul-

tipliers y∗ ∈ Rm and Z∗ ∈ Sp such that (x∗, y∗, Z∗) satisfies the KKT conditions (2.3.1). □

Let x∗ be a stationary point of nonlinear SDP (1.1.1), and let Λ(x∗) be a set defined by

Λ(x∗) := { (y, Z) ∈ Rm × Sp | (x∗, y, Z) satisfies (2.3.1) }.

First, we describe the second-order sufficient condition for nonlinear SDP (1.1.1). Let C(x∗)

be the critical cone of (1.1.1) at x∗, that is,

C(x∗) :=

{
h ∈ Rn

∣∣∣∣∣ Jg(x∗)h = 0,
n∑

i=1

hiAi(x
∗) ∈ TSp

+
(X(x∗)), ∇f(x∗)⊤h = 0

}
,

where

TSp
+
(X(x∗)) :=

{
D ∈ Sp | dist

(
X(x∗) + tD,Sp

+

)
= o(t), t ≥ 0

}
,

dist
(
P, Sp

+

)
:= inf{ ∥P −Q∥F | Q ∈ Sp

+ }.

Then, we say that the second-order sufficient condition holds at x∗ if

sup
(y,Z)∈Λ(x∗)

h⊤
(
∇2

xxL(x
∗, y, Z) + Ĥ(x∗, Z)

)
h > 0 for all h ∈ C(x∗)\{0},

where the (i, j)-th element of Ĥ(x∗, Z) is 2tr(Ai(x
∗)X(x∗)†Aj(x

∗)Z), and X(x∗)† denotes the

Moore-Penrose generalized inverse of X(x∗). In the following, we propose a theorem related to

the second-order sufficient condition.
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Theorem 2.3.2. [71] Suppose that the Mangasarian-Fromovitz constraint qualification condition

holds at x∗. Then, the second-order sufficient condition holds at x∗ if and only if x∗ is a strict

local optimal solution of nonlinear SDP (1.1.1). □

Next, we describe the strict complementarity condition and the nondegeneracy condition.

We say that the strict complementarity condition holds at x∗ if there exists (y∗, Z∗) ∈ Λ(x∗)

such that rank(X(x∗)) + rank(Z∗) = p. Then, without loss of generality, we may assume that

X(x∗) and Z∗ are written as

X(x∗) =

[
X

∗
0

0 0

]
, Z∗ =

[
0 0

0 Z∗

]
,

where X
∗ ∈ Sq

++ and Z∗ ∈ Sr
++, and q and r are positive integers such that q + r = p. Then,

for each i ∈ {1, . . . , n}, let Ai(x) ∈ Sr be a submatrix of Ai(x) such that

Ai(x) =

[
Ai(x) Âi(x)

Âi(x)
⊤ Ai(x)

]
,

where Ai(x) and Âi(x) are appropriate submatrices of Ai(x). We define

B(x) := [svec(A1(x)), . . . , svec(An(x))] ∈ R
r(r+1)

2
×n, K(x) :=

[
Jg(x)

B(x)

]
∈ R(m+

r(r+1)
2

)×n.

We say that the nondegeneracy condition holds at x∗ if rank(K(x∗)) = m+ r(r+1)
2 . Finally, we

give a theorem related to the Lagrange multipliers corresponding to a stationary point x∗ ∈ Rn.

Theorem 2.3.3. [71] Let x∗ ∈ Rn be a stationary point of nonlinear SDP (1.1.1). If the strict

complementarity condition holds at x∗, then Λ(x∗) is a singleton if and only if the nondegeneracy

condition is satisfied at x∗. □

2.4 Barrier KKT conditions for nonlinear SDP

Most of solution methods for nonlinear SDP are developed to find a point w := (x, y, Z) that

satisfies the KKT conditions. However, it is difficult to get such a point directly due to the

complementarity condition X(x)Z = 0 with X(x) ⪰ 0 and Z ⪰ 0. To overcome this difficulty,

the primal-dual interior point methods proposed by a few researchers exploited the following

two conditions with a barrier parameter µ > 0:

Barrier KKT conditions ∇xL(w)

g(x)

X(x)Z − µI

 =

 0

0

0

 , X(x) ≻ 0, Z ≻ 0, (2.4.1)

Shifted barrier KKT conditions ∇xL(w)

g(x) + µy

X(x)Z − µI

 =

 0

0

0

 , X(x) ≻ 0, Z ≻ 0. (2.4.2)
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The conditions (2.4.1) are called the barrier KKT conditions, and they were proposed by Ya-

mashita, Yabe and Harada [72]. Moreover, the barrier KKT conditions come from Yamashita

[70] for nonlinear programming. On the other hand, the conditions (2.4.2) are called the shifted

barrier KKT conditions, and they were proposed by Kato, Yabe and Yamashita [34]. Moreover,

the shifted barrier KKT conditions are derived from Forsgren and Gill [18] for nonlinear pro-

gramming. In what follows, we call a point w satisfying the (shifted) barrier KKT conditions a

(shifted) barrier KKT point.

Furthermore, we define the following generalized shifted barrier KKT conditions which are

a new concept proposed in this thesis:

Generalized shifted barrier KKT conditions

rκ(w, µ) :=

 ∇xL(w)

g(x) + κµy

svec(X(x) ◦ Z − µI)

 =

 0

0

0

 , X(x) ⪰ 0, Z ⪰ 0, (2.4.3)

where κ ∈ [0,∞) and µ ≥ 0. In the conditions (2.4.3), we generalize g(x) = 0 and g(x)+µy = 0

in (2.4.1) and (2.4.2) as g(x) + κµy = 0 by using κ ∈ [0,∞). Moreover, we also replace

X(x)Z − µI = 0 with svec(X(x) ◦ Z − µI) = 0. Note that since X(x), Z ∈ Sp
+, it follows from

Proposition 2.2.8 (b) that X(x)Z−µI = 0 is equivalent to X(x) ◦Z−µI = 0. In the remaining

thesis, we call (2.4.3) the generalized shifted barrier KKT conditions. If µ = 0, the generalized

shifted barrier KKT conditions (2.4.3) are reduced to the KKT conditions (2.3.1). Note that

when µ > 0, the conditions X(x) ⪰ 0 and Z ⪰ 0 in (2.4.3) are equivalent to X(x) ≻ 0 and Z ≻ 0.

Moreover, if κ = 0 and µ > 0, then (2.4.3) are reduced to the barrier KKT conditions (2.4.1).

Similarly, if κ = 1 and µ > 0, then (2.4.3) are equal to the shifted barrier KKT conditions

(2.4.2). For a given ξ > 0, a point w ∈ Rl such that ∥rκ(w, 0)∥ ≤ ξ, X(x) ⪰ 0 and Z ⪰ 0

is called an approximate KKT point. Similarly, if w ∈ Rl satisfies that ∥rκ(w, µ)∥ ≤ ξ with

µ > 0, X(x) ⪰ 0 and Z ⪰ 0, we call w an approximate generalized shifted barrier KKT point. In

particular, when κ = 0 (κ = 1), we call w an approximate (shifted) barrier KKT point. Finally,

we define a set W by

W := { w | X(x) ≻ 0, Z ≻ 0 }.

We call a point w ∈ W an interior point.

As described in Subsection 1.2.2, scaling is frequently exploited in the existing primal-dual

interior point methods. Scaling means that we generate matrices

X̃(x) := TX(x)T⊤ and Z̃ := T−⊤ZT−1

by using a nonsingular matrix T such that X̃(x)Z̃ = Z̃X̃(x). We call T a scaling matrix.

Moreover, we also use the following scaled generalized shifted barrier KKT conditions:

Scaled generalized shifted barrier KKT conditions

r̃κ(w, µ) :=

 ∇xL(w)

g(x) + κµy

svec(X̃(x) ◦ Z̃ − µI)

 =

 0

0

0

 , X̃(x) ⪰ 0, Z̃ ⪰ 0. (2.4.4)
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Since X̃(x), Z̃ ∈ Sp
+, it follows from Proposition 2.2.8 (b) that X̃(x) ◦ Z̃ − µI = 0 is equivalent

to X̃(x)Z̃ − µI = 0. It is clear that X̃(x)Z̃ − µI = 0 is equivalent to X(x)Z − µI = 0.

Therefore, since X(x)Z − µI = 0 is equivalent to X(x) ◦ Z − µI = 0 by Proposition 2.2.8 (b),

X̃(x) ◦ Z̃ − µI = 0 is equivalent to X(x) ◦ Z − µI = 0, i.e., (2.4.3) and (2.4.4) are equivalent.

Note that we call (2.4.4) the scaled barrier KKT conditions when κ = 0 and µ > 0. Similarly,

we call (2.4.4) the scaled shifted barrier KKT conditions when κ = 1 and µ > 0.

Finally, we present the well-known scaling matrix T .

Choice of scaling matrix

(i) If we consider T = X(x)−
1
2 , then X̃(x) = I and Z̃ = X

1
2ZX

1
2 . This choice corresponds to

the HRVW/KSH/M direction for linear SDP [28, 35, 42]. Clearly, the matrices X̃(x) and

Z̃ satisfy X̃(x)Z̃ = Z̃X̃(x).

(ii) If we consider T = W− 1
2 with W := X

1
2 (X

1
2ZX

1
2 )−

1
2X

1
2 , then X̃(x) = W− 1

2XW− 1
2 =

W
1
2ZW

1
2 = Z̃. This choice corresponds to the NT direction for linear SDP [44, 45].

Clearly, the matrices X̃(x) and Z̃ satisfy X̃(x)Z̃ = Z̃X̃(x).

2.5 Block coordinate descent method for nondifferentiable min-

imization

In this section, we introduce a block coordinate descent (BCD) method for nondifferentiable

minimization, and we present some results related to the nondifferentiable minimization and

the BCD method. Note that these results are derived from Tseng [62]. First, we consider the

following unconstrained optimization problem:

minimize
x∈Rn

f(x) := f0(x) +

N∑
k=1

fk(xk), (2.5.1)

where f : Rn1+···+nN → R ∪ {∞} is proper, that is, there exists x ∈ Rn1+···+nN such that

f(x) <∞, and f0 : R
n1+···+nN → R∪{∞} and fk : Rnk → R∪{∞} for k = 1, . . . , N . Note that

N,n1, . . . , nN are positive integers, and x1, . . . , xN denote coordinate blocks of x = [x1, . . . , xN ].

In the following, we introduce some concepts. We say that x is a coordinatewise minimum point

of f if x ∈ domf and

f(x+ (0, . . . , dk, . . . , 0)) ≥ f(x) for all dk ∈ Rnk and k = 1, . . . , N,

where we denote by (0, . . . , dk, . . . , 0) the vector in Rn1+···+nN whose k-th coordinate block is

dk and whose other coordinates are zero. We say that f is quasiconvex on a convex set C if

f(λx+ (1− λ)y) ≤ max{f(x), f(y)} for all λ ∈ [0, 1] and x, y ∈ C.

We say that f is hemivariate on a set D ⊂ domf if f is not constant on any line segment of D,

that is, if there exist no distinct points x, y ∈ domf such that

tx+ (1− t)y ∈ D, f(tx+ (1− t)y) = f(x) for all t ∈ [0, 1].
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In what follows, we present a proposition related to a stationary point and a coordinate minimum

point.

Proposition 2.5.1. [62] Let f be the function in (2.5.1). Suppose that x is a coordinatewise

minimum point of f . If f0 is differentiable at x, then x is a stationary point of (2.5.1). □

Next, we present a BCD method based on the cyclic rule.

Block coordinate descent method

Step 0. Choose any x0 := [x01, . . . , x
0
N ] ∈ domf . Set r := 0.

Step 1. Calculate xr+1 := [xr+1
1 , . . . , xr+1

N ] by solving the following problems:

xr+1
1 ∈ argmin

x∈Rn1

f(x, xr2, . . . , x
r
N ),

xr+1
2 ∈ argmin

x∈Rn2

f(xr+1
1 , x, xr3 . . . , x

r
N ),

...

xr+1
N ∈ argmin

x∈RnN

f(xr+1
1 , . . . , xr+1

N−1, x).

Step 2. If a termination criterion is satisfied, then stop.

Step 3. Set r := r + 1, and go to Step 1. □

Finally, we provide a proposition associated with a convergence analysis for the BCD method.

Proposition 2.5.2. [62] Let {xr} be a sequence generated by the BCD method. Suppose that

f, f0, f1, . . . , fN satisfy the following assumptions:

(i) f0 is continuous on domf0;

(ii) For each k ∈ {1, . . . , N} and xj ∈ Rnj (j = 1, . . . , N, j ̸= k), the function xk 7→
f(x1, . . . , xN ) is quasiconvex and hemivariate;

(iii) f0, f1, . . . , fN are lower semicontinuous;

(iv) There exist Yk ⊂ Rnk (k = 1, . . . , N) such that domf0 = Y1 × · · · × YN .

Then, either {f(xr)} ↓ −∞ or else every accumulation point x∗ is a coordinatewise minimum

point of f . □





Chapter 3

A differentiable merit function for

shifted barrier Karush-Kuhn-Tucker

conditions of nonlinear semidefinite

programming problems

3.1 Introduction

In this chapter, we consider the following nonlinear semidefinite programming (SDP) problem:

minimize
x∈Rn

f(x),

subject to g(x) = 0, X(x) ⪰ 0,
(3.1.1)

where f : Rn → R, g : Rn → Rm and X : Rn → Sp are twice continuously differentiable

functions.

For nonlinear SDP, there exist several solution methods which have the global convergence

such as the methods described in Chapter 1. However, as mentioned in Chapter 1, there exist

some issues associated with assumptions for the global convergence. The aim of this chapter

is to propose a primal-dual interior point method for (3.1.1) that is convergent globally under

milder conditions compared with the existing methods. In particular, we specify the conditions

related to the problem data, i.e., f, g and X. We also show that these conditions hold for linear

SDP.

In this chapter, we propose a new merit function F whose stationary points satisfy the shifted

barrier KKT conditions. This function is an extension of a merit function proposed by Forsgren

and Gill [18] developed for nonlinear programming, and it consists of simple functions, such as

log-determinant and trace. Thus, it is easy to implement the proposed method with the merit

function F . We show the following important properties of the merit function F :

(i) The merit function F is differentiable;

(ii) Any stationary point of the merit function F is a shifted barrier KKT point;



34 3 Differentiable merit function for shifted barrier KKT conditions of nonlinear SDP

(iii) The level set of the merit function F is bounded under some reasonable assumptions.

These properties mean that we can find a shifted barrier KKT point by minimizing the merit

function F . To minimize F , we also propose a Newton-type method based on nonlinear equations

in the shifted barrier KKT conditions. We show that the Newton direction is sufficiently descent

for the merit function F . As a result, we prove the global convergence of the proposed Newton-

type method. These details are provided in Section 3.3.

This chapter is organized as follows. In Section 3.2, we introduce some important concepts,

which are used in the subsequent section, and we present a primal-dual interior point method

based on the shifted barrier KKT conditions. In Section 3.3, we first propose a merit function F

for a shifted barrier KKT point and present its properties. Secondly, we propose a Newton-type

method that minimizes the merit function F . Moreover, we prove the global convergence of

the proposed Newton-type method. In Section 3.4, we report some numerical results for the

proposed method. Finally, we make some concluding remarks in Section 3.5.

3.2 Primal-dual interior point method based on shifted barrier

KKT conditions

As described in Chapter 1, the main goal of solution methods for nonlinear SDP (3.1.1) is to

find a KKT point which satisfies the following KKT conditions: ∇xL(v)

g(x)

svec(X(x) ◦ Z)

 =

 0

0

0

 , X(x) ⪰ 0, Z ⪰ 0, (3.2.1)

where v := (x, y, Z) ∈ Rn × Rm × Sp and L is the Lagrangian function, that is, L(v) =

f(x)− g(x)⊤y − ⟨X(x), Z⟩. In what follows, we introduce a prototype of a primal-dual interior

point method based on the shifted barrier KKT conditions (2.4.2). To this end, we use the

generalized shifted barrier KKT conditions (2.4.3) with κ = 1, that is,

r1(v, µ) =

 ∇xL(v)

g(x) + µy

svec(X(x) ◦ Z − µI)

 =

 0

0

0

 , X(x) ⪰ 0, Z ⪰ 0, (3.2.2)

where µ ≥ 0. Note that if µ = 0, the conditions (3.2.2) are equivalent to the KKT conditions

(3.2.1). Note also that if µ > 0, the conditions (3.2.2) hold if and only if r1(v, µ) = 0 and v ∈ W ,

that is, the shifted barrier KKT conditions hold. Note that W = {(x, y, Z)|X(x) ≻ 0, Z ≻ 0}.
Now, we give a framework of a primal-dual interior point method.

Algorithm 3.2.1.

Step 0. Let {µk} be a positive sequence such that µk → 0 as k → ∞. Choose positive constants

σ and ϵ. Set k := 0.

Step 1. Find an approximate shifted barrier KKT point vk+1 such that ∥r1(vk+1, µk)∥ ≤ σµk

and vk+1 ∈ W.
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Step 2. If ∥r1(vk+1, 0)∥ ≤ ϵ, then stop.

Step 3. Set k := k + 1 and go to Step 1. □

The following theorem gives conditions for the global convergence of Algorithm 3.2.1. It can

be proven in a way similar to [72, Theorem 1]. Thus, we omit the proof.

Theorem 3.2.1. Suppose that an approximate shifted barrier KKT point vk+1 is found in

Step 1 at every iteration. Moreover, suppose that the sequence {xk} is bounded and that the

Mangasarian-Fromovitz constraint qualification condition holds at any accumulation point of

{xk}, i.e., for any accumulation point x∗ of {xk}, the matrix Jg(x
∗) is of full rank and there

exists a nonzero vector w ∈ Rn such that

Jg(x
∗)w = 0 and X(x∗) +

n∑
i=1

wiAi(x
∗) ≻ 0.

Then, the sequences {yk} and {Zk} are bounded, and any accumulation point of {vk} satisfies

the KKT conditions (3.2.1). □

The theorem guarantees the global convergence if an approximate shifted barrier KKT point

vk+1 is found at each iteration. Thus it is important to present a method that finds such a point.

In the next section, we will propose a merit function for the shifted barrier KKT point and a

Newton-type method for solving an unconstrained minimization problem of the merit function.

3.3 Finding a shifted barrier KKT point

In order to find the approximate shifted barrier KKT point vk+1 in Step 1 of Algorithm 3.2.1,

we may solve the following unconstrained minimization problem:

minimize ∥r1(w, µ)∥2,
subject to w := (x, y, Z) ∈ Rn ×Rm × Sp,

Unfortunately, a stationary point of the problem is not necessarily a shifted barrier KKT point

unless a Jacobian of r1 with respect to w at (w, µ) is invertible. In this section, we first con-

struct a differentiable merit function F whose stationary point is always a shifted barrier KKT

point. Moreover, we show that a Newton direction for the nonlinear equations r1(w, µ) = 0 is a

descent direction of the merit function F . Next, we propose a Newton-type method for solving

an unconstrained minimization of the merit function F . Finally, we show that the proposed

algorithm finds a shifted barrier KKT point under some mild assumptions.

3.3.1 Merit function and its properties

We propose the following merit function F : W → R for the shifted barrier KKT point:

F (x, y, Z) := FBP (x) + νFPD(x, y, Z),



36 3 Differentiable merit function for shifted barrier KKT conditions of nonlinear SDP

where ν is a positive constant, and the functions FBP : Ω → R and FPD : W → R are defined

by

FBP (x) := f(x) +
1

2µ
∥g(x)∥2 − µ log detX(x),

and

FPD(x, y, Z) :=
1

2µ
∥g(x) + µy∥2 + ⟨X(x), Z⟩ − µ log detX(x) detZ,

respectively. Note that Ω = { x ∈ Rn | X(x) ≻ 0 }. The functions FBP and FPD are called the

primal barrier penalty function and the primal-dual barrier penalty function, respectively. Note

that F is convex with respect to x when f is convex and g, X are affine. The merit function F

is an extension of the one proposed by Forsgren and Gill [18] for nonlinear programming.

Remark 3.3.1. For the shifted barrier KKT conditions, Kato, Yabe and Yamashita [34] also

proposed the merit function F̃ : W → R as

F̃ (x, y, Z) := FBP (x) + νF̃PD(x, y, Z),

where F̃PD : W → R is defined by

F̃PD(x, y, Z) :=
1

2
∥g(x) + µy∥2 + log

1
p ⟨X(x), Z⟩+ ∥Z

1
2X(x)Z

1
2 − µI∥2F

(det(X(x)Z))
1
p

.

They showed that F̃ has nice properties like the merit function F . However, F̃ is more compli-

cated than F , and hence it might not be easy to implement the Newton-type method based on F̃

in [34]. Furthermore, even if f is convex and g, X are affine, F̃ is not necessarily convex with

respect to x.

In the rest of this subsection, we present some useful properties of the merit function F such

as the differentiability, the equivalence between a stationary point of F and a shifted barrier

KKT point, and the level boundedness.

First of all, we present a concrete formula of the derivatives of the merit function F .

Theorem 3.3.1. The merit function F is differentiable on W. Moreover, its derivative is given

by

∇F (w) =

 ∇FBP (x) + ν∇xFPD(w)

ν∇yFPD(w)

ν∇ZFPD(w)

 ,
where ∇FBP (x) = ∇f(x) + 1

µJg(x)
⊤g(x)− µA∗(x)X(x)−1,∇xFPD(w) =

1
µJg(x)

⊤(g(x) + µy) +

A∗(x)(Z − µX(x)−1),∇yFPD(w) = g(x) + µy and ∇ZFPD(w) = X(x)− µZ−1. □

Next, we show the equivalence between a stationary point of the merit function F and a

shifted barrier KKT point.

Theorem 3.3.2. A point w∗ ∈ W is a stationary point of the merit function F if and only if

w∗ is a shifted barrier KKT point.
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Proof. First, let w∗ = (x∗, y∗, Z∗) ∈ W be a stationary point of the merit function F . Then,

Theorem 3.3.1 yields that

∇f(x∗) + 1

µ
Jg(x

∗)⊤ {(1 + ν)g(x∗) + νµy∗}+A∗(x∗)
{
νZ∗ − µ(1 + ν)X(x∗)−1

}
= 0, (3.3.1)

g(x∗) + µy∗ = 0, X(x∗)− µ(Z∗)−1 = 0. (3.3.2)

Thus we have

∇xL(w
∗) = ∇f(x∗)− Jg(x

∗)⊤y∗ −A∗(x∗)Z∗

= ∇f(x∗) + 1

µ
Jg(x

∗)⊤g(x∗)− µA∗(x∗)X(x∗)−1

= −ν
µ
Jg(x

∗)⊤ {g(x∗) + µy∗} − νA∗(x∗)X(x∗)−1
{
X(x∗)− µ(Z∗)−1

}
Z∗

= 0,

where the second and third equalities follow from (3.3.2) and (3.3.1), respectively. Therefore,

w∗ is a shifted barrier KKT point.

Conversely, let w∗ = (x∗, y∗, Z∗) be a shifted barrier KKT point. Then, we obtain that

∇xL(w
∗) = 0, g(x∗) + µy∗ = 0, X(x∗)Z∗ − µI = 0.

From Theorem 3.3.1, it is clear that ∇yF (w
∗) = ν{g(x∗)+µy∗} = 0 and ∇ZF (w

∗) = ν{X(x∗)−
µ(Z∗)−1} = ν{X(x∗)Z∗ − µI}(Z∗)−1 = 0. Moreover,

∇xF (w
∗) = ∇f(x∗) + 1

µ
Jg(x

∗)⊤ {(1 + ν)g(x∗) + νµy∗}+A∗(x∗)
{
νZ∗ − µ(1 + ν)X(x∗)−1

}
= ∇f(x∗) + 1

µ
Jg(x

∗)⊤g(x∗)− µA∗(x∗)X(x∗)−1

+
ν

µ
Jg(x

∗)⊤ {g(x∗) + µy∗}+ νA∗(x∗)
{
Z∗ − µX(x∗)−1

}
= ∇xL(x

∗) +
ν

µ
Jg(x

∗)⊤ {g(x∗) + µy∗}+ νA∗(x∗)X(x∗)−1 {X(x∗)Z∗ − µI}

= 0.

Therefore, w∗ is a stationary point of F . □

This theorem is an extension of [18, Lemma 3.1] for nonlinear programming.

From this theorem, we can find an approximate shifted barrier KKT point by solving the

following unconstrained minimization problem:

minimize F (w),

subject to w ∈ W.
(3.3.3)

One of the sufficient conditions under which descent methods find a stationary point is that a

level set of the objective function is bounded. Thus, it is worth providing sufficient conditions

for the level boundedness of the merit function F . For a given α ∈ R, we define a level set L(α)
of F by

L(α) = {w ∈ W | F (w) ≤ α} .

We first give two lemmas. The following lemma follows directly from [72, Lemma 1].
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Lemma 3.3.1. Let w = (x, y, Z) ∈ W and µ > 0. Then the following properties hold.

(a) ⟨X(x), Z⟩ − µ log detX(x)Z ≥ pµ(1− logµ).

(b) FPD(w) ≥ pµ(1−logµ). The equality holds if and only if g(x)+µy = 0 and X(x)Z−µI = 0.

(c) lim
⟨X(x),Z⟩↓0

FPD(w) = ∞ and lim
⟨X(x),Z⟩↑∞

FPD(w) = ∞. □

Lemma 3.3.2. Suppose that an infinite sequence {wj = (xj , yj , Zj)} is included in L(α). Sup-

pose also that the sequence {xj} is bounded. Then, the sequences {yj} and {Zj} are also bounded.

In addition, the sequences {X(xj)} and {Zj} are uniformly positive definite.

Proof. Since {xj} is bounded, {− log detX(xj)} is bounded below. Thus, there exists a real

number M1 such that M1 ≤ FBP (xj) for all j. Then, the definition of F and wj ∈ L(α) imply

that FPD(wj) ≤ 1
ν (α−M1) for all j, which can be rewritten as

1

2µ
∥g(xj) + µyj∥2 ≤

α−M1

ν
− ⟨X(xj), Zj⟩+ µ log detX(xj)Zj ≤

α−M1

ν
− pµ(1− logµ),

where the last inequality follows from Lemma 3.3.1 (a). Hence, {yj} is bounded.

Next, we show that {X(xj)} is uniformly positive definite. From Lemma 3.3.1 (b), we have

M1 ≤ FBP (xj) = F (wj)− νFPD(wj) ≤ α− νFPD(wj) ≤ α− νpµ(1− logµ) for all j,

and hence, {FBP (xj)} is bounded. It then follows from the boundedness of {xj} and the defini-

tion of FBP that {− log detX(xj)} is also bounded. From Proposition 2.2.14, the boundedness

of {− log detX(xj)} and {X(xj)} implies that {X(xj)} is uniformly positive definite, that is,

there exists λ such that λmin(X(xj)) ≥ λ > 0 for all j.

Next we show that {Zj} is bounded. From Lemma 3.3.1 (b), we have

pµ(1− logµ) ≤ FPD(wj) ≤
1

ν
(α−M1) for all j,

and hence {FPD(wj)} is bounded. Then, Lemma 3.3.1 (c) yields that {⟨X(xj), Zj⟩} is bounded.

