
Studies on Controller Networks

Dissertation

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Informatics

Shinsaku Izumi

Department of Systems Science
Graduate School of Informatics

Kyoto University





Abstract

While feedback systems using a single controller have been mainly considered in
the systems and control field, systems with networked controllers, i.e., a controller
network, have received much attention in recent years. In such systems, the nodes
of the network cooperatively determine control inputs by sharing information with
their neighbors. This scheme enables us to make control systems robust against
failures. Furthermore, the controller network has great potential for engineering
applications, e.g., wireless control systems, smart grids, and multi-robot systems.

The main purpose of this thesis is to give solutions to some problems in the
controller network design. More precisely, we address the following problems.

First, we consider a problem of finding a controller network to stabilize linear
plants under the assumption that its network topology is fixed but unknown. As a
solution to the problem, a controller network acting as a state feedback controller
is proposed. We then prove that the resulting feedback system is stable if the gains
of networked controllers are appropriately chosen. With this result, we can obtain
a controller network which is robust against changes in the network topology. In
addition, the relation between the stabilizing gain and the network topology is
clarified, which provides useful information to design the gain in an easy way.

Second, we provide a framework of real-time pricing, i.e., to control the total
power consumption of consumers by changing power prices in real-time, based
on the controller network. In the proposed framework, each power source has a
local controller, and estimates the total power consumption by exchanging infor-
mation on the required power with its neighbors. The problem addressed here
is to design the local controllers and a power price controller such that the total
power consumption tracks a given reference input under a constraint on the range
of the power price. For this problem, we first derive a necessary condition for
its solvability. This enables us to estimate the price needed to achieve tracking
a given reference input. Then, we propose a solution to the problem and show
that it achieves the real-time pricing. With this result, we can achieve the real-
time pricing without collecting information on the power consumption from all
the consumers.
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Finally, we address a problem of designing a controller network for the robotic
mass games, that is, to let robots organize themselves into a formation displaying
a given grayscale image. By fusing ideas of the coverage control and the halftone
image processing, we derive a solution to the problem. The performance of our
solution is demonstrated by numerical experiments with standard images. More-
over, we give extensions to the cases of r-disk proximity networks and a variable
number of player robots. The former enables us to achieve the mass games even
though the communication range of the robots is limited. The latter improves the
visual quality of the resulting formations.
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Notation

The following notation is used in this thesis.

R real number field

R+ set of positive real numbers

R0+ set of nonnegative real numbers

C complex number field

i imaginary unit, i.e., i :=
√
−1

1n n × 1 vector whose elements are one

In n × n identity matrix

0n×m (or simply 0) n × m zero matrix

M⊤ transpose of the matrix M

M−1 inverse of the matrix M

[M]i j (i, j)-element of the matrix M

diag(x1, x2, . . . , xn) diagonal matrix whose i-th diagonal element is the number xi

diag(M1,M2, . . . ,Mn) block diagonal matrix whose i-th diagonal block is the matrix Mi

λi(M) eigenvalue of the matrix M with the i-th smallest modulus

Λ(M) diagonal matrix whose i-th diagonal element is the eigenvalue λi(M)
of the matrix M, i.e., Λ(M) := diag(λ1(M), λ2(M), . . . , λn(M)) ∈
Cn×n

Λ−i(M) diag(λ1(M), . . . , λi−1(M), λi+1(M), . . . , λn(M)) ∈ C(n−1)×(n−1)

∥x∥ Euclidean norm of the vector x

∥M∥ Euclidean norm of the matrix M

∥M∥p induced p-norm of the matrix M



viii Notation

Re(z) real part of the complex number z

∅ empty set

B(c, r) closed disk of center c and radius r, i.e., B(c, r) := {x ∈ R2 | ∥x −
c∥ ≤ r}

|S| cardinality of the set S

bd(S) boundary of the set S

diam(S) diameter of the set S, that is, diam(S) := max
(p,q)∈S×S

∥p − q∥

The following notation is also defined.

• For the vectors x1, x2, . . . , xn∈R
m and the set I := {i1, i2, . . . , iℓ}⊆{1, 2, . . . , n},

let [xi]i∈I := [x⊤i1 x⊤i2 · · · x⊤iℓ ]
⊤ ∈ Rℓm.

• For the numbers a ∈ R+ and x ∈ R, the saturation function is defined as

sata(x) :=


a if a < x,
x if 0 ≤ x ≤ a,
0 if x < 0.

• For the bounded and nonzero-measure set S ⊂ R2 and the function f : R2 →

R0+, let

cent(S, f ) :=


S

s f (s)ds
S

f (s)ds
.

This represents the weighted centroid of the set S.



Chapter 1

Introduction

1.1 Background
In the systems and control field, feedback systems in the form of Figure 1.1 have
been mainly considered, and controller design problems have been addressed.

On the other hand, feedback systems in the form of Figure 1.2 have received
much attention in recent years [1]. They include a network of controller nodes
instead of the controller in the system in Figure 1.1. The controller nodes cooper-
atively determine control inputs by exchanging information with their neighbors.
The network of the controller nodes is called here the controller network.

Considering the controller network is motivated by the following three facts.
First, with recent advances in microcontrollers and wireless communication tech-
nologies, the controller network has become available in many practical situations.
In fact, it is impractical to construct the controller network only by desktop com-
puters and wired networks. Second, the controller network makes the resulting
control system robust against failures. This is because, the control system in Fig-
ure 1.1 does not work if the controller fails, but even if some controller nodes fail
in the system in Figure 1.2 the others can compensate for the failures. Finally, the
controller network has great potential for engineering applications. Examples are
as follows.

• Wireless control systems. In wireless control systems, sensors, controllers,
and actuators are connected by wireless networks. With wireless technolo-
gies, we can substantially reduce costs and time needed for installation and
maintenance of cables. Figure 1.3 illustrates a typical setup of the wireless
control system, where the dotted lines and the arrows represent the network
structure and the information flow. This consists of sensors, a controller,
actuators, and communication nodes, and the control is performed over the
multi-hop network [2–5]. Namely, the controller receives the signals from
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Figure 1.3: Wireless control system with multi-hop network.

the sensors through the communication nodes, and transmits control signals
to the actuators through those. In this system, we can make the controller
network by using the communication nodes as the controller nodes if they
have processing capability. The resulting system is shown in Figure 1.4 (a).

• Smart grids. Smart grids are electrical grid systems with information and
communication technologies. By utilizing such technologies, it is expected
that we can manage a large amount of renewable energy, e.g., wind power
and solar power, which results in lower greenhouse gas emissions. An il-
lustration of the smart grids is given in Figure 1.4 (b). In this system, the
power sources are connected by the communication links. Then, the system
can be considered as that in Figure 1.2, where the plant corresponds to, for
example, the balance of power demand and supply, and the controller nodes
correspond to controllers embedded in the power sources.

• Multi-robot systems. In multi-robot systems, robots cooperatively exe-
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Figure 1.4: Applications of controller network.

cute a given motion coordination task by exchanging information with their
neighbors. This type of system has various applications including explo-
ration, surveillance, and hazardous material handling [6]. An illustration
of the multi-robot systems is shown in Figure 1.4 (c). The information ex-
change among the robots is performed by sensing or communication, and as
a result, a network where the robots correspond to the nodes is constructed.
Then, the multi-robot system can be interpreted as the system in Figure 1.2
by regarding the behavior of the group of the robots and the embedded con-
trollers as the plant and the controller nodes, respectively.
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1.2 Previous Works
Though the concept of the controller network has recently been introduced, sev-
eral studies have already been performed. The main problem is to design the
controller network such that the resulting feedback system achieves desired per-
formance. In the existing studies, this problem has been addressed in three ways,
and the following results have been obtained.

• Linear control approach. This approach is to suppose that each controller
node is a linear compensator and to apply design methods in the linear con-
trol theory. In fact, the resulting feedback system is linear if the plant is a
linear system, which allows us to use such methods. In this way, some stud-
ies have been conducted. Pajic et al. [1] have proposed a design method of
the controller nodes stabilizing linear plants. They have also derived con-
ditions on the network topology such that the method is available [7]. The
result in [1] has been extended to optimal control and robust control [8].
In addition, Miao et al. [9] have provided a scheme to implement a given
linear compensator as a controller network.

• Neural network approach. In the neural network approach, the controller
network is designed as a neural network controller (see, e.g., [10]), where
each controller node corresponds to each neuron. By this approach, a con-
troller network for nonlinear plants has been derived [11]. After that, an H∞
controller network has been presented [12].

• Distributed state estimation approach. The distributed state estimation
approach is to estimate the state of the plant by sharing information between
the controller nodes, and to perform feedback control based on the estimate.
In [13], an H∞ controller network based on this approach has been derived.

While such results have been obtained, there are two problems to be addressed.
First, the network topology is assumed to be fixed in the existing studies, but the
network topology often changes in a real situation. For example, when a wireless
network is adopted to connect the controller nodes, radio frequency interference
causes failures of the communication links, which results in a topology change. If
such a topology change occurs for the existing controller networks, the resulting
feedback systems may be unstable. Second, most of the existing controller net-
works are not scalable; namely, it is difficult to apply them to large-scale systems
such as smart grids. In fact, in the linear control approach, the controller nodes
are treated in a discriminate way, which implies that we have to provide a dedi-
cated controller for each of many controller nodes. Also, in the distributed state
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estimation approach, the state vector of each controller node has the size of that
of the plant, and so a large amount of memory is needed for large-scale plants.

Meanwhile, from the viewpoint of the multi-robot control, the controller net-
work has been investigated. The main problem is to find a controller network for
achieving a given motion-coordination task. Examples of the task are as follows.

• Rendezvous [14–21]: All the robots move to a common point as shown in
Figure 1.5 (a).

• Coverage [22–28]: The robots are steered so that the sizes of the robots’
occupied areas are equal in some sense. An example is shown in Figure 1.5
(b) where the regions separated by the dotted lines correspond to the robots’
occupied areas.

• Flocking [29–35]: The robots exhibit a behavior like bird flocking or fish
schooling. Figure 1.5 (c) illustrates an example.

This problem is different from the above one in the sense that the target system and
the purpose are limited to the multi-robot system and the motion-coordination,
respectively. From this standpoint, many results have been obtained so far (see
e.g., [36, 37] and references therein).

In various topics of the multi-robot control, formation control, i.e., making the
robots move so that the configuration becomes a desired shape, has been an active
research topic in the systems and control community. The existing studies on the
formation control have been pursued to achieve formations given as

• specific geometric patterns (e.g., lines, circles, and polygons) [38–42],

• distances between the robots [43–50],

• relative positions between the robots [51–57].

This implies that rather simple formations by at most several tens of robots have
been mainly considered. In fact, if the number of robots is large and the desired
formation is not regular, it is difficult to calculate the distances or the relative po-
sitions between the robots in the desired formation. For example, the formation
control to achieve formations displaying pictures has great potential for entertain-
ment applications, but it is not easy to specify such formations as the distances or
the relative positions between robots. This suggests us to develop a framework for
complex formations by large-scale robotic systems.
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After a while
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Figure 1.5: Examples of motion-coordination task.

1.3 Purposes and Contributions
The main aim of this thesis is to give solutions to some problems in the controller
network design. More precisely, we develop

1) a controller network that is scalable and robust against changes in the net-
work topology,

2) a controller network for real-time pricing [58] in the smart grids,

3) a controller network to achieve formations displaying grayscale images.

The reasons for considering the first and third ones are as described in Section 1.2.
The second one is, meanwhile, motivated by the fact that, to our best knowledge,
there is no result on the controller network for the real-time pricing, i.e., to control
the power consumption of consumers by changing power prices in real-time. The
detailed motivation will be given in Chapter 4.



1.3. Purposes and Contributions 7

For this purpose, we focus on the following three topics.

1. Stabilization by controller networks

In this topic, we consider the feedback system in Figure 1.6, which is composed of
a single-input plant, sensor nodes, controller nodes, and an actuator node. For this
system, we suppose that the network topology belongs to a prespecified set but the
detail (which element it is) is unknown, and assume that all the controller nodes
are the same. Then, the problem considered here is to find sensor nodes, controller
nodes, and an actuator node, stabilizing the resulting feedback system. Since the
network topology is assumed to be unknown, the solution can stabilize the feed-
back system even if the topology changes. Furthermore, by the assumption that
all the controller nodes are the same, we can deal with them in an indiscriminate
manner, which makes the solution scalable.

For this problem, the thesis makes the following two contributions. First, we
present a solution to the stabilization problem. It is given as the nodes such that
the entire network acts as a state feedback controller by a consensus protocol [59].
We then prove that the resulting feedback system is stable if the gains are appro-
priately selected. The key idea behind this result is to introduce a parameterized
coordinate transformation and characterize the parameter in terms of the stability.
If a fixed coordinate transformation is applied in the same way, we can only show
the stability for some specific plants. However, by introducing the parameterized
one and reducing the stabilization problem to that of finding a range of the pa-
rameter, we can prove the stability for all controllable plants. Second, the relation
between the stabilizing gain and the network topology is clarified. As a result, it is
shown that a large gain will be needed for the stabilization if the network among
the controller nodes is sparse. This implies that we should design the gain only
for the sparsest network in the prespecified set, which substantially reduces the
development time of the controller network.

2. Reference tracking by controller networks for real-time pricing

A real-time pricing system based on the controller network is shown in Figure 1.7,
which is composed of consumers, power sources, and a power price controller. In
this system, each power source has a local controller, and it acts as a distributed
estimator for the power consumption. That is, each power source estimates the
total power consumption by exchanging information on the required power with
its neighbors. The power price controller receives it from the neighbor power
sources, and determines the power price. For this system, the following problem
is considered: when a reference input, an upper bound of the power price, and
a network topology are given, find local controllers and a power price controller
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such that the total power consumption tracks the given reference input. To our
best knowledge, such a problem has never been handled so far.

The contributions for this problem are summarized as follows. The first one
is to derive a necessary condition for solving the design problem of the real-time
pricing system. The condition is given as an inequality in terms of the reference
input and the upper bound of the power price. This enables us to estimate the price
needed to achieve tracking a given reference input. The second contribution is to
give a solution to the design problem. It is composed of local controllers based on
a consensus protocol and a proportional and integral type power price controller.
We then prove that the solution achieves the real-time pricing by appropriately
selecting the gains. The key idea behind this result is to extend the result for topic
1 to the integral control for achieving the reference tracking.

It should be stressed that we do not just apply the result for topic 1 to the real-
time pricing. In fact, as described above, we extend the previous result to integral
control for solving the tracking problem. As a result, we can obtain the appropriate
gains of the resulting controller network without the exact information on the
consumers. This is an advantage when the real-time pricing is applied to large-
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scale communities. Meanwhile, since using the integrator increases the dimension
of the entire system, the analysis technique based on a coordinate transformation,
proposed in topic 1, is not directly available for the proof of the convergence. So,
we perform a new coordinate transformation by utilizing special properties of the
consumers, from which a convergence result is obtained. Also in this respect, the
result obtained here is not a straightforward consequence of the previous one.

3. Robotic mass games by controller networks

In this topic, the multi-robot system in Figure 1.4 (c) is handled. For this system,
the following problem is addressed: when a grayscale image is given, find local
controllers embedded in the robots, achieving a formation displaying the image.
Such a formation control problem is called here the mass game problem and it is
illustrated in Figure 1.8. The motivation for the mass game problem is that this
problem has a different kind of difficulty from those of the existing ones. In fact,
information on the desired formation is only the image, and the desired position
of each robot is not explicitly specified. Then, we have to represent the grayscale
information, i.e., interlevel information, of the image as a formation by a finite
number of robots. This type of multi-robot problem is novel.

For this problem, the contributions of the thesis are as follows. First, a solu-
tion to the mass game problem is provided. It is given by combining ideas of the
coverage control [23] and the halftone image processing (see, e.g., [60]). The per-
formance is verified in the same way as that in the image processing area. More
precisely, by numerical experiments with the standard images [61], it is demon-
strated that the solution achieves formations displaying given grayscale images.
Second, we extend the above result to the case of r-disk proximity networks [62].
The above result may require that each robot communicates with distant others,
and so it is difficult to apply the result to real robots with limited communication
range. However, with this result, we can achieve the mass games even in the sit-
uation where communication range constraints are imposed for robots. Finally,
we present an extension to the case of a variable number of player robots. The
above two results are for the mass game with a fixed number of player robots, and
it is assumed in them that all the robots participate in the mass game even for a
bright image which only needs a few robots. This results in a critical drawback
that the brightness of the resulting image does not agree with that of the given
image. Meanwhile, the controller network proposed here classifies the robots into
a player group and a nonplayer group in a distributed manner, and so the resulting
image always agrees with the given image. This difference will be demonstrated
in Chapter 5, and it will be shown that the controller network proposed here im-
proves approximately up to 8.6 dB in the peak signal to noise ratio [63].

