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Abstract

In recent years, brain-machine interfaces (BMIs) have been the focus of attention in both

biomedical and engineering research fields because BMIs have potential capability to assist

handicapped people and to enhance people’s lifestyles. With this growing interest in BMIs,

developing new methods of decoding that are non-invasive and portable, based on such as

electroencephalography (EEG) and near-infrared spectroscopy (NIRS), is of major importance.

Modalities such as EEG and NIRS are the only ones that are applicable to non-laboratory based

environments and suitable for practical, real-world BMI applications. However, the use of EEG

and NIRS involves certain inherent problems. EEG signals are generally a mixture of neural

activity from broad areas (i.e., volume conduction effects), some of which may not be related to

the task targeted by BMI, hence impairing BMI performance. NIRS has an inherent time delay

as it measures blood flow, which therefore detracts from practical real-time BMI usefulness.

Moreover, measurement signals by these modalities suffer from variability across different sub-

jects, or variability due to physical and mental drift in a single subject during different recording

sessions. Consequently, these difficulties deteriorate the performance of BMI and decrease the

information-transfer rate (ITR). Thus, it is hoped that novel methods are proposed to solve these

difficulties of EEG-NIRS-based BMI in order to realize dependable BMI systems working in

real environments.

This thesis illustrates three approaches which have the potential to develop BMI in real

environments. Chapter 3 describes a method for cortical current estimation from EEG with

the help of information from NIRS. This method is effective for studying human brain activ-

ity at the cortical level with a higher spatial resolution than that of EEG sensors, with less

contamination caused by EEG volume conduction effects. It is then effective and workable in

non-laboratory, naturalistic conditions. Chapter 4 presents a novel methodology to robustly an-
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alyze multi-subject brain activity with inherent variability across subjects. This method is based

on the unsupervised signal processing technique of dictionary learning, which was extended to

compensate for variations between subjects and sessions, and is effective for analyzing large-

scale brain databases consisting of inherent variability across subjects. We applied these two

novel methods to a dataset of EEG and NIRS recordings during a newly-proposed selective

visual-spatial attention task from multiple subjects. We thus confirmed the effectiveness of

these methods for analyzing multi-subjects’ EEG-NIRS data under contamination of non-target

neural activities and inherent variability across subjects. Chapter 5 describes a method of robot

navigation for realizing a semi-autonomous BMI-controlled wheelchair that is usable even by

subjects who have relatively low ITR. The combination of BMI with robotics can provide a

promising framework by complementing the limited decoding accuracy and ITR with external

autonomous devices. All of these novel methods have potential to solve important issues faced

by the EEG-NIRS-based BMI in real environments, and thus deserve broad exposure within the

BMI community.
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Chapter 1

Introduction

Brain-machine interface (BMI) has attracted much attention in biomedical engineering fields

for its usefulness in assisting handicapped people and enhancing people’s lifestyles (Iturrate

et al., 2009; Rebsamen et al., 2010; Tanaka et al., 2005; Wolpaw and Wolpaw, 2012). Although

the brain analysis has been the source of countless research contributions, it needs a lot more

efforts for realizing practical applications of them to BMI in real environments.

It is of major importance to develop new methods of neural decoding based on non-

invasive and portable measurements such as electroencephalography (EEG) and near-infrared

spectroscopy (NIRS) because these are the only methods that are currently applicable in non-

laboratory environments and suitable for practical real-world BMI applications. Although there

exist several technologies for measuring human brain activity, non-invasive methods are pre-

ferred owing to their longevity and safety, e.g., EEG, NIRS, magnetoencephalography (MEG),

and functional magnetic resonance imaging (fMRI). Although MEG and fMRI’s higher spa-

tial/temporal resolution has led to success in existing decoding studies (Chan et al., 2011;

Kamitani and Tong, 2005; Waldert et al., 2008), they lack the portability possessed by EEG

and NIRS, during which the body does not need to be fixed. However, EEG and NIRS lack the

decoding methodologies that can match the performance of decoding from fMRI and MEG.