Thus, there exists a real number M2 such that for all j,

M2 ≥ tr(X(xj)Zj) ≥ λmin(X(xj))tr(Zj) ≥ λtr(Zj) = λ

p∑
k=1

λk(Zj) (3.3.4)

where the second inequality follows from Proposition 2.2.1 (c). Since {Zj} is positive definite,

λk(Zj) > 0 for k = 1, . . . , p. Then, (3.3.4) implies that {λk(Zj)} is bounded for k = 1, . . . , p,

and hence {Zj} is bounded.

Finally, we show that {Zj} is uniformly positive definite. Recall that

FPD(wj) =
1

2µ
∥g(xj) + µyj∥2 + ⟨X(xj), Zj⟩ − µ log detX(xj)− µ log detZj ,

and that {xj}, {yj}, {⟨X(xj), Zj⟩}, {− log detX(xj)} and {FPD(wj)} are bounded. Therefore,

{− log detZj} is also bounded. It then follows from Proposition 2.2.14 and the boundedness of

{Zj} that {Zj} is uniformly positive definite. □

We now give sufficient conditions under which any level set of the merit function F is

bounded.
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Theorem 3.3.3. Suppose that the following five assumptions hold.

(i) The function f is convex.

(ii) The functions g1, . . . , gm are affine.

(iii) The function X satisfies X(λu + (1 − λ)v) − λX(u) − (1 − λ)X(v) ⪰ 0 for all λ ∈ [0, 1]

and u, v ∈ Ω.

(iv) The matrices A1(x), . . . , An(x) are linearly independent for all x ∈ Ω;

(v) There exists a shifted barrier KKT point w∗.

Then, the level set L(α) of F is bounded for all α ∈ R.

Proof. Let {(xk, yk, Zk)} be an infinite sequence in L(α). We first show that {xk} is bounded.

In order to prove this by contradiction, we suppose that there exists a subset I ⊂ {0, 1, . . .} such

that limk→∞,k∈I ∥xk∥ = ∞. Since F (wk) ≤ α and FPD(wk) ≥ pµ(1− logµ) from Lemma 3.3.1

(b), FBP (xk) = F (wk)− νFPD(wk) ≤ α− νpµ(1− logµ).

On the other hand, since w∗ is a shifted barrier KKT point, Theorem 3.3.1 implies that

0 = ∇xL(w
∗) = ∇f(x∗) + 1

µ
Jg(x

∗)⊤g(x∗)− µA∗(x∗)X(x∗)−1 = ∇FBP (x
∗). (3.3.5)

Note that FBP is strictly convex from Proposition 2.2.13 (c) and the assumptions (i)–(iv).

Thus, (3.3.5) implies that x∗ is a unique global minimizer of min{FBP (x) | x ∈ Ω}. Note that

x∗ ∈ Ω = { x ∈ Rn | X(x) ≻ 0 }. Then, there exists ε > 0 such that {x∗ + εu | ∥u∥ = 1} ⊂ Ω

and min{FBP (x
∗ + εu) | ∥u∥ = 1} > FBP (x

∗). Let dk := 1
ε (xk − x∗) (k ∈ I) and F ε

BP :=

min{FBP (x
∗+εu) | ∥u∥ = 1}. Note that ∥dk∥ → ∞ (k → ∞, k ∈ I). Without loss of generality,

we suppose that ∥dk∥ > 1 for all k ∈ I. From the convexity of FBP , we have

∥dk∥ − 1

∥dk∥
FBP (x

∗) +
1

∥dk∥
FBP (x

∗ + εdk) ≥ FBP

(
x∗ + ε

dk
∥dk∥

)
≥ F ε

BP ,

and hence FBP (xk) = FBP (x
∗ + εdk) ≥ ∥dk∥(F ε

BP − FBP (x
∗)) + FBP (x

∗). Thus, since F ε
BP −

FBP (x
∗) > 0, we have FBP (xk) → ∞ (k → ∞, k ∈ I). However, this result contradicts

FBP (xk) ≤ α − pµ(1 − logµ). Hence, for arbitrary {xk, yk, Zk} ⊂ L(α), {xk} is bounded. It

then follows from Lemma 3.3.2 and the boundedness of {F (wj)} that {yk} and {Zk} are also

bounded. □

Remark 3.3.2. The level boundedness of the merit function for nonlinear programming is not

given in [18]. Applying Theorem 3.3.3, it is easy to show that the merit function M in [18] is

level bounded if the objective function f is convex, the constraint functions ci (i ∈ E) are affine,

and rank(Jc) = n.

Remark 3.3.3. Kato, Yabe and Yamashita [34] showed that their merit function F̃ is differen-

tiable and its stationary point is a shifted barrier KKT point. However, they did not discuss the

level boundedness of their merit function.
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Remark 3.3.4. Theorem 3.3.3 assumes that f is convex and g is affine. These assumptions are

rather restrictive for some applications. We can replace these assumptions with the following

coerciveness condition:

lim
∥x∥→∞,x∈Ω

1

∥x∥

(
f(x) +

1

2µ
∥g(x)∥2

)
= ∞.

Due to Theorems 3.3.1–3.3.3, we can solve unconstrained minimization problem (3.3.3) by

any descent method, such as quasi-Newton methods and steepest descent methods, and hence

we can get an approximate shifted barrier KKT point vk+1 in Step 1 of Algorithm 3.2.1.

3.3.2 Newton-type method for minimization of the merit function

In this subsection, we propose a Newton-type method for unconstrained minimization problem

(3.3.3) of the merit function F .

We exploit scaling which enables us to calculate a Newton direction easily. Note that scaling

have already been described in Section 2.4. Let T ∈ Rp×p be a nonsingular scaling matrix such

that

TX(x)T⊤T−⊤ZT−1 = T−⊤ZT−1TX(x)T⊤. (3.3.6)

As described in Section 2.4, X̃(x) and Z̃ denote the following matrices:

X̃(x) = TX(x)T⊤ = (T ⊙ T )X(x), Z̃ = T−⊤ZT−1 = (T−⊤ ⊙ T−⊤)Z.

Note that X̃(x)Z̃ = Z̃X̃(x) by (3.3.6). In the subsequent discussions, for simplicity, we denote

X(x) and X̃(x) by X and X̃, respectively.

Next, we give a Newton direction and show that it is a descent direction for the merit

function F . The Newton direction is derived from the nonlinear equations r1(w, µ) = 0 in

(3.2.2). However, as seen later, a pure Newton direction (∆x,∆y,∆Z) for r1(w, µ) = 0 is not

necessarily a descent direction for the merit function F . Thus, we consider the following scaled

shifted barrier KKT conditions:

r̃1(w, µ) :=

 ∇xL(w)

g(x) + µy

svec(X̃ ◦ Z̃ − µI)

 =

 0

0

0

 , X̃ ≻ 0, Z̃ ≻ 0. (3.3.7)

Note that the conditions (3.3.7) are equivalent to the scaled generalized shifted barrier KKT

conditions with κ = 1 and µ > 0 as mentioned in Section 2.4. We apply the Newton method to

the equation r̃1(w, µ) = 0 in (3.3.7). Then, the Newton equations derived from r̃1(w, µ) = 0 are

written as

G∆x− Jg(x)
⊤∆y −A∗(x)∆Z = −∇xL(w), (3.3.8)

Jg(x)∆x+ µ∆y = −g(x)− µy, (3.3.9)

Z̃∆X̃ +∆X̃Z̃ + X̃∆Z̃ +∆Z̃X̃ = 2µI − X̃Z̃ − Z̃X̃, (3.3.10)

where G denotes a Hessian of the Lagrangian function L with respect to x or its approximation.

In what follows, we call a solution ∆w := (∆x,∆y,∆Z) of the Newton equations (3.3.8)–(3.3.10)

a Newton direction.
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Next, we give an explicit form of the Newton direction ∆w. From (3.3.9), we have

∆y = − 1

µ
(g(x) + µy + Jg(x)∆x). (3.3.11)

Moreover, since (X̃ ⊙ I)∆Z̃ = 1
2(X̃∆Z̃ +∆Z̃X̃), (X̃ ⊙ I)(µX̃−1− Z̃) = 1

2(2µI − Z̃X̃ − X̃Z̃) and

(Z̃ ⊙ I)∆X̃ = 1
2(Z̃∆X̃ +∆X̃Z̃), the equation (3.3.10) can be rewritten as

(X̃ ⊙ I)∆Z̃ + (Z̃ ⊙ I)∆X̃ = (X̃ ⊙ I)(µX̃−1 − Z̃). (3.3.12)

Since X and T are nonsingular, X̃ = TXT⊤ is also nonsingular. Thus, the operator (X̃ ⊙ I) is

invertible from Proposition 2.2.9 (a). Moreover, X̃−1 = T−⊤X−1T−1 = (T−⊤ ⊙ T−⊤)X−1. It

then follows from (3.3.12) that

(T−⊤ ⊙ T−⊤)∆Z = µX̃−1 − Z̃ − (X̃ ⊙ I)−1(Z̃ ⊙ I)∆X̃

= (T−⊤ ⊙ T−⊤)(µX−1 − Z)− (X̃ ⊙ I)−1(Z̃ ⊙ I)(T ⊙ T )A(x)∆x, (3.3.13)

where the last equality follows from the definitions of Z̃ and ∆X̃. Since (T−⊤ ⊙ T−⊤)−1 =

(T⊤ ⊙ T⊤) from Proposition 2.2.9 (c), multiplying both sides of (3.3.13) by (T−⊤ ⊙ T−⊤)−1

yields that

∆Z = µX−1 − Z − (T⊤ ⊙ T⊤)(X̃ ⊙ I)−1(Z̃ ⊙ I)(T ⊙ T )A(x)∆x. (3.3.14)

Finally, we give a concrete form of ∆x. Substituting (3.3.11) and (3.3.14) into (3.3.8), we obtain(
G+H +

1

µ
Jg(x)

⊤Jg(x)

)
∆x = −∇xL(w)−

1

µ
Jg(x)

⊤(g(x) + µy) +A∗(x)(µX−1 − Z)

= −
(
∇f(x) + 1

µ
Jg(x)

⊤g(x)− µA∗(x)X−1

)
, (3.3.15)

where

H := A∗(x)(T⊤ ⊙ T⊤)(X̃ ⊙ I)−1(Z̃ ⊙ I)(T ⊙ T )A(x).

Note that H : Rn → Rn is a linear operator such that

Hu = A∗(x)(T⊤ ⊙ T⊤)(X̃ ⊙ I)−1(Z̃ ⊙ I)(T ⊙ T )A(x)u for all u ∈ Rn.

From the definitions of A(x) and A∗(x), the linear operator H is regarded as a matrix whose

(i, j)-th element is written as

Hij =
⟨
Ai(x), (T

⊤ ⊙ T⊤)(X̃ ⊙ I)−1(Z̃ ⊙ I)(T ⊙ T )Aj(x)
⟩
. (3.3.16)

Since Jg(x)
⊤Jg(x) is positive semidefinite, we can solve the linear equation (3.3.15) with respect

to ∆x if G+H is positive definite. Fortunately, H is positive semidefinite as shown below.

Lemma 3.3.3. Suppose that X and Z are symmetric positive definite. Then, H is symmetric

positive semidefinite. Furthermore, if A1(x), . . . , An(x) are linearly independent for all x ∈ Rn,

then H is symmetric positive definite.
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Proof. Since X̃ is positive definite, the operator X̃ ⊙ I is invertible from Proposition 2.2.9 (a).

Let u ∈ Rn and V := (X̃ ⊙ I)−1(T ⊙ T )A(x)u. Then, we have

⟨Hu, u⟩ =
⟨
A∗(x)(T⊤ ⊙ T⊤)(X̃ ⊙ I)−1(Z̃ ⊙ I)(T ⊙ T )A(x)u, u

⟩
=

⟨
(Z̃ ⊙ I)(T ⊙ T )A(x)u, (X̃ ⊙ I)−1(T ⊙ T )A(x)u

⟩
=

⟨
(Z̃ ⊙ I)(X̃ ⊙ I)(X̃ ⊙ I)−1(T ⊙ T )A(x)u, (X̃ ⊙ I)−1(T ⊙ T )A(x)u

⟩
=

⟨
(Z̃ ⊙ I)(X̃ ⊙ I)V, V

⟩
≥ 0, (3.3.17)

where the second equality follows from Proposition 2.2.9 (b) and the last inequality follows from

Proposition 2.2.11 (a). Therefore, H is positive semidefinite.

Next we show that H is symmetric. From (3.3.16), we have

Hij =
⟨
Ai(x), (T

⊤ ⊙ T⊤)(X̃ ⊙ I)−1(Z̃ ⊙ I)(T ⊙ T )Aj(x)
⟩

=
⟨
(T⊤ ⊙ T⊤)(X̃ ⊙ I)−1(Z̃ ⊙ I)(X̃ ⊙ I)(X̃ ⊙ I)−1(T ⊙ T )Aj(x), Ai(x)

⟩
=

⟨
(T⊤ ⊙ T⊤)(X̃ ⊙ I)−1(X̃ ⊙ I)(Z̃ ⊙ I)(X̃ ⊙ I)−1(T ⊙ T )Aj(x), Ai(x)

⟩
=

⟨
(T⊤ ⊙ T⊤)(Z̃ ⊙ I)(X̃ ⊙ I)−1(T ⊙ T )Aj(x), Ai(x)

⟩
=

⟨
Aj(x), (T

⊤ ⊙ T⊤)(X̃ ⊙ I)−1(Z̃ ⊙ I)(T ⊙ T )Ai(x)
⟩

= Hji,

where the third equality follows from Proposition 2.2.11 (b) and the fifth equality follows from

Proposition 2.2.9 (b).

Furthermore, suppose that A1(x), . . . , An(x) are linearly independent for all x ∈ Rn and

u ̸= 0. Then, we have V = (X̃ ⊙ I)−1(T ⊙ T )A(x)u ̸= 0. It follows from Proposition 2.2.11 (a)

and (3.3.17) that ⟨Hu, u⟩ > 0, i.e., H is positive definite. □

Remark 3.3.5. In the case of linear SDP, A1(x), . . . , An(x) are usually supposed to be linearly

independent for x ∈ Rn. Then, H is positive definite from Lemma 3.3.3.

To summarize the discussion above, we give concrete formulae of the Newton direction ∆w

in the following theorem.

Theorem 3.3.4. Let µ > 0 and w = (x, y, Z) ∈ W. Suppose that G + H is positive definite.

Then, the Newton equations (3.3.8)–(3.3.10) have a unique solution ∆w = (∆x,∆y,∆Z) such

that

∆x = −
(
G+H +

1

µ
Jg(x)

⊤Jg(x)

)−1(
∇f(x) + 1

µ
Jg(x)

⊤g(x)− µA∗(x)X−1

)
,

∆y = − 1

µ
(g(x) + µy + Jg(x)∆x),

∆Z = µX−1 − Z − (T⊤ ⊙ T⊤)(X̃ ⊙ I)−1(Z̃ ⊙ I)(T ⊙ T )A(x)∆x.
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Proof. It is clear that 1
µJg(x)

⊤Jg(x) is positive semidefinite. Thus, the positive definiteness of

G+H and (3.3.15) yield that

∆x = −
(
G+H +

1

µ
Jg(x)

⊤Jg(x)

)−1(
∇f(x) + 1

µ
Jg(x)

⊤g(x)− µA∗(x)X−1

)
.

Furthermore, ∆y and ∆Z directly follow from (3.3.11) and (3.3.14), respectively. □

Next, we show that the Newton direction ∆w is a descent direction for the merit function

F . For this purpose, we first show the following two lemmas.

Lemma 3.3.4. Let µ > 0 and w = (x, y, Z) ∈ W. Suppose that G+H is positive definite. Let

∆x be given in Theorem 3.3.4. Then we have

∇FBP (x)
⊤∆x = −∆x⊤

(
G+H +

1

µ
Jg(x)

⊤Jg(x)

)
∆x ≤ 0.

Furthermore, ∇FBP (x)
⊤∆x = 0 if and only if ∆x = 0.

Proof. We easily see that G+H+ 1
µJg(x)

⊤Jg(x) is positive definite from the positive definiteness

of G +H. Since ∇FBP (x) = ∇f(x) + 1
µJg(x)

⊤g(x) − µA∗(x)X−1 from Theorem 3.3.1, it then

follows from (3.3.15) that

∇FBP (x)
⊤∆x = ∆x⊤

(
∇f(x) + 1

µ
Jg(x)

⊤g(x)− µA∗(x)X−1

)
= −∆x⊤

(
G+H +

1

µ
Jg(x)

⊤Jg(x)

)
∆x

≤ 0.

Furthermore, since G+H + 1
µJg(x)

⊤Jg(x) is positive definite, ∇FBP (x)
⊤∆x = 0 if and only if

∆x = 0. □

Lemma 3.3.5. Let µ > 0 and w = (x, y, Z) ∈ W. Let ∆w = (∆x,∆y,∆Z) be given in Theorem

3.3.4. Then we have

⟨∇FPD(w),∆w⟩ = − 1

µ
∥g(x) + µy∥2 −

∥∥∥(X̃Z̃)− 1
2 (µI − X̃Z̃)

∥∥∥2
F
≤ 0.

Furthermore, ⟨∇FPD(w),∆w⟩ = 0 if and only if g(x) + µy = 0 and XZ − µI = 0.

Proof. From Theorem 3.3.1, we obtain

⟨∇FPD(w),∆w⟩ = ⟨∇xFPD(w),∆x⟩+ ⟨∇yFPD(w),∆y⟩+ ⟨∇ZFPD(w),∆Z⟩

=
1

µ
∆x⊤Jg(x)

⊤(g(x) + µy) + ∆x⊤A∗(x)(Z − µX−1)

+(g(x) + µy)⊤∆y +
⟨
X − µZ−1,∆Z

⟩
. (3.3.18)

On the other hand, we have from the definitions of A∗(x) and ∆X that

∆x⊤A∗(x)(Z − µX−1) =
n∑

i=1

∆xi
⟨
Ai(x), Z − µX−1

⟩
=

⟨
n∑

i=1

∆xiAi(x), Z − µX−1

⟩
=

⟨
A(x)∆x,Z − µX−1

⟩
=

⟨
∆X,Z − µX−1

⟩
. (3.3.19)
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From Proposition 2.2.9 (b) and (c), we have⟨
∆X,Z − µX−1

⟩
=

⟨
(T ⊙ T )−1(T ⊙ T )∆X,Z − µX−1

⟩
=

⟨
(T−1 ⊙ T−1)(T ⊙ T )∆X,Z − µX−1

⟩
=

⟨
(T ⊙ T )∆X, (T−⊤ ⊙ T−⊤)(Z − µX−1)

⟩
.

Moreover, since X̃−1 = ((T ⊙ T )X)−1 = (TXT⊤)−1 = T−⊤X−1T−1 = (T−⊤ ⊙ T−⊤)X−1, we

obtain ⟨
∆X,Z − µX−1

⟩
=

⟨
∆X̃, Z̃ − µX̃−1

⟩
=

⟨
∆X̃, (I − µX̃−1Z̃−1)Z̃

⟩
= tr

[
∆X̃(I − µX̃−1Z̃−1)Z̃

]
= tr

[
(I − µX̃−1Z̃−1)Z̃∆X̃

]
=

⟨
I − µX̃−1Z̃−1, Z̃∆X̃

⟩
. (3.3.20)

Since X̃ and Z̃ commute, X̃−1 and Z̃−1 also commute. Then we also get⟨
∆X,Z − µX−1

⟩
=

⟨
Z̃ − µX̃−1,∆X̃

⟩
= tr(Z̃

[
I − µZ̃−1X̃−1)∆X̃

]
= tr(Z̃

[
I − µX̃−1Z̃−1)∆X̃

]
= tr

[
(I − µX̃−1Z̃−1)∆X̃Z̃

]
=

⟨
I − µX̃−1Z̃−1,∆X̃Z̃

⟩
. (3.3.21)

From (3.3.20) and (3.3.21), we obtain⟨
∆X,Z − µX−1

⟩
=

1

2

⟨
∆X,Z − µX−1

⟩
+

1

2

⟨
∆X,Z − µX−1

⟩
=

1

2

⟨
I − µX̃−1Z̃−1, Z̃∆X̃

⟩
+

1

2

⟨
I − µX̃−1Z̃−1,∆X̃Z̃

⟩
. (3.3.22)

In a way similar to prove (3.3.22), we also have⟨
X − µZ−1,∆Z

⟩
=

1

2

⟨
I − µX̃−1Z̃−1, X̃∆Z̃

⟩
+

1

2

⟨
I − µX̃−1Z̃−1,∆Z̃X̃

⟩
. (3.3.23)

From (3.3.18), (3.3.19), (3.3.22) and (3.3.23), we obtain

⟨∇FPD(w),∆w⟩ =
1

µ
(g(x) + µy)⊤(Jg(x)∆x+ µ∆y)

+
1

2

⟨
I − µX̃−1Z̃−1, Z̃∆X̃ +∆X̃Z̃ + X̃∆Z̃ +∆Z̃X̃

⟩
. (3.3.24)

Then, by substituting (3.3.9) and (3.3.10) into (3.3.24), we have

⟨∇FPD(w),∆w⟩ = − 1

µ
∥g(x) + µy∥2 +

⟨
I − µX̃−1Z̃−1, µI − X̃Z̃

⟩
(3.3.25)
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Note that since X̃ and Z̃ are symmetric positive definite and commute, X̃Z̃ is symmetric positive

definite, and hence there exists (X̃Z̃)−
1
2 . Let Y := X̃Z̃. We get⟨

I − µX̃−1Z̃−1, µI − X̃Z̃
⟩

= −tr
[
Y −1(µI − Y )(µI − Y )

]
= −tr

[
Y − 1

2 (µI − Y )(µI − Y )Y − 1
2

]
= −

∥∥∥Y − 1
2 (µI − Y )

∥∥∥2
F

= −
∥∥∥(X̃Z̃)− 1

2 (µI − X̃Z̃)
∥∥∥2
F
. (3.3.26)

Thus, we have from (3.3.25) and (3.3.26) that

⟨∇FPD(w),∆w⟩ = − 1

µ
∥g(x) + µy∥2 −

∥∥∥(X̃Z̃)− 1
2 (µI − X̃Z̃)

∥∥∥2
F
≤ 0.

Furthermore, we can easily see that ⟨∇FPD(w),∆w⟩ = 0 if and only if g(x) + µy = 0 and

XZ − µI = 0. □

Now, we show that the Newton direction ∆w is a descent direction for the merit function F .

Theorem 3.3.5. Let µ > 0 and w = (x, y, Z) ∈ W. Assume that G + H is positive definite.

Then, ∆w = (∆x,∆y,∆Z) given in Theorem 3.3.4 is a descent direction for the merit function

F , i.e.,

⟨∇F (w),∆w⟩ = −∆x⊤
(
G+H +

1

µ
Jg(x)

⊤Jg(x)

)
∆x

− ν

µ
∥g(x) + µy∥2 − ν

∥∥∥(X̃Z̃)− 1
2 (µI − X̃Z̃)

∥∥∥2
F

≤ 0.

Furthermore, ⟨∇F (w),∆w⟩ = 0 if and only if w is a shifted barrier KKT point.

Proof. Note that

⟨∇F (w),∆w⟩ = ∇FBP (x)
⊤∆x+ ν ⟨∇FPD(w),∆w⟩ . (3.3.27)

Then, we have from Lemmas 3.3.4 and 3.3.5 that

⟨∇F (w),∆w⟩ = −∆x⊤
(
G+H +

1

µ
Jg(x)

⊤Jg(x)

)
∆x

− ν

µ
∥g(x) + µy∥2 − ν

∥∥∥(X̃Z̃)− 1
2 (µI − X̃Z̃)

∥∥∥2
F

≤ 0.

Now, we show the second part of this theorem. Suppose that w is a shifted barrier KKT point,

i.e., ∇f(x)− Jg(x)
⊤y −A∗(x)Z = 0, g(x) + µy = 0 and XZ − µI = 0. Then we have

∇f(x) + 1

µ
Jg(x)

⊤g(x)− µA∗(x)X−1 = ∇f(x)− Jg(x)
⊤y −A∗(x)Z = 0.
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It then follows from (3.3.15) and the regularity of G+H+ 1
µJg(x)

⊤Jg(x) that ∆x = 0, and hence

we have from Lemma 3.3.4 that ∇FBP (x)
⊤∆x = 0. Moreover, g(x) +µy = 0, XZ −µI = 0 and

Lemma 3.3.5 imply that ⟨∇FPD(w),∆w⟩ = 0. Therefore, ⟨∇F (w),∆w⟩ = 0 from (3.3.27).

Conversely, suppose that ⟨∇F (w),∆w⟩ = 0. Since it follows from Lemmas 3.3.4 and

3.3.5 that ∇FBP (x)
⊤∆x ≤ 0 and ⟨∇FPD(w),∆w⟩ ≤ 0, the equation (3.3.27) implies that

∇FBP (x)
⊤∆x = 0 and ⟨∇FPD(w),∆w⟩ = 0. It further follows from Lemmas 3.3.4 and 3.3.5

that ∆x = 0, g(x) + µy = 0 and XZ − µI = 0. Then we have

∇xL(w) = ∇f(x)− Jg(x)
⊤y −A∗(x)Z = ∇f(x) + 1

µ
Jg(x)

⊤g(x)− µA∗(x)X−1 = 0,

where the last equality follows from (3.3.15). Thus, w is a shifted barrier KKT point. □

Theorem 3.3.5 guarantees that F (w + α∆w) < F (w) for sufficiently small α > 0 if w is not

a shifted barrier KKT point.

Now, we discuss how to choose an appropriate step size α such that F (w + α∆w) < F (w).

The merit function F and the Newton equations (3.3.8)–(3.3.10) are well-defined only on W.

Therefore, the new point w + α∆w is required to be an interior point. Thus, we must choose a

step size α ∈ (0, 1] such that X(x+α∆x) ≻ 0 and Z +α∆Z ≻ 0. To this end, we first calculate

αx :=

 − τ

λmin(X
− 1

2∆XX− 1
2 )

if λmin(X
− 1

2∆XX− 1
2 ) < 0 and X is affine,

1 otherwise,

and

αz :=

 − τ

λmin(Z
− 1

2∆ZZ− 1
2 )

if λmin(Z
− 1

2∆ZZ− 1
2 ) < 0,

1 otherwise,

where τ ∈ (0, 1) is a given constant. Set

ᾱ := min{1, ᾱx, ᾱz}. (3.3.28)

Then Z + α∆Z ≻ 0 for any α ∈ (0, ᾱ]. Moreover, X(x + α∆x) ≻ 0 for any α ∈ (0, ᾱ] if X

is affine. Note that if X is nonlinear, X(x + α∆x) is not necessarily positive definite for any

α ∈ (0, ᾱ].

Next, we choose a step size α ∈ (0, ᾱ] such that F (w+α∆w) < F (w) and X(x+α∆x) ≻ 0.

For this purpose, we adopt Armijo’s line search rule which finds the smallest nonnegative integer

l such that

F (w + ᾱβl∆w) ≤ F (w) + ε0ᾱβ
l ⟨∇F (w),∆w⟩ , X(x+ ᾱβl∆x) ≻ 0,

where β, ε0 ∈ (0, 1) are given constants. Then, set α := ᾱβl. Note that the second condition is

not necessary when X is affine.

Now, we describe a concrete Newton-type method for Step 1 of Algorithm 3.2.1. Recall that

the script k denotes the k-th iteration of Algorithm 3.2.1.
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Algorithm 3.3.1. (for Step 2 of Algorithm 3.2.1)

Step 0. Choose β, ε0, τ ∈ (0, 1) and set j := 0 and w0 := vk.