We would like to emphasize the novelty of the result obtained here. The result
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Figure 1.8: Mass game by robots.

here is given by fusing techniques from the control area and the image process-
ing area. From a technical point of view, there is no multi-robot control method
utilizing image processing techniques.

1.4 Organization of Thesis
This thesis is organized as follows.

Chapter 2 presents a mathematical framework of the controller network. We
first introduce some notions of the graph theory in order to describe the network by
a graph. Then, systems with the controller network are mathematically expressed,
and a design problem of the controller network is formulated.

Chapter 3 gives a controller network for stabilization. First, a design problem
of the controller network is formulated. As a solution the problem, we propose a
controller network such that the entire network acts as a state feedback controller
by a consensus protocol. We then derive conditions on the gains for the stability
of the resulting feedback system. In addition, the relation between the stabilizing
gain and the network topology is clarified.

Chapter 4 presents a tracking controller network for the real-time pricing. To
this end, we first formulate the tracking problem for the real-time pricing system.
For this problem, a necessary condition for the solvability is derived. In addition,
we propose consensus-based local controllers and a proportional and integral type
power price controller, and prove that these solve the problem.

Chapter 5 gives controller networks for the mass games. First, the mass game
problem is stated. Next, as elemental techniques, we introduce the coverage con-
trol and the halftone image processing. Based on these, a controller network for
the mass games is proposed. The performance of the proposed controller network
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is demonstrated by numerical experiments with the standard images. In addition
to this, we give extensions to the cases of r-disk proximity networks and a variable
number of player robots.

Chapter 6 concludes this thesis.
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Chapter 2

Controller Networks

In this chapter, we present a mathematical framework of the controller network.
First, some notions of the graph theory are introduced [37, 62] because graphs are
a useful tool for expressing the network. Then, we provide a system description,
and show a general form of the design problem of the controller network. In addi-
tion, we explain the relation between the general design problem and the problems
addressed in the following chapters.

2.1 Graph Theory

Graphs are composed of nodes and edges, and they, for example, are expressed
by circles and arrows as shown in Figure 2.1. The set of the nodes is called the
node set, and is represented by I. In a similar way, we refer to the set of the edges
as the edge set, and represent it by E. The edge set E is a set of ordered pairs
of the nodes, that is, E ⊆ I × I. Then, a graph is expressed by G = (I,E). For
instance, the graph in Figure 2.1 is denoted by G = (I,E) for I := {1, 2, . . . , 5} and
E := {(1, 2), (2, 3), (3, 4), (3, 5), (5, 1), (5, 2)}.

Next, let us introduce two notions used in this thesis. A graph G′ = (I′,E′)
is said to be a subgraph of a graph G = (I,E) if I′ ⊂ I and E′ ⊂ E. An example
is shown in Figure 2.2 where a subgraph of the graph in Figure 2.2 (a) is given
in Figure 2.2 (b). Meanwhile, a graph is said to be strongly connected if there is
a path between any two nodes. For example, the graph in Figure 2.3 is strongly
connected, but that in Figure 2.1 is not.

Finally, the graph Laplacian L of a graph G = (I,E) is defined as a matrix
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Figure 2.3: Strongly connected graph

whose (i, j)-element is given by

[L]i j :=


−1 if ( j, i) ∈ E,
di if i = j,
0 otherwise

(2.1)

where di ∈ R0+ is the in-degree of node i, i.e., the number of the nodes connected
to it. For instance, the graph Laplacian L of the graph in Figure 2.1 is defined as

L :=


1 0 0 0 −1
−1 2 0 0 −1
0 −1 1 0 0
0 0 −1 1 0
0 0 −1 0 1

 .



2.2. Control Systems with Controller Networks 15

For the graph Laplacian L, the following properties are important in this thesis.

(L1) The graph Laplacian L has a zero eigenvalue, and the corresponding eigen-
vector is the vector whose elements are one, i.e.,

L1n = 0n×1 (2.2)

for L ∈ Rn×n.

(L2) For the graph, assume that there exists an edge from node j to node i if there
exists an edge from node i to node j. Then, L is positive-semidefinite, i.e.,

0 ≤ λ2(L) ≤ λ3(L) ≤ · · · ≤ λn(L). (2.3)

Moreover, L has the vector whose elements are one as a left eigenvector for
the zero eigenvalue, that is,

1⊤n L = 01×n. (2.4)

(L3) If the graph is strongly connected, then the zero eigenvalue of L is isolated,
i.e., λ2(L) , 0.

2.2 Control Systems with Controller Networks
Now, we mathematically describe systems with the controller network.

Consider the feedback system Σ in Figure 2.4, composed of an ℓ-input m-
output plant, m sensor nodes, n controller nodes, and ℓ actuator nodes.

The plant P is a dynamical system whose input and output are u(t) ∈ Rℓ and
y(t) ∈ Rm. The sensor node S i (i ∈ {1, 2, . . . ,m}) is given by

S i :

ξ̇S i(t) = σi1(ξS i(t), yi(t)),
zi(t) = σi2(ξS i(t), yi(t))

(2.5)

where ξS i(t) ∈ RNS is the state, yi(t) ∈ R is the input, that is, the i-th element of
y(t), zi(t) ∈ Rp is the output, and σi1 : RNS × R → RNS and σi2 : RNS × R → Rp

are functions. The controller node Ki (i ∈ {1, 2, . . . , n}) is of the form

Ki :

ξ̇Ki(t) = κi1(ξKi(t), [z j(t)] j∈NS
Ki
, [v j(t)] j∈NKi),

vi(t) = κi2(ξKi(t), [z j(t)] j∈NS
Ki
, [v j(t)] j∈NKi)

(2.6)

where ξKi(t) ∈ RNK is the state, [z j(t)] j∈NS
Ki
∈ Rp|NS

Ki | and [v j(t)] j∈NKi ∈ R
q|NKi | are

the inputs, vi(t) ∈ Rq is the output, and κi1 : RNK × Rp|NS
Ki | × Rq|NKi | → RNK and
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Figure 2.4: Feedback system Σ.

κi2 : RNK × Rp|NS
Ki | × Rq|NKi | → Rq are functions. The sets NS

Ki ⊆ {1, 2, . . . ,m} and
NKi ⊆ {1, 2, . . . , n}\ {i} are the index sets of the neighbors, that is, the sensor nodes
and the controller nodes sending their outputs to the controller node Ki. Finally,
the actuator node Mi (i ∈ {1, 2, . . . , ℓ}) is given by

Mi :

ξ̇Mi(t) = µi1(ξMi(t), [v j(t)] j∈NMi),
ui(t) = µi2(ξMi(t), [v j(t)] j∈NMi)

(2.7)

where ξMi(t) ∈ RNM is the state, [v j(t)] j∈NMi ∈ R
q|NMi | is the input, ui(t) ∈ R is the

output, which corresponds to the i-th element of u(t), and µi1 : RNM×Rq|NMi | → RNM

and µi2 : RNM × Rq|NMi | → R is a function. The set NMi ⊆ {1, 2, . . . , ℓ} is the index
set of the neighbors defined in a similar way to that for the controller nodes.

In the feedback system Σ, each sensor node S i transmits the signal zi(t) to the
neighbor controller nodes based on the measurement yi(t). The controller nodes
Ki (i = 1, 2, . . . , n) communicate with each other to share the information. Each
actuator node Mi receives the shared information from the neighbor controller
nodes, and determines the control input ui(t).

2.3 Design Problems of Controller Networks
We represent the network topology of the feedback system Σ by the graph G with
the node set corresponding to S i (i = 1, 2, . . . ,m), Ki (i = 1, 2, . . . , n), and Mi

(i = 1, 2, . . . , ℓ) and the edge set corresponding to the connections. Then, the
problem discussed in this thesis is stated as follows: when the network topology
G is given for the feedback system Σ, find sensor nodes S 1, S 2, . . . , S m, controller
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Table 2.1: Relation between generalized problem and problems considered in fol-
lowing chapters.

Stabilization problem
(Chapter 3)

Tracking problem for real-time
pricing system (Chapter 4)

Mass game problem
(Chapter 5)

Σ Generalized system Real-time pricing system Multi-robot system

P Single-input linear
system

Total power consumption Group position of robots

S i Sensor node Local controller in each power
source Local controller in each

robotKi Controller node

Mi Actuator node Power price controller

Purpose Stabilization Reference tracking Mass games

nodes K1,K2, . . . ,Kn, and actuator nodes M1,M2, . . . ,Mℓ, i.e., functions σi1, σi2

(i = 1, 2, . . . ,m), κi1, κi2 (i = 1, 2, . . . , n), and µi1, µi2 (i = 1, 2, . . . , ℓ), such that the
system Σ achieves desired performance.

In the following chapters, this problem is considered from several viewpoints.
Table 2.1 shows the relation between the problem and those addressed in the fol-
lowing chapters. In Chapter 3, we discuss a stabilization problem of single-input
linear plants for the generalized system in Figure 1.6. Chapter 4 considers a track-
ing problem for the real-time pricing system in Figure 1.7, where the combination
of S i and Ki corresponds to the local controller in each power source and Mi cor-
responds to the power price controller. In Chapter 5, the mass game problem for
the multi-robot system in Figure 1.4 (c) is handled. Here, the local controller in
each robot is regarded as the collection of S i, Ki, and Mi.



18 Controller Networks



Chapter 3

Stabilization by Controller
Networks

This chapter considers a design problem of the controller network for stabilization.
More precisely, we address a problem of finding a controller network stabilizing
linear-time invariant plants subject to the constraints that the network topology is
unknown and all the controller nodes are the same. As a solution to this problem,
we propose a controller network calculating a state feedback control law in a dis-
tributed manner. We then derive conditions on the gains to stabilize the resulting
feedback system. This enables us to obtain a controller network which is scalable
and robust against changes in the network topology. Furthermore, we clarify the
relation between the stabilizing gain and the network topology, which provides
useful information to design the gain in an easy way.

3.1 Problem Formulation
Consider the feedback system Σ in Figure 3.1, which is composed of a single-input
m-output plant, m sensor nodes, n controller nodes, and an actuator node.

The plant P is a continuous-time linear system

P :

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t)

(3.1)

where x(t) ∈ RN is the state, u(t) ∈ R is the input, y(t) ∈ Rm is the output, and
A ∈ RN×N , B ∈ RN×1, and C∈ Rm×N are constant matrices. The initial state is given
as x(0) = x0 ∈ R

N .
The sensor node S i (i ∈ {1, 2, . . . ,m}) is of the form

S i : zi(t) = σi(yi(t)) (3.2)



20 Stabilization by Controller Networks

M

S
1

S
2

Sm

Sensor nodes

Actuator

node

Plant

P

Ki

n controller 

nodes

y
1

y
2

ym

z
1

z
2

zm

yu

vi

Figure 3.1: Feedback system Σ.

where yi(t) ∈ R is the input, which corresponds to the i-th element of y(t), zi(t) ∈
Rp is the output, and σi : R→ Rp is a function.

The controller node Ki (i ∈ {1, 2, . . . , n}) is given by

Ki :

ξ̇i(t) = κ1(ξi(t), [z j(t)] j∈NS
Ki
, [v j(t)] j∈NKi),

vi(t) = κ2(ξi(t), [z j(t)] j∈NS
Ki
, [v j(t)] j∈NKi)

(3.3)

where ξi(t) ∈ R is the state, [z j(t)] j∈NS
Ki
∈ Rp|NS

Ki | and [v j(t)] j∈NKi ∈ R
|NKi | are the

inputs, vi(t) ∈ R is the output, and κ1, κ2 : R × Rp|NS
Ki | × R|NKi | → R are functions.

The sets NS
Ki ⊆ {1, 2, . . . ,m} and NKi ⊆ {1, 2, . . . , n} \ {i} are the index sets of the

neighbors as defined in Chapter 2. Note that the state ξi(t) and the output vi(t) are
assumed to be scalar. This implies that the dimensions do not depend on the scale
of the system Σ, i.e., m, n, and N, which results in the scalability. In addition, the
functions κ1 and κ2 and the initial state ξi(0) are assumed to be the same for all the
controller nodes (κ1 and κ2 do not have subscript i). This is also for the scalability,
and the detail will be given later. Finally, we assume

ξi(0) = 0. (3.4)

The actuator node M is given by

M : u(t) = µ([v j(t)] j∈NM ) (3.5)

where [v j(t)] j∈NM ∈ R
|NM | is the input, u(t) ∈ R is the output, and µ : R|NM | → R is

a function. The set NM ⊆ {1, 2, . . . , n} is the index set of the neighbors.
The feedback system Σ works as follows. The sensor node S i transmits the

signal zi(t) to the neighbor controller nodes based on the measurement yi(t). The
controller nodes Ki (i = 1, 2, . . . , n) communicate with their neighbor ones, and
share compressed information on all the signals, i.e., zi(t) (i= 1, 2, . . . ,m), as the
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scalar states ξi(t) (i = 1, 2, . . . , n). The actuator node M sets the control input u(t)
according to the shared information.

The network topology of the feedback system Σ is represented by the graph G
with the node set representing S 1, S 2, . . . , S m,K1,K2, . . . ,Kn, and M and the edge
set representing the connections. Then, the following problem is considered.

Problem 1 For the feedback system Σ, suppose that the network topology G is
unknown but is known to be an element of a given set G. Find sensor nodes
S 1, S 2, . . . , S m, controller nodes K1,K2, . . . ,Kn, and an actuator node M (i.e., find
functions σ1, σ2, . . . , σm, κ1, κ2, and µ) such that

lim
t→∞

x(t) = 0N×1, (3.6)

lim
t→∞
ξi(t) = 0 ∀i ∈ {1, 2, . . . , n} (3.7)

for every initial state x0 ∈ R
N . ■

Several remarks on Problem 1 are given.
First, in the problem, the stability of the feedback system Σ has to be guar-

anteed for an unknown network topology in the class G. This implies that the
solution can stabilize the system Σ for any network topology in G, and thus it is
robust against changes in the network topology. In exchange, this specification
makes the problem challenging.

Second, as shown in (3.2) and (3.5), it is assumed here that each sensor node
S i and the actuator node M have no state variable, unlike those in the general-
ized problem in Chapter 2. This corresponds to the situation where they have no
memory, which results in a simple solution.

Third, as aforementioned, the functions κ1 and κ2 and the initial state ξi(0) are
assumed to be the same for all the controller nodes. This implies that the controller
nodes are handled in an indiscriminate manner, and as the result, the solution
will be scalable. However, this constraint makes the problem more challenging.
In contrast, since the subscript i is attached to σ, we may deal with the sensor
nodes discriminately. Such a setting is quite natural because each sensor node
may process information on a distinct physical quantity.

Finally, it is not possible to stabilize the feedback system Σ by collecting all the
information at the actuator node and letting the actuator node act as a centralized
controller. In fact, the output vi(t) of each controller node is assumed to be scalar,
and thus each controller node cannot transmit the signals from all the sensor nodes,
i.e., [z⊤1 (t) z⊤2 (t) · · · z⊤m(t)]⊤ ∈ Rmp.
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3.2 Controller Network for Stabilization

In this section, we derive a solution to Problem 1 under the several assumptions:

(A1) C = IN .

(A2) For any G ∈ G, the following conditions hold.

(A2.1) For each i ∈ {1, 2, . . . ,m}, there exists a j ∈ {1, 2, . . . , n} satisfying
i ∈ NS

K j.

(A2.2) NM , ∅.

(A2.3) Consider the subgraph GK of G, expressing the network topology
among K1,K2, . . . ,Kn. If there exists an edge from node i to node
j, then there exists an edge from node j to node i.

(A2.4) The subgraph GK is strongly connected.