The difficulties of BMIs based on the EEG and NIRS modalities mainly come from three

aspects; i.e., low spatial resolution, variability across subjects, and low information-transfer rate

(ITR). EEG measures the voltage fluctuations on the scalp, which result from ionic current flows

caused by a large number of neurons; therefore, EEG signals comprise a mixture of signals orig-
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inating from different cortical areas (i.e., volume conduction effects) (Wolters et al., 2006). The

contamination of electrical measurements originating from regions not related to the task tar-

geted by the BMI can deteriorate the BMI’s performance. On the other hand, NIRS measures

the hemodynamic response using near-infrared light. Since NIRS does not suffer from the vol-

ume conduction effects, it has slightly higher spatial resolution than EEG. However, NIRS has

inherent time delays as it measures blood flow caused by neural metabolism, and this greatly

hinders real-time BMI. Thus, analysis methods that combine the advantages of these modalities

and cancel out weaknesses are desirable. The second difficulty is how to deal with undesired

variability across different subjects or variability during different recording sessions from a sin-

gle subject. For instance, EEG often suffers from physical and mental drift. Physical variations

include misalignment of sensors (electrodes) over days or recording sessions, different shapes

of the head or skull across subjects, and changes in sensor impedance over time. Even when

subjects perform exactly the same task, brain activity patterns also vary substantially across sub-

jects (Garrett et al., 2011; McIntosh et al., 2013). Brain signals vary even in the same subject

because of different physical and mental conditions, or interference from task-irrelevant brain

activity. Such unavoidable variability is an obstacle to the highly successful application of BMIs

in daily life, and to neuroscientific group or longitudinal analyses using large-scale databases.

The third difficulty comes from low ITR of BMI based on EEG and NIRS. The ITR is calcu-

lated from the number of possible choices by BMI and the probability that the desired choice

will be selected (also called decoding accuracy)(Yuan et al., 2013). Although many researchers

have devoted their efforts in increasing the ITR by improving decoding techniques, currently it

is reaching the ceiling.

In the chapters that follow, we tackle these problems related to EEG-NIRS-based BMIs

working in real environments. Chapter 2 surveys the background of BMIs. In Chapter 3, to

try to improve real environment EEG-NIRS-based BMIs, we propose a novel methodology in

which the subjects’ mental states are decoded from cortical currents estimated from EEG, with

the help of information from NIRS. Source current localization, which reconstructs cortical

currents based on measurements outside the scalp, has the potential to overcome the limita-

tions of EEG-NIRS measurements. Using a Variational Bayesian Multimodal Encephalography

(VBMEG) methodology, we incorporated a novel form of NIRS-based prior-to-capture event-

related desynchronization from isolated current sources on the cortical surface. Then, we ap-
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plied a Bayesian logistic regression technique to decode subjects’ mental states from further

sparsified current sources. Applying our methodology to a spatial attention task, we found that

our EEG-NIRS-based decoder exhibited significant performance improvements over decoding

methods based on EEG sensor signals alone. The advancement of our methodology, decoding

from current sources sparsely isolated on the cortex, was also supported by neuroscientific con-

siderations; the intraparietal sulcus, a region known to be involved in spatial attention, was a key

responsible region in our task. These results suggest that our methodology is not only a practical

option for EEG-NIRS-based BMI applications, but is also a potential tool to investigate brain

activity in non-laboratory and natural environments.

In Chapter 4, to try to accommodate variability across subjects, we propose 1) a method

for extracting spatial bases (or a dictionary) shared by multiple subjects, by using the signal-

processing technique of dictionary learning modified to compensate for variations between sub-

jects and sessions, and 2) an approach to subject-transfer decoding that uses the resting-state

activity of a previously unseen target subject as calibration data to compensate for variations,

eliminating the need for a standard calibration based on task session. We applied our methodol-

ogy to a dataset of EEG recordings during a selective visual-spatial attention task from multiple

subjects and sessions, where the variability compensation was essential for reducing the redun-

dancy of the dictionary, we found that the extracted common brain activities were reasonable

in the light of neuroscience knowledge. The applicability to subject-transfer decoding was con-

firmed by improved performance over existing decoding methods. These results suggest that

analyzing multi-subject brain activity on a common basis using the proposed method enables

information sharing across subjects with low-burden resting calibration, and is effective for

practical use of BMI in variable environments. Moreover, the novelty would contribute to the

neuroscience and neuroengineering communities and deserves their broad interest because they

both will be important in the coming era of large-scale brain databases in natural conditions.

In Chapter 5, to try to practically develop an application of BMI to a wheelchair which is

usable even by subjects who have relatively low ITR, we propose a novel method of robot nav-

igation to realize a stable semi-autonomous BMI-wheelchair that coexists with human beings.