Step 1. If ∥r1(wj , µk)∥ ≤ σµk, then set vk+1 := wj and return.

Step 2. Obtain the Newton direction ∆wj = (∆xj ,∆yj ,∆Zj) by solving the Newton equations

(3.3.8)–(3.3.10).

Step 3. Set αj := ᾱjβ
lj , where ᾱj is given by (3.3.28) and lj is the smallest nonnegative integer

such that

F (wj + ᾱjβ
lj∆wj) ≤ F (wj) + ε0ᾱjβ

lj ⟨∇F (wj),∆wj⟩ , X(xj + ᾱjβ
lj∆xj) ≻ 0.

Step 4. Set wj+1 := wj + αj∆wj and j := j + 1, and go to Step 1. □

3.3.3 Global convergence of Algorithm 3.3.1

In this subsection, we prove the global convergence of Algorithm 3.3.1. For this purpose, we

make the following assumptions.

Assumption 3.3.1.

(A1) The functions f, g1, . . . , gm and X are twice continuously differentiable.

(A2) The sequence {xj} generated by Algorithm 3.3.1 remains in some compact set Ω of Rn.

(A3) The sequence {Gj +Hj +
1
µJg(xj)

⊤Jg(xj)} is uniformly positive definite and the sequence

{Gj} is bounded.

(A4) The sequences {Tj} and {T−1
j } are bounded.

Note that Assumption 3.3.1 (A2) holds under the assumptions of Theorem 3.3.3. Assumption

3.3.1 (A3) guarantees that the Newton equations (3.3.8)–(3.3.10) have a unique solution.

Remark 3.3.6. Assumption 3.3.1 (A1)–(A3) hold for linear SDP such that A1(xj), . . . , An(xj)

are linearly independent. In fact, it is clear that Assumption 3.3.1 (A1) holds. Theorem 3.3.3

guarantees that Assumption 3.3.1 (A2) holds. Moreover, Hj is positive definite from Remark

3.3.5 and Gj = 0. Thus, Assumption 3.3.1 (A3) holds.

Remark 3.3.7. Yamashita, Yabe and Harada [72] showed that their Newton-type method is

convergent globally to a barrier KKT point satisfying (2.4.1) under the boundedness of the se-

quence {yj}, in addition to Assumption 3.3.1 (A1)–(A4). However, they did not give sufficient

conditions for the boundedness of {yj}.

Remark 3.3.8. Kato, Yabe and Yamashita [34] also showed that a Newton-type method with

the merit function F̃ can find a shifted barrier KKT point under Assumption 3.3.1 (A1)–(A4).

However, concrete sufficient conditions were not stated for Assumption 3.3.1 (A2).
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First of all, we show that the sequence {wj} generated by Algorithm 3.3.1 is bounded. Note

that X(xj) and A(xj)∆xj are denoted by Xj and ∆Xj , respectively, for simplicity.

Lemma 3.3.6. Suppose that Assumption 3.3.1 (A2) is satisfied. Then, the sequence {wj =

(xj , yj , Zj)} generated by Algorithm 3.3.1 is bounded. Furthermore, the sequences {Xj} and

{Zj} are uniformly positive definite.

Proof. Since the sequence {F (wj)} is monotonically decreasing, we have F (wj) ≤ F (w0) for all

j. Then, we obtain the desired results from Assumption 3.3.1 (A2) and Lemma 3.3.2. □

Note that Lemma 3.3.6 guarantees that Assumption 3.3.1 (A4) holds if Tj is given by

HRVW/KSH/M choice, that is, Tj = X
− 1

2
j or NT choice, that is, Tj = W

− 1
2

j , where Wj :=

X
1
2 (X

1
2ZX

1
2 )−

1
2X

1
2 . See Section 2.4 for details of the scaling matrix Tj .

Lemma 3.3.7. Suppose that Assumption 3.3.1 (A2)–(A4) are satisfied. Then, the sequence

{∆wj} generated by Algorithm 3.3.1 is bounded.

Proof. It follows from Assumption 3.3.1 (A2)–(A4), Lemma 3.3.6 and Theorem 3.3.4 that the

sequence {∆wj} generated by Algorithm 3.3.1 is bounded. □

We now show the global convergence of Algorithm 3.3.1. We assume that Algorithm 3.3.1

generates an infinite sequence and wj is not a shifted barrier KKT point for all j.

Theorem 3.3.6. Suppose that Assumption 3.3.1 (A1)–(A4) are satisfied. Then, the sequence

{wj = (xj , yj , Zj)} generated by Algorithm 3.3.1 has an accumulation point. Moreover, any

accumulation point w∗ = (x∗, y∗, Z∗) is a shifted barrier KKT point.

Proof. Since the sequence {wj} is bounded from Lemma 3.3.6, it has at least one accumulation

point.

Next, we prove that any accumulation point of the sequence {wj} is a shifted barrier KKT

point. To this end, we first show that the sequence {ᾱj} generated in Step 3 is away from zero,

that is, there exists a real number ᾱ such that 0 < ᾱ ≤ ᾱj for all j. Note that from Lemmas 3.3.6

and 3.3.7, the sequences {Xj}, {Zj}, {∆Xj} and {∆Zj} are bounded. Moreover, the sequences

{Xj} and {Zj} are uniformly positive definite. Thus, the sequences {λmin(X
− 1

2
j ∆XjX

− 1
2

j )} and

{λmin(Z
− 1

2
j ∆ZjZ

− 1
2

j )} are also bounded. It then follows from the definition of ᾱj that there

exists a real number ᾱ such that 0 < ᾱ ≤ ᾱj for all j.

Next, we show ⟨∇F (wj),∆wj⟩ → 0 as j → ∞. From Armijo’s line search strategy in Step

3, we have

F (wj+1)− F (wj) ≤ ε0ᾱjβ
lj ⟨∇F (wj),∆wj⟩ .

Summing up the above inequality from j = 1 to j = j̃, we have

F (wj̃+1)− F (w1) ≤ ε0

j̃∑
j=1

ᾱjβj ⟨∇F (wj),∆wj⟩ .



3.3 Finding a shifted barrier KKT point 49

Since ⟨∇F (wj),∆wj⟩ ≤ 0 by Theorem 3.3.5, it follows from ᾱ ≤ ᾱj that

F (wj̃+1)− F (w1) ≤ ε0ᾱ

j̃∑
j=1

βlj ⟨∇F (wj),∆wj⟩ .

The boundedness of the sequence {wj} implies that the sequence {F (wj)} is bounded, and hence

−∞ <

∞∑
j=1

βlj ⟨∇F (wj),∆wj⟩ ≤ 0.

Then, we have

lim
j→∞

βlj ⟨∇F (wj),∆wj⟩ = 0.

Now, we consider two cases: lim infj→∞ βlj > 0 and lim infj→∞ βlj = 0.

Case 1: lim infj→∞ βlj > 0. Then, we have

lim
j→∞

⟨∇F (wj),∆wj⟩ = 0.

Case 2: lim infj→∞ βlj = 0. In this case, there exists a subsequence {lj}J that diverges to

∞, where J ⊂ {0, 1, · · · }. Since the sequence {X(xj)} is uniformly positive definite by

Lemma 3.3.6, there exists l ≥ 0 such that X(xj+ᾱjβ
l∆xj) ≻ 0 for all l > l̄. Then, without

loss of generality, we suppose that lj ≥ l for all j ∈ J , that is, X(xj + ᾱjβ
lj−1∆xj) ≻ 0

for all j ∈ J . Since lj − 1 does not satisfy Armijo’s line search rule in Step 3,

ε0tj ⟨∇F (wj),∆wj⟩ < F (wj + tj∆wj)− F (wj),

where tj := ᾱjβ
lj−1. Let h(t) := F (wj + t∆wj). It then follows from Theorem 2.2.1 that

there exists θj ∈ (0, 1) such that

ε0tj ⟨∇F (wj),∆wj⟩ < F (wj + tj∆wj)− F (wj)

= h(tj)− h(0)

= tjh
′(θjtj)

= tj ⟨∇F (wj + θjtj∆wj),∆wj⟩ ,

and hence

0 < (ε0 − 1) ⟨∇F (wj),∆wj⟩ < ⟨∇F (wj + θjtj∆wj)−∇F (wj),∆wj⟩

≤ ∥∇F (wj + θjtj∆wj)−∇F (wj)∥∥∆wj∥, (3.3.29)

where the last inequality follows from the Cauchy-Schwarz inequality. Since the subse-

quence {tj}J converges to 0, we have from Assumption 3.3.1 (A1) and the boundedness

of the sequences {wj} and {∆wj} that

lim
j→∞,j∈J

∥∇F (wj + θjtj∆wj)−∇F (wj)∥ = 0.

It then follows from (3.3.29) that

lim
j→∞,j∈J

⟨∇F (wj),∆wj⟩ = 0.
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From the both cases, we can conclude that

lim
j→∞

⟨∇F (wj),∆wj⟩ = 0. (3.3.30)

By the boundedness of the sequence {wj} and Assumption 3.3.1 (A3) and (A4), there exist

subsequences {wj}K, {Gj}K and {Tj}K such that

lim
j→∞,j∈K

wj =: w∗, lim
j→∞,j∈K

Gj =: G∗, lim
j→∞,j∈K

Tj =: T ∗,

where K ⊂ {0, 1, . . .}, w∗ ∈ Rn × Rm × Sp, G∗ ∈ Sn and T ∗ ∈ Rp×p. Moreover, by the

definitions of the operators Tj ⊙Tj and T⊤
j ⊙T⊤

j , the subsequences {Tj ⊙Tj}K and {T⊤
j ⊙T⊤

j }K
converge to T ∗ ⊙ T ∗ and (T ∗)⊤ ⊙ (T ∗)⊤, respectively. Therefore, we have from (3.3.16) that

there exists H∗ ∈ Sn such that

lim
j→∞,j∈K

Hj = H∗.

Note that G∗ +H∗ + 1
µJg(x

∗)⊤Jg(x
∗) is positive definite from Assumption 3.3.1 (A3). It then

follows from Theorem 3.3.4 that the subsequence {∆xj}K converges to ∆x∗ ∈ Rn, where

∆x∗ := −
(
G∗ +H∗ +

1

µ
Jg(x

∗)⊤Jg(x
∗)

)−1(
∇f(x∗) + 1

µ
Jg(x

∗)⊤g(x∗)− µA∗(x∗)X(x∗)−1

)
.

Similarly, {∆yj}K and {∆Zj}K converge to ∆y∗ ∈ Rm and ∆Z∗ ∈ Sp, where

∆y∗ := − 1

µ
(g(x∗) + µy∗ + Jg(x

∗)∆x∗),

∆Z∗ := µX(x∗)−1 − Z∗ − ((T ∗)⊤ ⊙ (T ∗)⊤)(X̃(x∗)⊙ I)−1(Z̃∗ ⊙ I)(T ∗ ⊙ T ∗)A(x∗)∆x∗,

and Z̃∗ := ((T ∗)−⊤ ⊙ (T ∗)−⊤)Z∗. It then follows from (3.3.30) that

⟨∇F (w∗),∆w∗⟩ = 0,

where ∆w∗ := (∆x∗,∆y∗,∆Z∗). Then, Theorem 3.3.5 yields that

∇xL(w
∗) = 0, g(x∗) + µy∗ = 0 and X(x∗)Z∗ − µI = 0.

Therefore, w∗ is a shifted barrier KKT point. □

3.4 Numerical experiments

In this section, we report some numerical experiments for Algorithm 3.2.1 with Algorithm 3.3.1.

We compare the proposed algorithm with the interior point method [72] based on the barrier

KKT conditions (2.4.1). We present the number of iterations and the CPU time of both algo-

rithms. The program is written in MATLAB R2010a and run on a machine with an Intel Core

i7 920 2.67GHz CPU and 3.00GB RAM. The barrier parameter µk is updated by µk+1 = µk/10

with µ0 = 0.1. The approximate Hessian Gk is updated by the method described in [72, Re-

mark 3]. We employ the HRVW/KSH/M choice as the scaling matrix Tj , that is Tj = X
− 1

2
j .

Moreover, we select the following parameters:

ϵ = 10−4, σ = 5.0, ν = 1.0, τ = 0.95, β = 0.95, ε0 = 0.50.
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We solve the following three test problems described in [72] by using the initial points indicated

in [72].

Gaussian channel capacity problem:

maximize
1

2

n∑
i=1

log(1 + ti),

subject to
1

n

n∑
i=1

Xii ≤ P, Xii ≥ 0, ti ≥ 0,[
1− aiti

√
ri

√
ri aiXii + ri

]
⪰ 0, i = 1, . . . , n,

where decision variables are Xii and ti for i = 1, . . . , n. In the experiment, the constants ri and

ai for i = 1, . . . , n are selected randomly from the interval [0, 1], and P is set to 1. Note that

the objective function of the problem is concave and the constraint functions are affine.

Minimization of the minimal eigenvalue problem:

minimize tr(ΠM(q)),

subject to tr(Π) = 1,

Π ⪰ 0,

q ∈ Q,

where Q ⊂ Rp, and M is a function from Rp to Sn, and decision variables are q ∈ Rp and

Π ∈ Sn. In the experiment, p is set to 2 and M is given by M(q) := q1q2M1 + q1M2 + q2M3,

where M1,M2,M3 ∈ Sn are constant matrices whose elements are selected randomly from the

interval [−1, 1]. Moreover, Q is set to [−1, 1] × [−1, 1]. Note that the objective function is

nonconvex and the constraint functions are affine.

Nearest correlation matrix problem:

minimize
1

2
∥X −A∥2F ,

subject to X ⪰ ηI,

Xii = 1, i = 1, . . . , n,

where decision variable is X ∈ Sn, and A ∈ Sn is a constant matrix and η ∈ R is a positive

constant. In the experiment, the elements of the matrix A are selected randomly from the

interval [−1, 1] with Aii = 1 for i = 1, . . . , n. Moreover, we set η = 10−3. Note that the

objective function is quadratic and convex, and the constraint functions are affine. Therefore,

the problem is convex.

The numerical results are presented in Tables 3.1–3.3. In these tables, SDPIP denotes the

primal-dual interior point method of [72]. From Tables 3.1–3.3, we see that the results obtained

by using Algorithm 3.2.1 are comparable to those produced with SDPIP.
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Table 3.1: Gaussian channel capacity problem

SDPIP Algorithm 3.2.1

n iteration time(s) iteration time(s)

5 4 0.26 4 0.24

10 4 0.56 4 0.54

15 4 1.51 4 1.45

20 4 4.25 4 4.16

25 5 10.80 5 10.12

30 5 19.60 5 19.54

35 5 34.41 5 33.53

40 5 61.17 5 60.29

Table 3.2: Minimization of the minimal eigenvalue problem

SDPIP Algorithm 3.2.1

n iteration time(s) iteration time(s)

5 4 0.29 4 0.33

10 4 6.76 4 6.87

15 4 30.85 4 31.56

20 4 67.13 5 84.10

25 4 308.13 5 417.32

30 4 781.34 5 1000.53

35 4 2804.10 5 3601.28

40 4 4339.71 5 5395.89

Table 3.3: Nearest correlation matrix problem

SDPIP Algorithm 3.2.1

n iteration time(s) iteration time(s)

5 4 0.07 4 0.07

10 4 0.47 4 0.50

15 4 2.72 4 2.77

20 4 9.16 4 9.56

25 4 35.25 5 40.57

30 4 75.07 5 91.66

35 4 165.63 5 213.12

40 4 291.10 5 396.64
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3.5 Concluding remarks

In this chapter, we proposed a new merit function F for the shifted barrier KKT conditions. We

also showed the properties of the merit function F . In particular, we gave the level boundedness

of the merit function F , which is not given in other related papers for nonlinear SDP. Moreover,

we proposed Algorithm 3.3.1 to find an approximate shifted barrier KKT point, and proved its

global convergence under weaker assumptions than those in [72]. In the numerical experiments,

we showed that the performance of Algorithm 3.2.1 was comparable to that of the primal-dual

interior point method [72] based on the barrier KKT conditions.

In this chapter, there is no discussion related to an update rule of the barrier parameter µk.

Thus, a future work is to give its reasonable update rule.





Chapter 4

A two-step primal-dual interior

point method for nonlinear

semidefinite programming problems

and its superlinear convergence

4.1 Introduction

In this chapter, we consider the following nonlinear semidefinite programming (SDP) problem:

minimize
x∈Rn

f(x),

subject to g(x) = 0, X(x) ⪰ 0,
(4.1.1)

where f : Rn → R, g : Rn → Rm, X : Rn → Sp are twice continuously differentiable functions.

In this chapter, we propose a two-step primal-dual interior point method and show its local

and superlinear convergence. The proposed method is based on the generalized shifted barrier

KKT conditions. It solves two Newton equations derived from the generalized shifted barrier

KKT conditions in each iteration. However, in order to reduce calculations, we replace the

coefficient matrix in the second equation with that in the first one. Thus, we can solve the second

equation more rapidly using some computational results obtained by solving the first equation.

Despite this change, we show the superlinear convergence under the same assumptions as those

in Yamashita and Yabe [71].

The present chapter is organized as follows. In Section 4.2, we first present some optimality

conditions for (4.1.1) and a general framework of a primal-dual interior point method. Secondly,

we propose a two-step primal-dual interior point method that uses two Newton equations having

the same coefficient matrices. In Section 4.3, we prove the superlinear convergence of the

proposed method. In Section 4.4, we report some numerical experiments for the proposed

method. Finally, we provide some concluding remarks in Section 4.5.
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4.2 Two-step primal-dual interior point method

In this section, we first present a primal-dual interior point method for finding the KKT point

which satisfies the following KKT conditions: ∇xL(w)

g(x)

svec(X(x) ◦ Z)

 =

 0

0

0

 , X(x) ⪰ 0, Z ⪰ 0,

where w := (x, y, svec(Z)) ∈ Rl, l := n+m+ p(p+1)
2 and L is the Lagrangian function given by

L(w) = f(x) − g(x)⊤y − ⟨X(x), Z⟩. Then, we exploit the following generalized shifted barrier

KKT conditions introduced in Section 2.4 in order to construct a primal-dual interior point

method:

rκ(w, µ) =

 ∇xL(w)

g(x) + κµy

svec(X(x) ◦ Z − µI)

 =

 0

0

0

 , X(x) ⪰ 0, Z ⪰ 0, (4.2.1)

where κ ∈ [0,∞) and µ ≥ 0. Note that if µ > 0, the conditions (4.2.1) are equivalent to

rκ(w, µ) = 0 and w ∈ W. Note also that W = { w | X(x) ≻ 0, Z ≻ 0 }. By using (4.2.1),

we present a framework of a primal-dual interior point method based on the generalized shifted

barrier KKT conditions.

Algorithm 4.2.1.

Step 0. (Initialize) Choose parameters κ ≥ 0 and ϵ ∈ (0, 1), and give a sequence {µk} such that

limk→∞ µk = 0 and µk > 0. Set k := 0.

Step 1. (Termination) If ∥rκ(wk, 0)∥ ≤ ϵ, then stop.

Step 2. (Newton step) Find an approximate generalized shifted barrier KKT point wk+1 such

that ∥rκ(wk+1, µk)∥ ≤ µk and wk+1 ∈ W.

Step 3. (Update) Set k := k + 1, and go to Step 1.

The global convergence in the case where κ = 0 or κ = 1 has already shown in the previous

chapter and [34, 72]. Since the global convergence for any κ ∈ [0,∞) can be also shown similarly,

we omit its proof.

In this chapter, we investigate the rate of local convergence. In the following, we propose

a two-step primal-dual interior point method that can find wk+1 in Step 2. We also show that

the proposed method can find wk+1 in a single iteration if wk is sufficiently close to the KKT

point. To this end, we first develop a Newton equation with scaling in Subsection 4.2.1. We

then provide an actual algorithm in Subsection 4.2.2.

4.2.1 Newton equation with scaling

We adopt a Newton method to find an approximate generalized shifted barrier KKT point wk+1

in Step 2 of Algorithm 4.2.1. As mentioned in Section 2.4, we exploit a nonsingular scaling
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matrix T , that is,

X̃(x) = TX(x)T⊤ = (T ⊙ T )X(x), Z̃ = T−⊤ZT−1 = (T−⊤ ⊙ T−⊤)Z.

In the following, X(x) and X̃(x) are denoted by X and X̃, respectively, for simplicity.

Then, we consider the following scaled generalized shifted barrier KKT conditions described

in Section 2.4:

r̃κ(w, µ) =

 ∇xL(w)

g(x) + κµy

svec(X̃ ◦ Z̃ − µI)

 , X̃ ≻ 0, Z̃ ≻ 0.

Next, we apply the Newton method to the nonlinear equations r̃κ(w, µ) = 0. Then, the Newton

equations are given by

∇2
xxL(w)∆x− Jg(x)

⊤∆y −A(x)⊤svec(∆Z) = −∇xL(w), (4.2.2)

Jg(x)∆x+ κµ∆y = −g(x)− κµy, (4.2.3)

(Z̃ ⊗S I)(T ⊗S T )A(x)∆x+ (X̃ ⊗S I)(T
−⊤ ⊗S T

−⊤)svec(∆Z) = svec(µI − X̃ ◦ Z̃). (4.2.4)

Yamashita and Yabe [71] proposed the following two-step primal-dual interior point method

based on the Newton equations (4.2.2)–(4.2.4) in the case where κ = 0.

Algorithm 4.2.2. [71, scaled SDPIP]

Step 0. (Initialize) Choose parameters ϵ > 0 and τ ∈ (0, 13), and give an initial interior point

w0 = [x0, y0, svec(Z0)] ∈ W. Set k := 0.

Step 1. (Termination) If ∥r0(wk, 0)∥ ≤ ϵ, then stop.

Step 2. (Newton steps)

Step 2.1 Set µk := ∥r0(wk, 0)∥1+τ .

Step 2.2 Calculate the Newton direction ∆wk by solving the Newton equations (4.2.2)–

(4.2.4) at wk, and set ŵk := wk +∆wk.

Step 2.3 Calculate the Newton direction ∆ŵk by solving the Newton equations (4.2.2)–

(4.2.4) at ŵk, and set wk+1 := ŵk +∆ŵk.

Step 3. (Update) Set k := k + 1, and go to Step 1.

Yamashita and Yabe [71] showed the superlinear convergence of Algorithm 4.2.2 under some

appropriate assumptions (see Assumption 4.3.1 of Section 4.3). Note that Step 2 in this method

has to solve two linear equations with different coefficient matrices.

Yamashita and Yabe [71] also showed that if T is a special matrix such as T = X− 1
2 and

T =W− 1
2 (W = X

1
2 (X

1
2ZX

1
2 )−

1
2X

1
2 ), the Newton equation (4.2.4) is written as

((Z ⊗S I)A(x) + P (w))∆x+ (X ⊗S I)svec(∆Z) = svec(µI −X ◦ Z), (4.2.5)

where the matrix P (w) ∈ R
p(p+1)

2
×n depends on T . For further details, see [71] or Appendix

A. Note that for the general matrix T , there is no matrix P (w) that satisfies (4.2.5). Thus, we

make the following assumption on T in the rest of this chapter.
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Assumption 4.2.1. The scaling matrix T satisfies the following (S1):

(S1) There exists a matrix P (w) ∈ R
p(p+1)

2
×n such that the equation (4.2.4) is equivalent to the

equation (4.2.5).

See Appendix A for scaling matrices that satisfy assumption (S1).

4.2.2 Two-step primal-dual interior point method with the same coefficient

matrix

We now propose a new algorithm. The proposed algorithm has a similar procedure to Algorithm

4.2.2, i.e., there exist two Newton steps in a single iteration.

First, we calculate ŵk := wk + ∆wk by solving the Newton equations (4.2.2)–(4.2.4) at wk

as Step 2.2 of Algorithm 4.2.2. From Assumption 4.2.1, the Newton equations are written as ∇2
xxL(wk) −Jg(xk)⊤ −A(xk)⊤

Jg(xk) κµkI 0

(Zk ⊗S I)A(xk) + P (wk) 0 (Xk ⊗S I)


 ∆xk

∆yk

svec(∆Zk)



=

 −∇xL(wk)

−g(xk)− κµkyk

svec(µkI −Xk ◦ Zk)

 , (4.2.6)

where we define Xk := X(xk) for simplicity.

Recall that the next step of Algorithm 4.2.2, i.e., Step 2.3, solves the Newton equations

(4.2.2)–(4.2.4) at ŵk in order to obtain ∆ŵk. The coefficient matrix of these equations differs

from the coefficient matrix of (4.2.6). Thus, computational costs for Step 2.3 are almost the

same as those for Step 2.2.

To reduce computational costs of the second step, we generate a direction ∆ŵk by solving

the following equation, which has the same coefficient matrix as that in (4.2.6). ∇2
xxL(wk) −Jg(xk)⊤ −A(xk)⊤

Jg(xk) κµkI 0

(Zk ⊗S I)A(xk) + P (wk) 0 (Xk ⊗S I)


 ∆x̂k

∆ŷk

svec(∆Ẑk)



=

 −∇xL(ŵk)

−g(x̂k)− κµkŷk

svec(µkI − X̂k ◦ Ẑk)

 . (4.2.7)

Note that ŵk appears only in the right-hand side of (4.2.7). Summing up the above ideas,

we give a new two-step primal-dual interior point method.

Algorithm 4.2.3.

Step 0. (Initialize) Choose parameters κ ≥ 0, ϵ > 0 and τ ∈ (0, 12), and give an initial interior

point w0 = [x0, y0, svec(Z0)] ∈ W. Set k := 0.

Step 1. (Termination) If ∥rκ(wk, 0)∥ ≤ ϵ, then stop.
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Step 2. (Newton steps)

Step 2.1 Set µk := ∥rκ(wk, 0)∥1+τ .

Step 2.2 Calculate the Newton direction ∆wk by solving the Newton equation (4.2.6),

and set ŵk := wk +∆wk.

Step 2.3 Calculate the Newton direction ∆ŵk by solving the Newton equation (4.2.7),

and set wk+1 := ŵk +∆ŵk.

Step 3. (Update) Set k := k + 1, and go to Step 1.

In the following, we discuss the computational costs of Step 2, i.e., the calculations of ∆wk

and ∆ŵk. First, note that the equation (4.2.6) can be reduced to[
∇2

xxL(wk) +Hk −Jg(xk)⊤

Jg(xk) κµkI

][
∆xk

∆yk

]
=

[
−∇f(xk) + Jg(xk)

⊤yk + µkA∗(xk)X
−1
k

−g(xk)− κµkyk

]
,(4.2.8)

∆Zk = µkX
−1
k − Zk − (T⊤

k ⊙ T⊤
k )(X̃k ⊙ I)−1(Z̃k ⊙ I)(Tk ⊙ Tk)A(xk)∆xk,

where the (i, j)-th element of Hk ∈ Rn×n is given by

(Hk)ij = ⟨Ai(xk), (T
⊤
k ⊙ T⊤

k )(X̃k ⊙ I)−1(Z̃k ⊙ I)(Tk ⊙ Tk)Aj(xk)⟩,

and Tk is the scaling matrix at the k-th iteration. Similarly, we can rewrite (4.2.7) as[
∇2

xxL(wk) +Hk −Jg(xk)⊤

Jg(xk) κµkI

][
∆x̂k

∆ŷk

]

=

[
A∗(xk)(µkX

−1
k − (Xk ⊙ I)−1(X̂k ◦ Ẑk))−∇xL(ŵk)

−g(x̂k)− κµkŷk

]
, (4.2.9)

∆Ẑk = µkX
−1
k − (T⊤

k ⊙ T⊤
k )(X̃k ⊙ I)−1(Z̃k ⊙ I)(Tk ⊙ Tk)A(xk)∆x̂k − (Xk ⊙ I)−1(X̂k ◦ Ẑk).