The first assumption means that the state x(t) is measurable. Note here that m = N.
The second assumption is imposed for the network topology G. Conditions (A2.1)
and (A2.2) guarantee that the sensor nodes, the controller nodes, and the actuator
node are connected. The others imply that the communication links between the
controller nodes are bidirectional and there is a path between any two controller
nodes in the network.

3.2.1 Proposed Nodes

If it is possible for the actuator node M to directly obtain the information on the
state x(t), we can construct a state feedback control law

u(t) = f x(t) (3.8)

achieving (3.6), where f ∈ R1×N is the gain. However, in order to obtain such
information, the actuator node M has to communicate with most of the controller
nodes Ki (i = 1, 2, . . . , n), which is practically impossible if n is large. Hence, we
consider calculating an approximate value of f x(t) by the sharing of information
between the controller nodes.

Based on this idea, we propose the following solution to Problem 1:

σi(yi(t)) :=
fi

wi
yi(t) (i = 1, 2, . . . ,m), (3.9)
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κ1(ξi(t), [z j(t)] j∈NS
Ki
, [v j(t)] j∈NKi) := g


j∈NKi

v j(t) − ξi(t) −


k∈NS
Ki

zk(t)

 , (3.10)

κ2(ξi(t), [z j(t)] j∈NS
Ki
, [v j(t)] j∈NKi) := ξi(t) +


j∈NS

Ki

z j(t), (3.11)

µ([v j(t)] j∈NM ) :=
n
|NM |


j∈NM

v j(t) (3.12)

where zi(t) is assumed to be scalar, fi ∈ R is the i-th element of the gain f , wi ∈ R0+

is the number of the controller nodes to which S i sends the signal zi(t), and g ∈ R+
is the gain of the controller nodes.

The proposed nodes are interpreted as follows. From (3.3), (3.10), and (3.11),
we have

v̇i(t) = g

j∈NKi


v j(t) − vi(t)


+


j∈NS

Ki

ż j(t).

By regarding


j∈NS
Ki

z j(t) as a reference signal for the controller node Ki, it turns
out that the controller nodes Ki (i = 1, 2, . . . , n) perform the dynamic consensus
protocol developed in [59]. By the protocol, vi(t) (i ∈ {1, 2, . . . , n}) tracks the av-
erage of the reference signals, i.e., (1/n)

n
i=1


j∈NS

Ki
z j(t), subject to (3.4), (A2.3),

and (A2.4). The tracked signal is expressed as

1
n

n
i=1


j∈NS

Ki

z j(t) =
1
n

n
i=1


j∈NS

Ki

f j

w j
y j(t)

=
1
n

m
i=1

fiyi(t)

=
1
n

f x(t)

where the first equality is derived by (3.2) and (3.9), the second one follows from
the definitions of NS

Ki and wi, and the last one is given by (3.1) and (A1). Hence,
(3.5) and (3.12) provide u(t) ≈ f x(t), and as the result, (3.6) will be satisfied if f
is chosen so that all the eigenvalues of the matrix A + B f have negative real parts.

Finally, two remarks on the proposed nodes are given. First, even though the
topology G is unknown, the information on wi (i = 1, 2, . . . ,m) and |NM | can
be obtained in a distributed manner. In fact, they are the numbers of the neighbor
controller nodes of S i (i = 1, 2, . . . ,m) and M, and thus the information is available
to each S i and M. Second, since wi , 0 for every i ∈ {1, 2, . . . ,m} and |NM | , 0
under (A2.1) and (A2.2), division by zero does not occur in (3.9) and (3.12).
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3.2.2 Stability Analysis

Next, we analyze the stability of the resulting feedback system Σ and derive con-
ditions on the gains f and g for the stability.

Dynamics of Feedback System

Let CKS ∈ {0, 1}n×m be the matrix whose (i, j)-element represents the connection
between the controller node Ki and the sensor node S j, i.e.,

[CKS ]i j :=

 1 if S j is connected to Ki,

0 otherwise.
(3.13)

Similarly, CMK ∈ {0, 1}1×n is defined as

[CMK]1 j :=

 1 if K j is connected to M,
0 otherwise.

(3.14)

Note here that the following relations hold:

1⊤n CKS = [w1 w2 · · · wm], (3.15)
CMK1n = |NM |. (3.16)

Moreover, the collective state of the controller nodes is denoted by ξ(t) ∈ Rn, i.e.,
ξ(t) := [ξ1(t) ξ2(t) · · · ξn(t)]⊤.

Then, from (3.1)–(3.3), (3.5), (3.9)–(3.12), and (A1), the feedback system Σ is
expressed as

ẋcℓ(t) = Acℓ( f , g)xcℓ(t) (3.17)

for xcℓ(t) := [x⊤(t) ξ⊤(t)]⊤ ∈ RN+n and

Acℓ( f , g) :=

A +
n
|NM |

BCMKCKS W−1F
n
|NM |

BCMK

−gLCKS W−1F −gL

 (3.18)

where W := diag(w1,w2, . . . ,wm), F := diag( f1, f2, . . . , fN), and L ∈ Rn×n is the
graph Laplacian of GK . Hence, the stability of the matrix Acℓ( f , g) corresponds to
that of the feedback system Σ.
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Parameterized Coordinate Transformation and Poles of Feedback System

However, due to the complicated structure of Acℓ( f , g), it is difficult to analyze the
stability of Acℓ( f , g) in a direct way. Thus, we propose a parameterized coordinate
transformation based on the special structure of Acℓ( f , g), which enables us to
analyze the stability of the feedback system Σ.

Let

O :=


1
√

n
1n Q


(3.19)

for Q ∈ Rn×(n−1) such that

O⊤LO = Λ(L). (3.20)

Note that O is an orthogonal matrix, i.e., O⊤ = O−1, and thus

Q⊤1n = 0(n−1)×1. (3.21)

Note also that there exists a Q satisfying (3.20) because properties (L1) and (L2)
of the graph Laplacian L hold under (A2.3), (1/

√
n)1n is an eigenvector for λ1(L)

from (L1), and L is a symmetric matrix due to (L2).
Now, we propose the following transformation matrix with the parameter θ ∈

R+:

T (θ) :=

 V(Ã) 0N×n

1
n

(1n f − nCKS W−1F)V(Ã)
θ

n
O

 (3.22)

where Ã := A + B f and V(Ã) is the matrix whose i-th column vector is an eigen-
vector for λi(Ã) Since O is non-singular by the definition, there exists the inverse
matrix T−1(θ) for every θ ∈ R+ if V(Ã) is non-singular. The non-singularity of
V(Ã) will be remarked later in this section.

Then, by letting x̂cℓ(t) := T−1(θ)xcℓ(t), (2.2) and (3.15)–(3.22) give

˙̂xcℓ(t) = Âcℓ( f , g, θ)x̂cℓ(t) (3.23)

where

Âcℓ( f , g, θ) :=


Λ(Ã)

θ
√

n
V−1(Ã)B θU1( f )

01×N 0 01×(n−1)

1
θ

U2( f )
√

nQ⊤CKS W−1FB −gΛ−1(L) + U3( f )


(3.24)
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for

U1( f ) :=
1
|NM |

V−1(Ã)BCMKQ, (3.25)

U2( f ) := nQ⊤CKS W−1FV(Ã)Λ(Ã), (3.26)

U3( f ) :=
n
|NM |

Q⊤CKS W−1FBCMKQ. (3.27)

Based on this transformed system, we obtain a result on the poles of the feed-
back system Σ.

Lemma 3.1 For the feedback system Σ, assume (A1) and (A2.1)–(A2.3). Sup-
pose also that S 1, S 2, . . . , S m,K1,K2, . . . ,Kn, and M be given by (3.2), (3.3), (3.5),
and (3.9)–(3.12). If

(C1) V(Ã) is non-singular,

then the following statements hold.

(a) The feedback system Σ has a pole at the origin of the complex plane.

(b) The other N + n − 1 poles are located in the sets

D1( f , θ) :=
N

i=1

s ∈ C

 s − λi(Ã)
 ≤ θ n−1

j=1

[U1( f )]i j

 , (3.28)

D2( f , g, θ) :=
n−1
i=1


s ∈ C

 s + g λi+1(L) − [U3( f )]ii


≤

n−1
j=1, j,i

[U3( f )]i j

 + 1
θ

N
j=1

[U2( f )]i j

 . (3.29)

■

Proof From (3.24), Âcℓ( f , g, θ) has a row whose elements are zero and thus has
a zero eigenvalue, which implies (a). In addition, by calculating the characteristic
polynomial, it can be shown that the other eigenvalues are equivalent to those of
the matrix  Λ(Ã) θU1( f )

1
θ

U2( f ) −gΛ−1(L) + U3( f )

 .
By applying Gershgorin theorem (see Appendix A.1) to this matrix, it follows that
the eigenvalues are located in D1( f , θ) and D2( f , g, θ). Hence, (b) holds. ■



3.2. Controller Network for Stabilization 27

Lemma 3.1 gives a region where there are N + n − 1 poles of the feedback
system Σ. With this result, we can derive conditions on f , g, and θ such that all
the poles (except for that at the origin) are located in the open left-half of the
complex plane, which gives gain conditions to stabilize the system Σ.

Stability Conditions

From the above discussion, we get the following result.

Theorem 3.1 For the feedback system Σ, suppose that the network topology G
is unknown but is known to be an element of a given set G and assume (A1) and
(A2). Let S 1, S 2, . . . , S m, K1,K2, . . . ,Kn, and M be given by (3.2), (3.3), (3.5), and
(3.9)–(3.12). If (C1) and the following two conditions hold, then (3.6) and (3.7)
hold for every x0 ∈ R

N .

(C2) All the eigenvalues of the matrix Ã have negative real-parts.

(C3)

g > max
G∈G

max
i∈{1,2,...,n−1}

1
λi+1(L)

[U3( f )]ii +

n−1
j=1, j,i

[U3( f )]i j


+

 min
j∈{1,2,...,N}

−Re(λ j(Ã))n−1
k=1

[U1( f )] jk


−1 N

j=1

[U2( f )]i j

 . (3.30)

■

Proof This theorem is a straightforward consequence of Lemma 3.1 and the fol-
lowing two facts.

(i) The state whose behavior is governed by the pole at the origin, is identical
to zero.

(ii) If (C2) and (C3) hold, for each G ∈ G, there exists a θ ∈ R+ such that
D1( f , θ) and D2( f , g, θ) are in the open left-half of the complex plane.

The proofs of (i) and (ii) are given in Appendix 3.A. ■

Finally, we comment on the stability conditions. Condition (C1) guarantees
the existence of the inverse of V(Ã). Condition (C2) implies that Ã is Hurwitz.
These are satisfied if the gain f is appropriately chosen. It is always possible to
choose such a f when the pair (A, B) is controllable. On the other hand, (C3) is
imposed for the gain g, and we only have to design it according to this condition.
When a f satisfying (C1) and (C2) is given, there exists a g ∈ R+ satisfying (3.30)
from the following three facts:
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• λi+1(L) (i = 1, 2, . . . , n − 1) are non-zero real numbers;

• [U3( f )]ii is a real number for every i ∈ {1, 2, . . . , n − 1};

• Re(λi(Ã)) , 0 for every i ∈ {1, 2, . . . ,N}.

The first one is proven by (L2), (L3), (A2.3), and (A2.4). The second one is shown
by the definition of U3( f ). The third one follows from (C2).

3.2.3 Example
Consider the feedback system Σ with m := 4 and n := 6. The plant P is given by

P :


ẋ(t) =


0 1 0 0
0 0 1 0
0 0 0 1
1 2 −3 4

 x(t) +


0
0
0
1

 u(t),

y(t) = x(t).

Since the poles of P are −0.3028, 0.5 ± 0.8660i, and 3.3028, P is unstable. The
set of the network topologies is G := {G1,G2, . . . ,G8} for G1,G2, . . . ,G8 in Fig-
ure 3.2. Then, (A1) and (A2) hold.

We employ the sensor nodes S i (i = 1, 2, . . . , 4), the controller nodes Ki (i =
1, 2, . . . , 6), and the actuator node M given by (3.2), (3.3), (3.5), and (3.9)–(3.12).
The gain f is set as f := [−21 − 36 − 15 − 9] for which the eigenvalues of Ã
are −1, −2, and −1 ± 3i. All the eigenvalues of Ã are distinct and have negative
real-parts, and thus (C1) and (C2) hold. Furthermore, g is set as g := 340, which
satisfies (C3).

Figure 3.3 shows the time responses of Σ for G1, where x0 := [−5 − 1 2 6]⊤.
The first and second figures illustrate the time trajectories of x(t) and ξ(t) respec-
tively, where each line corresponds to each element of those. Note here that the
several lines in the graph of ξ(t) almost overlap with each other. We see that the
proposed nodes stabilize Σ though those are designed without knowing that the
network topology is G1.

Also for the other network topologies G2,G3, . . . ,G8, similar results are ob-
tained. As an example, Figure 3.4 shows the time responses of Σ for G8 in the
same fashion. Note again that the several lines in the graph of ξ(t) almost overlap
with each other. It turns out that Σ is stable also for another network topology.
This means that our controller network is robust against changes in the network
topology.

In addition, Figure 3.5 depicts the time response of P by the state feedback
controller (3.8). Since the time trajectories of x(t) in Figures 3.3 and 3.4 agree
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Figure 3.2: Network topologies.

with it in Figure 3.5, we can conclude that our controller network acts as the state
feedback controller.
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Figure 3.3: Time responses of Σ for G1.
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Figure 3.4: Time responses of Σ for G8.
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Figure 3.5: Time response of P by the state feedback controller (3.8).

3.3 Relation between Stabilizing Gain and Network
Topology

Theorem 3.1 shows that the stabilizing gain g depends on the network topology
G. In this section, we clarify the relation between them.

We first provide the following result.

Lemma 3.2 For the matrices U1( f ), U2( f ), and U3( f ) in (3.25)–(3.27), the fol-
lowing relations hold:

∥U1( f )∥∞ ≤
√

n − 1∥V−1(Ã)B∥∞, (3.31)
∥U2( f )∥∞ ≤ mn∥FV(Ã)Λ(Ã)∥∞, (3.32)

∥U3( f )∥∞ ≤ mn
√

n − 1∥FB∥∞. (3.33)

■

Proof See Appendix 3.B. ■

By using Lemma 3.2, the following result is obtained.

Theorem 3.2 For the feedback system Σ, assume (A1) and (A2.1)–(A2.4). Let
S 1, S 2, . . . , S m,K1,K2, . . . ,Kn, and M be given by (3.2), (3.3), (3.5), and (3.9)–
(3.12). If (C1), (C2), and

(C4)

g ≥
mn
√

n − 1
λ2(L)


∥FB∥∞ +

∥FV(Ã)Λ(Ã)∥∞∥V−1(Ã)B∥∞
min

i∈{1,2,...,n}
−Re(λi(Ã))


(3.34)

hold, then (3.6) and (3.7) hold for every x0 ∈ R
N . ■
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Proof Consider the gain condition (3.42) to stabilize the system Σ for a network
topology G. By letting gmin ∈ R be the right-hand side of (3.42), we have

gmin ≤ max
i∈{1,2,...,n−1}

1
λi+1(L)

 n−1
j=1

[U3( f )]i j


+

 min
j∈{1,2,...,N}

−Re(λ j(Ã))n−1
k=1

[U1( f )] jk


−1 N

j=1

[U2( f )]i j


≤ max

i∈{1,2,...,n−1}

1
λi+1(L)

max
i∈{1,2,...,n−1}

 n−1
j=1

[U3( f )]i j


+

 min
j∈{1,2,...,N}

−Re(λ j(Ã))n−1
k=1

[U1( f )] jk


−1 N

j=1

[U2( f )]i j


≤

1
λ2(L)

 max
i∈{1,2,...,n−1}

n−1
j=1

[U3( f )]i j


+

 min
j∈{1,2,...,N}

−Re(λ j(Ã))n−1
k=1

[U1( f )] jk


−1

max
i∈{1,2,...,n−1}

N
j=1

[U2( f )]i j


≤

1
λ2(L)

 max
i∈{1,2,...,n−1}

n−1
j=1

[U3( f )]i j


+

 min j∈{1,2,...,N} −Re(λ j(Ã))

max j∈{1,2,...,N}
n−1

k=1

[U1( f )] jk


−1

max
i∈{1,2,...,n−1}

N
j=1

[U2( f )]i j

 (3.35)

where the first relation is given by

[U3( f )]ii +

n−1
j=1, j,i

[U3( f )]i j

 ≤ n−1
j=1

[U3( f )]i j


for every i ∈ {1, 2, . . . , n − 1}, and the others are derived by the definitions of the
maximum and minimum functions. So, it follows that

gmin ≤
1
λ2(L)


∥U3( f )∥∞ +

∥U1( f )∥∞∥U2( f )∥∞
min

i∈{1,2,...,N}
−Re(λi(Ã))


. (3.37)

Applying Lemma 3.2 to (3.37) implies that an upper bound of the right-hand side
of (3.42) is given by that of (3.34). Thus, (3.42) holds under (3.34), which proves
the theorem. ■
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Theorem 3.2 shows that the second smallest eigenvalue of the graph Laplacian
L characterizes the magnitude of the stabilizing gain g, which is consistent with
the well-known result [17] in the consensus problem. More precisely, the stabi-
lizing gain g becomes smaller as the eigenvalue increases because the right-hand
side of (3.34) goes to zero as λ2(L) → ∞. In general, the graph Laplacian of a
sparse graph has small eigenvalues, and so this result implies that the large gain
will be needed for the stabilization when the network among the controller nodes
is sparse.