From these equations, we see that the main calculations of Step 2 are a construction of the

matrix H in (4.2.8) and (4.2.9). In Algorithm 4.2.2, it is necessary to calculate the matrix H

twice during Steps 2.2 and 2.3. By contrast, in Algorithm 4.2.3, we use the same matrix H in

Steps 2.2 and 2.3. Thus, we can expect that Algorithm 4.2.3 can find the next point wk+1 faster

than Algorithm 4.2.2.

4.3 Local and superlinear convergence of Algorithm 4.2.3

In this section, we show the local and superlinear convergence of Algorithm 4.2.3. First, we

give some assumptions for the convergence and we define some neighborhoods of the generalized

shifted barrier KKT point. Next, under these assumptions, we show that a sequence generated

by Algorithm 4.2.3 is included in the neighborhoods of the generalized shifted barrier KKT

point. Finally, we show the superlinear convergence of Algorithm 4.2.3.
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4.3.1 Assumptions and some resulting properties

In this subsection, we first give assumptions required for the proof of the superlinear convergence.

To this end, letM(w, µ) ∈ Rl×l be a Jacobian of the linear equations (4.2.2)–(4.2.4) with T = I,

where we define l := n+m+ p(p+1)
2 . Then, the Jacobian M(w, µ) is expressed as

M(w, µ) :=M0(w) + κµMI , (4.3.1)

where

M0(w) :=

 ∇2
xxL(w) −Jg(x)⊤ −A(x)⊤

Jg(x) 0 0

(Z ⊗S I)A(x) 0 (X ⊗S I)

 , MI :=

 0 0 0

0 Im 0

0 0 0

 .
We will show the superlinear convergence of Algorithm 4.2.3 under the following assumptions,

which are the same as [71].

Assumption 4.3.1. Let w∗ = [x∗, y∗, svec(Z∗)] be a KKT point of nonlinear SDP (4.1.1).

(A1) There exists a positive constant νL such that M0 is Lipschitz continuous on VL := {w ∈
Rl | ∥w − w∗∥ ≤ νL}.

(A2) The second-order sufficient condition holds at x∗.

(A3) The strict complementarity condition holds at x∗.

(A4) The nondegeneracy condition holds at x∗.

Note that it follows from Theorem 2.3.3 that if (A3) holds, then (A4) holds if and only if

the Lagrange multipliers y∗ ∈ Rm and Z∗ ∈ Sp corresponding to x∗ ∈ Rn are unique.

Assumption 4.3.1 (A1) implies that there exists a positive constant LM such that

∥M0(w1)−M0(w2)∥F ≤ LM∥w1 − w2∥ for all w1, w2 ∈ VL. (4.3.2)

It follows from the definition of M0 that

∥(Z1 ⊗S I)A(x1)− (Z2 ⊗S I)A(x2)∥F ≤ ∥M0(w1)−M0(w2)∥F for all w1, w2 ∈ VL, (4.3.3)

∥X(x1)⊗S I −X(x2)⊗S I∥F ≤ ∥M0(w1)−M0(w2)∥F for all w1, w2 ∈ VL. (4.3.4)

Moreover, we have from (4.3.2) and Proposition 2.2.2 (a) that

∥rκ(w1, 0)− rκ(w2, 0)−M0(w2)(w1 − w2)∥ ≤ LM∥w1 − w2∥2 for all w1, w2 ∈ VL.

Since rκ(w1, 0)− rκ(w2, 0)−M0(w2)(w1 −w2) = rκ(w1, µ)− rκ(w2, µ)−M(w2, µ)(w1 −w2) for

all w1, w2 ∈ VL and µ ≥ 0, it then follows that

∥rκ(w1, µ)− rκ(w2, µ)−M(w2, µ)(w1 − w2)∥ ≤ LM∥w1 − w2∥2 (4.3.5)

for all w1, w2 ∈ VL and µ ≥ 0. Furthermore, by the definition of M , we obtain

∥svec(X(x1) ◦ Z1 −X(x2) ◦ Z2)− (Z2 ⊗S I)A(x2)(x1 − x2)− (X(x2)⊗S I)svec(Z1 − Z2)∥

≤ LM∥w1 − w2∥2 (4.3.6)
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for all w1, w2 ∈ VL.

Yamashita and Yabe [71] showed that M0(w
∗) is nonsingular under Assumption 4.3.1 (A2)–

(A4).

Theorem 4.3.1. [71, Theorem 1] Suppose that Assumption 4.3.1 (A2)–(A4) hold. Then, the

matrix M0(w
∗) is invertible. □

Then, Theorems 2.2.2 and 4.3.1 guarantee that there exist a positive constant ζ and a unique

continuously differentiable function w : (−ζ, ζ) → Rl such that rκ(w(µ), µ) = 0. Furthermore,

the following lemma holds.

Lemma 4.3.1. [71, Lemma 1] Suppose that Assumption 4.3.1 (A1)–(A4) hold. Then, there

exist a positive constant γ and a unique continuously differentiable function w̄ : [0, γ] → Rl such

that

w̄(0) = w∗, w(µ) := [x(µ), y(µ), svec(Z(µ))], rκ(w̄(µ), µ) = 0 for any µ ∈ [0, γ].

Furthermore, X(x̄(µ)) ≻ 0 and Z̄(µ) ≻ 0 for any µ ∈ (0, γ]. □

We call {w(µ)|µ ∈ [0, γ]} the central path of (4.1.1).

SinceM0(w
∗) is invertible, there exists ε ∈ (0, 1) such that any matrix G ∈ Rl×l that satisfies

∥G−M0(w
∗)∥F < ε (4.3.7)

is nonsingular. From the continuity of M0 at w∗, there exists a positive constant νM such that

∥M0(w)−M0(w
∗)∥F ≤ 1

4
ε for any w such that ∥w − w∗∥ ≤ νM . (4.3.8)

Thus, it follows from (4.3.7) that M0(w) is nonsingular if ∥w − w∗∥ ≤ νM .

Let ν := min{νM , νL}. Then, we define a subset of VL.

V := { w ∈ Rl | ∥w − w∗∥ ≤ ν } ⊂ VL.

Note that M0 is Lipschitz continuous on V.
Next, we give a condition on µ under which M(w, µ) is invertible for any w ∈ V. Now, let

w ∈ V. By the definition of M and the triangle inequality, we have ∥M(w, µ) −M0(w
∗)∥F =

∥M0(w) + κµMI −M0(w
∗)∥F ≤ ∥M0(w)−M0(w

∗)∥F + ∥κµMI∥F . It then follows from (4.3.8)

and ∥MI∥F = ∥Im∥F =
√
m that ∥M0(w)−M0(w

∗)∥F + ∥κµMI∥F ≤ 1
4ε+ κµ

√
m. If µ ≤ s :=

ε
4(κ+1)

√
m
, then we have

∥M(w, µ)−M0(w
∗)∥F ≤ 1

4
ε+ κµ

√
m =

(
1

4
+

1

4

)
ε =

1

2
ε for all w ∈ V. (4.3.9)

Thus, it follows from (4.3.7) that M(w, µ) is invertible for all w ∈ V and µ ∈ [0, s]. Moreover,

we may define

UM := sup{ ∥M(w, µ)−1∥F | w ∈ V, µ ∈ [0, s] } Uy := sup{ ∥y∥2 | w ∈ V }.
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Note that UM < ∞ from (4.3.7) and (4.3.9). Note also that Uy < ∞ from the boundedness of

V. Since

∥rκ(w, 0)∥ =

∥∥∥∥∥∥∥rκ(w, µ)− µ

 0

κy

svec(−I)


∥∥∥∥∥∥∥ , ∥rκ(w, µ)∥ =

∥∥∥∥∥∥∥rκ(w, 0) + µ

 0

κy

svec(−I)


∥∥∥∥∥∥∥ ,

we have

µ
√
p− ∥rκ(w, µ)∥ ≤ ∥rκ(w, 0)∥ ≤ ∥rκ(w, µ)∥+ µU1 for all w ∈ V, µ ∈ [0, s], (4.3.10)

µ
√
p− ∥rκ(w, 0)∥ ≤ ∥rκ(w, µ)∥ ≤ ∥rκ(w, 0)∥+ µU1 for all w ∈ V, µ ∈ [0, s], (4.3.11)

where U1 :=
√
κUy + p.

The differentiability of rκ and X, and the boundedness of VL and [0, s] imply that there exist

positive constants Lr and LXZ such that

∥rκ(w1, µ)− rκ(w2, µ)∥ ≤ Lr∥w1 − w2∥ for all w1, w2 ∈ VL, µ ∈ [0, s], (4.3.12)

∥X(x1)Z1 −X(x2)Z2∥F ≤ LXZ∥w1 − w2∥ for all w1, w2 ∈ VL, µ ∈ [0, s]. (4.3.13)

Next, we define a neighborhood of the central path. Let

νN := min

{
ν,

3

8LMUM
,

[
1

5L1+τ
r UM (1 + U1)

] 1
τ

}
. (4.3.14)

Then, we define a subset of V.

VN := { w ∈ Rl | ∥w − w∗∥ ≤ νN } ⊂ V. (4.3.15)

Note that τ ∈ (0, 12) is the constant given in Algorithm 4.2.3. Secondly, we define two subsets

of VN .

N1(µ) := { w ∈ VN | ∥rκ(w, µ)∥ ≤ µ1+σ, X(x) ⪰ 0, Z ⪰ 0 },

N2(µ) := { w ∈ VN | ∥rκ(w, µ)∥ ≤ µ1+ρ, X(x) ⪰ 0, Z ⪰ 0 },

where σ and ρ are positive constants such that

max

{
τ

1− τ
,
1

2

}
< ρ < 1, σ <

ρ− τ

1 + τ
. (4.3.16)

Since 0 < σ < ρ−τ
1+τ <

ρ
1+τ < ρ, we have N2(µ) ⊂ N1(µ) for µ ∈ [0, 1].

Lemma 4.3.1 shows that the generalized shifted barrier KKT point w(µ) is unique for µ ∈
[0, γ]. Then, we may regard N1(µ) and N2(µ) as neighborhoods of the generalized shifted barrier

KKT point w(µ). Thus, we define the following neighborhoods of the central path by usingN1(µ)

and N2(µ).

Θ1(θ) := ∪µ∈[0,θ]N1(µ), Θ2(θ) := ∪µ∈[0,θ]N2(µ) for any θ ∈ [0,min{γ, s}].

Note that since 0 < s < 1, we have 0 ≤ θ < 1. Then,

Θ2(θ) ⊂ Θ1(θ) ⊂ VN for all θ ∈ [0,min{γ, s}]. (4.3.17)
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We can consider Θ1(θ) and Θ2(θ) as neighborhoods of the central path. Moreover, we define

Uw(θ) := sup
w∈Θ1(θ),µ∈[0,θ]

∥w − w̄(µ)∥ for any θ ∈ [0,min{γ, s}],

which expresses the supremum of a distance between a point in Θ1(θ) and the central path.

Now, we briefly show that there exists θ1 > 0 such that 1− LMUMUw(θ) ≥ 1
4 for all θ ∈ [0, θ1]

and w(µ) ∈ VN for all µ ∈ [0, θ1]. Since w is continuous on [0, γ] by Lemma 4.3.1, there exists

θ0 > 0 such that

∥w(µ)− w(0)∥ ≤ νN for all µ ∈ [0, θ0]. (4.3.18)

Using w(0) = w∗, (4.3.17) and (4.3.18),

Uw(θ) = sup
w∈Θ1(θ),µ∈[0,θ]

∥w − w∗ + w∗ − w̄(µ)∥

≤ sup
w∈Θ1(θ)

∥w − w∗∥+ sup
µ∈[0,θ]

∥w̄(µ)− w(0)∥

≤ 2νN (4.3.19)

for all θ ∈ [0,min{γ, s, θ0}]. Then (4.3.14) and (4.3.19) imply that LMUMUw(θ) ≤ 3
4 for all

θ ∈ [0,min{γ, s, θ0}]. Thus,

1− LMUMUw(θ) ≥
1

4
for all θ ∈ [0,min{γ, s, θ0}]. (4.3.20)

Moreover, from (4.3.18) and w(0) = w∗,

w(µ) ∈ VN for all µ ∈ [0,min{γ, s, θ0}]. (4.3.21)

Hence, letting θ1 := min{γ, s, θ0}, we have the desired results. Then, we give a condition under

which rκ(w, µ) provides an error bound of the generalized shifted barrier KKT point.

Lemma 4.3.2. Suppose that Assumption 4.3.1 holds, and that θ ∈ [0, θ1]. Then,

∥w − w̄(µ)∥ ≤ Ur∥rκ(w, µ)∥, ∥XZ − µI∥F ≤ UR∥rκ(w, µ)∥

for all w ∈ Θ1(θ) and µ ∈ [0, θ], where Ur := 4UM and UR := 4LXZUM .

Proof. Let w ∈ Θ1(θ) and µ ∈ [0, θ]. From (4.3.21), w(µ) ∈ VN for all µ ∈ [0, θ]. Note that

Θ1(θ) ⊂ VN ⊂ V ⊂ VL. Substituting w1 = w ∈ VL and w2 = w(µ) ∈ VL into (4.3.5),

LM∥w − w̄(µ)∥2 ≥ ∥M(w̄(µ), µ)(w − w̄(µ))− rκ(w, µ)∥ ≥ ∥M(w̄(µ), µ)(w − w̄(µ))∥ − ∥rκ(w, µ)∥

from rκ(w(µ), µ) = 0. Since ∥M(w(µ), µ)(w − w(µ))∥ ≥ ∥w−w(µ)∥
∥M(w(µ),µ)−1∥F , it then follows from

Uw(θ) ≥ ∥w − w(µ)∥ and UM ≥ ∥M(w(µ), µ)−1∥F that

LMUw(θ)∥w − w̄(µ)∥ ≥ ∥w − w̄(µ)∥
∥M(w(µ), µ)−1∥F

− ∥rκ(w, µ)∥ ≥ ∥w − w̄(µ)∥
UM

− ∥rκ(w, µ)∥.

As the result, we have

1− LMUMUw(θ)

UM
∥w − w̄(µ)∥ ≤ ∥rκ(w, µ)∥.
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Then, since 1− LMUMUw(θ) ≥ 1
4 from 0 < θ ≤ θ1 = min{γ, s, θ0} and (4.3.20), we obtain

∥w − w̄(µ)∥ ≤ 4UM∥rκ(w, µ)∥. (4.3.22)

By Ur = 4UM , we have the first inequality.

Next, we show the second inequality. We have X(x(µ)) ◦ Z(µ) = µI by rκ(w(µ), µ) = 0.

Since X(x(µ)) ⪰ 0 and Z(µ) ⪰ 0, it follows from Proposition 2.2.8 (b) that X(x(µ))◦Z(µ) = µI

is equivalent to X(x(µ))Z(µ) = µI. Then, (4.3.13) yields that

LXZ∥w − w(µ)∥ ≥
∥∥svec [XZ −X(x(µ))Z(µ)

]∥∥ = ∥XZ − µI∥F .

Combining this inequality and (4.3.22), we have ∥XZ − µI∥F ≤ 4LXZUM∥rκ(w, µ)∥. Since

UR = 4LXZUM , we obtain the desired inequality. □

From Lemma 4.3.2, we can show that w∗ is an isolated KKT point.

Theorem 4.3.2. Suppose that Assumption 4.3.1 holds. If w̃ ∈ N2(0), then w̃ = w∗.

Proof. Note that w̃ ∈ N2(0) = N1(0) = Θ1(0). It then follows from the definition of N2(0)

that rκ(w̃, 0) = 0. Furthermore, we have from Lemma 4.3.2 that ∥w̃ − w∗∥ = ∥w̃ − w(0)∥ ≤
Ur∥rκ(w̃, 0)∥ = 0, that is, w̃ = w∗. □

4.3.2 Proof of superlinear convergence

We show the superlinear convergence of Algorithm 4.2.3 by using the properties given in Sub-

section 4.3.1.

First, we give an assumption related to the matrix P (w), which is included in (4.2.6) and

(4.2.7). To this end, we define θ2 := min{θ1, ( 3
4UR

)
1
ρ } and

Γ(θ) := { (w, η) ∈ Rl ×R | w ∈ N2(η) ⊂ Θ2(θ), w ∈ W, η ∈ (0, θ] } for θ ∈ (0, θ2].

Then, we make the following assumption on the matrix P (w).

Assumption 4.3.2. The scaling matrix T satisfies Assumption 4.2.1 (S1), that is, there exists

P (w) such that (4.2.4) is equivalent to (4.2.5). The matrix P (w) satisfies the following (S2):

(S2) If θ ∈ (0, θ2], then there exists UP > 0 such that ∥P (w)∥F ≤ UP η
ρ for any (w, η) ∈ Γ(θ).

When Tk = I, Assumption 4.3.2 (S2) holds since P (wk) := 0. Furthermore, when Tk = X
− 1

2
k

or Tk = W
− 1

2
k (Wk = X

1
2
k (X

1
2
k ZkX

1
2
k )

− 1
2X

1
2
k ), which are well-known scaling matrices of linear

SDP, there exists the matrix P (wk) such that Assumption 4.3.2 (S2) holds. These proofs are

given in Appendix A.

Assumption 4.2.1 (S1) means that the Newton equations of Steps 2.2 and 2.3 in Algorithm

4.2.3 are reduced to

MP (wk, µk)∆wk = −rκ(wk, µk), MP (wk, µk)∆ŵk = −rκ(ŵk, µk), (4.3.23)
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respectively, where

MP (wk, µk) :=M(wk, µk) +N(wk), N(wk) :=

 0 0 0

0 0 0

P (wk) 0 0

 . (4.3.24)

It also follows that

∥MP (wk, µk)−M(wk, µk)∥F = ∥N(wk)∥F = ∥P (wk)∥F . (4.3.25)

To establish the superlinear convergence of Algorithm 4.2.3, we first show that MP (wk, µk)

is nonsingular if wk ∈ Θ2(θ) and wk ∈ W (Lemma 4.3.4). Then, we show that ŵk ∈ N1(θ)

and ŵk ∈ W if wk ∈ Θ2(θ) and wk ∈ W (Lemmas 4.3.5 and 4.3.7). Finally, we prove that

wk+1 ∈ N2(θ) and wk+1 ∈ W if wk ∈ Θ2(θ) and wk ∈ W (Lemmas 4.3.8 and 4.3.9). From these

results, we can easily obtain the desired theorem (Theorem 4.3.3).

In the following two lemmas, we assume that

0 < θ ≤ θ3, θ3 := min

{
θ2,

[
3

4(1 + U1)1+τ

] 1
τ

,

[
ε(
√
p− 1)ρ

4UP

] 1+τ
ρ

}
. (4.3.26)

Lemma 4.3.3. Suppose that Assumptions 4.2.1, 4.3.1 and 4.3.2 hold, and that θ satisfies

(4.3.26). If wk ∈ Θ2(θ) and wk ∈ W, then there exists ηk ∈ (0, θ] such that (wk, ηk) ∈ Γ(θ) and

ηk ≤ Uηµ
1

1+τ

k , where Uη := (
√
p− 1)−1. Moreover, 0 < µk < θ.

Proof. Note that wk ̸= w∗ because wk ∈ W. Then, Theorem 4.3.2 implies that wk ̸∈ N2(0).

Since wk ∈ Θ2(θ) and wk ̸∈ N2(0), there exists ηk ∈ (0, θ] such that wk ∈ N2(ηk) ⊂ Θ2(θ), i.e.,

(wk, ηk) ∈ Γ(θ). It follows from wk ∈ Θ2(θ) ⊂ Θ1(θ) ⊂ VN ⊂ V, 0 < ηk ≤ θ ≤ θ2 ≤ θ1 ≤ s < 1

and (4.3.11) that ηk
√
p− ∥rκ(wk, 0)∥ ≤ ∥rκ(wk, ηk)∥ ≤ η1+ρ

k ≤ ηk. Thus, we have ηk(
√
p− 1) ≤

∥rκ(wk, 0)∥ = µ
1

1+τ

k , and hence we obtain ηk ≤ Uηµ
1

1+τ

k .

Next, we prove that 0 < µk < θ. Since ηk ∈ (0, θ] and ηk ≤ Uηµ
1

1+τ

k , we get 0 < ( ηkUη
)1+τ ≤ µk.

Moreover, we have from the first part of this proof that ∥rκ(wk, ηk)∥ ≤ η1+ρ
k . It then follows from

(4.3.10) that ∥rκ(wk, 0)∥ ≤ ∥rκ(wk, ηk)∥+ηkU1 ≤ (ηρk+U1)ηk ≤ (1+U1)θ. Since θ ≤ [ 3
4(1+U1)1+τ ]

1
τ

by (4.3.26), we get µk = ∥rκ(wk, 0)∥1+τ ≤ (1 + U1)
1+τθτθ ≤ 3

4θ. Therefore, 0 < µk < θ. □

We have from Lemma 4.3.3 that if θ ∈ (0, θ3], wk ∈ Θ2(θ) and wk ∈ W, then

∃ηk ∈ (0, θ] such that (wk, ηk) ∈ Γ(θ), ηk ≤ Uηµ
1

1+τ

k , (4.3.27)

and

0 < µk < θ. (4.3.28)

Then, Assumption 4.3.2 (S2) and (4.3.27) imply that

∥P (wk)∥F ≤ UP η
ρ
k ≤ UPµ

ρ
1+τ

k , (4.3.29)

where UP := Uρ
ηUP .

By using (4.3.28) and (4.3.29), we prove that the Jacobian matrix MP (wk, µk) of (4.3.23) is

nonsingular.
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Lemma 4.3.4. Suppose that Assumptions 4.2.1, 4.3.1 and 4.3.2 hold, and that θ satisfies

(4.3.26). If wk ∈ Θ2(θ) and wk ∈ W, then MP (wk, µk) is nonsingular.

Proof. We have from (4.3.24) that ∥MP (wk, µk) − M0(w
∗)∥F ≤ ∥M(wk, µk) − M0(w

∗)∥F +

∥N(wk)∥F . Then (4.3.25) yields that

∥MP (wk, µk)−M0(w
∗)∥F ≤ ∥M(wk, µk)−M0(w

∗)∥F + ∥P (wk)∥F . (4.3.30)

We can easily see that wk ∈ V and µk ∈ [0, s] from wk ∈ Θ2(θ), (4.3.26) and (4.3.28). Thus,

(4.3.9) yields that

∥M(wk, µk)−M0(w
∗)∥F ≤ 1

2
ε. (4.3.31)

On the other hand, it follows from (4.3.26), (4.3.28), Uη = (
√
p − 1)−1 and UP = Uρ

ηUP that

µk ≤ θ ≤ θ3 ≤ ( ε
4UP

)
1+τ
ρ , that is, UPµ

ρ
1+τ

k ≤ 1
4ε. Then, we have from (4.3.29) that

∥P (wk)∥F ≤ 1

4
ε. (4.3.32)

By (4.3.30), (4.3.31) and (4.3.32), ∥MP (wk, µk) −M0(w
∗)∥F ≤ 3

4ε. Therefore, MP (wk, µk) is

nonsingular from (4.3.7). □

We define

UM := sup
{
∥MP (w, µ)

−1∥F
∣∣ w ∈ Θ2(θ3), w ∈ W, µ := ∥rκ(w, 0)∥1+τ

}
.

It then follows from Lemma 4.3.4 that if θ ∈ (0, θ3], wk ∈ Θ2(θ) and wk ∈ W, then

∥MP (wk, µk)
−1∥F ≤ UM <∞. (4.3.33)

Now, we show that if w0 ∈ Θ2(θ) and w0 ∈ W for sufficiently small θ > 0, then {wk} ⊂ Θ2(θ)

and {wk} ⊂ W. To this end, we first show that ŵk generated by Step 2.2 of Algorithm 4.2.3

satisfies ŵk ∈ N1(µk) ⊂ Θ1(θ) and ŵk ∈ W if wk ∈ Θ2(θ) and wk ∈ W. In what follows, we

assume that

0 < θ ≤ θ4, θ4 := min

{
θ3,

[
νN

Ur + U2

]1+τ

,

(
1

U3

) 1
h1

}
, (4.3.34)

where

h1 :=
ρ− τ

1 + τ
− σ, U2 := UM(1 + U1), U3 := U2(LMU2 + UP ).

Note that h1 > 0 from (4.3.16).

In order to prove ŵk ∈ N1(µk) and ŵk ∈ W, we have to show that ŵk ∈ VN , ∥rκ(ŵk, µk)∥ ≤
µ1+σ
k , X(x̂k) ≻ 0 and Ẑk ≻ 0. Thus, we first show that ŵk ∈ VN and ∥rκ(ŵk, µk)∥ ≤ µ1+σ

k .

Note that µk = ∥rκ(wk, 0)∥1+τ and ŵk = [x̂k, ŷk, svec(Ẑk)] are generated by Steps 2.1 and 2.2 of

Algorithm 4.2.3, respectively.
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Lemma 4.3.5. Suppose that Assumptions 4.2.1, 4.3.1 and 4.3.2 hold, and that θ satisfies

(4.3.34). If wk ∈ Θ2(θ) and wk ∈ W, then

∥∆wk∥ ≤ U2µ
1

1+τ

k , ∥ŵk − w∗∥ ≤ νN , ∥rκ(ŵk, µk)∥ ≤ U3µ
1+ ρ−τ

1+τ

k , ∥rκ(ŵk, µk)∥ ≤ µ1+σ
k .

Proof. First, we show that ∥∆wk∥ ≤ U2µ
1

1+τ

k and ∥ŵk − w∗∥ ≤ νN . It is clear that wk ∈ V and

µk ∈ [0, s] by wk ∈ Θ2(θ), (4.3.28) and (4.3.34). Thus, it follows from (4.3.11) that

∥rκ(wk, µk)∥ ≤ ∥rκ(wk, 0)∥+ µkU1 = µ
1

1+τ

k + µkU1 ≤ (1 + U1)µ
1

1+τ

k . (4.3.35)

Meanwhile, we have from (4.3.23) and Lemma 4.3.4 that ∆wk = −MP (wk, µk)
−1rκ(wk, µk).

Furthermore, (4.3.33) and (4.3.35) yield that

∥∆wk∥ ≤ ∥MP (wk, µk)
−1∥F ∥rκ(wk, µk)∥ ≤ U2µ

1
1+τ

k . (4.3.36)

By Lemma 4.3.2 and (4.3.36),

∥ŵk − w∗∥ ≤ ∥wk − w∗∥+ ∥∆wk∥ ≤ Ur∥rκ(wk, 0)∥+ U2µ
1

1+τ

k = (Ur + U2)µ
1

1+τ

k .

Then (4.3.28) and (4.3.34) imply that ∥ŵk − w∗∥ ≤ (Ur + U2)µ
1

1+τ

k ≤ (Ur + U2) θ
1

1+τ ≤ νN .

Secondly, we show that ∥rκ(ŵk, µk)∥ ≤ U3µ
1+ ρ−τ

1+τ

k and ∥rκ(ŵk, µk)∥ ≤ µ1+σ
k . We easily see

that wk, ŵk ∈ VL. It then follows from (4.3.5) that

LM∥∆wk∥2 ≥ ∥rκ(ŵk, µk)− rκ(wk, µk)−M(wk, µk)∆wk∥

≥ ∥rκ(ŵk, µk)∥ − ∥rκ(wk, µk) +M(wk, µk)∆wk∥.

Moreover, (4.3.23), (4.3.25) and (4.3.29) yield that

LM∥∆wk∥2 ≥ ∥rκ(ŵk, µk)∥ − ∥(M(wk, µk)−MP (wk, µk))∆wk∥

≥ ∥rκ(ŵk, µk)∥ − ∥P (wk)∥F ∥∆wk∥

≥ ∥rκ(ŵk, µk)∥ − UPµ
ρ

1+τ

k ∥∆wk∥. (4.3.37)

Thus, we get ∥rκ(ŵk, µk)∥ ≤ LMU
2
2µ

1+ 1−τ
1+τ

k +UPU2µ
1+ ρ−τ

1+τ

k ≤ U3µ
1+ ρ−τ

1+τ

k by using (4.3.36), (4.3.37)

and µk ∈ (0, 1). Using (4.3.28), we have ∥rκ(ŵk, µk)∥ ≤ U3µ
h1
k µ

1+σ
k ≤ U3θ

h1µ1+σ
k . Note that

h1 =
ρ−τ
1+τ − σ > 0 by (4.3.16). Since U3θ

h1 ≤ 1 from (4.3.34), we get ∥rκ(ŵk, µk)∥ ≤ µ1+σ
k . □

Next, we show that ŵk ∈ W if we choose θ such that

0 < θ ≤ θ5, θ5 := min

{
θ4,

(
3

4

) 1
ρ

,

(
3

4U3

) 1+τ
ρ−τ

}
. (4.3.38)

For this purpose, we present the following lemma.

Lemma 4.3.6. The following three properties hold.

(a) Let µ, α and K1 be positive numbers. Furthermore, let A be a matrix included in Sp. If

µ ∈ (0, ( 3
4K1

)
1
α ] and ∥A− µI∥F ≤ K1µ

1+α, then A ≻ 0.
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(b) Let µ, β and K2 be positive numbers. Furthermore, let Φ : [0, 1] → Sp be a function. If

µ ∈ (0, ( 3
4K2

)
1
β ], Φ(0) ≻ 0 and ∥t−1[Φ(t)− (1− t)Φ(0)]−µI∥F ≤ K2µ

1+β for any t ∈ (0, 1],

then Φ(t) ≻ 0 for all t ∈ (0, 1].

(c) Let w ∈ W, dx ∈ Rn and DZ ∈ Sp. Furthermore, let Φ : [0, 1] → Sp be defined by

Φ(t) := X(x + tdx) ◦ (Z + tDZ). If Φ(t) ≻ 0 for all t ∈ (0, 1], then X(x + dx) ≻ 0 and

Z +DZ ≻ 0.

Proof. We first prove (a). Since µ ∈ (0, ( 3
4K1

)
1
α ] and ∥A−µI∥F ≤ K1µ

1+α, we have ∥A−µI∥2 ≤
∥A− µI∥F ≤ K1µ

1+α = K1µ
αµ ≤ 3

4µ, where the extreme left-hand side inequality follows from

Proposition 2.2.1 (a). Thus, we have v⊤Av = v⊤(A − µI)v + µ∥v∥2 ≥ (µ − ∥A − µI∥2)∥v∥2 ≥
1
4µ∥v∥

2 > 0 for all v( ̸= 0) ∈ Rp, where the first inequality follows from the Cauchy-Schwarz

inequality and the definition of ∥ · ∥2. Therefore, this inequality implies that A ≻ 0.

Secondly, we show (b). It follows from (a) that t−1[Φ(t)− (1− t)Φ(0)] ≻ 0 for all t ∈ (0, 1].

If t = 1, then Φ(1) ≻ 0. On the other hand, if t ∈ (0, 1), then Φ(t) ≻ (1 − t)Φ(0) ≻ 0 for all

t ∈ (0, 1). Therefore, Φ(t) ≻ 0 for all t ∈ (0, 1].

Finally, we give the proof of (c), that is, we show that X(x + tdx) ≻ 0 for any t ∈ (0, 1].

To this end, suppose the opposite, i.e., there exists t ∈ (0, 1] such that X(x + tdx) is not

positive definite. Note that w ∈ W implies that X(x) ≻ 0. It follows from the continuity

of eigenvalues of X(x) that there exists t̃ ∈ (0, t] such that λmin(X(x + t̃dx)) = 0. Thus,

X(x + t̃dx) is singular, that is, there exists v0 ̸= 0 such that X(x + t̃dx)v0 = 0. Then, we

obtain v⊤0 Φ(t̃)v0 = 1
2

[
v⊤0 X(x+ t̃dx)(Z + t̃DZ)v0 + v⊤0 (Z + t̃DZ)X(x+ t̃dx)v0

]
= 0. However,

this contradicts Φ(t̃) ≻ 0 for any t ∈ (0, 1]. Similarly, Z + tDZ ≻ 0 for any t ∈ (0, 1]. Therefore,

t = 1 implies that X(x+ dx) ≻ 0 and Z +DZ ≻ 0. □

Lemma 4.3.7. Suppose that Assumptions 4.2.1, 4.3.1 and 4.3.2 hold, and that θ satisfies

(4.3.38). If wk ∈ Θ2(θ) and wk ∈ W, then ŵk ∈ W.

Proof. Let Φ : [0, 1] → Sp be defined by Φ(t) := X(xk+ t∆xk)◦ (Zk+ t∆Zk). From wk ∈ W and

Lemma 4.3.6 (c), it suffices to show that Φ(t) ≻ 0 for all t ∈ (0, 1]. Now, we see that wk ∈ VL

by wk ∈ Θ2(θ). Moreover, since Lemma 4.3.5 yield that ŵk ∈ VL, we have wk + t∆wk ∈ VL for

all t ∈ (0, 1]. Thus, substituting w1 = wk + t∆wk, w2 = wk into (4.3.6),

t2LM∥∆wk∥2 ≥ ∥svec[X(xk + t∆xk) ◦ (Zk + t∆Zk)−X(xk) ◦ Zk]

−t[(Zk ⊗S I)A(xk)∆xk + (X(xk)⊗S I)svec(∆Zk)]∥

= ∥svec[Φ(t)− (1− t)Φ(0)− tµkI] + tP (wk)∆xk∥

≥ ∥Φ(t)− (1− t)Φ(0)− tµkI∥F − t∥P (wk)∥F ∥∆xk∥, (4.3.39)

where the equality follows from (Zk ⊗S I)A(xk)∆xk + (X(xk) ⊗S I)svec(∆Zk) = svec(µkI −
X(xk) ◦ Zk) − P (wk)∆xk in the Newton equation (4.2.6). It follows from ∥∆xk∥ ≤ ∥∆wk∥,
(4.3.29) and (4.3.39) that

t2LM∥∆wk∥2 ≥ ∥Φ(t)− (1− t)Φ(0)− tµkI∥F − tUPµ
ρ

1+τ

k ∥∆wk∥.
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Since ∥∆wk∥ ≤ U2µ
1

1+τ

k by Lemma 4.3.5, we have from t, µk ∈ (0, 1] that

∥Φ(t)− (1− t)Φ(0)− tµkI∥F ≤ tLMU
2
2µ

2
1+τ

k + tUPU2µ
1+ρ
1+τ

k ≤ tU3µ
1+ ρ−τ

1+τ

k .

Dividing both sides by t ∈ (0, 1], we obtain∥∥∥∥Φ(t)− (1− t)Φ(0)

t
− µkI

∥∥∥∥
F

≤ U3µ
1+ ρ−τ

1+τ

k . (4.3.40)

Meanwhile, we have from (4.3.27) and the definition of Γ(θ) that there exists ηk ∈ (0, θ] such

that wk ∈ N2(ηk). In addition, ηk ∈ (0, (34)
1
ρ ] by (4.3.38). Then, the definitions of rκ(wk, ηk)

and N2(ηk) imply that ∥Φ(0)− ηkI∥F ≤ ∥rκ(wk, ηk)∥ ≤ η1+ρ
k . Thus, Φ(0) ≻ 0 by Lemma 4.3.6

(a). Moreover, (4.3.28) and (4.3.38) yield that µk ∈ (0, ( 3
4U3

)
1+τ
ρ−τ ]. It then follows from (4.3.40)

and Lemma 4.3.6 (b) that Φ(t) ≻ 0 for all t ∈ (0, 1]. □

We summarize the results of Lemmas 4.3.5 and 4.3.7. Suppose that θ ∈ (0, θ5], wk ∈ Θ2(θ)

and wk ∈ W. Lemmas 4.3.5 and 4.3.7 imply that

ŵk ∈ N1(µk), ŵk ∈ W, ∥∆wk∥ ≤ U2µ
1

1+τ

k , ∥rκ(ŵk, µk)∥ ≤ U3µ
1+ ρ−τ

1+τ

k . (4.3.41)

Note that wk, ŵk ∈ VL. We have from (4.3.2) and (4.3.41) that

∥M0(ŵk)−M0(wk)∥F = ∥M0(wk +∆wk)−M0(wk)∥F ≤ LM∥∆wk∥ ≤ UMµ
1

1+τ

k , (4.3.42)

where UM := LMU2.

Next, we show that the sequence {wk} generated by Algorithm 4.2.3 is included in Θ2(θ)

and W. In what follows, suppose that θ satisfies

0 < θ ≤ θ6, θ6 := min

{
θ5,

νN
U5
,

(
1

U6

) 1
h2

}
, (4.3.43)

where

h2 :=
2ρ− τ

1 + τ
− ρ, U4 := UMU3, U5 := Ur(U1 + U3) + U4, U6 := U4(LMU4 + UM + UP ).

Note that h2 > 0 from (4.3.16). First of all, we show wk+1 ∈ VN and ∥rκ(wk+1, µk)∥ ≤ µ1+ρ
k .

Lemma 4.3.8. Suppose that Assumptions 4.2.1, 4.3.1 and 4.3.2 hold, and that θ satisfies

(4.3.43). If wk ∈ Θ2(θ) and wk ∈ W, then

ŵk ∈ N1(µk) ⊂ Θ1(θ), N2(µk) ⊂ Θ2(θ),

∥∆ŵk∥ ≤ U4µ
1+ ρ−τ

1+τ

k , ∥wk+1 − w∗∥ ≤ νN , ∥rκ(wk+1, µk)∥ ≤ µ1+ρ
k .

Proof. Note that wk+1 = ŵk +∆ŵk. First, we show that ŵk ∈ N1(µk) ⊂ Θ1(θ) and N2(µk) ⊂
Θ2(θ). Since 0 < µk < θ by (4.3.28), the definitions of Θ1(θ) and Θ2(θ) imply that N1(µk) ⊂
∪µ∈[0,θ]N1(µ) = Θ1(θ) and N2(µk) ⊂ ∪µ∈[0,θ]N2(µ) = Θ2(θ), respectively. Furthermore, using

ŵk ∈ N1(µk) in (4.3.41), we have the desired result.
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Next, we prove that ∥∆ŵk∥ ≤ U4µ
1+ ρ−τ

1+τ

k and ∥wk+1−w∗∥ ≤ νN . We have from (4.3.23) and

Lemma 4.3.4 that ∆ŵk = −MP (wk, µk)
−1rκ(ŵk, µk). Moreover, (4.3.33) and (4.3.41) yield that

∥∆ŵk∥ ≤ ∥MP (wk, µk)
−1∥F ∥rκ(ŵk, µk)∥ ≤ UM∥rκ(ŵk, µk)∥ ≤ U4µ

1+ ρ−τ
1+τ

k . (4.3.44)

On the other hand, it is clear that ŵk ∈ V and µk ∈ [0, s] from wk ∈ Θ2(θ), (4.3.28) and (4.3.43).

Thus, substituting w = ŵk and µ = µk into (4.3.10), and using (4.3.41) and µk ∈ (0, 1), we get

∥rκ(ŵk, 0)∥ ≤ U1µk + ∥rκ(ŵk, µk)∥ ≤ U1µk + U3µ
1+ ρ−τ

1+τ

k ≤ (U1 + U3)µk. (4.3.45)

It follows from Lemma 4.3.2 that ∥wk+1−w∗∥ ≤ ∥ŵk−w∗∥+∥∆ŵk∥ ≤ Ur∥rκ(ŵk, 0)∥+∥∆ŵk∥.
Using (4.3.44), (4.3.45) and µk ∈ (0, 1), we obtain ∥wk+1−w∗∥ ≤ [Ur(U1 + U3) + U4]µk = U5µk.

Moreover, since U5µk ≤ U5θ ≤ νN by (4.3.28) and (4.3.43), we have ∥wk+1 − w∗∥ ≤ νN .

Finally, we prove that ∥rκ(wk+1, µk)∥ ≤ µ1+ρ
k . It follows from (4.3.23) and (4.3.24) that

rκ(ŵk, µk) = −MP (wk, µk)∆ŵk = −(M(wk, µk) +N(wk))∆ŵk. Then, since ŵk, wk+1 ∈ VL and

µk ≥ 0, we substitute w1 = wk+1, w2 = ŵk and µ = µk into (4.3.5), that is,

LM∥∆ŵk∥2 ≥ ∥rκ(wk+1, µk)− rκ(ŵk, µk)−M(ŵk, µk)∆ŵk∥

≥ ∥rκ(wk+1, µk)∥ − ∥M(ŵk, µk)−M(wk, µk)−N(wk)∥F ∥∆ŵk∥

≥ ∥rκ(wk+1, µk)∥ − ∥M(ŵk, µk)−M(wk, µk)∥F ∥∆ŵk∥ − ∥N(wk)∥F ∥∆ŵk∥

= ∥rκ(wk+1, µk)∥ − ∥M0(ŵk)−M0(wk)∥F ∥∆ŵk∥ − ∥P (wk)∥F ∥∆ŵk∥,

where the last equality follows from (4.3.1) and (4.3.25). Using (4.3.29) and (4.3.42), we get

∥rκ(wk+1, µk)∥ ≤ LM∥∆ŵk∥2 + UMµ
1

1+τ

k ∥∆ŵk∥ + UPµ
ρ

1+τ

k ∥∆ŵk∥, and hence ∥rκ(wk+1, µk)∥ ≤

LMU
2
4µ

2+
2(ρ−τ)
1+τ

k + UMU4µ
1+ 1+ρ−τ

1+τ

k + UPU4µ
1+ 2ρ−τ

1+τ

k ≤ U6µ
1+ 2ρ−τ

1+τ

k from (4.3.44) and µk ∈ (0, 1).

Since (4.3.43) implies U6θ
h2 ≤ 1, we have from (4.3.28) that U6µ

1+ 2ρ−τ
1+τ

k = U6µ
h2
k µ

1+ρ
k ≤

U6θ
h2µ1+ρ

k ≤ µ1+ρ
k . Note that h2 =

2ρ−τ
1+τ − ρ > 0 by (4.3.16). Thus, ∥rκ(wk+1, µk)∥ ≤ µ1+ρ

k . □

Finally, we prove that the sequence {wk} generated by Algorithm 4.2.3 is included in W.

Let θ̃ be defined by

θ̃ := min

{
θ6,

(
3

4

) 1
σ

,

(
3

4U7

) 1+τ
2ρ−τ

}
, (4.3.46)

where U7 := U4(LMU4 + 2UM + UP ).

Lemma 4.3.9. Suppose that Assumptions 4.2.1, 4.3.1 and 4.3.2 hold. If wk ∈ Θ2(θ̃) and

wk ∈ W, then wk+1 ∈ W.

Proof. Let Φ : [0, 1] → Sp be defined by Φ(t) := X(x̂k + t∆x̂k) ◦ (Ẑk + t∆Ẑk). We see that

ŵk ∈ W by (4.3.41). Then, from Lemma 4.3.6 (c), it suffices to prove that Φ(t) ≻ 0 for all

t ∈ (0, 1]. We easily see that ŵk, ŵk+∆ŵk ∈ VL by Lemmas 4.3.5 and 4.3.8. It then follows that

ŵk + t∆ŵk ∈ VL for all t ∈ (0, 1]. Thus, substituting w1 = ŵk + t∆ŵk, w2 = ŵk into (4.3.6), we
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have

t2LM∥∆ŵk∥2 ≥ ∥svec[X(x̂k + t∆x̂k) ◦ (Ẑk + t∆Ẑk)− ((1− t) + t)X(x̂k) ◦ Ẑk

−t[(Ẑk ⊗S I)A(x̂k)∆x̂k + (X(x̂k)⊗S I)svec(∆Ẑk)]∥

= ∥svec[Φ(t)− (1− t)Φ(0)]− tsvec[X(x̂k) ◦ Ẑk]

−t[(Ẑk ⊗S I)A(x̂k)∆x̂k + (X(x̂k)⊗S I)svec(∆Ẑk)]∥

≥ ∥Φ(t)− (1− t)Φ(0)− tµkI∥F − t∥P (wk)∥F ∥∆ŵk∥

−t∥(Ẑk ⊗S I)A(x̂k)− (Zk ⊗S I)A(xk)∥F ∥∆ŵk∥

−t∥X(x̂k)⊗S I −X(xk)⊗S I∥F ∥∆ŵk∥

≥ ∥Φ(t)− (1− t)Φ(0)− tµkI∥F − t∥P (wk)∥F ∥∆ŵk∥

−2t∥M0(ŵk)−M0(wk)∥F ∥∆ŵk∥,

where the second inequality follows from svec[X(x̂k) ◦ Ẑk] = svec(µkI)− (Zk ⊗S I)A(xk)∆x̂k −
(X(xk) ⊗S I)svec(∆Ẑk) − P (wk)∆x̂k in the Newton equation (4.2.7), and the last inequality

follows from (4.3.3) and (4.3.4). Then, we exploit (4.3.29), (4.3.42) and Lemma 4.3.8, i.e.,

∥P (wk)∥F ≤ UPµ
ρ

1+τ

k , ∥M0(ŵk)−M0(wk)∥F ≤ UMµ
1

1+τ

k and ∥∆ŵk∥ ≤ U4µ
1+ ρ−τ

1+τ

k . As the result,

we get

∥Φ(t)− (1− t)Φ(0)− tµkI∥F ≤ t2LM∥∆ŵk∥2 + t∥P (wk)∥F ∥∆ŵk∥

+2t∥M0(ŵk)−M0(wk)∥F ∥∆ŵk∥

≤ t2LMU
2
4µ

2+
2(ρ−τ)
1+τ

k + 2tUMU4µ
1+ 1+ρ−τ

1+τ

k + tUPU4µ
1+ 2ρ−τ

1+τ

k

≤ tU7µ
1+ 2ρ−τ

1+τ

k ,

where the last inequality follows from t, µk ∈ (0, 1]. Dividing both sides by t ∈ (0, 1], we obtain∥∥∥∥Φ(t)− (1− t)Φ(0)

t
− µkI

∥∥∥∥
F

≤ U7µ
1+ 2ρ−τ

1+τ

k . (4.3.47)

On the other hand, we have from (4.3.28) and (4.3.46) that 0 < µk < min{(34)
1
σ , ( 3

4U7
)

1+τ
2ρ−τ }.

In addition, Lemma 4.3.8 yields that ŵk ∈ N1(µk). Then, the definitions of rκ(ŵk, µk) and

N1(µk) imply that ∥Φ(0)− µkI∥F ≤ ∥rκ(ŵk, µk)∥ ≤ µ1+σ
k . Thus, Φ(0) ≻ 0 by Lemma 4.3.6 (a).

It then follows from (4.3.47) and Lemma 4.3.6 (b) that Φ(t) ≻ 0 for all t ∈ (0, 1]. □

Using Lemmas 4.3.8 and 4.3.9, we prove that {wk} converges to w∗ superlinearly.

Theorem 4.3.3. Suppose that Assumptions 4.2.1, 4.3.1 and 4.3.2 hold. If w0 ∈ Θ2(θ̃) and

w0 ∈ W, the sequence {wk} generated by Algorithm 4.2.3 converges to w∗ superlinearly.

Proof. Note that θ̃ ≤ θi (i = 1, . . . , 6) from the definitions of θ1, . . . , θ6 and θ̃. First, we show

the following relations by the mathematical induction: For all positive integer k,

wk ∈ N2(µk−1) ⊂ Θ2(θ̃), wk ∈ W. (4.3.48)

Since w0 ∈ Θ2(θ̃) and w0 ∈ W , we have from Lemmas 4.3.8 and 4.3.9 that w1 ∈ N2(µ0) ⊂ Θ2(θ̃)

and w1 ∈ W. Next, let k ≥ 2. Suppose that wk ∈ N2(µk−1) ⊂ Θ2(θ̃) and wk ∈ W. Then, it
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follows from Lemmas 4.3.8 and 4.3.9 that wk+1 ∈ N2(µk) ⊂ Θ2(θ̃) and wk+1 ∈ W. Therefore,

the proof of (4.3.48) is complete.

Secondly, we prove that {wk} converges to w∗ superlinearly. Let k be an arbitrary positive

integer. Note that 0 < µk < θ̃ ≤ θ1 = min{γ, s, θ0} < 1 from (4.3.28). Then, note also that

wk+1 ∈ N2(µk) ⊂ Θ2(θ̃) ⊂ Θ1(θ̃) ⊂ VN ⊂ V by (4.3.15), (4.3.17) and (4.3.48). Lemma 4.3.2

and (4.3.10) yield that ∥wk+1−w∗∥ ≤ Ur∥rκ(wk+1, 0)∥ ≤ Ur(∥rκ(wk+1, µk)∥+U1µk) ≤ Ur(µ
ρ
k +

U1)µk ≤ Ur(1 + U1)µk. Thus, we obtain ∥wk+1 − w∗∥ ≤ Ur(1 + U1)∥rκ(wk, 0) − rκ(w
∗, 0)∥1+τ

by µk = ∥rκ(wk, 0)∥1+τ and rκ(w
∗, 0) = 0. It then follows from wk, w

∗ ∈ VL and (4.3.12) that

∥wk+1 − w∗∥ ≤ Ur(1 + U1)∥rκ(wk, 0)− rκ(w
∗, 0)∥1+τ ≤ L1+τ

r Ur(1 + U1)∥wk − w∗∥1+τ . (4.3.49)

Using (4.3.14), wk ∈ VN and Ur = 4UM that

L1+τ
r Ur(1 + U1)∥wk − w∗∥τ ≤ L1+τ

r Ur(1 + U1)ν
τ
N ≤ Ur

5UM
=

4

5
. (4.3.50)

It follows from (4.3.49) and (4.3.50) that ∥wk+1 − w∗∥ ≤ 4
5∥wk − w∗∥, and hence {∥wk − w∗∥}

converges to 0. Since limk→∞ L1+τ
r Ur(1 + U1)∥wk − w∗∥τ = 0, we have from (4.3.49) that

lim
k→∞

∥wk+1 − w∗∥
∥wk − w∗∥

= 0.

Therefore, {wk} converges to w∗ superlinearly. □

4.4 Numerical experiments

In this section, we report several numerical experiments for Algorithm 4.2.3. We compare the

proposed method with Yamashita and Yabe’s two-step method [71], that is, Algorithm 4.2.2. We

provide the number of iterations and the CPU time of Algorithms 4.2.2 and 4.2.3. The program

is written in MATLAB R2010a and tun on a machine with an Intel Core i7 920 2.67GHz CPU

and 3.00GB RAM. We adopt the HRVW/KSH/M choice as the scaling matrix Tk, that is,

Tk = X
− 1

2
k . Moreover, we select the following parameters:

Algorithm 4.2.2 : ϵ = 10−6, τ = 0.33,

Algorithm 4.2.3 : ϵ = 10−6, κ = 1, τ = 0.49.

The test problems used in the experiments are the Gaussian channel capacity problem and the

nearest correlation problem. These problems are exactly the same ones given in Section 3.4. Note

that these problems satisfy Assumption 4.2.1 because they are convex programming. For these

details, see Section 3.4. We choose an initial point of Algorithms 4.2.2 and 4.2.3 as follows. First,

we solve the test problem by using Algorithm 3.2.1, and obtain a point w = [x, y, svec(Z)] ∈ Rl

such that ∥r1(w, 0)∥ ≤ 10−3 and w ∈ W. Next, we set w as an initial point.

Tables 4.1 and 4.2 show the numerical results. From Tables 4.1 and 4.2, all the iteration

counts of Algorithm 4.2.3 were less than those of Algorithm 4.2.2. Therefore, we can guess that

the computational cost of Algorithm 4.2.3 was less than half of Algorithm 4.2.2. Indeed, in most

experiments, Algorithm 4.2.3 was able to find a solution in less than half the time of Algorithm

4.2.2.
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Table 4.1: Gaussian channel capacity problem

Algorithm 4.2.2 Algorithm 4.2.3

n iteration time(s) iteration time(s)

5 4 0.07 3 0.08

10 6 0.24 3 0.09

15 8 1.16 4 0.32

20 12 4.49 4 0.89

25 5 4.39 2 0.93

30 5 8.65 2 1.89

35 6 19.40 3 5.22

40 6 34.61 3 8.99

Table 4.2: Nearest correlation matrix problem

Algorithm 4.2.2 Algorithm 4.2.3

n iteration time(s) iteration time(s)

5 3 0.05 2 0.03

10 4 0.48 2 0.12

15 4 2.01 3 0.88

20 5 7.71 3 2.41

25 3 19.13 2 6.05

30 3 47.38 2 14.11

35 4 121.27 3 45.77

40 4 215.30 3 80.02
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4.5 Concluding remarks

In this chapter, we proposed a two-step primal-dual interior point method (Algorithm 4.2.3)

based on the generalized shifted barrier KKT conditions (4.2.1) for the nonlinear SDP and

proved the superlinear convergence of the proposed method. In particular, in order to reduce

calculations, we replaced the coefficient matrix in the second equation with that in the first one.

Therefore, we can expect that the proposed method can find the next point faster than the

existing methods [40, 48, 71]. In the numerical experiments, we actually showed that Algorithm

4.2.3 can find a solution faster than Algorithm 4.2.2.

As a future work, it is desired to prove the superlinear convergence of a one-step method

with scaling.
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Appendix A

In this Appendix, we show that there exists P (w) such that Assumption 4.2.1 holds for T = X− 1
2

and T =W− 1
2 , and Assumption 4.3.2 also holds.

In what follows, we define E(η) := XZ − ηI (η ∈ R). First, we give two inequalities which

evaluate E(η) and X−1 over Θ2(θ). Secondly, we also give an inequality which evaluates A⊗SB

for any A,B ∈ Rp×p. These inequalities play important roles in evaluation of P (w).

Lemma A.1. Suppose that Assumption 4.3.1 holds, and that θ ∈ (0, θ2]. Then, we obtain

∥E(η)∥F ≤ URη
1+ρ and ∥X−1∥F ≤ UXη

−1 for any (w, η) ∈ Γ(θ), where UX := 4pUZ and

UZ := sup{∥Z∥F |w ∈ Θ2(θ2), w ∈ W}.

Proof. For any (w, η) ∈ Γ(θ), we have from the definition of Γ(θ) that w ∈ N2(η) ⊂ Θ2(θ), w ∈
W and η ∈ (0, θ]. Thus, we also have from the definition of N2(η) that ∥rκ(w, η)∥ ≤ η1+ρ.