With Theorem 3.2, we can easily obtain the stabilizing gain g. More precisely,
we design g by using (3.34) for G whose subgraph GK is sparsest in the given G
in the sense of λ2(L). Then, the resulting g satisfies (3.34) for every G ∈ G, and
thus the feedback system Σ is stable for every G ∈ G from Theorem 3.2. In this
procedure, it is unnecessary to calculate the right-hand side of (3.30). In other
words, we do not have to check the gain condition (3.42) for all G ∈ G.

3.4 Summary
This chapter has addressed a controller network design problem for stabilization
under the constraints that the network topology is unknown and all the controller
nodes are the same. For solving this, we have proposed a method to calculate a
state feedback control law in a distributed manner. By introducing a parameter-
ized coordinate transformation and reducing the stabilization problem to finding
a range of the parameter, we have given gain conditions for the stability of the re-
sulting feedback system. Moreover, the relation between the stabilizing gain and
the network topology has been presented, which enables us to easily design the
stabilizing gain. These results will be useful to design a controller network which
is scalable and robust against changes in the network topology.

Appendix 3.A Proofs of Facts (i) and (ii) in Proof of
Theorem 3.1

Proof of (i)

Let x̂cℓN+1(t) ∈ C be the N + 1-th element of x̂cℓ(t). Then, the behavior is governed
by the pole at the origin from (3.23) and (3.24). In addition, (3.15), (3.19), and
(3.22) provide

x̂cℓN+1(t) =
√

n
θ

1⊤n ξ(t),

and thus x̂cℓN+1(t) ≡ 0 because of (3.4). This proves (i).
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Proof of (ii)

Equation (3.28) implies that D1( f , θ) is contained in the open left-half plane if

Re(λi(Ã)) < −θ
n−1
j=1

[U1( f )]i j

 (3.38)

for every i ∈ {1, 2, . . . ,N}. Equation (3.38) is rewritten as

θ < −
Re(λi(Ã))n−1

j=1

[U1( f )]i j

 (3.39)

and thus there exists a θ ∈ R+ satisfying (3.38) if (C2) holds.
Similarly, it follows from (3.29) that D2( f , g, θ) is in the open left-half plane if

Re (−gλi+1(L) + [U3( f )]ii) < −
n−1

j=1, j,i

[U3( f )]i j

 − 1
θ

N
j=1

[U2( f )]i j

 (3.40)

for every i ∈ {1, 2, . . . , n − 1}. Equation (3.40) implies

g >
1

λi+1(L)

[U3( f )]ii +

n−1
j=1, j,i

[U3( f )]i j

 + 1
θ

N
j=1

[U2( f )]i j

 (3.41)

because λi+1(L) (i = 1, 2, . . . , n − 1) are positive real numbers from (L2) and (L3),
and [U3( f )]ii (i = 1, 2, . . . , n − 1) are real numbers by the definition.

Combining (3.39) and (3.41), we obtain the condition

g > max
i∈{1,2,...,n−1}

1
λi+1(L)

[U3( f )]ii +

n−1
j=1, j,i

[U3( f )]i j


+

 min
j∈{1,2,...,N}

−Re(λ j(Ã))n−1
k=1

[U1( f )] jk


−1 N

j=1

[U2( f )]i j

 (3.42)

under which there exists a θ ∈ R+ such that D1( f , θ) and D2( f , g, θ) are included in
the open left-half plane. Hence, if (C3) holds, there exists such a θ ∈ R+ for each
G ∈ G, which completes the proof.

Appendix 3.B Proof of Lemma 3.2
We first prepare the following result [64].
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Lemma 3.3 For the matrix X ∈ Cn×m, the following relations hold:

∥X∥∞ ≤
√

m∥X∥2, (3.43)

∥X∥2 ≤
√

m∥X∥1. (3.44)

■
We also prepare the following lemma.

Lemma 3.4 For the matrix Q in (3.19),

∥Q∥2 = 1, (3.45)
∥Q⊤∥2 = 1. (3.46)

■

Proof Let us recall that O is an orthogonal matrix, which implies Q⊤Q = In−1.
Therefore, all the eigenvalues of Q⊤Q are one, and this shows (3.45). On the other
hand, (3.46) is proven as follows. From (3.19), we have

OO⊤ =
1
n

1n1⊤n + QQ⊤

which gives

QQ⊤ = In −
1
n

1n1⊤n

since OO⊤ = In. Then, there exists a matrix R ∈ Rn×n such that

R−1QQ⊤R =


0 01×(n−1)

0(n−1)×1 In−1


. (3.47)

In fact, by a simple calculation, it can be shown that

R =


1 1⊤n−1
1n−1 −In−1


satisfies (3.47). From (3.47), the eigenvalues of QQ⊤ are zero and one, and thus
(3.46) holds. ■

Now, we prove Lemma 3.2.

Proof of (3.31)

From (3.25), we have

∥U1( f )∥∞ =
1
|NM |
∥V−1(Ã)BCMKQ∥∞

≤
1
|NM |
∥V−1(Ã)B∥∞∥CMK∥∞∥Q∥∞

= ∥V−1(Ã)B∥∞∥Q∥∞ (3.48)
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where the first and second relations are given by the definition of the norm, and the
third one follows since ∥CMK∥∞ = |NM | from (3.16). Applying (3.43) and (3.45)
to (3.48), we obtain (3.31).

Proof of (3.32)

Equation (3.26) implies

∥U2( f )∥∞ = n∥Q⊤CKS W−1FV(Ã)Λ(Ã)∥∞
≤ n∥Q⊤CKS W−1∥∞∥FV(Ã)Λ(Ã)∥∞ (3.49)

In addition, from (3.43), (3.44), and (3.46), we get

∥Q⊤CKS W−1∥∞ ≤
√

m∥Q⊤CKS W−1∥2

≤
√

m∥Q⊤∥2∥CKS W−1∥2

=
√

m∥CKS W−1∥2

≤ m∥CKS W−1∥1.

Therefore,
∥Q⊤CKS W−1∥∞ ≤ m

since ∥CKS W−1∥1 = 1 from (3.15). This, together with (3.49), shows (3.32).

Proof of (3.33)

Similarly to the proofs of (3.31) and (3.32), it follows from (3.27) that

∥U3( f )∥∞ =
n
|NM |
∥Q⊤CKS W−1FBCMKQ∥∞

≤
n
|NM |
∥Q⊤CKS W−1∥∞∥FB∥∞∥CMK∥∞∥Q∥∞

≤
mn
|NM |
∥FB∥∞∥CMK∥∞∥Q∥∞

= mn∥FB∥∞∥Q∥∞

≤ mn
√

n − 1∥FB∥∞.

This completes the proof.



Chapter 4

Reference Tracking by Controller
Networks for Real-time Pricing

This chapter presents a tracking controller network for the real-time pricing. First,
we explain the motivation for considering the controller network for the real-time
pricing. Next, we formulate a design problem of the controller network for the
real-time pricing. For the problem, a necessary condition for the solvability is de-
rived. Moreover, we propose a solution to the problem, and prove that it achieves
the real-time pricing.

4.1 Real-time Pricing

In smart girds, one of important issues is demand response, i.e., to reduce power
demand by offering consumers incentive payments. The reason lies in increas-
ing demand for power and growing environmental concerns. In fact, the demand
response prevents blackouts caused by excessive power demand. Furthermore, it
reduces energy consumption, which results in lower greenhouse gas emissions.

A method to perform the demand response is the real-time pricing [58]. The
real-time pricing is to control the total power consumption of consumers by chang-
ing power prices in real-time. For instance, the power consumption will be re-
duced if the prices are set high. The real-time pricing corresponds to feedback
control by regarding the power prices and the power consumption as a controlled
input and a control output, respectively, and it is illustrated in Figure 4.1. Moti-
vated by this fact, in the control field, a number of studies have been conducted so
far, e.g., [65–68].

Meanwhile, it is assumed there that the power price controller can directly get
information on the total power consumption. However, the power consumption of
each consumer is measured with a smart meter, and thus the controller will have
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Figure 4.1: Illustration of real-time pricing.

to deal with the numerous data to obtain such information as shown in the upper
left of Figure 4.1. For example, in Japan, tens of millions of the data sets may be
handled because there are around 52 million houses [69] and the other buildings
such as plants and stores. This results in high communication and computational
costs, which will be a difficulty in realizing the real-time pricing.

This chapter therefore proposes the real-time pricing system based on the con-
troller network, depicted in Figure 1.7. In this system, each power source has a
local controller, and it acts as a distributed estimator for the power consumption.
That is, each power source estimates the total power consumption by exchanging
information on the required power with its neighbors. The power price controller
receives it from the neighbor power sources, and determines the power price. This
scheme does not need to collect information from all the consumers, which solves
the above issue. In addition, this is based on distributed estimation, and thus is
useful to construct distributed energy management systems [70] which have been
an important topic in the research field of the smart grids.

With this motivation, we develop a controller network for the real-time pricing
in the following sections.

4.2 Problem Formulation

4.2.1 System Description

Consider the real-time pricing system Σ in Figure 4.2, which is composed of m
consumers, n power sources, and a power price controller.
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Figure 4.2: Real-time pricing system Σ.

The behavior of consumer i (i∈{1, 2, . . . ,m}) is described by

Pi :

ẋi(t) = ai(αi − xi(t)) + bi(βi − u(t)),
yi(t) = cixi(t)

(4.1)

where xi(t) ∈ R is the power consumption, u(t) ∈ R0+ is the power price, and
yi(t) ∈ Rpi denotes how much each of pre-specified pi power sources supplies the
power in order to cover the consumption xi(t). The numbers ai ∈ R+ and bi ∈ R+
are the sensitivities for the consumption and the price, αi ∈ R+ and βi ∈ R+ are
the thresholds for them, and ci ∈ (0, 1]pi is a vector specifying the rate that the
power sources divide the power supply to consumer i. The initial state is given as
xi(0) = xi0 ∈ R.

From the first equation of (4.1), the behavior of consumer i is explained as
follows. The first term of the right-hand side represents the change in the power
demand based on the current power consumption. The demand decreases if the
current power consumption is larger than αi, and otherwise the demand increases.
This represents the property that the consumers do not often use a large amount
energy for the reasons of reducing costs and environmental concerns. Meanwhile,
the second term expresses the change in the power demand based on the power
price. Similarly to the above, the demand decreases if the price is higher than βi;
otherwise it increases. This is quite natural because the real-time pricing does not
work well if the consumers do not have such a property.

For power source i (i ∈ {1, 2, . . . , n}), we suppose that the local controller

Ki :

ξ̇i(t) = κ1(ξi(t), [y ji(t)] j∈NP
Ki
, [v j(t)] j∈NKi),

vi(t) = κ2(ξi(t), [y ji(t)] j∈NP
Ki
, [v j(t)] j∈NKi)

(4.2)
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is embedded. Here, ξi(t) ∈ R is the state, [y ji(t)] j∈NP
Ki
∈ R|N

P
Ki | and [v j(t)] j∈NKi ∈

R|NKi | are the inputs, vi(t) ∈ R is the output, and κ1 : R × R|N
P
Ki | × R|NKi | → R

and κ2 : R × R|N
P
Ki | × R|NKi | → R are functions. The variable y ji(t) ∈ R is the

power required from consumer j to power source i, and NP
Ki ⊆ {1, 2, . . . ,m} and

NKi ⊆ {1, 2, . . . , n} \ {i} are the index sets of the neighbors, i.e., the consumers and
the power sources from which power source i receives information. Similarly to
Chapter 3, the functions κ1 and κ2 and the initial state ξi(0) are assumed to be the
same for all the local controllers because of the scalability. In addition, we assume
(3.4); namely, the initial state is given as zero.

The power price controller M is of the form

M :

ξ̇M(t) = µ1(ξM(t), [v j(t)] j∈NM , r(t)),
u(t) = satū(µ2(ξM(t), [v j(t)] j∈NM , r(t)))

(4.3)

where ξM(t) ∈ Rq is the state, [v j(t)] j∈NM ∈ R
|NM | and r(t) ∈ R are the inputs,

u(t) ∈ R0+ is the output, i.e., the power price, and µ1 : Rq × R|NM | × R → Rq and
µ2 : Rq × R|NM | × R → R are functions. The set NM ⊆ {1, 2, . . . , n} is the index
set of the neighbors. The saturation function guarantees that the power price u(t)
takes a value on [0, ū] where ū ∈ R+ is the upper bound of the price. We assume
that the initial state is given as ξM(0) = 0q×1.

For simplicity of notation, the collective power consumption of the consumers
is represented by x(t) ∈ Rm, i.e., x(t) := [x1(t) x2(t) · · · xm(t)]⊤. The initial state
is given as x0 := [x10 x20 · · · xm0]⊤ ∈ Rm. Similarly, y(t) ∈ R

m
i=1 pi is defined as

y(t) := [y⊤1 (t) y⊤2 (t) · · · y⊤m(t)]⊤. Moreover, let ξ(t) := [ξ1(t) ξ2(t) · · · ξn(t) ξ⊤M(t)]⊤ ∈
Rn+q. This denotes the collective state of the local controllers Ki (i = 1, 2, . . . , n)
and the power price controller M.

The idea of the real-time pricing system Σ is explained as follows. Information
on the power consumption xi(t) of costumer i is transmitted to the local controller
K j as yi j(t). The local controllers Ki (i = 1, 2, . . . , n) estimate the total power
consumption

m
i=1 xi(t) by sharing the information on the power consumption with

their neighbors. The power price controller M sets the power price u(t) based on
the estimated total power consumption.

4.2.2 Design Problem of Controller Network for
Real-time Pricing

The network topology of the real-time pricing system Σ is denoted by the graph
G where the node set corresponds to the consumers, the power sources, and the
power price controller, and the edge set corresponds to the connections. Then, the
problem considered here is formulated as follows.
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Problem 2 For the real-time pricing system Σ, suppose that a step reference input
r ∈ R, an upper bound ū ∈ R+ of the power price, and the network topology G are
given. Find local controllers K1,K2, . . . ,Kn and a power price controller M (i.e.,
find functions κ1, κ2, µ1, and µ2) such that

lim
t→∞

m
i=1

xi(t) = r (4.4)

for every initial state x0 ∈ R
m. ■

Two remarks on Problem 2 are given.
First, in this problem, the power price controller M cannot directly obtain the

information on the total power consumption. In fact, since the output vi(t) of each
local controller Ki is assumed to be scalar, it is impossible to send the information
of all the power sources, i.e., the vector y(t) ∈ R

m
i=1 pi , to the power price controller

M. Also, it is difficult to sum up the information of each power source over the
network because the same information would be added more than one time. Thus,
we cannot obtain a solution to the problem in a direct way. This makes the problem
challenging.

Second, we cannot obtain a practical solution to the problem by directly apply-
ing the result in Chapter 3. In fact, although we can solve the problem by adding
an appropriate offset to the power price and performing stabilization control, the
solution requires the exact information on the consumers due to the offset. This is
a fatal drawback when the solution is applied to large-scale communities. Also in
this sense, Problem 2 is challenging.