Moreover, w ∈ Θ2(θ) ⊂ Θ1(θ), η ∈ (0, θ] ⊂ [0, θ1] and Lemma 4.3.2 yield that ∥E(η)∥F ≤
UR∥rκ(w, η)∥ ≤ URη

1+ρ. It then follows from η ≤ θ ≤ θ2 ≤ ( 3
4UR

)
1
ρ that ∥I − η−1XZ∥F =

η−1∥E(η)∥F ≤ URη
ρ ≤ 3

4 . Thus, η ∥X−1∥F
∥Z∥F ≤ η∥Z−1X−1∥F = ∥(I − (I − η−1XZ))−1∥F ≤

p
1−∥I−η−1XZ∥F ≤ 4p, where the second inequality follows from Proposition 2.2.1 (d). Since

w ∈ Θ2(θ) ⊂ Θ2(θ2) and w ∈ W , we obtain 0 < ∥Z∥F ≤ UZ . Hence, we get ∥X−1∥F ≤ 4pUZη
−1.

Letting UX = 4pUZ , we obtain the desired inequality. □

(i) HRVW/KSH/M (T = X− 1
2 )

First, we discuss the case where T = X− 1
2 . We define

F (w, η) :=
1

2

[
E(η)⊗S X

−1 − I ⊗S (X−1E(η))
]
A(x).

Then, letting P (w) := F (w, η), we see that Assumption 4.2.1 (S1) holds. Note that we can

choose η arbitrarily.

Next, we show that Assumption 4.3.2 (S2) holds. Suppose that Assumption 4.3.1 holds, and

that θ ∈ (0, θ2]. For any (w, η) ∈ Γ(θ), it follows from Proposition 2.2.10 that

∥F (w, η)∥F ≤ 1

2
UA

[
∥E(η)⊗S X

−1∥F + ∥I ⊗S (X−1E(η))∥F
]
≤ C2UA∥E(η)∥F ∥X−1∥F , (A.1)

where UA := sup{∥A(x)∥F |w ∈ Θ2(θ2), w ∈ W} and C2 :=
1+

√
p

2

√
p(p+1)

2 . We get ∥P (w)∥F =

∥F (w, η)∥F ≤ C2UAURUXη
ρ from Lemma A.1 and (A.1). Therefore, letting UP := C2UAURUX ,

we see that Assumption 4.3.2 (S2) holds.

(ii) NT (T =W− 1
2 )

In this part, we discuss the case where we choose T = W− 1
2 , where W = X

1
2 (X

1
2ZX

1
2 )−

1
2X

1
2 .

We define

G(w, η) := −1

2
(I ⊗S (E(η)⊤X−1))A(x) + η(I ⊗S (X− 1

2H(w, η)X− 1
2 ))A(x) +

1

2η
(E(η)⊗S Z)A(x)

− 1

4η
(E(η)⊗S (E(η)⊤X−1))A(x) +

1

2
(E(η)⊗S (X− 1

2H(w, η)X− 1
2 ))A(x)

+((X
1
2H(w, η)X− 1

2 )⊗S Z)A(x)−
1

2
((X

1
2H(w, η)X− 1

2 )⊗S (E(η)⊤X−1))A(x)

+η((X
1
2H(w, η)X− 1

2 )⊗S (X− 1
2H(w, η)X− 1

2 ))A(x),
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where H(w, η) :=
(
I + 1

ηX
− 1

2E(η)X
1
2

) 1
2 − I − 1

2ηX
− 1

2E(η)X
1
2 . Then, letting P (w) := G(w, η),

we see that Assumption 4.2.1 (S1) holds. Note that we can choose η arbitrarily.

Next, we prove that Assumption 4.3.2 (S2) holds. Suppose that Assumption 4.3.1 holds,

and that θ ∈ (0, θ2]. For any (w, η) ∈ Γ(θ), it follows from Proposition 2.2.10 that there exists

C3 > 0 such that

∥G(w, η)∥F
≤ C3UA(∥I∥F ∥E(η)∥F ∥X−1∥F + η∥I∥F ∥X− 1

2 ∥2F ∥H(w, η)∥F + η−1∥E(η)∥F ∥Z∥F
+η−1∥E(η)∥2F ∥X−1∥F + ∥X− 1

2 ∥2F ∥H(w, η)∥F ∥E(η)∥F + ∥Z∥F ∥X
1
2 ∥F ∥H(w, η)∥F ∥X− 1

2 ∥F
+∥X

1
2 ∥F ∥H(w, η)∥F ∥X− 1

2 ∥F ∥E(η)∥F ∥X−1∥F + η∥X− 1
2 ∥3F ∥H(w, η)∥2F ∥X

1
2 ∥F ). (A.2)

In what follows, we evaluate ∥X− 1
2 ∥F and ∥H(w, η)∥F . First, it follows from Lemma A.1 that

∥X− 1
2 ∥F =

√
tr(X−1) =

√
⟨X−1, I⟩ ≤

√
∥I∥F ∥X−1∥F ≤

√
p

1
2UXη

− 1
2 . (A.3)

Next, we evaluate ∥H(w, η)∥F . For this purpose, we first evaluate η−1X− 1
2E(η)X

1
2 which

constitutes H(w, η). Since E(η) = XZ − ηI implies X− 1
2E(η)X

1
2 = X

1
2ZX

1
2 − ηI ∈ Sp, we

obtain ∥X− 1
2E(η)X

1
2 ∥F =

√
tr(X− 1

2E(η)X
1
2X− 1

2E(η)X
1
2 ) =

√
tr(E(η)2) =

√
⟨E(η)⊤, E(η)⟩.

Then, the Cauchy-Schwarz inequality yields that

∥η−1X− 1
2E(η)X

1
2 ∥F ≤ η−1

√
∥E(η)⊤∥F ∥E(η)∥F = η−1∥E(η)∥F . (A.4)

Since η−1X− 1
2E(η)X

1
2 is symmetric, all eigenvalues λ1, . . . , λp are real numbers. Moreover, there

exists an orthogonal matrix V such that η−1X− 1
2E(η)X

1
2 = V DV ⊤, whereD = diag[λ1, . . . , λp].

From Lemma A.1, 0 ≤ η ≤ θ ≤ θ2 ≤ ( 3
4UR

)
1
ρ and (A.4),

1 >
3

4
≥ URη

ρ ≥ η−1∥E(η)∥F ≥ ∥η−1X− 1
2E(η)X

1
2 ∥F =

√√√√ p∑
i=1

λ2i ≥ |λi|,

for i = 1, . . . , p. As the result, the matrix I+D is symmetric positive definite, i.e., the existence

of (I +D)
1
2 is guaranteed. Considering the diagonalization of η−1X− 1

2E(η)X
1
2 ,

∥H(w, η)∥F =

∥∥∥∥(V V ⊤ + V DV ⊤
) 1

2 − V V ⊤ − 1

2
V DV ⊤

∥∥∥∥
F

=

∥∥∥∥V (I +D)
1
2V ⊤ − V V ⊤ − 1

2
V DV ⊤

∥∥∥∥
F

≤ ∥V ∥2F
∥∥∥∥(I +D)

1
2 − I − 1

2
D

∥∥∥∥
F

= p

√√√√ p∑
i=1

(√
1 + λi − 1− 1

2
λi

)2

. (A.5)

Let φ : (−1, 1) → R be defined by φ(u) :=
√
1 + u. Since φ is a twice continuously differentiable

function defined on the bounded convex set, it follows from Proposition 2.2.2 (b) that there
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exists a positive constant Lφ such that Lφu
2 ≥ |φ(u) − φ(0) − φ′(0)u| =

∣∣√1 + u− 1− 1
2u
∣∣.

Then, Lemma A.1, (A.4) and (A.5) yield that

∥H(w, η)∥F ≤ pLφ

√√√√ p∑
i=1

λ4i

= pLφ

∥∥∥∥(η−1X− 1
2E(η)X

1
2

)2∥∥∥∥
F

≤ pLφ

∥∥∥η−1X− 1
2E(η)X

1
2

∥∥∥2
F

≤ pLφ∥E(η)∥2F η−2

≤ pLφU
2
Rη

2ρ.

This inequality, Lemma A.1, (A.2), (A.3), the boundedness of ∥Z∥F and ∥X
1
2 ∥F imply that

there exists C4 > 0 such that ∥G(w, η)∥F ≤ C4(η
ρ+η2ρ+η3ρ+η2ρ−

1
2 +η3ρ−

1
2 +η4ρ−

1
2 ) ≤ 6C4η

ρ,

where the second inequality follows from ρ ≤ 2ρ − 1
2 in (4.3.16) and 0 < η ≤ θ2 ≤ θ1 ≤ s < 1.

Letting UP := 6C4, we prove that Assumption 4.3.2 (S2) holds.

These results show that T = X− 1
2 and T =W− 1

2 satisfy Assumptions 4.2.1 and 4.3.2.





Chapter 5

A block coordinate descent method

for a maximum likelihood estimation

problem of mixture distributions

5.1 Introduction

When some observational data are supposed to obey a certain distribution with parameters,

it is important to estimate valid parameters from the data. A maximum likelihood estimation

is one of estimation procedures of the parameters. In this chapter, we focus on the maximum

likelihood estimation in mixture distributions, which is frequently used in statistics, pattern

recognition and machine learning [8, 43].

The EM algorithm is known to be one of the most powerful methods for the estimation

[16, 26, 51, 67], and has been studied actively even in recent years. It is an iterative method

which consists of the Expectation Step (E-Step) and the Maximization Step (M-Step). The

E-Step calculates an expectation of the likelihood and the M-Step maximizes the expectation

with respect to parameters.

Recently, many researchers have actively studied the maximum likelihood estimation with

regularization methods. For example, when we add the L1 regularization to the likelihood

function, we may choose important parameters in the model. The L1 regularization is used for a

sparse precision matrix selection in a Gaussian distribution [38, 73]. Since the (i, j)-th element

of a precision matrix expresses a relation between the i-th and j-th elements of probability

variables, a sparse precision matrix plays a critical role in the graphical modeling [20]. Ruan,

Yuan and Zou [53] proposed the EM algorithm for Gaussian mixtures with the L1 regularization,

and succeeded in estimating parameters with sparse precision matrices.

In this chapter, we first define a maximum likelihood estimation problem, whose objective

function consists of not only a log-likelihood function but also some proper lower semicontinu-

ous quasiconvex functions. If we exploit the L1 regularization term and/or indicator functions

of constraint sets as the additional proper lower semicontinuous quasiconvex functions, we can

estimate parameters with the regularization and/or the constraint. Especially, parameter esti-
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mations with lower constraints on mixture coefficients are one of contributions in this thesis.

Thanks to such constraints, we can obtain some theoretically and practically nice properties.

Meanwhile, an estimation problem considered in this chapter is more general than that in the

existing papers, such as [53, 67].

The estimation problem in this chapter might not be solved by the usual EM algorithm.

Then, we consider a block coordinate descent (BCD) method. At each iteration of the BCD

method, the objective function is minimized among a few parameters while all the other param-

eters are fixed.

Since the log-likelihood function is not separable for each parameter in mixture distributions,

we first construct a separable problem related to the original one. Then, we apply a BCD method

to the separable problem, where the block corresponds to a set of parameters in a single distri-

bution. As seen in Section 2.5, Tseng [62] showed that a BCD method for a nondifferentiable

minimization problem has the global convergence property under some reasonable conditions.

Using the results in Section 2.5, we prove the global convergence of the proposed BCD method

when we add certain lower bound constraints on mixture coefficients. In addition, we discuss ef-

ficient implementations for some concrete problems, such as the maximum likelihood estimation

with box constraints on mixture coefficients.

The present chapter is organized as follows. In Section 5.2, we introduce maximum likelihood

estimation problems for mixture distributions. In particular, we present a general class of maxi-

mum likelihood estimation problems for mixture distributions that has a log-likelihood function

and/or some proper lower semicontinuous quasiconvex functions, such as the L1 regularization

and/or indicator functions of constraint sets. In Section 5.3, we present a BCD method for

the proposed maximum likelihood estimation problem, and discuss its global convergence. In

Section 5.4, we discuss how to solve subproblems in the proposed BCD method for some special

cases. In Section 5.5, we report some numerical results for the maximum likelihood estimation

with some additional constraints. Finally, we make some concluding remarks in Section 5.6.

5.2 Maximum likelihood estimation for mixture distributions

In this section, we introduce maximum likelihood estimation problems for mixture distributions.

Assume that probability variables x ∈ Rd obey a probability distribution p(x). If p(x) is

expressed as a weighted linear combination of distributions pi(x|θi) (i = 1, . . . ,m):

p(x) :=

m∑
i=1

αipi(x|θi),

then p(x) is called a mixture distribution which has parameters αi, θi (i = 1, . . . ,m), where

pi(x|θi) (i = 1, . . . ,m) are called mixture components, αi (i = 1, . . . ,m) are called mixture

coefficients satisfying

m∑
i=1

αi = 1, 0 ≤ αi, i = 1, . . . ,m,

and θi (i = 1, . . . ,m) are parameters of the distributions pi(x|θi) (i = 1, . . . ,m), respectively.

Let Θi (i = 1, . . . ,m) be sets of the parameters θi (i = 1, . . . ,m), respectively. Throughout
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this chapter, we suppose that the sets Θi (i = 1, . . . ,m) are closed convex. Moreover, let

Vi (i = 1, . . . ,m) be inner product spaces such that Θi ⊂ Vi (i = 1, . . . ,m), respectively. Note

that θi ∈ Θi ⊂ Vi (i = 1, . . . ,m). Then, we define Θ and V as follows:

Θ := Θ1 × · · · ×Θm, V := V1 × · · · × Vm.

Note that since Θi (i = 1, . . . ,m) are closed convex sets, so is Θ. Note also that since Vi (i =

1, . . . ,m) are inner product spaces, so is V.
Suppose that we have observational data X := [x1, . . . , xn] ∈ Rd×n. Then, we wish to model

the data X using the mixture distribution p(x) with the parameters αi, θi (i = 1, . . . ,m). To

this end, we consider an estimation of the parameters αi, θi (i = 1, . . . ,m). In the remainder of

this chapter, we exploit the following notation in order to specify that the parameters of p(x)

are αi, θi (i = 1, . . . ,m):

p(x|α, θ) :=
m∑
i=1

αipi(x|θi), (5.2.1)

where α := [α1, . . . , αm]⊤ ∈ Rm and θ := [θ1, . . . , θm] ∈ Θ.

A joint probability for the observational data X is given by

P (X|α, θ) :=
n∏

k=1

p(xk|α, θ).

We call P (X|α, θ) a likelihood. Moreover, a maximizer (α∗, θ∗) of the likelihood P (X|α, θ) is

called a maximum likelihood estimator. In what follows, an estimation of parameters means that

we obtain the maximum likelihood estimator (α∗, θ∗). Since a maximization of a likelihood is

difficult in general, we usually maximize the following log-likelihood function:

L(α, θ) := logP (X|α, θ) =
n∑

k=1

log

(
m∑
i=1

αipi(xk|θi)

)
.

We sometimes want to maximize the log-likelihood function L with regularizations and/or

constraints on some parameters in (α, θ). Thus, we consider the following maximization problem:

maximize L(α, θ)− f(α, θ),

subject to α ∈ Ωl, θi ∈ Θi, i = 1, . . . ,m,
(5.2.2)

where the function f : Rm×V → R is proper lower semicontinuous quasiconvex, and the set Ωl

is defined by

Ωl :=

{
α ∈ Rm

∣∣∣∣∣
m∑
i=1

αi = 1, li ≤ αi, i = 1, . . . ,m

}
.

where l = [l1, . . . , lm]⊤ ∈ Rm is a constant vector such that li ∈ [0, 1] (i = 1, . . . ,m) and∑m
i=1 li < 1. In what follows, we call problem (5.2.2) a maximum likelihood estimation problem.

Note that the function f is regarded as a generalization of the L1 regularization and indicator

functions of constraint sets. Note also that l = 0 in [26, 51, 53, 67]. To the author’s best
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knowledge, this is the first time to consider the lower bounds li ≤ αi (i = 1, . . . ,m) in the

maximum likelihood estimation for mixture distributions. As seen in Sections 5.3 and 5.5, the

lower bounds with positive constants li (i = 1, . . . ,m) bring in both theoretically and practically

nice effects.

We now give two concrete cases of problem (5.2.2).

Example 1. The maximum likelihood estimation with constraints on mixture coef-

ficients

We discuss the maximum likelihood estimation with constraints on mixture coefficients. We

assume that the mixture coefficients satisfy αi ∈ [li, ui] (i = 1, . . . ,m), where li, ui ∈ (0, 1] (i =

1, . . . ,m),
∑m

i=1 li < 1 and
∑m

i=1 ui ≥ 1. Let Uu := { α ∈ Rm | αi ≤ ui, i = 1, . . . ,m }. Then,

we may define the function f of problem (5.2.2) as

f(α, θ) :=

{
0 if α ∈ Uu ∩ Ωl,

+∞ otherwise.

As described above, the constraints li ≤ αi (i = 1, . . . ,m) play a critical role in the theoretical

and practical aspects. In the theoretical aspect, these constraints enable us to show the global

convergence of a BCD method proposed in Section 5.3. In the practical aspect, these constraints

bring in some valid parameter estimations when the amount of the observational data is small.

Example 2. The maximum likelihood estimation with the L1 regularization for

Gaussian mixtures

Suppose that the mixture components pi(x|θi) (i = 1, . . . ,m) in (5.2.1) are Gaussian:

N (x|µi,Λ−1
i ) :=

√
detΛi

(2π)d/2
exp

[
−1

2
(x− µi)

⊤Λi(x− µi)

]
, i = 1, . . . ,m,

where µi ∈ Rd and Λi ∈ Sd denote a mean vector and a precision matrix. Note that a preci-

sion matrix is the inverse of a covariance matrix. Then, θi = [µi,Λi] (i = 1, . . . ,m). Several

researchers, such as Friedman, Hastie and Tibshirani [20] and Lu [39], proposed maximum like-

lihood estimation problems with the L1 regularization. We apply such ideas to the maximum

likelihood estimation for mixture distributions. Then, we may consider the following problem:

maximize

n∑
k=1

log

(
m∑
i=1

αiN (xk|µi,Λ−1
i )

)
−

m∑
i=1

ρi∥Λi∥1,

subject to α ∈ Ω0, λiI ⪯ Λi ⪯ λiI, i = 1, . . . ,m,

(5.2.3)

where ρi, λi, λi (i = 1 . . . ,m) are constants such that ρi ∈ [0,∞), λi ∈ [0,∞), λi ∈ (0,∞], λi <

λi (i = 1, . . . ,m). Note that we allow λi (i = 1, . . . ,m) to be +∞. Note also that λi = 0, λi =

∞ (i = 1, . . . ,m) in [20, 39].

Thanks to the L1 regularization term
∑m

i=1 ρi∥Λi∥1, we can obtain a maximum likelihood

estimator with sparse precision matrices. The sparse precision matrix plays an important role
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in the graphical modeling. For details, see [20, 38, 39, 53]. Let Si := { S ∈ Sd | λiI ⪯ S ⪯ λiI }.
Then, problem (5.2.3) is written as (5.2.2) with

f(α, θ) :=

m∑
i=1

fi(Λi), fi(Λi) :=

{
ρi∥Λi∥1 if Λi ∈ Si,

+∞ otherwise,
Θi := Rd × Si, i = 1, . . . ,m.

5.3 Block coordinate descent method and its global convergence

In this section, we present a BCD method solving maximum likelihood estimation problem

(5.2.2). To this end, we first construct a separable problem suitable to the proposed BCD

method. Next, we give conditions under which the proposed BCD method has the global con-

vergence property.

If a BCD method is directly applied to problem (5.2.2), then it may solve the following

subproblems at each step:

αt+1 ∈ argmax
α∈Ωl

{
L(α, θt1, . . . , θ

t
m)− f(α, θt1, . . . , θ

t
m)
}
,

θt+1
1 ∈ argmax

θ1∈Θ1

{
L(αt+1, θ1, θ

t
2, . . . , θ

t
m)− f(αt+1, θ1, θ

t
2, . . . , θ

t
m)
}
,

θt+1
2 ∈ argmax

θ2∈Θ2

{
L(αt+1, θt+1

1 , θ2, θ
t
3, . . . , θ

t
m)− f(αt+1, θt+1

1 , θ2, θ
t
3, . . . , θ

t
m)
}
,

...

θt+1
m ∈ argmax

θm∈Θm

{
L(αt+1, θt+1

1 , . . . , θt+1
m−1, θm)− f(αt+1, θt+1

1 , . . . , θt+1
m−1, θm)

}
,

where the superscript t denotes the t-th iteration. We see that the subproblems cannot be

solved in parallel because the log-likelihood function L has a weighted linear combination of the

mixture components pi(xk|θi) (i = 1, . . . ,m) in the antilogarithm part. Thus, we construct a

separable problem associated with (5.2.2) in order to solve subproblems in parallel.

We assume that the function f is separable with respect to α, θ1, . . . , θm, that is,

f(α, θ) = f0(α) +

m∑
i=1

fi(θi), (5.3.1)

where f0 is a proper lower semicontinuous quasiconvex function for adding some constraints on

mixture coefficients αi (i = 1, . . . ,m), and fi (i = 1, . . . ,m) are also proper lower semicontinuous

quasiconvex functions for adding some constraints on parameters θi (i = 1, . . . ,m), respectively.

Then, we consider the following minimization problem instead of problem (5.2.2):

minimize D(W,α, θ) + f0(α) +

m∑
i=1

fi(θi),

subject to W ∈M, α ∈ Ωl, θi ∈ Θi, i = 1, . . . ,m,

(5.3.2)

where decision variables of problem (5.3.2) are α, θ andW , the functionD : Rm×n
+ ×Rm

+×Θ → R
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and the set M are defined by

D(W,α, θ) :=
m∑
i=1

n∑
k=1

Wik{logWik − logαi − log pi(xk|θi)}, (5.3.3)

M :=

{
W ∈ Rm×n

+

∣∣∣∣∣
m∑
i=1

Wik = 1, k = 1, . . . , n

}
, (5.3.4)

respectively. If we apply a BCD method to problem (5.3.2), then the objective function of (5.3.2)

is separable for α and θi (i = 1, . . . ,m) when W is fixed. The details are discussed later.

Now we mention that a BCD method can find a solution of (5.2.2) if it solves problem (5.3.2).

For each (α, θ) ∈ Rm
+ ×Θ, we consider the following problem:

minimize D(W,α, θ),

subject to W ∈M.
(5.3.5)

Then, we define a function g : Rm
+ ×Θ → R as

g(α, θ) := min
W∈M

D(W,α, θ).

For each (α, θ) ∈ Rm
+ ×Θ, the function D(·, α, θ) is strictly convex on the compact setM defined

by (5.3.4), and hence Proposition 2.2.6 implies that problem (5.3.5) has a unique optimum. In

what follows, we denote the unique optimum by W(α, θ). Note that g(α, θ) = D(W(α, θ), α, θ)

for any (α, θ) ∈ Rm
+ × Θ. The next lemma shows that g(α, θ) = −L(α, θ), i.e., problem (5.2.2)

is equivalent to

minimize g(α, θ) + f0(α) +

m∑
i=1

fi(θi),

subject to α ∈ Ωl, θi ∈ Θi, i = 1, . . . ,m.

(5.3.6)

Although the equivalence is implicitly given in [26], we provide its proof for the completeness of

this thesis.

Lemma 5.3.1. For each (α, θ) ∈ Rm
+ ×Θ,

g(α, θ) = −L(α, θ), Wik(α, θ) =
αipi(xk|θi)
p(xk|α, θ)

, i = 1, . . . ,m, k = 1, . . . , n,

where Wik(α, θ) denotes the (i, k)-th element of W(α, θ).

Proof. Let (α, θ) ∈ Rm
+ ×Θ. We denote W(α, θ) by W ∗ for simplicity. The KKT conditions for

problem (5.3.5) with (α, θ) are written as

m∑
i=1

W ∗
ik = 1, logW ∗

ik + 1− logαipi(xk|θi)− u∗k = 0, i = 1, . . . ,m, k = 1, . . . , n,

where u∗k (k = 1, . . . , n) are Lagrange multipliers for
∑m

i=1W
∗
ik = 1 (k = 1, . . . , n), respectively.

Then, we obtain

W ∗
ik = αipi(xk|θi) exp(u∗k − 1), i = 1, . . . ,m, k = 1, . . . , n. (5.3.7)
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It further follows from
∑m

i=1W
∗
ik = 1 (k = 1, . . . , n) that

1 =
m∑
i=1

W ∗
ik = exp(u∗k − 1)

m∑
i=1

αipi(xk|θi) = exp(u∗k − 1)p(xk|α, θ), k = 1, . . . , n,

and hence

exp(u∗k − 1) =
1

p(xk|α, θ)
, k = 1, . . . , n. (5.3.8)

Then, (5.3.7) and (5.3.8) yield that

W ∗
ik =

αipi(xk|θi)
p(xk|α, θ)

, i = 1, . . . ,m, k = 1, . . . , n.

Moreover, we have

g(α, θ) = D(W ∗, α, θ)

=

m∑
i=1

n∑
k=1

W ∗
ik

{
log

αipi(xk|θi)
p(xk|α, θ)

− logαi − log pi(xk|θi)
}

=

m∑
i=1

n∑
k=1

W ∗
ik {logαipi(xk|θi)− log p(xk|α, θ)− logαipi(xk|θi)}

= −
n∑

k=1

(
m∑
i=1

W ∗
ik

)
log p(xk|α, θ)

= −L(α, θ),

where the last equality follows from
∑m

i=1W
∗
ik = 1 (k = 1, . . . , n). □

From Lemma 5.3.1, problem (5.2.2) is equivalent to problem (5.3.6). On the other hand, if

(W,α, θ) is a global optimum of problem (5.3.2), then (α, θ) is that of problem (5.3.6). Therefore,

we can obtain a global optimum of problem (5.2.2) by solving problem (5.3.2). Moreover, under

some assumptions, we can show that if (W,α, θ) is a stationary point of (5.3.2), then (α, θ) is

that of problem (5.2.2). In order to prove it, we first provide gradients of g with respect to α

and θ, respectively.

Lemma 5.3.2. Suppose that the following statements hold:

(i) The function D is differentiable at (W(α, θ), α, θ);

(ii) For each i ∈ {1, . . . ,m} and xk ∈ {x1, . . . , xn}, the function pi(xk|·) is continuously differ-

entiable on intΘi and 0 < pi(xk|θi) for all θi ∈ Θi.

Then the function g is differentiable at (α, θ), and its gradients with respect to α and θ are

∇αg(α, θ) = ∇αD(W(α, θ), α, θ), ∇θg(α, θ) = ∇θD(W(α, θ), α, θ).

Proof. Let u := (α, θ) and U := Rm
+ × Θ. Moreover, let W := W(u). Assumption (i) implies

that (W,u) ∈ Rm×n
++ × intU , that is,

W ∈ Rm×n
++ , u ∈ intU. (5.3.9)
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Let i ∈ {1, . . . ,m} and k ∈ {1, . . . , n}. Lemma 5.3.1, assumption (ii) and (5.3.9) imply that

Wik : U → R is continuous at u ∈ intU , that is,

∀ε > 0, ∃rik > 0 such that |Wik(u+ d)−Wik(u)| < ε, ∀d ∈ B(0, rik). (5.3.10)

Now, we obtain that 0 < W ik = Wik(u) from (5.3.9), and hence if we choose ε in (5.3.10) as

0 < ε <Wik(u), then

0 <Wik(u)− ε <Wik(u+ d), ∀d ∈ B(0, rik). (5.3.11)

Meanwhile, we have from (5.3.9) that there exists r0 > 0 such that B(u, r0) ⊂ intU , that is,

u+ d ∈ intU, ∀d ∈ B(0, r0). (5.3.12)

Then, let r be a positive number such that r < r0 and r < rik (i = 1, . . . ,m, k = 1, . . . , n).

Moreover, let d ∈ B(0, r) be arbitrary, where d ̸= 0. Now, it is clear that d ∈ B(0, r) ⊂
B(0, rik) (i = 1, . . . ,m, k = 1, . . . , n) and d ∈ B(0, r) ⊂ B(0, r0). Thus, it follows from (5.3.11)

and (5.3.12) that

W(u+ d) ∈ Rm×n
++ , u+ d ∈ intU. (5.3.13)

Note that g(u) = D(W,u) because W is a global optimum of problem (5.3.5) with (α, θ). Then,

we have from the definition of g and (5.3.13) that

g(u+ d)− g(u) ≤ D(W,u+ d)−D(W,u) = ⟨∇uD(W,u), d⟩+ ∥d∥φ(d),

where φ : U → R is a certain function such that φ(d) → 0 if d → 0. Furthermore, it follows

from d ̸= 0 that

g(u+ d)− g(u)− ⟨∇uD(W,u), d⟩
∥d∥

≤ φ(d),

and hence, by ∥d∥ → 0,

lim sup
d→0

g(u+ d)− g(u)− ⟨∇uD(W,u), d⟩
∥d∥

≤ 0. (5.3.14)

Let ud := u+ d, and let Wd := W(ud). Then, the definition of g and (5.3.13) yield that

D(Wd, ud)−D(Wd, u) ≤ D(Wd, ud)−D(W,u) = g(u+ d)− g(u). (5.3.15)

On the other hand, we have by the definition of D, assumption (ii) and (5.3.9) that there exists

∇uD(W̃ , ũ) for all (W̃ , ũ) ∈ Rm×n
++ × intU , and

∇uD(W̃ , Ũ) → ∇uD(W,u) (W̃ →W, ũ→ u). (5.3.16)

Thus, there exists ∇uD(Wd, u + λd) for all λ ∈ [0, 1] because Wd ∈ Rm×n
++ and u + λd ∈ intU

for all λ ∈ [0, 1] by (5.3.9) and (5.3.13). Then, Theorem 2.2.1 implies that there exists t ∈ (0, 1)

such that

D(Wd, ud)−D(Wd, u) = ⟨∇uD(Wd, u+ td), d⟩. (5.3.17)
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We have by the Cauchy-Schwarz inequality, (5.3.15) and (5.3.17) that

−∥d∥∥∇uD(Wd, u+ td)−∇uD(W,u)∥ ≤ g(u+ d)− g(u)− ⟨∇uD(W,u), d⟩.

It then follows from d ̸= 0 that

−∥∇uD(Wd, u+ td)−∇uD(W,u)∥ ≤ g(u+ d)− g(u)− ⟨∇uD(W,u), d⟩
∥d∥

. (5.3.18)

Meanwhile, it is clear that ud → u and u+ td→ u when d→ 0. Moreover, (5.3.10) means that

W : U → Rm×n is continuous at u ∈ intU , that is Wd = W(ud) → W(u) = W when d → 0.

Then, (5.3.16) yields that ∇uD(Wd, u + td) → ∇uD(W,u) when d → 0. It then follows from

(5.3.18) that

0 ≤ lim inf
d→0

g(u+ d)− g(u)− ⟨∇uD(W,u), d⟩
∥d∥

. (5.3.19)

Combining (5.3.14) and (5.3.19),

lim
d→0

g(u+ d)− g(u)− ⟨∇uD(W,u), d⟩
∥d∥

= 0,

that is, ∇g(u) = ∇uD(W,u). Now, we see that

∇g(u) =

[
∇αg(α, θ)

∇θg(α, θ)

]
, ∇uD(W,u) =

[
∇αD(W,α, θ)

∇θD(W,α, θ)

]
.

Therefore, ∇αg(α, θ) = ∇αD(W,α, θ) and ∇θg(α, θ) = ∇θD(W,α, θ). □

Next, under some assumptions, we show that if (W,α, θ) ∈M ×Ωl×Θ is a stationary point

of problem (5.3.2), then (W,α, θ) is that of problem (5.2.2).

Theorem 5.3.1. Let (W,α, θ) be a stationary point of problem (5.3.2). Suppose that the fol-

lowing statements hold:

(i) The function D is differentiable at (W,α, θ);

(ii) For each i ∈ {1, . . . ,m} and xk ∈ {x1, . . . , xn}, the function pi(xk|·) is continuously differ-

entiable on intΘi and 0 < pi(xk|θi) for all θi ∈ Θi.

Then (W,α, θ) is a stationary point of problem (5.2.2).

Proof. Let (W,α, θ) ∈ M × Ωl × Θ be arbitrary. Now, (W,α, θ) ∈ M × Ωl × Θ is a stationary

point of problem (5.3.2), and hence

0 ≤ ⟨∇WD(W,α, θ),W −W ⟩+ ⟨∇αD(W,α, θ), α− α⟩+ ⟨∇θD(W,α, θ), θ − θ⟩

+f ′0(α;α− α) +
m∑
i=1

f ′i(θi; θi − θi). (5.3.20)

Note that (α, θ) ∈ Ωl ×Θ is arbitrary. Substituting (α, θ) = (α, θ) into (5.3.20), for all W ∈M ,

0 ≤ ⟨∇WD(W,α, θ),W −W ⟩.
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Thus, W is a stationary point of problem (5.3.5). Moreover, we have from Proposition 2.2.6

that W = W(α, θ). It then follows from Lemma 5.3.2 and assumptions (i) and (ii) that

∇αg(α, θ) = ∇αD(W,α, θ), ∇θg(α, θ) = ∇θD(W,α, θ). (5.3.21)

On the other hand, we substitute W =W into (5.3.20) because W ∈M is arbitrary. As the

result, for all (α, θ) ∈ Ωl ×Θ,

0 ≤ ⟨∇αD(W,α, θ), α− α⟩+ ⟨∇θD(W,α, θ), θ − θ⟩+ f ′0(α;α− α) +

m∑
i=1

f ′i(θi; θi − θi). (5.3.22)

By (5.3.21) and (5.3.22), for all (α, θ) ∈ Ωl ×Θ,

0 ≤ ⟨∇αg(α, θ), α− α⟩+ ⟨∇θg(α, θ), θ − θ⟩+ f ′0(α;α− α) +

m∑
i=1

f ′i(θi; θi − θi).

Thus, (α, θ) is a stationary point of problem (5.3.6). It then follows from Lemma 5.3.1 that

(α, θ) is a stationary point of problem (5.2.2). □

We now apply a BCD method to problem (5.3.2). Let (αt, θt) be given. The BCD method

first solves problem (5.3.5) with (αt, θt), that is, W t := W(αt, θt). From Lemma 5.3.1, the

solution W t is given by

W t
ik =

αt
ipi(xk|θti)

p(xk|αt, θt)
, i = 1, . . . ,m, k = 1, . . . , n. (5.3.23)

Next, it solves the following subproblems with respect to α and θi (i = 1, . . . ,m) independently:

minimize −
m∑
i=1

n∑
k=1

W t
ik logαi + f0(α),

subject to α ∈ Ωl,

(5.3.24)

minimize −
n∑

k=1

W t
ik log pi(xk|θi) + fi(θi),

subject to θi ∈ Θi.

(5.3.25)

Note that the functions f0 and fi (i = 1, . . . ,m) are given by (5.3.1). Summing up the above

discussion, the BCD method is described as follows.

Algorithm 5.3.1.

Step 0. Choose an initial point (α0, θ0) ∈ Rm ×Θ, and set t := 0.

Step 1. Calculate W t by (5.3.23).

Step 2. Obtain a solution αt+1 to problem (5.3.24).

Step 3. For each i ∈ {1, . . . ,m}, obtain a solution θt+1
i to problem (5.3.25).

Step 4. If an appropriate termination criterion is satisfied, then stop. Otherwise, set t := t+1

and go to Step 1.
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Next, we discuss the global convergence of Algorithm 5.3.1. First, we give some assumptions

for problem (5.3.2). These assumptions are sufficient conditions under which Algorithm 5.3.1

has the global convergence property.

Assumption 5.3.1.

(A1) The constant vector l ∈ Rm satisfies that l = α, where α ∈ Rm is a certain vector such

that 0 < αi (i = 1, . . . ,m) and
∑m

i=1 αi < 1.

(A2) The functions f0 and fi (i = 1, . . . ,m) are proper lower semicontinuous quasiconvex on

Rm and Vi (i = 1, . . . ,m), respectively.

(A3) For each i ∈ {1, . . . ,m} and xk ∈ {x1, . . . , xn}, the function − log pi(xk|·) is quasiconvex

and hemivariate on Θi. Moreover, the function pi(xk|·) is continuously differentiable on

intΘi and 0 < pi(xk|θi) for all θi ∈ Θi.

Next, we provide a theorem that guarantees the global convergence of Algorithm 5.3.1.

Theorem 5.3.2. Suppose that Assumption 5.3.1 (A1)–(A3) hold. Suppose also that Algorithm

5.3.1 generates an infinite sequence {(W t, αt+1, θt+1)} that has an accumulation point (W,α, θ).

If the function D is differentiable at (W,α, θ), then (W,α, θ) is a stationary point of problem

(5.3.2).

Proof. By using α ∈ Rm in Assumption 5.3.1 (A1), we consider the following problem:

minimize F (W,α, θ), (5.3.26)

where

F (W,α, θ) := D(W,α, θ) + δM (W ) + f0(α) +
m∑
i=1

fi(θi),

D(W,α, θ) :=

{
D(W,α, θ) if W ∈ Rm×n

+ , α ∈ Rm
++, θi ∈ Θi, i = 1, . . . ,m,

+∞ otherwise,

δM (W ) :=

{
0 if W ∈M,

+∞ otherwise,

f0(α) :=

{
f0(α) if α ∈ Ωα,

+∞ otherwise.

Note that M ×Ωl ×Θ is a closed convex set. Thus, by Proposition 2.2.7 and problem (5.3.26),

it suffices to show that (W,α, θ) is a stationary point of problem (5.3.26). First, we have from

Assumption 5.3.1 (A2) and (A3) that assumptions (i)–(iii) of Proposition 2.5.2 are satisfied.

Next, we obtain domD = Rm×n
+ ×Rm

++×Θ1×. . .×Θm by the definition ofD, that is, assumption

(iv) of Proposition 2.5.2 holds. Then, Proposition 2.5.2 implies that (W,α, θ) is a coordinatewise

minimum point of F . On the other hand, we have (W,α, θ) ∈ Rm×n
++ × Rm

++ × intΘ because

D is differentiable at (W,α, θ). It then follows from the definition of D that D is differentiable

at (W,α, θ). Therefore, these results and Proposition 2.5.1 imply that (W,α, θ) is a stationary

point of problem (5.3.26). □
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From Theorems 5.3.1 and 5.3.2, Algorithm 5.3.1 can get a stationary point of (5.2.2) if it

solves (5.3.2).

Remark 5.3.1. For the global convergence of Algorithm 5.3.1, we should get exact solutions of

subproblems (5.3.24) and (5.3.25). As shown in Section 5.4, we can obtain them in some special

cases.

We now discuss when Assumption 5.3.1 (A1)–(A3) hold.

(1) Assumption 5.3.1 (A1) guarantees that 0 < αi ≤ αi (i = 1, . . . ,m). However, when we have

a large amount of the observational data, the vector α satisfies such conditions in many

cases even if we do not suppose the existence of the vector α.

(2) Some distributions, such as logistic distributions, satisfy Assumption 5.3.1 (A2). For these

details, see [11, Chapter 7].

(3) When we employ the L1 regularization and/or indicator functions of closed convex sets as

f0 and fi (i = 1, . . . ,m), Assumption 5.3.1 (A3) holds.

Unfortunately, a Gaussian distribution N (x|µi,Λ−1
i ) does not satisfy the quasiconvexity

condition in Assumption 5.3.1 (A2). However, under some reasonable assumptions, we can

construct a global convergent BCD method for Gaussian mixtures. Note that θi = [µi,Λi], Θi =

Rd × Sd
++ and Vi = Rd × Sd for each i ∈ {1, . . . ,m} when mixture components are Gaussian.

In addition, we use notations µ := [µ1, . . . , µm] and Λ := [Λ1, . . . ,Λm]. For each i ∈ {1, . . . ,m},
we assume that the function fi is separable with respect to µi and Λi, that is,

fi(θi) = fµi (µi) + fΛi (Λi), (5.3.27)

where fµi and fΛi are proper lower semicontinuous quasiconvex on Rm and Sd, respectively.

Then, we execute the following two steps instead of Step 3 in Algorithm 5.3.1.

Step 3-1. For each i ∈ {1, . . . ,m}, obtain a solution µt+1
i of the following problem:

minimize −
n∑

k=1

W t
ik logN (xk|µi, (Λt

i)
−1) + fµi (µi),

subject to µi ∈ Rd.

(5.3.28)

Step 3-2. For each i ∈ {1, . . . ,m}, obtain a solution Λt+1
i of the following problem:

minimize −
n∑

k=1

W t
ik logN (xk|µt+1

i ,Λ−1
i ) + fΛi (Λi),

subject to Λi ⪰ 0.

(5.3.29)

Note that the modified method is also a BCD method. We call it Algorithm 5.3.2 in the

remainder of this chapter.

The next assumptions are sufficient conditions under which Algorithm 5.3.2 has the global

convergence property.
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Assumption 5.3.2.

(A1) The mixture components satisfy that pi(x|θi) = N (x|µi,Λ−1
i ), θi = [µi,Λi] (i = 1, . . . ,m).

(A2) The constant vector l ∈ Rm satisfies that l = α, where α ∈ Rm is a certain vector such

that 0 < αi (i = 1, . . . ,m) and
∑m

i=1 αi < 1.

(A3) Problem (5.3.2) has constraints 0 ≺ λiI ⪯ Λi (i = 1, . . . ,m), where 0 < λi (i = 1, . . . ,m).

(A4) The function f0 is proper lower semicontinuous quasiconvex, and the functions fi (i =

1, . . . ,m) are written as (5.3.27) with proper lower semicontinuous quasiconvex functions

fµi , f
Λ
i (i = 1, . . . ,m).

Then, we give a theorem that guarantees the global convergence of Algorithm 5.3.2.

Theorem 5.3.3. Suppose that Assumption 5.3.2 (A1)–(A4) hold. Suppose also that Algorithm

5.3.2 generates an infinite sequence {(W t, αt+1, µt+1,Λt+1)} that has an accumulation point

(W,α, µ,Λ). Then, (W,α, µ,Λ) is a stationary point of problem (5.3.2).

Proof. First, we show that D is differentiable at (W,α, µ,Λ). By (5.3.23) and Assumption 5.3.2

(A1) and (A2), we obtain that 0 < αi (i = 1, . . . ,m) and 0 < W ik (i = 1, . . . ,m, k = 1, . . . , n).

Meanwhile, it follows from Assumption 5.3.2 (A3) that Λi ∈ Sd
++ (i = 1, . . . ,m). These results

imply that D is differentiable at (W,α, µ,Λ).

Secondly, we consider the following problem by using α ∈ Rm and λi ∈ R (i = 1, . . . ,m) in

Assumption 5.3.2 (A2) and (A3):

minimize F (W,α, µ,Λ), (5.3.30)

where

F (W,α, µ,Λ) := D(W,α, µ,Λ) + δM (W ) + f0(α) +

m∑
i=1

fµi (µi) +

m∑
i=1

f
Λ
i (Λi),

D(W,α, µ,Λ) :=

{
D(W,α, µ,Λ) if W ∈ Rm×n

+ , α ∈ Rm
++, µi ∈ Rd, Λi ∈ Sd

++, i = 1, . . . ,m,

+∞ otherwise,

δM (W ) :=

{
0 if W ∈M,

+∞ otherwise,

f0(α) :=

{
f0(α) if α ∈ Ωα,

+∞ otherwise,

f
Λ
i (Λi) :=

{
0 if λiI ⪯ Λi,

+∞ otherwise,
i = 1, . . . ,m.

From the differentiability of D at (W,α, µ,Λ) and problem (5.3.30), this theorem can be shown

in a way similar to the proof of Theorem 5.3.2. □

5.4 Implementation issue for special cases

In this section, we describe efficient solution methods solving subproblems (5.3.24), (5.3.28) and

(5.3.29) for special cases such as Examples 1 and 2 of Section 5.2.
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5.4.1 Maximum likelihood estimation with constraints on mixture coeffi-

cients

We discuss the maximum likelihood estimation with box constraints on mixture coefficients as

described in Example 1 of Section 5.2. Since the update of the mixture coefficients appears only

in subproblem (5.3.24) of Step 2, we only discuss how to solve subproblem (5.3.24).

Subproblem (5.3.24) has simple constraints
∑m

i=1 αi = 1, li ≤ αi ≤ ui (i = 1, . . . ,m). There

exist efficient methods that solve special convex problems with the constraints in O(m) [12, 47].

Although the objective function in (5.3.24) is different from those in [12, 47], we can construct

an O(m) method for (5.3.24) by using the ideas of [12, 47]. For the completeness of this thesis,

we provide a concrete O(m) method for (5.3.24).

For simplicity, we consider only the lower constraints li ≤ αi (i = 1, . . . ,m), and let Wik :=

W t
ik. Note that we can construct a method for the problem with li ≤ αi ≤ ui (i = 1, . . . ,m) as

in [12]. We assume that li ∈ (0, 1] (i = 1, . . . ,m) and
∑m

i=1 li < 1.

For solving subproblem (5.3.24), we may find its KKT point. Let (α∗, λ∗, γ∗) ∈ Rm×R×Rm

be a KKT point satisfying

m∑
i=1

α∗
i = 1, (5.4.1)

Ni

α∗
i

− λ∗ + γ∗i = 0, α∗
i − li ≥ 0, γ∗i ≥ 0, γ∗i (α

∗
i − li) = 0, i = 1, . . . ,m, (5.4.2)

where Ni :=
∑n

k=1Wik. Note that λ∗ and γ∗i (i = 1, . . . ,m) are Lagrange multipliers for∑m
i=1 α

∗
i = 1 and α∗

i − li ≥ 0 (i = 1, . . . ,m), respectively.

As shown below, a partition of the set {Ni/li} plays an important role to find (α∗, λ∗, γ∗).

Thus, we define the following partitions I(t) and J(t), and the related functions.

I(t) := { i | t ≥ Ni/li } , J(t) := { i | t < Ni/li } ,

µmin(t) :=

 max
i∈I(t)

{Ni/li} if I(t) ̸= ∅,

−∞ if I(t) = ∅,
µmax(t) :=

 min
i∈J(t)

{Ni/li} if J(t) ̸= ∅,

+∞ if J(t) = ∅,

αi(t) :=

{
li if i ∈ I(t),

Ni/t if i ∈ J(t),
γi(t) :=

{
t−Ni/li if i ∈ I(t),

0 if i ∈ J(t),

µ(t) :=
∑
i∈J(t)

Ni

/1−
∑
i∈I(t)

li

 , S(t) :=

m∑
i=1

αi(t).

For the partitions and functions, the following properties hold.

Lemma 5.4.1. Let (α∗, λ∗, γ∗) be a KKT point satisfying (5.4.1) and (5.4.2). Then, the fol-

lowing (i)–(v) hold.

(i) Let I∗ := { i | α∗
i = li } and J∗ := { i | γ∗i = 0, α∗

i ̸= li }. Then,

α∗
i =

{
li if i ∈ I∗,

Ni/λ
∗ if i ∈ J∗,

λ∗ =
∑
i∈J∗

Ni

/(
1−

∑
i∈I∗

li

)
, I(λ∗) = I∗, J(λ∗) = J∗,
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that is, α∗
i = αi(λ

∗), λ∗ = µ(λ∗). Moreover, µ(λ∗) ∈ [µmin(λ
∗), µmax(λ

∗)).

(ii) If µ(t∗) ∈ [µmin(t
∗), µmax(t

∗)), then (α(µ(t∗)), µ(t∗), γ(µ(t∗))) is a KKT point of (5.3.24).

(iii) The function S is strictly monotonically decreasing. In addition, S(λ∗) = 1.

(iv) If κ ∈ [µmin(t), µmax(t)), then µ(κ) = µ(t), µmin(κ) = µmin(t) and µmax(κ) = µmax(t).

(v) If µ(t) ̸∈ [µmin(t), µmax(t)), then we have either S(µmin(t)) < 1 or S(µmax(t)) ≥ 1.

Proof. (i) Since γ∗i (α
∗
i − li) = 0 from (5.4.2), we have γ∗i = 0 or α∗

i = li. It then follows from

Ni/α
∗
i − λ∗ + γ∗i = 0 in (5.4.2) that α∗

i = Ni/λ
∗ whenever γ∗i = 0. From the definitions of I∗

and J∗, we have

α∗
i =

{
li if i ∈ I∗,

Ni/λ
∗ if i ∈ J∗.

Since 1 =
∑m

i=1 α
∗
i =

∑
i∈I∗ li +

∑
i∈J∗ Ni/λ

∗ from (5.4.1),

λ∗ =
∑
i∈J∗

Ni

/(
1−

∑
i∈I∗

li

)
.

Next, we show that I(λ∗) = I∗ and J(λ∗) = J∗. Since γ∗i ≥ 0 and Ni/α
∗
i − λ∗ + γ∗i = 0

by (5.4.2), we have α∗
i ≥ Ni/λ

∗. Then, for each i ∈ I∗, we obtain li = α∗
i ≥ Ni/λ

∗, and hence

λ∗ ≥ Ni/li. As the result, we obtain i ∈ I(λ∗). Conversely, if i ∈ I(λ∗), then λ∗ ≥ Ni/li, and

hence li ≥ Ni/λ
∗. Now, we assume that i ∈ J∗, that is, γ∗i = 0 and α∗

i ̸= li. It then follows from

Ni/α
∗
i − λ∗ + γ∗i = 0 and α∗

i ≥ li in (5.4.2) that Ni/λ
∗ = α∗

i > li. Thus, Ni/λ
∗ > li ≥ Ni/λ

∗,

which is contradictory. Therefore, i ̸∈ J∗, that is, i ∈ I∗ because

I∗ ∪ J∗ = {1, . . . ,m} and I∗ ∩ J∗ = ∅. (5.4.3)

Consequently, we have I(λ∗) = I∗. The relation J(λ∗) = J∗ is obtained from (5.4.3). Moreover,

we get α∗
i = αi(λ

∗) and λ∗ = µ(λ∗) from the definitions of αi(t) and µ(t).

The definitions of µmin(t) and µmax(t) imply that t ∈ [µmin(t), µmax(t)) for all t ∈ R. There-

fore, µ(λ∗) = λ∗ ∈ [µmin(λ
∗), µmax(λ

∗)).

(ii) We show that (α(µ(t∗)), µ(t∗), γ(µ(t∗))) satisfies the KKT conditions (5.4.1) and (5.4.2).

From the definitions of αi(t) and γi(t), we obtain

αi(µ(t
∗)) =

{
li if i ∈ I(µ(t∗)),

Ni/µ(t
∗) if i ∈ J(µ(t∗)),

γi(µ(t
∗)) =

{
µ(t∗)−Ni/li if i ∈ I(µ(t∗)),

0 if i ∈ J(µ(t∗)).
(5.4.4)

Moreover, t∗ ∈ [µmin(t
∗), µmax(t

∗)) by the definitions of µmin(t) and µmax(t). It then follows

from the assumption µ(t∗) ∈ [µmin(t
∗), µmax(t

∗)) that I(t∗) = I(µ(t∗)) and J(t∗) = J(µ(t∗)).

Thus, (5.4.1) follows from the definitions of αi(µ(t
∗)) and µ(t∗). Next, we show (5.4.2). Suppose

that i ∈ I(t∗). It then follows from I(t∗) = I(µ(t∗)), (5.4.4) and the definition of µmin(t
∗) that

Ni

αi(µ(t∗))
− µ(t∗) + γi(µ(t

∗)) =
Ni

li
− µ(t∗) + µ(t∗)− Ni

li
= 0,

αi(µ(t
∗))− li = li − li = 0,

γi(µ(t
∗)) = µ(t∗)− Ni

li
≥ µmin(t

∗)− Ni

li
≥ 0.
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Similarly, if i ∈ J(t∗), then

Ni

αi(µ(t∗))
− µ(t∗) + γi(µ(t

∗)) = µ(t∗)− µ(t∗) + 0 = 0,

γi(µ(t
∗)) = 0,

αi(µ(t
∗))− li =

Ni

µ(t∗)
− li ≥

Ni

µmax(t∗)
− li ≥ 0.

Therefore, the KKT conditions (5.4.1) and (5.4.2) hold.

(iii) Let t1 < t2. Since I(t1) ⊆ I(t2), J(t2) ⊆ J(t1) and I(t1) ∪ J(t1) = I(t2) ∪ J(t2), we have

I(t2) = I(t1) ∪ (J(t1)\J(t2)). Thus,

S(t1) =
∑

i∈I(t1)

li +
∑

i∈J(t1)\J(t2)

Ni

t1
+
∑

i∈J(t2)

Ni

t1
>
∑

i∈I(t1)

li +
∑

i∈J(t1)\J(t2)

li +
∑

i∈J(t2)

Ni

t2
= S(t2),

where the inequality follows from t1 < t2. Moreover, since α∗
i = αi(λ

∗) by (i), S(λ∗) =∑m
i=1 αi(λ

∗) =
∑m

i=1 α
∗
i = 1.

(iv) We have the desired results from the definitions of µ(t), µmin(t) and µmax(t).

(v) In order to prove by contradiction, we suppose that S(µmin(t)) ≥ 1 and S(µmax(t)) < 1.

We obtain λ∗ ∈ [µmin(t), µmax(t)) by (iii). It then follows from (iv) that µ(t) = µ(λ∗). Since

µ(λ∗) = λ∗ from (i), we get µ(t) = λ∗ ∈ [µmin(t), µmax(t)). However, this result contradicts

µ(t) ̸∈ [µmin(t), µmax(t)). □

From Lemma 5.4.1 (i), there exists t∗ ∈ R such that

µmin(t
∗) ≤ µ(t∗) < µmax(t

∗). (5.4.5)

Conversely, if we find t∗ satisfying (5.4.5), then we can obtain the solution α∗ of problem (5.3.24)

by Lemma 5.4.1 (ii). Thus, we consider how to find t∗ satisfying (5.4.5).

Now, suppose that t satisfies (5.4.5). Since µmin(t) ∈ [µmin(t), µmax(t)), we have µ(µmin(t)) =

µ(t), µmin(µmin(t)) = µmin(t) and µmax(µmin(t)) = µmax(t) from Lemma 5.4.1 (iv). It then follows

from (5.4.5) that µ(µmin(t)) ∈ [µmin(µmin(t)), µmax(µmin(t))), i.e., µmin(t) also satisfies (5.4.5).

Note that µmin(t) is included in the set {Ni/li}. Therefore we can find t∗ only in the set {Ni/li}.
Then, we choose a median1 c of the set {Ni/li} as a candidate of t∗. If µ(c) ∈ [µmin(c), µmax(c)),

then we may regard c as t∗ satisfying (5.4.5). In what follows, we discuss the case where

µ(c) ̸∈ [µmin(c), µmax(c)). By Lemma 5.4.1 (v), we may consider the following two cases:

Case 1: S(µmin(c)) < 1.