4.3 Necessary Condition for Solvability
Problem 2 is not solvable for any reference input r ∈ R and upper bound ū ∈ R+ of
the power price. This is because the power consumption cannot be substantially
reduced if the upper bound of the power price is low.

We provide an example to demonstrate this fact. Consider the following case
with 5 consumers. The parameters of consumer i (i ∈ {1, 2, . . . , 5}) are shown
in Table 4.1. The reference input and the upper bound of the power price are
defined as r := 2 and ū := 29. Figure 4.3 illustrates the time evolution of the total
power consumption

5
i=1 xi(t) for x0 := [0.5 0.42 0.45 0.47 0.5]⊤ and u(t) ≡ ū,

where r is expressed by the thin line. We see that the total power consumption
is not reduced to the desired level though the maximum price is set. In this case,
any local controllers and power price controller cannot be a solution to Problem
2. This implies that we should derive a necessary condition on r and ū for the
solvability of the problem.



42 Reference Tracking by Controller Networks for Real-time Pricing

Table 4.1: Parameters of each consumer i.

i = 1 i = 2 i = 3 i = 4 i = 5

ai 0.12 0.12 0.12 0.12 0.12

bi 14 × 10−4 12 × 10−4 7 × 10−4 9 × 10−4 5 × 10−4

αi 0.37 0.44 0.42 0.33 0.49

βi 35 25 27 32 30

ci [0.2 0.8]⊤ [0.5 0.5]⊤ [0.3 0.7]⊤ [0.7 0.3]⊤ [0.9 0.1]⊤

0 10 20 30 40 50 60
1.9
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5 ∑ i
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1
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i
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Figure 4.3: Time evolution of total power consumption.

The following result gives a necessary condition for the solvability.

Theorem 4.1 For the real-time pricing system Σ, suppose that r ∈ R and ū ∈ R+
are given. If (4.4) holds, then

ū ≥

m
i=1

aiαi + biβi

ai
− r

m
i=1

bi

ai

. (4.5)

■

Proof Let xe ∈ R
m and ue ∈ R be the equilibrium state and input of the system Σ,

respectively. Then, from (4.1),

xi
e =

aiαi + biβi

ai
−

bi

ai
ue
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for every i ∈ {1, 2, . . . ,m}, where xi
e is the i-th element of xe. Assuming that the

total power consumption is equal to r at the equilibrium state, we obtain

r =
m

i=1

aiαi + biβi

ai
−

m
i=1

bi

ai
ue

because
m

i=1 xi
e = r. This yields

ue =

m
i=1

aiαi + biβi

ai
− r

m
i=1

bi

ai

.

So, since (4.5) means ū ≥ ue, it holds under (4.4). This proves the statement. ■

Theorem 4.1 means that Problem 2 cannot be solved if r and ū do not satisfy
(4.5). This enables us to estimate the price needed to track r.

An example for Theorem 4.1 is shown. For the above example, the condition
(4.5) is calculated as ū ≥ 31.4255. Thus, the condition is not satisfied from ū :=
29. This is consistent with Theorem 4.1.

4.4 Controller Network for Real-time Pricing
Now, we present a solution to Problem 2 under the following assumptions:

(A1) For each i ∈ {1, 2, . . . ,m}, there exists a j ∈ {1, 2, . . . , n} satisfying i ∈ NP
K j.

(A2) NM , ∅.

(A3) Consider the subgraph GK of G, representing the network topology among
K1,K2, . . . ,Kn. There exists an edge from node j to node i if there exists an
edge from node i to node j.

(A4) The subgraph GK is strongly connected.

These assumptions are similar to (A2.1)–(A2.4) in Chapter 3. The first and second
ones require that the consumers, the power sources, and the power price controller
are connected. The third one implies that the communication links between the
power sources are bidirectional. The last one guarantees that every power source
is reachable from every other power source on the network. In addition to these,
we do not consider the effect of the saturation of the power price in order to focus
on the essential issues of the real-time pricing based on the distributed estimation.
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4.4.1 Local Controllers and Power Price Controller

For achieving (4.4), we extend the idea in Chapter 3 to integral control. That is,
we realize the proportional and integral controller

ξ̇M(t) =
m

i=1

xi(t) − r,

u(t) = satū

kP

 m
i=1

xi(t) − r

 + kIξM(t)

 (4.6)

in a distributed manner, where kP ∈ R+ is the proportional gain and kI ∈ R+ is the
integral gain. For this purpose, we develop local controllers Ki (i = 1, 2, . . . , n) to
estimate the total consumption

m
i=1 xi(t) by communicating with their neighbors.

Based on this idea, we propose the following solution to Problem 2:

κ1(ξi(t), [y ji(t)] j∈NP
Ki
, [v j(t)] j∈NKi) := ℓ


j∈NKi

v j(t) − ξi(t) −


k∈NP
Ki

yki(t)

 , (4.7)

κ2(ξi(t), [y ji(t)] j∈NP
Ki
, [v j(t)] j∈NKi) := ξi(t) +


j∈NP

Ki

y ji(t), (4.8)

µ1(ξM(t), [v j(t)] j∈NM , r(t)) :=
n
|NM |


j∈NM

v j(t) − r, (4.9)

µ2(ξM(t), [v j(t)] j∈NM , r(t)) := kP

 n
|NM |


j∈NM

v j(t) − r

 + kIξM(t) (4.10)

where ξM(t) is assumed to be scalar, i.e., q := 1, and ℓ ∈ R+ is the gain of the local
controllers. Note that division by zero does not occur in (4.9) and (4.10) because
|NM | , 0 from (A2).

The intuitive interpretation of the proposed controllers is as follows. The local
controllers Ki (i = 1, 2, . . . , n) given by (4.2), (4.7), and (4.8) are designed in a
similar way to that in Chapter 3. That is, these are based on the dynamic consensus
protocol proposed in [59]. As the result, vi(t) (i = 1, 2, . . . , n) track the average
of the power required for each power source, i.e., (1/n)

n
j=1


k∈NP

K j
yk j(t) if (3.4),

(A3), and (A4) hold. This means that the local controllers obtain information on
the total consumption

m
i=1 xi(t) because (1/n)

n
j=1


k∈NP

K j
yk j(t) = (1/n)

m
i=1 xi(t)

from (4.1). On the other hand, the power price controller M given by (4.3), (4.9),
and (4.10) works as the controller (4.6) by using the obtained information. In
fact, (n/|NM |)


j∈NM

v j(t) ≈
m

j=1 x j(t) holds in (4.9), and (4.10) because vi(t) ≈
(1/n)

m
j=1 x j(t) for any i ∈ {1, 2, . . . , n} as described above.
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4.4.2 Convergence Result

Next, we prove that the proposed local controllers and power price controller are
a solution to Problem 2.

Let CKP ∈ {0, 1}n×
m

i=1 pi be the matrix expressing the connections between the
local controllers and the consumers, i.e.,

[CKP]i j :=

 1 if Ki receieves the information y j,

0 otherwise
(4.11)

where y j ∈ R is the j-th element of y. In a similar way, CMK ∈ {0, 1}1×n is defined
as (3.14). Furthermore, the graph Laplacian of the graph GK is represented by
L ∈ Rn×n. And also, let A := diag(a1, a2, . . . , am), B := diag(b1, b2, . . . , bm), C :=
diag(c1, c2, . . . , cm), and b := [b1 b2 · · · bm]⊤.

Then, the following result is obtained.

Theorem 4.2 For the real-time pricing system Σ, suppose that r ∈ R, ū ∈ R+, and
G are given and assume (A1)–(A4). Let K1,K2, . . . ,Kn, and M be given by (4.2),
(4.3), and (4.7)–(4.10). If

kP > 1 +
n−1

i=1 |[CMKQ]1i|

1⊤mb
, (4.12)

ai > | − kPai + kI | ∀i ∈ {1, 2, . . . ,m}, (4.13)

ℓ > max
i∈{1,2,...,n−1}

1
λi+1(L)

 m
j=1

[R1(kP)]i j

 + [R2(kP)]ii

+

n−1
j=1, j,i

[R2(kP)]i j

 + |[R3(kP, kI)]i1|

 , (4.14)

then (4.4) holds for every x0 ∈ R
m, where Q ∈ Rn×(n−1) is given in (3.19),

R1(kP) :=
n
|NM |

Q⊤CKPC(A + kPb1⊤m)B,

R2(kP) := −
kPn
|NM |

Q⊤CKPCbCMKQ,

R3(kP, kI) :=
n
|NM |

Q⊤CKPC(kP(A + kPb1⊤m)b − kIb).

■

Proof See Section 4.5. ■
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Figure 4.4: Network topology G.

Theorem 4.2 shows that the proposed controllers are a solution to Problem 2
if the gains kP, kI , and ℓ are chosen so as to satisfy (4.12)–(4.14). Furthermore,
this result allows us to obtain the appropriate gains without the exact information
on the consumers. In fact, since the gain conditions (4.12)–(4.14) do not involve
the thresholds αi, βi (i = 1, 2, . . . ,m) for the power consumption and the power
price, we do not have to know the information on them.

Finally, we note that the existence of a ℓ ∈ R+ satisfying (4.14) is guaranteed
when kP and kI are given. This follows from the fact that λi+1(L) (i = 1, 2, . . . , n−1)
are positive real numbers because of (2.3) and (L3).

4.4.3 Example
Consider the real-time pricing system Σ with m := 5 and n := 6. The parameters
of consumer i (i ∈ {1, 2, . . . , 5}) are shown in Table 4.1. The reference input and
the upper bound of the power price are given by r := 2 and ū := 50 satisfying
(4.5). The network topology G is given in Figure 4.4 where the label of each edge
denotes each element of ci (i = 1, 2, . . . , 5). Then, (A1)–(A4) are satisfied. We use
the local controllers Ki (i = 1, 2, . . . , 6) and the power price controller M given
by (4.2), (4.3), and (4.7)–(4.10). The gains are set as kP := 410, kI := 49.2, and
ℓ := 20 satisfying (4.12)–(4.14).

Figure 4.5 shows the time responses of Σ for x0 := [0.43 0.4 0.45 0.35 0.47]⊤.
The first and second figures show the time evolution of the power price u(t) and
the total power consumption

5
i=1 xi(t), respectively. The thin line and the dot-

ted line in the second figure express r and the time evolution of the total power
consumption estimated by K4, i.e., nv4(t), respectively. It turns out that the total
power consumption tracks the reference input. Furthermore, the thick and dotted
lines in the second figure almost overlap with each other, and so we can conclude
that the proposed local controllers work well as estimators.

Next, an example for a large-scale system is provided. Consider the real-time
pricing system Σ with m := 500 and n := 100. The parameters and the initial state
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Figure 4.5: Time responses of Σ for m := 5 and n := 6.

of consumer i (i ∈ {1, 2, . . . , 500}) are given so that ai = 0.1, 5 × 10−4 ≤ bi ≤

15 × 10−4, 0.3 ≤ αi ≤ 0.5, 25 ≤ βi ≤ 35, ci ∈ (0, 1]2, and 0.35 ≤ xi0 ≤ 0.45. These
(except for ai) are randomly chosen from the uniform probability distributions on
the corresponding intervals. The reference input and the upper bound of the power
price are defined as r := 200 and ū := 50 satisfying (4.5). The network topology G
is given so that (A1)–(A4) hold. We use the local controllers Ki (i = 1, 2, . . . , 100)
and the power price controller M given by (4.2), (4.3), and (4.7)–(4.10) with kP :=
50, kI := 5, and ℓ := 30, for which (4.12)–(4.14) hold.

Figure 4.6 depicts the time responses of Σ in the same fashion. It turns out that
the total power consumption

500
i=1 xi(t) tracks the reference input r. This shows

that the proposed controllers achieve the real-time pricing even for a large-scale
system.

4.5 Proof of Theorem 4.2

In this section, the proof of Theorem 4.2 is provided.
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Figure 4.6: Time responses of Σ for m := 500 and n := 100.

4.5.1 Preliminary
Dynamics of Real-time Pricing System

We prepare the following result.

Lemma 4.1 For the real-time pricing system Σ, suppose that r ∈ R, ū ∈ R+, and
G are given and assume (A1)–(A4). Let K1,K2, . . . ,Kn, and M be given by (4.2),
(4.3), and (4.7)–(4.10). Then

1⊤mxe = r, (4.15)
[1⊤n 0]ξe = 0 (4.16)

where ξe ∈ Rn+1 is the equilibrium state of Σ. ■

Proof See Appendix 4.A. ■

This lemma gives the sum of xi (i = 1, 2, . . . ,m) and ξi (i = 1, 2, . . . , n) at the
equilibrium state. In particular, (4.15) implies that the total power consumption
tracks the reference input r if the system Σ converges to the equilibrium state.

We so introduce e(t) := [x⊤(t) − x⊤e ξ⊤(t) − ξ⊤e ]⊤ ∈ Rm+n+1. This corresponds
to the deviation from the equilibrium state, which implies that (4.4) holds if e(t)
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goes to zero as t→∞. Then, from (3.14), (4.1)–(4.3), and (4.7)–(4.11), the system
Σ is expressed as

ė(t) = Ae(kP, kI , ℓ)e(t) (4.17)

where

Ae(kP, kI , ℓ) :=


−A −

kPn
|NM |

bCMKCKPC −
kPn
|NM |

bCMK −kIb

−ℓLCKPC −ℓL 0n×1
n
|NM |

CMKCKPC
n
|NM |

CMK 0


. (4.18)

Hence, if the matrix Ae(kP, kI , ℓ) is Hurwitz, (4.4) holds.

Coordinate Transformation

However, Ae(kP, kI , ℓ) has a complicated structure, and so it is difficult to immedi-
ately determine its stability. Therefore, we propose a coordinate transformation,
and then the stability is considered based on the transformed system.

For this purpose, let us consider the transformation matrix

T :=



−B−1 0m×n −kP1m

1
n

(1n1⊤m − nCKPC)B−1 n
|NM |

O
kP

n
(1n1⊤m − nCKPC)1m

01×m 01×n 1


(4.19)

where O ∈ Rn×n is the orthogonal matrix defined as (3.19). Note that the existence
of a Q satisfying (3.20) is guaranteed because (L1) and (L2) hold under (A3).
Since the matrices B and O are non-singular by the definitions, it can be shown by
a simple calculation that T is non-singular.

By letting ê(t) := T−1e(t), (2.2) and (3.19)–(3.21), and (4.17)–(4.19) provide

˙̂e(t) = Âe(kP, kI , ℓ)ê(t) (4.20)
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for

Âe(kP, kI , ℓ) :=

−A 0m×1 0m×(n−1) −kPA1m + kI1m

01×m 0 01×(n−1) 0

R1(kP) −kP
√

nQ⊤CKPCb R2(kP) − ℓΛ−1(L) R3(kP, kI)

−b⊤
|NM |
√

n
CMKQ −kP1⊤mb


(4.21)

where (3.16) and the following relation are used:

1⊤n CKPC = 1⊤m. (4.22)

Consequently, the stability of Ae(kP, kI , ℓ) is equivalent to it of Âe(kP, kI , ℓ).

4.5.2 Main Part
Using the above result, we prove Theorem 4.2.

Eigenvalues of Âe

From (4.21), the following result is obtained.

Lemma 4.2 For the matrix Âe(kP, kI , ℓ), the following statements hold.

(a) The matrix Âe(kP, kI , ℓ) has a zero eigenvalue.

(b) The other m + n eigenvalues are in the sets

D1(kP, kI) :=
m

i=1


s ∈ C

 s + ai

 ≤ | − kPai + kI |


, (4.23)

D2(kP, kI , ℓ) :=
n−1
i=1


s ∈ C

 s + ℓ λi+1(L) − [R2(kP)]ii


≤

m
j=1

[R1(kP)]i j

 + n−1
j=1, j,i

[R2(kP)]i j

 + |[R3(kP, kI)]i1|

 , (4.24)

D3(kP) :=

s ∈ C

 s + kP1⊤mb
 ≤ 1⊤mb +

n−1
i=1

|[CMKQ]1i|

 . (4.25)

■
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Proof See Appendix 4.B. ■

Lemma 4.2 gives a region where the eigenvalues of Âe(kP, kI , ℓ) lie, from which
(4.4) holds if

(i) the state whose behavior is characterized by the zero eigenvalue, is identical
to zero,

(ii) the setsD1(kP, kI), D2(kP, kI , ℓ), andD3(kP) are included in the open left-half
of the complex plane.