It then follows from Lemma 5.4.1 (iii) that λ∗ < µmin(c), and hence t∗ ∈ { Ni/li | i ∈ I(c) }.

Case 2: S(µmax(c)) ≥ 1.

It then follows from Lemma 5.4.1 (iii) that λ∗ ≥ µmax(c), and hence t∗ ∈ {Ni/li | i ∈ J(c) }.

Thus, the set {Ni/li} of the candidates of t∗ is reduced to {Ni/li | i ∈ I(c) } or {Ni/li | i ∈ J(c) },
that is, the number of candidates becomes half. When Case 1 occurs, we choose a median of

1A scalar c in

{
N1

l1
, . . . ,

Nm

lm

}
is called the median of

{
N1

l1
, . . . ,

Nm

lm

}
if |{ i | Ni/li < c } | <

⌈m
2

⌉
≤

|{ i | Ni/li ≤ c } |.
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{ Ni/li | i ∈ I(c) } as the next candidate of t∗, and we again carry out the same procedure.

After the procedure, we obtain a KKT point or reduce the number of candidates of t∗ to half

further. Similarly, we apply the same procedure to { Ni/li | i ∈ J(c) } when Case 2 occurs.

Repeating the procedure, we can find a KKT point.

Now, we discuss the computational complexity of the above method. Note that a me-

dian of {N1/l1, . . . , Nm/lm} can be found in O(m) time [9]. Moreover, the function values

µ(c1), µmin(c1), µmax(c1) and S(c1) are evaluated in O(m) time. Thus, the first iteration of the

method is executed in O(m) time. Next, we perform the second iteration for m/2 elements,

that is, { Ni/li | i ∈ I(c) } or { Ni/li | i ∈ J(c) }. Then, the median c2 of the set is found in

O(m/2) time. On the other hand, since µ(c2), µmin(c2), µmax(c2) and S(c2) are defined with m

elements, the direct evaluations of these function values take O(m) time. Fortunately, we can

reduce the time by using products of the previous iteration. To see this, consider the case where

S(µmin(c1)) < 1. Then, c2 is a median of { Ni/li | i ∈ I(c1) } and µ(c2) is given by

µ(c2) =
∑

i∈J(c1)∪J(c2)

Ni

/1−
∑

i∈I(c2)

li

 =

 ∑
i∈J(c1)

Ni +
∑

i∈J(c2)

Ni

/1−
∑

i∈I(c2)

li

 .

Note that
∑

i∈J(c1)Ni has been calculated for µ(c1) in the first iteration. Therefore, we can omit

its calculation, and hence we have to calculate only
∑

i∈J(c2)Ni
and

∑
i∈J(c2) li to evaluate µ(c2).

These calculations take O(m/2) time. Similarly, µmin(c2), µmax(c2) and S(c2) are evaluated in

O(m/2) time. Consequently, the second iteration is done in O(m/2) time. Repeating these

calculations, the worst computational time is O(m + m/2 + m/4 + . . .) = O(m). Note that,

when li = 0 (i = 1, . . . ,m), the solution α∗ ∈ Rm is calculated by α∗
i = Ni/n, which takes

O(m) time. The computational complexity for li > 0 (i = 1, . . . ,m) is the same as that for

li = 0 (i = 1, . . . ,m).

5.4.2 Maximum likelihood estimation for Gaussian mixtures

Now, we consider the case where mixture components are Gaussian, i.e., pi(x|θi) = N (x|µi,Λ−1
i ),

θi = [µi,Λi] (i = 1, . . . ,m).

The maximum likelihood estimation for Gaussian mixtures is equivalent to problem (5.3.2)

with

f0(α) :=

{
0 if α ∈ Ω0,

+∞ otherwise,
fµi (µi) := 0, fΛi (Λi) :=

{
0 if Λi ⪰ 0,

+∞ otherwise,
i = 1, . . . ,m. (5.4.6)

Then, αt+1
i , µt+1

i and Λt+1
i in Steps 2, 3-1 and 3-2 of Algorithm 5.3.2 are given by

αt+1
i =

N t
i

n
, µt+1

i =
1

N t
i

n∑
k=1

W t
ikxk, Λt+1

i =

(
1

N t
i

n∑
k=1

W t
ik(xk − µt+1

i )(xk − µt+1
i )⊤

)−1

, (5.4.7)

where N t
i :=

∑n
k=1W

t
ik. We see that (5.4.7) is equivalent to the EM algorithm. Note that the

equivalence has already been pointed out in [67].
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5.4.3 Maximum likelihood estimation for Gaussian mixtures with constraints

on precision matrices

In this subsection, we consider the maximum likelihood estimation for Gaussian mixtures that

has additional constraints on the precision matrices such that λiI ⪯ Λi ⪯ λiI (i = 1, . . . ,m),

where λi, λi ∈ R (i = 1, . . . ,m) are constants such that 0 < λi < λi.

In this case, we should replace fΛi in (5.4.6) with

fΛi (Λi) :=

{
0 if λiI ⪯ Λi ⪯ λiI,

∞ otherwise,
i = 1, . . . ,m.

Note that αt+1
i and µt+1

i are also given by (5.4.7) because subproblems with respect to αi and

µi are same as those in Subsection 5.4.2. On the other hand, subproblem (5.3.29) with respect

to Λi is different, and it is expressed as

minimize
Λi∈Sd

tr
(
At

iΛi

)
− log detΛi,

subject to λiI ⪯ Λi ⪯ λiI,
(5.4.8)

where

At
i :=

1

N t
i

n∑
k=1

W t
ik(xk − µt+1

i )(xk − µt+1
i )⊤, (5.4.9)

and N t
i is given in Subsection 5.4.2.

Thanks to the constraints λiI ⪯ Λi (i = 1, . . . ,m), Assumption 5.3.2 (A3) holds. Moreover, if

we also add the constraints on mixture coefficients as described in Subsection 5.4.1, Assumption

5.3.2 (A2) also holds. Therefore, such constraints guarantee the global convergence of Algorithm

5.3.2.

Now, we discuss how to solve (5.4.8). As shown below, we can provide a solution of (5.4.8)

analytically. For simplicity, let A := At
i, Λ := Λi, λ := λi and λ := λi in the rest of this

subsection.

Since problem (5.4.8) is convex, Λ∗
i ∈ Sd satisfying the following KKT conditions is an

optimal solution:

A− (Λ∗)−1 + U∗ − V ∗ = 0, (λI − Λ∗)U∗ = 0, (λI − Λ∗)V ∗ = 0,

λI ⪯ Λ∗ ⪯ λI, 0 ⪯ U∗, 0 ⪯ V ∗,
(5.4.10)

where U∗ ∈ Sd and V ∗ ∈ Sd are Lagrange multipliers for λI ⪯ Λ∗ and Λ∗ ⪯ λI, respectively. We

have from (5.4.10) that Λ∗, U∗, V ∗ and A commute mutually. Then, Proposition 2.2.1 (e) yields

that Λ∗, U∗, V ∗ and A are simultaneously diagonalizable, that is, there exists an orthogonal

matrix P ∈ Sd such that

P⊤Λ∗P = diag(λ∗1, . . . , λ
∗
d), P⊤U∗P = diag(u∗1, . . . , u

∗
d),

P⊤V ∗P = diag(v∗1, . . . , v
∗
d), P⊤AP = diag(a1, . . . , ad),

where λ∗j , u
∗
j , v

∗
j and aj (j = 1, . . . , d) are eigenvalues of matrices Λ∗, U∗, V ∗ and A, respectively.

Pre- and post-multiplying (5.4.10) by P⊤ and P , respectively,

aj − (λ∗j )
−1 + u∗j − v∗j = 0, (λ− λ∗j )u

∗
j = 0, (λ− λ∗j )v

∗
j = 0,

λ ≤ λ∗j ≤ λ, 0 ≤ u∗j , 0 ≤ v∗j
(5.4.11)
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for j = 1, . . . , d. Therefore, we have from (5.4.11) that

Λ∗ = P diag(λ∗1, . . . , λ
∗
d) P

⊤, λ∗j =


λ if 1/λ ≥ aj ,

1/aj if 1/λ ≤ aj ≤ 1/λ,

λ if 1/λ ≤ aj ,

j = 1, . . . , d. (5.4.12)

In order to obtain Λ∗, we may conduct the following procedure. We first get the eigenvalues

aj (j = 1, . . . , d) and the orthogonal matrix P by diagonalizing A. Next, we calculate Λ∗ by

(5.4.12).

5.4.4 Maximum likelihood estimation for Gaussian mixtures with sparse pre-

cision matrices

We also discuss the maximum likelihood estimation for Gaussian mixtures in Subsection 5.4.3.

However, we add the L1 regularization in order to obtain precision matrices being sparse. In

this case, we should replace fΛi in (5.4.6) with

fΛi (Λi) :=

{
ρi∥Λi∥1 if λiI ⪯ Λi ⪯ λiI,

+∞ otherwise,
i = 1, . . . ,m,

where ρ1, . . . , ρm are positive constants.

Note that αt+1
i and µt+1

i are also given by (5.4.7) as mentioned in Subsection 5.4.3. On the

other hand, subproblem (5.3.29) with respect to Λi is different, and it is written as

minimize tr
(
At

iΛi

)
− log detΛi + τ ti ∥Λi∥1,

subject to λiI ⪯ Λi ⪯ λiI,
(5.4.13)

where At
i is given by (5.4.9). We can obtain the solution Λt+1

i of problem (5.4.13) by the existing

methods such as [38, 39, 73].

5.5 Numerical experiments

In this section, we report two numerical experiments for the models discussed in Subsections

5.4.1 and 5.4.3. The program was coded in MATLAB R2010a and run on a machine with an

Intel Core i7 920 2.67GHz CPU and 3.00GB RAM.

Experiment 1 for the model discussed in Subsection 5.4.1

In the Experiment 1, we investigate the validity of the model discussed in Subsection 5.4.1.

Throughout the Experiment 1, we used the observational data X = [x1, . . . , xn] ∈ R1×n and

the test data X̃ := [x̃1, . . . , x̃10000] ∈ R1×10000 generated by the following Gaussian mixture with

d = 1 and m = 5:

p(x) =
1

5
N (x| − 10, 5) +

1

5
N (x| − 8, 5) +

1

5
N (x|0, 5) + 1

5
N (x|8, 5) + 1

5
N (x|10, 5). (5.5.1)
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For the given observational data X, we estimated parameters of the Gaussian mixture with

d = 1 and m = 5, that is, we solved the following problem by Algorithm 5.3.2:

maximize

n∑
k=1

log

(
5∑

i=1

αiN (xk|µi,Λ−1
i )

)
,

subject to
5∑

i=1

αi = 1, li ≤ αi, 0 ≤ Λi, i = 1, . . . , 5.

(5.5.2)

In the Experiment 1, we estimated parameters by exploiting three models with li = 0 (i =

1, . . . , 5), li = 0.1 (i = 1, . . . , 5) and li = 0.15 (i = 1, . . . , 5) in (5.5.2).

An initial point of Algorithm 5.3.2 was chosen as follows. We set α0
i = 1,Λ0

i = 1 (i = 1, . . . , 5).

A mean µ0 was set to the computational result of K-means algorithm (kmeans) in MATLAB.

Algorithm 5.3.2 was stopped when |D(W t+1, αt, µt,Λt)−D(W t, αt−1, µt−1,Λt−1)| < 10−5, where

the function D is defined by (5.3.3).

Tables 5.1 and 5.2 show the results when the number of the observational data is 30 and

100, respectively. In each case, we carried out the maximum likelihood estimation 15 times for

15 different observational data. In two tables, we report the log-likelihoods for the observational

data and the test data. Note that we used the same test data X̃ ∈ R1×10000 in all experiments.

Since the amount of the test data is sufficiently large, we may consider that the estimation with

bigger log-likelihood for the test data is better than that with small one. For each experiment in

Table 5.1, numbers with boldface type indicate the highest log-likelihood among the various li.

Furthermore, ” ∗ ” in Tables indicates that Algorithm 5.3.2 was stopped by numerical difficulty.

The reason for the difficulty is that the mixture coefficient αi became too small.

From Table 5.1, we see that the model with li = 0 is better than the models with li = 0.1 and

li = 0.15 from the viewpoint of the log-likelihood for the observational data. The results are

quite natural because the feasible set with li = 0 is larger than those with li = 0.1 or li = 0.15.

On the other hand, from the viewpoint of the log-likelihood for the test data, the models

with li = 0.1 and li = 0.15 are better than the model with li = 0 for many trials. In particular,

the model with li = 0.15 tends to be the best. This is because the true mixture coefficient

is 0.2 as in (5.5.1). Moreover, the estimation of the model with li = 0 is overfitting for the

small observational data. This can be seen in Figures 5.1, 5.2 and Table 5.3 that present the

details of the numerical result for No. 3 in Table 5.1. Figures 5.1 and 5.2 are probability density

functions obtained by the models with li = 0 and li = 0.15, respectively. In the both figures, the

black dash line indicates the probability density function of the true mixture distribution (5.5.1),

and the black line indicates the estimated probability density function. Table 5.3 presents the

estimated parameters. From Table 5.3, we see that α5 and Λ−1
5 of the model with li = 0 are

very small. Thus, the probability density function value in Figure 5.1 becomes very large around

µ5 = 4.9377. This phenomenon sometimes occurred when the amount of the observational data

is small. See [8, Section 9.2.1] for its details. On the other hand, such a singular phenomenon

did not happen on the model with li = 0.15 (Figure 5.2).

From Table 5.2, we do not see big differences in the log-likelihoods for the test data among

the models. The reason for these results is that we were able to estimate parameters correctly

regardless of the value of li because we had sufficient amount of the observational data.
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From these results, even if the amount of the observational data is small, the model with li

close to the true value is expected to avoid the overfitting and find an appropriate estimation.

Experiment 2 for the model discussed in Subsection 5.4.3

In the Experiment 2, we use the model discussed in Subsection 5.4.3, and study its effectivity.

In this experiment, we used the observational data X = [x1, . . . , xn] ∈ Rd×n and the test

data X̃ = [x̃1, . . . , x̃10000] ∈ Rd×10000. These data are generated by the following Gaussian

mixture:

p(x) =
10∑
i=1

1

10
N (x|µ̂i, Λ̂−1

i ),

where the elements of µ̂i were selected randomly from the interval [−1, 1], and Λ̂−1
i (i = 1, . . . , 10)

are selected as follows. First, we generated a matrix Ai ∈ Rd (i = 1, . . . , 10) whose elements are

normally distributed with mean 0 and variance 1. Then we set Λ̂−1
i := (A⊤

i Ai)
1
2 (i = 1, . . . , 10).

For the observational data X, we solved the following model by Algorithm 5.3.2 in order to

estimate parameters αi, µi and Λ−1
i (i = 1, . . . , 10):

maximize

500∑
k=1

log

(
10∑
i=1

αiN (xk|µi,Λ−1
i )

)
,

subject to
10∑
i=1

αi = 1, 10−3 ≤ αi, λiI ⪯ Λi ⪯ λiI, i = 1, . . . , 10.

(5.5.3)

In the experiments, we estimated parameters by using two models with (λi, λi) = (0,∞) and

(λi, λi) = (10−3, 103) in (5.5.3). In the following, the models (A) and (B) indicate the model

with (λi, λi) = (0,∞) and (λi, λi) = (10−3, 103), respectively.

An initial point of Algorithm 5.3.2 was selected as follows. We chose α0
i = 1,Λ0

i = I (i =

1, . . . , 10), and set µ0 as the computational result of K-means algorithm (kmeans) in MATLAB.

Moreover, we used the same termination criterion as the Experiment 1.

Tables 5.4 and 5.5 show the results when the dimension d of the observational data X is 10

and 30, respectively. In each case, we conducted the maximum likelihood estimation 10 times

by using observational data. In No. 1 of Tables 5.4 and 5.5, we exploited the observational

data X such that n = 100. In the subsequent estimations, we added 100 observational data

into the previous ones, and used those data as the observational data. Note that we exploited

the same test data in each dimension d. In Tables 5.4 and 5.5, we report the log-likelihoods for

both the observational and test data divided by the numbers of data, respectively. As with the

Experiment 1, ” ∗ ” indicates that Algorithm 5.3.2 was stopped by numerical difficulty.

As seen in Table 5.4 when d = 10, we do not see big differences between the both models. On

the other hand, as seen in Table 5.5, the differences appeared between the models (A) and (B).

Although the model (A) could not estimate parameters when the amount of the observational

data is small, the model (B) could estimate parameters owing to the constraints λiI ⪯ Λi ⪯
λiI (i = 1, . . . ,m).
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Table 5.1: Comparison of log-likelihoods (The amount of data is 30.)

li = 0 (i = 1, . . . , 5) li = 0.1 (i = 1, . . . , 5) li = 0.15 (i = 1, . . . , 5)

No. Observation Test Observation Test Observation Test

1 -92.6920 -3.8819e+004 -93.9322 -3.8646e+004 -94.0707 -3.8355e+004

2 -85.1689 -4.2377e+004 -85.3814 -4.2056e+004 -86.7102 -4.2398e+004

3 -89.0016 -3.5282e+004 -94.2949 -3.4429e+004 -94.2979 -3.4427e+004

4 -83.7478 -4.8337e+004 -83.9552 -4.8651e+004 -90.0500 -3.6657e+004

5 -90.9218 -3.5632e+004 -91.1861 -3.6142e+004 -94.1681 -3.5011e+004

6 -87.3364 -3.6083e+004 -89.0853 -3.5634e+004 -93.4515 -3.3895e+004

7 -94.0355 -3.4853e+004 -94.1238 -3.4554e+004 -94.3455 -3.4372e+004

8 -85.6939 -3.8715e+004 -85.8422 -3.8203e+004 -86.2903 -3.7063e+004

9 -93.2788 -3.6004e+004 -97.6769 -3.3735e+004 -97.7062 -3.3868e+004

10 -86.7174 -3.8413e+004 -86.9268 -3.8697e+004 -90.2407 -3.6068e+004

11 -89.2880 -3.5906e+004 -89.4100 -3.6042e+004 -90.0250 -3.6390e+004

12 ∗ ∗ -88.0714 -3.8834e+003 -90.1522 -3.5275e+003

13 -87.4854 -3.9886e+004 -91.6894 -3.9187e+004 -94.7792 -3.6992e+004

14 ∗ ∗ -100.3292 -3.3846e+004 -101.2753 -3.3538e+004

15 -94.9501 -3.4860e+004 -94.9503 -3.4865e+004 -95.2875 -3.4847e+004

Table 5.2: Comparison of log-likelihoods (The amount of data is 100.)

li = 0 (i = 1, . . . , 5) li = 0.1 (i = 1, . . . , 5) li = 0.15 (i = 1, . . . , 5)

No. Observation Test Observation Test Observation Test

1 -333.3528 -3.3148e+004 -333.3910 -3.3173e+004 -333.3504 -3.3173e+004

2 -320.6859 -3.3347e+004 -322.3568 -3.2981e+004 -323.1440 -3.3170e+004

3 -321.1681 -3.3312e+004 -321.1681 -3.3312e+004 -321.1942 -3.3346e+004

4 -321.6798 -3.3584e+004 -325.7542 -3.3380e+004 -327.4315 -3.3076e+004

5 -317.9389 -3.3457e+004 -318.2513 -3.3593e+004 -319.8712 -3.3566e+004

6 -321.1656 -3.3005e+004 -321.8685 -3.2909e+004 -321.5855 -3.3038e+004

7 -316.4248 -3.3408e+004 -321.0262 -3.3135e+004 -321.8640 -3.3118e+004

8 -315.8101 -3.4256e+004 -317.1999 -3.3815e+004 -317.8504 -3.4037e+004

9 ∗ ∗ -326.2708 -3.3251e+004 -325.2491 -3.3916e+004

10 -316.0259 -3.3110e+004 -316.9840 -3.3029e+004 -316.9493 -3.3088e+004

11 -305.3455 -3.3814e+004 -307.2223 -3.3443e+004 -308.8353 -3.3541e+004

12 -334.4943 -3.3415e+004 -334.9925 -3.3392e+004 -338.3864 -3.3058e+004

13 -307.9100 -3.4562e+004 -307.9106 -3.4554e+004 -308.6720 -3.4483e+004

14 -312.5304 -3.3674e+004 -312.5304 -3.3674e+004 -312.5319 -3.3678e+004

15 -306.6108 -3.4756e+004 -307.6602 -3.4569e+004 -315.3187 -3.3014e+004
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Figure 5.1: Results of No. 3 in Table 5.1

Figure 5.2: Results of No. 3 in Table 5.1
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Table 5.3: Results of No. 3 in Table 5.1

li = 0 (i = 1, . . . , 5) li = 0.15 (i = 1, . . . , 5)

αi µi Λ−1
i αi µi Λ−1

i

1 0.2233 1.3976 1.1864 0.1500 0.0175 7.8016

2 0.1869 -4.8498 8.7129 0.1526 -7.3207 2.6494

3 0.2232 -9.9129 1.4691 0.1764 -10.3462 0.8697

4 0.3003 9.3869 2.4501 0.3074 9.2639 2.9449

5 0.0663 4.9377 0.0018 0.2136 2.0166 3.9377

Table 5.4: Comparison of log-likelihoods (The dimension is 10.)

(A) (λi, λi) = (0,∞) (B) (λi, λi) = (10−3, 103)

No. # of data Observation Test Observation Test

1 100 ∗ ∗ ∗ ∗
2 200 ∗ ∗ -16.2364 -24.5632

3 300 -17.4153 -22.0561 -17.4153 -22.0561

4 400 -17.7676 -21.1256 -17.7676 -21.1256

5 500 -17.9586 -20.7800 -17.9586 -20.7800

6 600 -18.0046 -20.5797 -18.0046 -20.5797

7 700 -18.1480 -20.2934 -18.1480 -20.2934

8 800 -18.2535 -20.0519 -18.2535 -20.0519

9 900 -18.2848 -19.9797 -18.2848 -19.9797

10 1000 -18.2381 -19.6845 -18.2381 -19.6845

Table 5.5: Comparison of log-likelihoods (The dimension is 30.)

(A) (λi, λi) = (0,∞) (B) (λi, λi) = (10−3, 103)

No. # of data Observation Test Observation Test

1 100 ∗ ∗ ∗ ∗
2 200 ∗ ∗ ∗ ∗
3 300 ∗ ∗ -45.2811 -151.2185

4 400 ∗ ∗ -55.0462 -85.0240

5 500 -58.2170 -76.7472 -58.2170 -76.7472

6 600 -59.6852 -73.3414 -59.6852 -73.3414

7 700 -60.3356 -71.5572 -60.3356 -71.5572

8 800 -60.6195 -70.5857 -60.6195 -70.5857

9 900 -61.0230 -70.0405 -61.0230 -70.0405

10 1000 -61.5174 -69.2069 -61.5174 -69.2069
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5.6 Concluding remarks

In this chapter, we presented a BCD method for a general class of maximum likelihood es-

timation problems for mixture distributions. The general class includes maximum likelihood

estimation problems with L1 regularizations and/or some constraints on parameters. Moreover,

we presented efficient implementations of the BCD method for some special problems. In par-

ticular, we gave an O(m) solution method for subproblem (5.3.24) when the lower constraints

li ≤ αi (i = 1, . . . ,m) exist. In addition, we provided an analytical solution for subproblem

(5.3.29) with the constraint λiI ⪯ Λi ⪯ λiI. Finally, we conducted the numerical experiments

for the models discussed in Subsections 5.4.1 and 5.4.3. From the experiments, we see that the

models with reasonable constraints yield the valid parameter estimations even if the amount of

the observational data is small.

As a future work, we are interested in an inexact version of the proposed BCD method.

The proposed method requires that subproblems (5.3.24) and (5.3.25) are solved exactly for

the globel convergence. It is worth constructing a global convergent BCD method that allows

inexact solutions of subproblems (5.3.24) and (5.3.25).





Chapter 6

Conclusion

In this thesis, we studied solution methods for nonlinear SDP. We summarize the results obtained

in this thesis.

• In Chapter 3, we proposed a primal-dual interior point method based on the shifted barrier

KKT conditions. Since we have to find an approximate shifted barrier KKT point at each

iteration of this method, we presented a differentiable merit function F for the shifted

barrier KKT point, and proved its three nice properties:

(i) The merit function F is differentiable;

(ii) Any stationary point of the merit function F is a shifted barrier KKT point;

(iii) The level set of the merit function F is bounded under some reasonable assumptions.

These properties imply that an approximate shifted barrier KKT point can be obtained

by minimizing the merit function F . Thus, we also proposed a Newton-type method for

minimizing the merit function F , and showed the global convergence of the Newton-type

method under some milder assumptions compared with Yamashita, Yabe and Harada [72].

Moreover, we gave some results of numerical experiments for the proposed method, and

observed its efficiency.

• In Chapter 4, we presented a two-step primal-dual interior point method based on the gen-

eralized shifted barrier KKT conditions. This method has to solve two different Newton

equations derived from the generalized shifted barrier KKT conditions at each iteration.

However, in order to reduce calculations, we replaced the coefficient matrix in the sec-

ond equation with that in the first one. Thus, we can solve the second equation more

rapidly using some computational results obtained by solving the first equation. Despite

this change, we proved the superlinear convergence of the two-step primal-dual interior

point method under the same assumptions as Yamashita and Yabe [71]. In addition, we

conducted some numerical experiments, and showed that the proposed method can find a

solution faster than Yamashita and Yabe’s two step method [71].

• In Chapter 5, we studied a maximum likelihood estimation for mixture distributions.

In particular, we mainly considered the case where mixture distributions are Gaussian
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mixtures. In this case, maximum likelihood estimation problems are expressed as nonlinear

SDP. Moreover, we presented a general class of maximum likelihood estimation problems

for mixture distributions. It includes maximum likelihood estimation problems with the L1

regularization and/or some constraints on parameters. We proposed a BCD method for the

general class. Since we have to deal with some subproblems generated in the proposed BCD

method, we also proposed some efficient solution methods for such subproblems. Finally,

we gave some results of numerical experiments for the maximum likelihood estimation

problems with some additional constraints on parameters. Then, we observed that such

problems yield valid results even if the amount of the observational data is small.

Finally, we discuss some future works.

• We mentioned that the barrier parameter µk must satisfy that µk → 0 (k → ∞) and

µk > 0, when we proposed Algorithm 3.2.1 in Chapter 3. However, we did not discuss

a concrete choice of the barrier parameter µk. If we choose µk which converges to zero

so quickly, it will take a good amount of time to obtain an approximate shifted barrier

KKT point by Algorithm 3.3.1, although there are few iteration counts of Algorithm 3.2.1.

Conversely, if we choose µk which converges to zero so slowly, there will be many iteration

counts of Algorithm 3.2.1, although it will not be long before Algorithm 3.3.1 finds an

approximate shifted barrier KKT point. Therefore, a future work is to give a reasonable

update rule of the barrier parameter µk.

• In Chapter 4, we proved the superlinear convergence of Algorithm 4.2.3 which uses scaling

and is based on two-step method. However, in the present moment, there is still no proof

for a one-step method with scaling. This should be a topic of future research.

• We have some room to improve the BCD method proposed in Chapter 5. The proposed

method requires that their subproblems are solved exactly for the global convergence. It

is worth constructing a global convergent BCD method that allows inexact solutions of

the subproblems.
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