Therefore, we prove (i) and (ii).

Proof of (i)

Equations (4.20) and (4.21) imply that the behavior of êm+1(t) is characterized by
the zero eigenvalue, where êm+1(t) is the m+1-th element of ê(t). From (3.19) and
(4.19), we have

êm+1(t) =
|NM |

n
√

n

1⊤n 0


(ξ(t) − ξe).

Thus, it follows from (3.4) and (4.16) that êm+1(t) ≡ 0, which proves (i).

Proof of (ii)

From (4.23), the set D1(kP, kI) is included in the open left-half plane if

−ai < −| − kPai + kI | ∀i ∈ {1, 2, . . . ,m}. (4.26)

The condition (4.26) can be rewritten as (4.13).
Similarly, from (4.24) and (4.25), we obtain the following two conditions:

− ℓλi+1(L) + [R2(kP)]ii < −

m
j=1

[R1(kP)]i j

 − n−1
j=1, j,i

[R2(kP)]i j

 − |[R3(kP, kI)]i1|

for every i ∈ {1, 2, . . . , n − 1}, and

−kP1⊤mb < −1⊤mb −
n−1
i=1

|[CMKQ]1i| .

Here, we use the fact that λi+1(L) (i = 1, 2, . . . , n − 1) are real numbers from (2.3)
in order to get the first condition. The first condition is equivalent to (4.14) since
λi+1(L) is positive for every i ∈ {1, 2, . . . , n − 1} from (2.3) and (L3). In addition,
the second one can be expressed as (4.12) because the scalar 1⊤mb is positive.

Hence, (ii) holds subject to (4.12)–(4.14), which completes the proof.
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4.6 Summary
This chapter has addressed a design problem of a controller network for the real-
time pricing. For this problem, a necessary condition for the solvability has been
derived. This clarifies the relation between the upper bound of the power price and
the reference input which the total power consumption can track. Furthermore, by
extending the idea in Chapter 3 to integral control, we have obtained a solution to
the design problem. With this result, we can achieve the real-time pricing without
collecting information on power consumption from all consumers.

Appendix 4.A Proof of Lemma 4.1
Let ξ−M(t) ∈ Rn denote the collective state of the local controllers, i.e., ξ−M(t) :=
[ξ1(t) ξ2(t) · · · ξn(t)]⊤. The value at the equilibrium state of the system Σ is repre-
sented by ξ−Me ∈ R

n.
We first prove (4.16). From (4.1), (4.2), (4.7), (4.8), and (4.11), the collective

dynamics of the local controllers is given by

ξ̇−M(t) = −ℓLξ−M(t) − ℓLCKPCx(t). (4.27)

Multiplying (4.27) on the left by 1⊤n and using (2.4) provide

1⊤n ξ̇−M(t) = 0.

This means that 1⊤n ξ−M(t) is an invariant quantity. Thus, it follows from (3.4) that

1⊤n ξ−M(t) ≡ 0,

which implies (4.16).
Next, (4.15) is proven as follows. From (4.27), the equation

0n×1 = −ℓLξ−Me − ℓLCKPCxe

= −ℓL(ξ−Me +CKPCxe)

holds at the equilibrium state of Σ. This yields

ξ−Me +CKPCxe = γ1n (4.28)

for some γ ∈ R due to (2.2). On the other hand, considering the dynamics of the
power price controller, we have

0 =
n
|NM |

CMKξ−Me +
n
|NM |

CMKCKPCxe − r

=
n
|NM |

CMK(ξ−Me +CKPCxe) − r

= γ
n
|NM |

CMK1n − r. (4.29)
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The first equality is given by (3.14), (4.1)–(4.3), (4.8), (4.9), and (4.11), the second
one is trivial, and the last one is obtained from (4.28). Equation (4.29) provides

γ =
r
n

(4.30)

because of (3.16). By substituting (4.30) for (4.28), it follows that

ξ−Me +CKPCxe =
r
n

1n. (4.31)

By multiplying (4.31) on the left by 1⊤n and using (4.16) and (4.22), we get (4.15).
This completes the proof.

Appendix 4.B Proof of Lemma 4.2
Equation (4.21) shows that Âe(kP, kI , ℓ) has a zero vector in its row. Therefore,
one of the eigenvalues is zero, which proves (a). Furthermore, by calculating the
characteristic polynomial, it can be shown that the other eigenvalues are equivalent
to those of the matrix

−A 0m×(n−1) −kPA1m + kI1m

R1(kP) R2(kP) − ℓΛ−1(L) R3(kP, kI)

−b⊤ CMKQ −kP1⊤mb

 .
By applying Gershgorin theorem to this matrix and utilizing the fact that bi (i =
1, 2, . . . ,m) are positive, it follows that the eigenvalues are in the sets D1(kP, kI),
D2(kP, kI , ℓ), and D3(kP). This shows (b).
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Chapter 5

Motion Coordination by Controller
Networks: Robotic Mass Games

This chapter provides a controller network for the robotic mass games, i.e., to let
robots organize themselves into a formation displaying a given grayscale image.
First, we describe a design problem of the controller network for the mass games.
Next, as elemental techniques, we introduce the coverage control and the halftone
image processing. Based on these, we develop a controller network for the mass
games. The performance is demonstrated by numerical experiments with the stan-
dard images. In addition to this, two extensions are provided for practical use and
performance improvement.

5.1 Problem Setting

5.1.1 Notation

For the convex set Q ⊂ R2 and the vector x := [x⊤1 x⊤2 · · · x⊤n ]⊤ ∈ Qn composed of
distinct 2-dimensional vectors, let Vi(x) be the Voronoi cell for xi, i.e.,

Vi(x) :=

q ∈ Q

 ∥q − xi∥ ≤ ∥q − x j∥ ∀ j ∈ {1, 2, . . . , n}

.

The Delaunay graph for x1, x2, . . . , xn is represented by G(x). That is, G(x) is the
graph with the node set {1, 2, . . . , n} and the edge set

(i, j) ∈ {1, 2, . . . , n}2
 Vi(x) ∩ V j(x) , ∅


.

Figure 5.1 illustrates an example of Voronoi cells and a Delaunay graph for n := 5.
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Figure 5.1: Example of Voronoi cells and Delaunay graph

5.1.2 Multi-robot System
Consider the multi-robot system Σ in Figure 5.2, which is composed of n robots.

The dynamics of robot i (i ∈ {1, 2, . . . , n}) is given by

Pi : ẋi(t) = ui(t) (5.1)

where xi(t) ∈ R2 and ui(t) ∈ R2 are the position and the control input. The collec-
tive position of the robots is expressed by x(t) := [x⊤1 (t) x⊤2 (t) · · · x⊤n (t)]⊤ ∈ R2n,
and x(t) is called the formation at time t. The initial formation is given as x(0) =
x0 ∈ R

2n.
We suppose that a local controller is embedded in each robot. The local con-

troller for robot i is of the form

Ki : ui(t) = κ([x j(t)] j∈Ni(t)) (5.2)

where [x j(t)] j∈Ni(t) ∈ R
2|Ni(t)| is the input, ui(t) ∈ R2 is the output, and κ : R2|Ni(t)| →

R2 is a function. The set Ni(t) ⊂ {1, 2, . . . , n} is the index set of the neighbors, i.e.,
the robots whose information is available to robot i. As in the previous chapters,
the function κ is assumed to be the same for all the robots for the scalability.

If all the robots exist in a bounded convex setQ ⊂ R2, we useVi(x(t)) to denote
the Voronoi cell for xi(t) (for robot i) and use G(x(t)) to denote the corresponding
Delaunay graph. Then, we impose the following assumptions for the multi-robot
system Σ:

(A1) Each robot has the information on its own position in the world coordinate
frame.

(A2) Each robot can obtain the information on the relative positions of the robots
connected to itself on the Delaunay graph G(x(t)).

These assumptions are satisfied if each robot has, for example, a GPS receiver and
stereo cameras.
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Figure 5.2: Multi-robot system Σ.

5.1.3 Mass Game Problem

Let us consider making the multi-robot system Σ achieve a formation on the field
Q. The desired formation is a formation displaying a given grayscale image. The
image is represented as an integrable function φ : Q → [0, 1]. The function φ ex-
presses the pixel values on Q, and the values φ(q) = 0, φ(q) = 1, and φ(q) ∈ (0, 1)
correspond to black, white, and gray, respectively. Then, the problem considered
here is stated as follows.

Problem 3 For the multi-robot system Σ, suppose that a grayscale image φ : Q→
[0, 1] is given. Find local controllers K1,K2, . . . ,Kn (i.e., find a function κ) such
that, for every initial formation x0 ∈ Q

n, the final formation x(∞) displays the
image φ on the field Q, as shown in Figure 1.8. ■

Several remarks on Problem 3 are given. First, this problem is different from
the generalized problem in Chapter 2 in the respect that the network topology of
the system Σ is not given but specified by assumptions (A1) and (A2). The rea-
son is that since the robots, which correspond to the controller nodes, move, it is
difficult to realize any network structure. Second, the problem is stated without
introducing any mathematical performance indices. This is because the problem
contains a specification on human perception (visual perception) and it is in gen-
eral difficult to quantify it by a mathematical function. Third, we cannot solve the
problem by giving the desired position of each robot to the corresponding local
controller in advance. In fact, since the local controllers Ki (i = 1, 2, . . . , n) are
assumed to be the same for the scalability, it is not possible to give different in-
formation to each local controller Ki. Fourth, it is assumed here that all the robots
share the information on the grayscale image φ. Thus, the solution will depend on
φ. Finally, in order to focus on the essential issues of the mass game, we do not
consider the inconvenience caused by collisions among robots.
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5.2 Controller Network for Mass Games
In this section, a solution to the mass game problem is presented. First, we intro-
duce two elemental techniques: the coverage control [23] and the halftone image
processing [60]. Based on these, we develop mass game controllers.

5.2.1 Elemental Techniques
Coverage Control

The coverage means steering robots arbitrarily placed in an environment so that
the sizes of the robots’ occupied areas are equal in a certain sense. It is one of the
fundamental coordination tasks in various multi-robot problems including mobile
sensor networks.

A theoretical framework for coverage control has been developed in [23], and
it is summarized as follows. Consider the multi-robot system Σ. For the formation
x := [x⊤1 x⊤2 · · · x⊤n ]⊤ ∈ R2n, we use the performance index

J(x) :=

Q

min
i∈{1,2,...,n}

∥q − xi∥
2ϕ(q) dq (5.3)

where Q is a bounded set representing the coverage field and ϕ : Q → R0+ is an
integrable function which corresponds to the weighting function quantifying the
relative importance of each point inQ. By noting that mini∈{1,2,...,n} ∥q−xi∥

2 denotes
the distance between the point q and the nearest robot’s position, the formation x
minimizing J(x) under ϕ(q) ≡ 1 is a configuration that xi exists near at any point in
Q. If ϕ(q) . 1, meanwhile, a similar interpretation holds for the space Q weighted
by ϕ; namely, in the formation x minimizing J(x), more robots are allocated to the
points having the large value of ϕ.

It has been proven in [23] that there exist local controllers such that

(i) the time derivative of the resulting J(x(t)) is negative semi-definite,

(ii) the set of solutions to ∂J(x)/∂x = 0 is the largest invariant set of the result-
ing closed-loop system.

From (i), (ii), and LaSalle’s principle (see Appendix A.2), the controllers move the
robots to a stationary point of J(x), and in this sense, the coverage is completed.
It has been shown there that such controllers are given by

ui(t) = k

cent(Vi(x(t)), ϕ) − xi(t)


(5.4)

where k ∈ R+ is the gain and cent(Vi(x(t)), ϕ) ∈ R2 is the weighted centroid of
Vi(x(t)). The controller (5.4) is of the form (5.2) under assumptions (A1) and
(A2). This is because the Voronoi cell Vi(x(t)) depends on the positions of robot i
and the robots connected to it on the Delaunay graph G(x(t)).
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Halftone Image Processing

The halftone image processing is to transform grayscale images into binary im-
ages with preserving the visual quality as much as possible. This processing is
typically performed to output grayscale images by print or display devices whose
output is restricted to few colors.

The basic idea is that more black pixels are placed at the parts corresponding
to the dark parts of the original grayscale image. More precisely, black pixels are
allocated in the binary image so that, for any part of the binary image, the density
of the black pixels is nearly equal to the average pixel values of the corresponding
part of the grayscale image. As the result, the allocated black and white pixels are
blended into smooth tones by the spatial lowpass filtering property of the human
eye. An example is depicted in Figure 5.3 where a grayscale image and the binary
image given by a halftone image processing technique are illustrated.

5.2.2 Proposed Controllers
Now, we propose mass game controllers.

The idea of the proposed controllers is outlined as follows. As seen in Section
5.2.1, the coverage controllers given by (5.4) enable us to place the robots so that
the distribution of the robots becomes a desirable one specified by the weighting
function ϕ. The halftone image processing, on the other hand, allows us to obtain
a similar binary image to a given grayscale image by placing black pixels so that
the distribution of the black pixels corresponds to the pixel values of the original
grayscale image. These facts imply that the mass games would be achieved by

• letting the robots play the role of the black pixels,

• placing the robots (by the coverage control) so that the distribution of the
robots corresponds to the reference image φ.

Based on this idea, we propose the mass game controllers given by (5.4) with

ϕ(q) := e−10φ(q). (5.5)

The weighting function (5.5) has a large value if the pixel value φ(q) at the point
q is small, and has a small value if the pixel value φ(q) at the point q is large.
Therefore, the proposed controllers generate a formation where more robots are
allocated to areas corresponding to darker parts of the reference image φ, which
would complete the mass game. The weighting function ϕ(q) is given as an expo-
nential function of the reference image φ for accentuating the darkness of φ. The
coefficient is set to 10 by calibration for a test pattern. The result of the calibration
is given in Appendix 5.A.
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(a) Original grayscale image (b) Resulting binary image

Figure 5.3: Halftone image processing.

5.2.3 Numerical Experiments
The resulting controller network is verified by the standard method in the image
processing area, i.e., by numerical experiments with the standard images in [61].

Consider the multi-robot system Σ where n := 5000 and Q := [0, 100]2. The
reference image φ is Lenna in Figure 5.3 (a), which is one of the standard images.
This is an eight-bit grayscale image, and thus φ(q) ∈ {0, 1/255, 2/255, . . . , 1}. The
initial formation x0 is given randomly from the uniform probability distribution on
Q5000. We use the local controllers Ki (i = 1, 2, . . . , 5000) given by (5.4) and (5.5)
with k := 2.

Figure 5.4 depicts the time series of the resulting formations, where the solid
squares represent the robots. We can see that the robots organize themselves into a
formation displaying the grayscale image as time goes on. Also for other standard
images, similar results are obtained. Figures 5.5–5.7 illustrate the results for the
standard images Barbara, Mandrill, and Pepper, where (a), (b), and (c) represent
the reference image, the initial formation, and the final formation (at t = 20),
respectively. These show that our controller network achieves the mass games for
various images.

Remark 5.1 The proposed controllers may not achieve the mass games for the
non-uniform initial distribution. This is because if the initial distribution is biased
toward an area in Q, the resulting distribution is also biased toward there. In this
case, we first make the uniform distribution by letting the robots perform a random
walk for a while. Then, the proposed controllers are applied to the robots, and a
similar result to Figures 5.4–5.7 is obtained. ■
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(a) Initial formation. (b) t = 1.

(c) t = 2. (d) t = 5.

(e) t = 10. (f) t = 20.

Figure 5.4: Simulation result for Lenna.
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(a) Reference image. (b) Initial formation. (c) Final formation.

Figure 5.5: Simulation result for Barbara.

(a) Reference image. (b) Initial formation. (c) Final formation.

Figure 5.6: Simulation result for Mandrill.

(a) Reference image. (b) Initial formation. (c) Final formation.

Figure 5.7: Simulation result for Pepper.
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5.3 Extension to Case of r-Disk Proximity Networks
While the proposed controllers achieve the mass games, the communication struc-
ture based on the Delaunay graph is required. This implies that each robot can
communicate with distant robots. An example is depicted in Figure 5.8 where the
circles, the arrows, and the areas separated by the thin lines express the robots, the
communication links, and the Voronoi cells, respectively. We see that Robot 4 is
far away from robot 1, but communicates with it. However, since communication
range constraints are imposed for robots in practical cases, such communication
may be impossible. This is a difficulty in applying the proposed controllers to real
robots. Therefore, in this section, we extend the proposed controllers to the case
of r-disk proximity networks where each robot only communicates with the robots
within radius r.

5.3.1 Proposed Controllers

Consider the multi-robot system Σ. For this system, we assume here that (A1) and

(A3) each robot can obtain the information on the relative positions of the robots
within radius r.

Under these assumptions, a solution to the mass game problem is provided.
The idea of our solution is explained as follows. From the discussion in the

previous section, the mass games can be achieved by minimizing the performance
index J(x) in (5.3) with (5.5). However, the controller (5.4) with (5.5) to generate
a formation minimizing J(x) cannot be implemented as the controller (5.2) subject
to (A3). Therefore, we extend the performance index J(x) by taking into the com-
munication range constraint, and derive local controllers to achieve a formation
minimizing the resulting performance index.

Based on this idea, the performance index J(x) in (5.3) with (5.5) is extended
as follows:

Ĵ(x) :=

Q

min
i∈{1,2,...,n}

γ(∥q − xi∥)e−10φ(q) dq (5.6)

where

γ(∥q − xi∥) :=


∥q − xi∥

2 if ∥q − xi∥ <
r
2
,

r2

4
otherwise.

(5.7)

The performance index Ĵ(x) is given by replacing ∥q− xi∥
2 in J(x) with γ(∥q− xi∥).

The function γ(∥q− xi∥) is the same as ∥q− xi∥
2 if ∥q− xi∥ < r/2; otherwise, it has
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Figure 5.8: Communication structure based on Delaunay graph.

the value r2/4, i.e., the value of ∥q − xi∥
2 at ∥q − xi∥ = r/2. So, in Ĵ(x), the value

of ∥q − xi∥ is restricted to the range of 0 to r/2.
For such a performance index, our mass game controllers are given by

ui(t) = k

cent(Vi(x(t)) ∩ B(xi(t), r/2), e−10φ(q)) − xi(t)


. (5.8)

The controller (5.8) is of the form (5.2) under assumptions (A1) and (A3) because
the set Vi(x(t)) ∩ B(xi(t), r/2) depends on the positions of robot i and the robots
within radius r.

For the proposed controllers, we obtain the following result.

Theorem 5.1 For the multi-robot system Σ, suppose that φ : Q → [0, 1] is given
and assume (A1) and (A3). Let K1,K2, . . . ,Kn be given by (5.8). Then, x(t)
converges to a solution to ∂Ĵ(x)/∂x = 0 for every x0 ∈ R

2n. ■

Proof This theorem is proven by the following two facts and LaSalle’s principle.

(i) The time derivative of Ĵ(x(t)) is negative semi-definite.

(ii) The largest invariant set contained in the set {x ∈ R2n |
˙̂J(x) = 0} is the set of

solutions to ∂Ĵ(x)/∂x = 0.

The proofs of (i) and (ii) are given in Appendix 5.B. ■

Theorem 5.1 means that the proposed controllers steer the robots to a station-
ary point of the performance index Ĵ(x). Therefore, the mass games are achieved
if r is sufficiently large, because γ(∥q − xi∥) ≡ ∥q − xi∥

2 as r → ∞,
An example is given. Consider the multi-robot system Σ over a r-disk prox-

imity network, where n := 5000, Q := [0, 100]2, and r := 5. The reference image
φ is Pepper in Figure 5.7 (a). The initial formation x0 is chosen randomly from
the uniform probability distribution on Q5000. We employ the local controllers
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(a) Initial formation.
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(b) Final formation.

Figure 5.9: Simulation result for r := 5.

Ki (i = 1, 2, . . . , 5000) given by (5.8) with k := 2. Figure 5.9 illustrates the ini-
tial formation and the resulting formation (at t = 100) in the same fashion. This
shows that the mass game is achieved though the communication range constraint
is imposed for the robots. Furthermore, by comparing with Figure 5.7 (c), we can
conclude that the performance of the proposed controllers is comparable to that of
the controllers given in the previous section.

5.3.2 Condition on Communication Range for Mass Games
According to the above result, the proposed controllers achieve the mass games if
the communication range r is sufficiently large. Now, how do we choose the r?

An answer to this question is given by the following result.

Theorem 5.2 For the performance indices J(x) given by (5.3) and (5.5) and Ĵ(x)
in (5.6), the following relation holds:

Ĵ(x) ≤ J(x) ≤ Ĵ(x) + ∆(x, r) (5.9)

where

∆(x, r) :=

diam(Q)2 −

r2

4

 
Q\∪n

i=1B(xi,r/2)
e−10φ(q) dq. (5.10)

■

Proof The proof is provided in a similar way to that in [71].
From (5.7), γ(∥q − xi∥) ≤ ∥q − xi∥

2 holds for every q, xi ∈ Q, which gives the
fist inequality.
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Meanwhile, the second inequality is shown as follows. By the definition of the
Voronoi cell Vi(x), the performance index J(x) can be rewritten as

J(x) =
n

i=1


Vi(x)
∥q − xi∥

2e−10φ(q) dq. (5.11)

Similarly, Ĵ(x) can be rewritten as

Ĵ(x) =
n

i=1


Vi(x)
γ(∥q − xi∥)e−10φ(q) dq

=

n
i=1


Vi(x)∩B(xi,r/2)

∥q − xi∥
2e−10φ(q) dq +


Vi(x)\B(xi,r/2)

r2

4
e−10φ(q) dq (5.12)

where the first equality follows from the definition of the Voronoi cell Vi(x) and
the monotonically non-decreasing property of γ(∥q− xi∥), the second one is given
by (5.7). From (5.11) and (5.12), we have

J(x) − Ĵ(x) =
n

i=1


Vi(x)\B(xi,r/2)


∥q − xi∥

2 −
r2

4


e−10φ(q) dq

≤

n
i=1


Vi(x)\B(xi,r/2)


diam(Q)2 −

r2

4


e−10φ(q) dq

=


diam(Q)2 −

r2

4


Q\∪n

i=1B(xi,r/2)
e−10φ(q) dq. (5.13)

This shows the second inequality, which completes the proof. ■

Theorem 5.2 gives the relation between the performance indices J(x) and Ĵ(x)
and the communication range r. From (5.10), ∆(x, r) = 0 if Q \∪n

i=1B(xi, r/2) = ∅,
which gives J(x) = Ĵ(x) because of (5.9). Therefore, if the gap between J(x) and
Ĵ(x) is small, there exists a formation satisfying Q ⊂ ∪n

i=1B(xi, r/2). This is useful
information to estimate a minimum r for achieving the mass games.

We show an example. Consider the example in Section 5.3.1. Since n := 5000
and Q := [0, 100]2, we choose the communication range as r := 2 so that there
exists a formation satisfying Q ⊂ ∪5000

i=1 B(xi, r/2). Then, the resulting formation
is illustrated in Figure 5.10 (a). We see that a formation displaying the reference
image is generated. On the other hand, Figure 5.10 (b) shows the resulting forma-
tion when r := 1 for which Q ⊂ ∪5000

i=1 B(xi, r/2) does not hold for every x ∈ Q5000.
It turns out that the resulting formation does not display the reference image. In
this way, we can easily obtain a minimum r for achieving the mass game.
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Figure 5.10: Simulation results for several communication range r.

5.4 Extension to Case of a Variable Number of Player
Robots

The controllers proposed in the previous sections are for the mass game with a
fixed number of player robots, and let all the robots participate in the mass game
even for a bright image which only needs a few robots. This results in a critical
drawback that the brightness of the resulting image does not agree with that of the
given image. An example is illustrated in Figure 5.11. We see that there are too
many robots and the resulting image is darker than the reference image. We thus
extend our result to the case of a variable number of player robots, and present
controllers classifying the robots into a player group and a nonplayer group in a
distributed manner.

5.4.1 Proposed Controllers
Consider the multi-robot system Σ. The local controller Ki (i∈{1, 2, . . . , n}) treated
here is of the form

Ki :

ξ̇i(t) = κ1(ξi(t), [x j(t)] j∈Ni(t), t),
ui(t) = κ2(ξi(t), [x j(t)] j∈Ni(t), t)

(5.14)

where ξi(t) ∈ Rp is the state, [x j(t)] j∈Ni(t) ∈ R
2|Ni(t)| is the input, ui(t) ∈ R2 is the

output, and κ1 : Rp × R2|Ni(t)| × R0+ → R
p and κ2 : Rp × R2|Ni(t)| × R0+ → R

2 are
functions. The functions κ1 and κ2 and the initial state ξi(0) are assumed to be the
same for the scalability. The initial state is given as zero, i.e., ξi(0) = 0p×1.

For this system, suppose that a set Q̂ ⊃ Q is given. This provides the space
Q̂ \Q for evacuating unnecessary robots to display the reference image. Also, we
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(a) Reference image. (b) Resulting formation.

Figure 5.11: Simulation result for bright image.

assume (A1) and (A2) for the system Σ. We further assume that the size of each
robot is equal, and denote by a ∈ R+ the area ratio of one robot to the field Q.

Then, we propose the following solution to the mass game problem with a
variable number of player robots:

κ1(ξi(t), [x j(t)] j∈Ni(t), t) :=

 1 if xi(t) ∈ Q, η(Vi(x̄(t)), a) ≤ 0, |ξi(t)| ≤ 1,
0 otherwise,

(5.15)

κ2(ξi(t), [x j(t)] j∈Ni(t), t) :=



k
xi(t) − cent(Q, 1)
∥xi(t) − cent(Q, 1)∥

if xi(t) ∈ Q, ξi(t) = 0,

k

cent(Vi(x̄(t)), ϕ) − xi(t)


if xi(t) ∈ Q, ξi(t) , 0,

k
(1 + t)c

xi(t) − cent(Q, 1)
∥xi(t) − cent(Q, 1)∥

otherwise

(5.16)

where ξi(t) is assumed to be scalar, i.e., p := 1, c ∈ R+ is the gain,

η(Vi(x̄(t)), a) :=
a

Q

1 dq
Vi(x̄(t))

1 dq
−


Vi(x̄(t))

1 − φ(q) dq
Vi(x̄(t))

1 dq
, (5.17)

x̄(t) := [x j(t)] j∈{ℓ∈{1,2,...,n}|xℓ(t)∈Q}. (5.18)

The right-hand side of (5.17) is composed of the area ratio of robot i to Vi(x̄(t)),
i.e., a


Q

1 dq/

Vi(x̄(t))

1 dq, and the darkness of the reference image φ in Vi(x̄(t)),
i.e.,


Vi(x̄(t))

1−φ(q) dq /

Vi(x̄(t))

1 dq. Hence, η(Vi(x̄(t)), a) quantifies the difference
between the formation and the reference image on the Voronoi cell Vi(x̄(t)). The
vector x̄(t) is the collective position of the robots in the field Q.
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Figure 5.12: Structure of proposed controllers.

The proposed controllers are three-mode switching controllers as illustrated in
Figure 5.12 where Ki1, Ki2, and Ki3 are the sub-controllers corresponding to the
first, second and third equations in (5.16), and ui1, ui2, ui3 ∈ R

2 are the outputs.
These sub-controllers and the switching rule are explained as follows.

Considering that Q is the field to express the reference image φ, we call the
robots in Q the player and call the others the nonplayer. The sub-controllers Ki1

and Ki2 are for the players. The sub-controller Ki1 moves robot i away from the
centroid of Q. Thus, if this is selected for a while, robot i eventually leaves from
Q and becomes a nonplayer. The sub-controller Ki2 corresponds to the mass game
controller given in Section 5.2 by regarding x̄(t) as x(t). As the result, Ki2 achieves
a formation displaying the reference image φ on the field Q. On the other hand,
the sub-controller Ki3 is for the nonplayers. This is similar to Ki1, and moves the
nonplayers away from the mass game field Q. However, the nonplayers stop after
a while because, from limt→∞ 1/(1 + t)c = 0 for c ∈ R+, the output ui3(t) goes to
zero as t → ∞.

Next, let us consider the switching rule. If robot i is a player, the sub-controller
Ki1 or Ki2 is selected as follows. By definition, η(Vi(x̄(t)), a) ≤ 0 means that the
resulting formation looks brighter than or equal to the reference image φ on the
Voronoi cell Vi(x̄(t)). In this case, robot i should stay at the current position and
participate in the mass game. Thus, from (5.14)–(5.16) and ξi(0) = 0, ξ̇i(t) = 1
holds and Ki2 is selected. The condition |ξi(t)| ≤ 1 guarantees that ξi(t) is bounded.
The sub-controller Ki1 is selected as long as η(Vi(x̄(t)), a) > 0. This is because
η(Vi(x̄(t)), a) > 0 implies that the resulting formation looks darker than the ref-
erence image φ on the Voronoi cell Vi(x̄(t)), and as the result, extra robots leave
from the mass game field Q. On the other hand, when robot i is a nonplayer, the
sub-controller Ki3 is always active.

Finally, two remarks on the proposed controllers are given.
First, when xi(t)=cent(Q, 1), division by zero occurs in the sub-controllers Ki1

and Ki3. However, in the proposed switching controllers, the problem is avoided
if xi(0) , cent(Q, 1). This is shown by the following three facts.
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(i) Let the local controller for robot i be given by Ki1. If xi(0),cent(Q, 1), then
xi(t),cent(Q, 1) for every t ∈ R0+.

(ii) Once Ki2 becomes active, Ki1 does not become active.

(iii) When xi(t) = cent(Q, 1), Ki3 is not selected.

Since (i) and (iii) are trivial, (ii) is proven. From (5.14) and (5.15), ξi(t) is non-
decreasing. Because of this and ξi(0) = 0, if ξi(t0) , 0 at a time t0 ∈ (0,∞),
ξi(t) , 0 holds for t ≥ t0. Therefore, (ii) is shown by (5.14) and (5.16).

Second, the proposed controllers depend only on the positions of the neighbors
under assumptions (A1) and (A2). In fact, Ki1 and Ki3 are controllers depending
on the position of robot i, and Ki2 is of the form (5.2) under (A1) and (A2) as
described in Section 5.2. Furthermore, the switching rule is based on the Voronoi
cell Vi(x̄(t)), and so it depends on the positions of the neighbors.

5.4.2 Convergence Result
For the proposed controllers, the following result is obtained.

Theorem 5.3 For the multi-robot system Σ, suppose that Q̂ ⊃ Q and φ : Q →
[0, 1] are given, and assume (A1) and (A2). Let K1,K2, . . . ,Kn be given by (5.14)–
(5.16). Let also x∗ ∈ R2n be a formation such that the positions of the robots in Q
are a solution to ∂J(x)/∂x = 0. If x0 ∈ (Q \ cent(Q, 1))n and

c > 1 +
k

min
(q1,q2)∈bd(Q̂)×bd(Q)

∥q1 − q2∥
, (5.19)

then x(t) ∈ Q̂n for every t ∈ R0+ and x(t) converges to x∗. ■

Proof The following three facts prove the theorem.

(i) There exists a time instant τ ∈ R0+ such that the robots are classified into
the players with Ki2 and the nonplayers from τ. The two groups are fixed.

(ii) The sub-controller Ki2 corresponds to the coverage controller (5.4). So, if
all the players are steered by Ki2, the configuration converges to a solution
of ∂J(x)/∂x = 0.

(iii) If x0 ∈ (Q \ cent(Q, 1))n and (5.19) hold, the nonplayers remain in the space
Q̂ \ Q and converge to a configuration.

The proofs of (i)–(iii) are given in Appendix 5.C. ■

Theorem 5.3 means that the robots remain in the space Q̂ and converge to a
formation x∗ if the gains k and c are selected so as to satisfy (5.19).
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5.4.3 Numerical Experiments
Consider the multi-robot system Σ in Figure 5.2, where n := 7500,Q := [50, 350]2,
Q̂ := [0, 400]2, and a := 10−4. The reference image φ is Airplane in Figure 5.11
(a). The initial formation x0 is given randomly from the uniform probability distri-
bution on (Q \ cent(Q, 1))7500. We use the local controllers Ki (i = 1, 2, . . . , 7500)
given by (5.14)–(5.16) with k := 10 and c := 1.3 satisfying (5.19).

Figure 5.13 depicts the time series of the resulting formations. This shows that
the proposed controllers evacuate unnecessary robots for displaying the reference
image, and achieve the mass game. Also for other standard images, similar results
are obtained. Figures. 5.14–5.16 show the results for the standard images Elaine,
House, and Clock, where (a), (b), and (c) represent the reference image, the initial
formation, and the final formation (at t = 100), respectively. From these results,
we conclude that the proposed controllers solve the mass game problem for any
reference image.
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(a) Initial formation. (b) t = 1.

(c) t = 3. (d) t = 5.

(e) t = 10. (f) t = 100.

Figure 5.13: Simulation result for Airplane.
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(a) Reference image. (b) Initial formation. (c) Final formation.

Figure 5.14: Simulation result for Elaine.

(a) Reference image. (b) Initial formation. (c) Final formation.

Figure 5.15: Simulation result for House.

(a) Reference image. (b) Initial formation. (c) Final formation.

Figure 5.16: Simulation result for Clock.
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Next, we perform the quantitative evaluation of the proposed controllers. As
mentioned in Section 5.1.3, it is in general difficult to quantify the specification
on human perception, that is, the visual quality. Therefore, the following method
is proposed.

We first introduce the performance index called the peak signal to noise ratio
(see, e.g., [63]) :

PSNR := 10 log10


µ × ν

∥V −W∥2


(5.20)

where V ∈ Rµ×ν and W ∈ Rµ×ν are the matrices denoting two images. This crite-
rion is typically used to quantify the difference between an original image and a
processed image. The higher value implies that the two images are closer.

However, the resulting formation is not a digital image but a formation; that is,
the robots can be placed at any locations in Q. So, the PSNR value of the resulting
formation is defined as follows. LetΦ ∈ Rµ×ν be the matrix whose (i, j)-th element
is the (i, j)-th pixel value of the µ × ν discretized image of φ. We divide the mass
game field Q into the µ × ν blocks Qi j (i = 1, 2, . . . , µ, j = 1, 2, . . . , ν), and let
X ∈ Rµ×ν be the matrix corresponding to the resulting formation, i.e.,

[X]i j :=

0 if ai j ≥ 0.5,
1 otherwise

(5.21)

where ai j ∈ R0+ is the area ratio of the robots over Qi j to Qi j. Then, V and W
in (5.20) are defined as the matrices given by applying a human visual filter (see
Appendix 5.D) to Φ and X, which, together with (5.20), gives the PSNR value of
the resulting formation. Using this, we perform the quantitative evaluation of the
proposed controllers.

Table 5.1 shows the PSNR values of the resulting formations. For comparison,
the PSNR values for several halftone images and the formations by the controllers
proposed in Section 5.2, which are defined in the same manner as above, are also
provided in the table. Here, µ := 256 and ν := 256, and the halftone images are
generated by applying the standard method called the error diffusion [60] to the
downsampled µ × ν original image.

Noting again that the higher PSNR value indicates better performance, we see
that the proposed controllers provide formations which are better than the 64× 64
pixel halftone images and worse than the 128×128 pixel halftone images, in terms
of the visual quality. The number of the robots, which corresponds to the number
of black pixels, is 7500, and so we conclude that the proposed controllers generate
formations whose visual quality is comparable to that of the halftone images.

Furthermore, by comparing with the formations by the the controllers given
in Section 5.2, It turns out that the proposed controllers have much better perfor-
mance (approximately up to 8.6 dB). The reason is that the proposed controllers
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Table 5.1: PSNR performance of proposed controllers

PSNR [dB] Airplane Elaine House Clock

Resulting formation 13.14 12.38 12.73 13.99
Halftone image (64 × 64 pixels) 8.65 8.13 8.29 9.39
Halftone image (128 × 128 pixels) 13.80 13.83 13.89 14.28
Halftone image (256 × 256 pixels) 25.94 26.33 25.77 25.10

Formation by (5.4) and (5.5) 6.32 9.49 7.68 5.33

evacuate unnecessary robots for displaying the reference images, while the pre-
vious controllers do not. In fact, Table 5.2 shows the numbers of the players in
the resulting formations, and they are different for each reference image. More-
over, by noting that Airplane and Clock are brighter than House and Elaine, the
number of the players is smaller for brighter images which only need fewer robots
to express themselves. Meanwhile, in the previous controllers, the number of the
players is the same for any reference image, and thus the performance for brighter
images is worse. This is shown in Table 5.1.

Finally, we investigate the relation between the performance and the size of
the robots. Table 5.3 presents the PSNR values of the resulting formations for
several a, where n := 3000. We see that the performance for a := 1.0 × 10−4, i.e.,
medium-sized robots, is best. The reason can be considered as follows. Let us
recall that the robots correspond to black pixels. If a is a large value, the resulting
formation looks a low-resolution image, and so the visual quality will be bad.
Conversely, if a is a small value and the number of the robots is not enough to
display reference images, then the proposed controllers provide formations which
look brighter than the reference images.

In this way, we have evaluated the performance of the proposed controllers.
From the above result, it is concluded that the proposed controllers are a solution
to the mass game problem.

5.5 Summary

This chapter has considered a design problem of a controller network for the mass
games. Based on ideas from the control theory and the image processing, we have
derived a controller network to generate formations displaying grayscale images.
The performance has been verified by numerical experiments with the standard
images, which has shown that our controller network realizes the mass games.
In addition to this, we have presented extensions to the cases of r-disk proximity
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Table 5.2: Numbers of players in resulting formations

Airplane Elaine House Clock

Player 2233 3813 2925 2157

Table 5.3: PSNR performance of proposed controllers for several a

Area ratio a Airplane Elaine House Clock

3.0 × 10−4 10.96 9.96 10.29 11.82
1.0 × 10−4 12.74 10.66 12.11 12.56
0.3 × 10−4 11.30 7.60 9.67 10.94

networks and a variable number of player robots. The former enables us to achieve
the mass games even though the communication range of the robots is limited.
The latter drastically improves the visual quality of the resulting formations.

Appendix 5.A Calibration of Weighting Function ϕ

Figure 5.17 shows the resulting formations for several weighting functions, where
the setting of the simulation is the same as that in Section 5.2.3. From these results
and the reference image shown in Figure 5.3 (a), we have chosen ϕ(q) := e−10φ(q) as
a weighting function. This is because Figure 5.17 (c) well captures the feature that
the cheek of the lady in Figure 5.3 (a) is expressed by almost the same darkness.

Appendix 5.B Proofs of Facts (i) and (ii) in Proof of
Theorem 5.1

Proof of (i)

It has been shown in [71] that the partial derivative of Ĵ(x) with respect to xi is
expressed as

∂Ĵ(x)
∂xi

= −2

Vi(x)∩B(xi,r/2)

e−10φ(q)dq

cent(Vi(x) ∩ B(xi, r/2), e−10φ(q)) − xi

⊤
.

(5.22)
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(a) ϕ(q) := e−φ(q). (b) ϕ(q) := e−5φ(q). (c) ϕ(q) := e−10φ(q).

(d) ϕ(q) := e−15φ(q). (e) ϕ(q) := e−20φ(q). (f) ϕ(q) := e−25φ(q).

Figure 5.17: Simulation results for several weighting functions.

From (5.1), (5.8), and (5.22), we have

˙̂J(x(t)) =
n

i=1

∂Ĵ(x(t))
∂xi

ẋi(t)

= −2k
n

i=1


Vi(x(t))∩B(xi(t),r/2)

e−10φ(q)dq

× ∥cent(Vi(x(t)) ∩ B(xi(t), r/2), e−10φ(q)) − xi(t)∥2. (5.23)

Thus, since k > 0 and e−10φ(q) > 0 for every q ∈ Q, ˙̂J(x(t)) is negative semi-definite,
which completes the proof.

Proof of (ii)

From (5.23), the set of the points satisfying ˙̂J(x) = 0 is given by
x ∈ R2n

 xi = cent(Vi(x) ∩ B(xi, r/2), e−10φ(q)) (i = 1, 2, . . . , n)

. (5.24)
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From (5.1) and (5.8), ẋi(t) ≡ 0 ∀i ∈ {1, 2, . . . , n} for any x of the set (5.24). So, the
set (5.24) is an invariant set. Moreover, it follows from (5.22) that the set (5.24) is
the set of solutions to ∂Ĵ(x)/∂x = 0. This proves (ii).

Appendix 5.C Proofs of Facts (i)–(iii) in Proof of The-
orem 5.3

Proof of (i)

The following three facts show (i).

• If robot i is a player and the controller Ki is switched to Ki2, then it is not
switched to Ki1.

• When the above switching does not occur, robot i becomes a nonplayer in a
finite time by the sub-controller Ki1,

• A nonplayer does not become a player.

The first one follows from fact (ii) in Section 5.4.1. The second one is as described
in Section 5.4.1. The third one follows since the sub-controller Ki3 moves robot i
away from the field Q.

Proof of (ii)

From (5.18), x̄(t) denotes the collective position of the players. Thus, by regarding
x̄(t) in Ki2 as x(t) in (5.4), facts (i) and (ii) in Section 5.2.1 and LaSalle’s principle
prove the statement.

Proof of (iii)

First, we show that the nonplayers remain in the space Q̂ \Q. As aforementioned,
a nonplayer does not become a player. Therefore, if robot i becomes a nonplayer
at a time t1 ∈ [0,∞), it is a nonplayer and is governed by Ki3 on the time interval
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[t1,∞). Then, from (5.1), (5.14), and (5.16), we have

max
t2∈[t1,∞)

∥xi(t2) − xi(t1)∥ = max
t2∈[t1,∞)


 t2

t1
ẋi(t)dt


≤ max

t2∈[t1,∞)

 t2

t1
∥ẋi(t)∥ dt

<

 ∞

t1
∥ẋi(t)∥ dt

≤

 ∞

t1

k
(1 + t)c dt +

 t1

0

k
(1 + t)c dt

=

∞ if c ≤ 1,

−
k

1 − c
otherwise.

(5.25)

Moreover, it can be shown by a simple calculation that

max
t2∈[t1,∞)

∥xi(t2) − xi(t1)∥ < min
(q1,q2)∈bd(Q̂)×bd(Q)

∥q1 − q2∥ (5.26)

under (5.19). So, if xi(0) ∈ Q \ cent(Q, 1), then xi(t) ∈ Q̂ \ Q for every t ∈ [t1,∞).
This shows the above statement.

Next, we prove that the nonplayers converge to a configuration. Suppose again
that robot i is a nonplayer and is steered by Ki3 on the time interval [t1,∞). Then,
from (5.14), (5.16), and the fact that limt→∞ 1/(1 + t)c = 0 for c ∈ R+, we obtain
limt→∞ ui(t) = 0. Hence, limt→∞ ẋi(t) = 0 holds because of (5.1). This implies the
statement, and the proof is completed.

Appendix 5.D Human Visual Filter
The human visual filter, proposed in [72] as a model of the human visual system,
is shown in Figure 5.18. The matrices U and Y are the input and output images of
µ× ν pixels. The map F is the Fourier transformation with the Nyquist frequency

ωxmax :=
πνδ

360ℓx
, ωymax :=

πµδ

360ℓy

where δ ∈ R+ is the viewing distance from the eye and ℓx ∈ R+ and ℓy ∈ R+ are
the image sizes in the horizontal and vertical directions. The output is denoted by
Ũ(ωx, ωy) for the horizontal and vertical frequency variables ωx and ωy in cycles
per degree. The filter H denotes the spatial lowpass filtering property of the human



80 Motion Coordination by Controller Networks: Robotic Mass Games

HU Y

Figure 5.18: Block diagram of human visual filter.

eye, which multiplies

h(ωx, ωy) :=



0.0499 + 0.2964ωr(ωx, ωy)


exp


−(0.114ωr(ωx, ωy))1.1


if ωr(ωx, ωy) ≥ 7.8909,

0.9809 otherwise

by Ũ(ωx, ωy), where

ωr(ωx, ωy) :=


ωx

2 + ωy
2

0.15 cos

4 arctan(ωy/ωx)


+ 0.85

.

Finally, the map F −1 is the inverse Fourier transformation. In Section 5.4.3, we
have used this human visual filter with d := 500 [mm], ℓx := 30 [mm], and ℓy :=
30 [mm].



Chapter 6

Conclusion

This thesis has addressed several design problems of the controller network. More
precisely, we have considered the problems of

1) designing a controller network to stabilize a given plant subject to the con-
straints that the network topology is unknown and all the controller nodes
are the same,

2) designing a controller network for the real-time pricing, such that the total
power consumption of consumers tracks a given reference input subject to
a constraint on the range of the power price,

3) designing a controller network for the robotic mass games, i.e., to let robots
organize themselves into a formation displaying a given grayscale image.

For these three problems, the thesis has made the following contributions.

• In Chapter 3, we have presented a solution to problem 1. It is given as the
combination of sensor nodes, controller nodes, and an actuator node, such
that the resulting network acts as a state feedback controller. By introducing
a parameterized coordinate transformation and reducing the stabilization
problem to finding a range of the parameter, we have derived gain conditions
for the stability of the resulting feedback system. Furthermore, we have
clarified the relation between the stabilizing gain and the network topology,
which enables us to easily design the stabilizing gain. These results will be
useful to design a controller network which is scalable and robust against
changes in the network topology.

• In Chapter 4, we first have derived a necessary for solvability of problem 2.
This clarifies the relation between the upper bound of the power price and
the reference input which the total power consumption can track. Then, we
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have presented a controller network for the real-time pricing by extending
the result in Chapter 3 to integral control. With this result, we can achieve
the real-time pricing without collecting the information on the power con-
sumption from all the consumers.

• In Chapter 5, we have given a solution to problem 3. The key idea behind
this result is to fuse ideas from the control theory and the image processing.
The solution has been verified by numerical experiments with the standard
images, and it has been demonstrated that our controller network generates
formations displaying grayscale images. In addition, we have presented ex-
tensions to the cases of r-disk proximity networks and a variable number
of player robots. The former enables us to achieve the mass games even
though the communication range of the robots is limited. The latter drasti-
cally improves the visual quality of the resulting formations.

Although such results have been obtained, there are a number of issues to be
addressed. We conclude this thesis by showing some of them as follows:

• In all the problems handled here, we should consider unreliability of com-
munication, e.g., noise, delays, and packet dropouts, for practical use.

• Our result for problem 1 should be extended to output-feedback control and
multiple-input plants for a wide range of applications.

• For problem 2, we should give a solution considering the effect of the satu-
ration of the power price because it may make the real-time pricing system
unstable and as a result social disruption is caused.

• It is necessary from a practical standpoint to introduce a collision avoidance
algorithm (e.g., the potential field method [22]) to our controller network
for problem 3.



Appendix A

Auxiliary Results for Proofs

We present here results used in some proofs in this thesis.

A.1 Gershgorin Theorem
The following result is known as Gershgorin theorem.

Theorem A.1 For the matrix M ∈ Cn×n, all the eigenvalues of M are in the set

n
i=1

s ∈ C

 s − [M]ii

 ≤ n
j=1, j,i

[M]i j

 . (A.1)

■

The proof can be found in [73].
Gershgorin theorem gives the relation between the elements of a matrix and

the region where the eigenvalues exist. This allows us to obtain information on
the eigenvalues of a matrix from its elements.

A.2 LaSalle’s Principle
Consider the system

ẋ(t) = f (x(t)) (A.2)

where x(t) ∈ Rn is the state and f : Rn → Rn is a Lipschitz function on Rn. For
this system, a set S is said to be an invariant set if

x(t) ∈ S ∀t ∈ R+

for every x(0) ∈ S.
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The following theorem provides a sufficient condition to guarantee that the
solution to the system (A.2) converges to an invariant set, which is called LaSalle’s
principle.

Theorem A.2 Consider the system (A.2). Let M ⊂ Rn be a compact set and let
V : Rn → R be a continuously differentiable function. Assume that M is an
invariant set for (A.2) and V̇(x) ≤ 0 for every x ∈ M. Then, every solution to
(A.2) starting inM converges to the largest invariant set in {x ∈ M | V̇(x) = 0}. ■

The proof can be found in [74].
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