The proposed method is a vision-based mobile robot’s simultaneous localization and mapping

(SLAM) and navigation system which is applicable to the BMI-controlled wheelchair workable

even in real and crowded environments. The proposed method is stable even in crowded envi-
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ronments by extracting robust 3D feature points from sequential vision images and odometry

information. We present experiments showing the utility of our approach in crowded envi-

ronments, including map building and navigation. The combination of BMI with robotics can

provide a promising framework by complementing the limited decoding accuracy and ITR with

external autonomous devices.
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Chapter 2

Background on Brain-Machine

Interfaces

A BMI is a methodology to translate neuronal signals reflecting a person’s intention into

commands controlling a machine (e.g., cursor, robot, and prosthesis) (Dornhege et al., 2007;

Graimann et al., 2011; Tan and Anton, 2010; Wolpaw and Wolpaw, 2012). The BMI does

not depend on user’s muscle activity, and then can provide novel communication channels

to external devices for supporting their daily life; e.g., neuroprostheses, robotic wheelchairs,

mind-to-mind communication tools.

2.1 Measurement modalities

There are two strategies for recording the brains signals analyzed in BMI: invasive or nonin-

vasive strategies. Invasive BMI, which derives the user’s intention from spiking activities of

cortical cells through electrode arrays implanted into the brain, has been studied mainly in non-

human primates (Carmena et al., 2003; Mehring et al., 2003; Musallam et al., 2004; O’Doherty

et al., 2011; Serruya et al., 2002; Taylor et al., 2002; Velliste et al., 2008; Wessberg et al., 2000).

This approach is based on the finding that the direction of arm movements can be decoded from

the firing rates of neurons in the motor cortex (Georgopoulos et al., 1986). Instead of implanting

electrodes into the brain, electrocorticography (ECoG) is also used for recording brain activity

in BMIs (Chao et al., 2010; Leuthardt et al., 2004; Mehring et al., 2004; Schalk and Leuthardt,
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2011). ECoG measures the electrical activity of the brain through electrodes embedded in a thin

plastic pad that is placed on the cortex. Because ECoG is implanted inside the skull but rests

outside the brain rather than within the grey matter, it has a lower risk of forming scar tissue in

the brain than fully invasive BMIs such as an implant of electrode arrays. More recently, these

invasive techniques have also been successfully applied to human subjects; e.g., reconstruction

of hand motions from neuronal activity in the motor cortex (Collinger et al., 2013; Hochberg

et al., 2012, 2006; Yanagisawa et al., 2012). Although these invasive techniques have the ad-

vantage of higher spatial resolution, better signal-to-noise ratio, and a wider frequency range,

they face substantial technical difficulties and entail clinical risks (e.g., infection and damage to

the brain). For the implantation of electrodes in the cortex, developing bio-compatible devices

that are safe and stable over long periods of time is an ongoing challenge. Thus, compared with

these invasive recordings, non-invasive methods are desirable for broad use in BMIs owing to

their longevity, cost, and safety being free from surgical operations.

Most non-invasive modalities measure either electrophysiological or hemodynamic sig-

nals. Electrophysiological recordings detect changes in electric or magnetic fields induced by

neural activity. The hemodynamic signal reflects neural activity, in which energy consumption

is correlated with blood oxygenation. Some major candidates of these non-invasive modalities

(i.e., EEG, NIRS, MEG, and fMRI) are provided below (Fig. 2.1).

EEG

EEG measures voltage fluctuations on the scalp surface, and is most widely used for BMIs in

realistic environments (Birbaumer et al., 1999, 2003; Do et al., 2013; Doud et al., 2011; Hin-

terberger et al., 2003; Iturrate et al., 2009; Pfurtscheller et al., 2003; Rebsamen et al., 2010;

Tanaka et al., 2005) because of its high portability and measurability in these environments.

The origin of EEG signals is electrical dipole activities of neuronal cell assemblies in the cor-

tex. Compared with invasive modalities, EEG recordings have a much lower spatial resolution,

but the temporal resolution can be high. This is because EEG measures brain activity on the

scalp through the brain, cerebral spinal fluid (CSF), and skull, and thus suffers from volume

conduction, which represents the manner by which the source current spreads through these

tissues and is determined by the geometric (i.e., surface shapes) and electrical resistivity of the

tissues (Wolters et al., 2006). Therefore, EEG represents the spatially averaged source activity
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EEG

MEG fMRI

NIRS

Fig. 2.1 Some major examples of non-invasive measurement modalities; i.e., electroen-
cephalography (EEG), near-infrared spectroscopy (NIRS), magnetoencephalography (MEG),
and functional magnetic resonance imaging (fMRI). Photographs of the MEG and the fMRI
were taken by the National Institute of Information and Communications Technology (NICT,
http://www.nict.go.jp/ ) and Brain Activity Imaging Center, Advanced Telecommunications
Research Institute International (BAIC, ATR, http://www.baic.jp/ ).

occurring within large parts of the underlying cortex, about 10–40 cm2 of the cortical sheet, and

thus each electrode reflects the source activity in tissue containing on the order of 100 million to

one billion neurons (Wolpaw and Wolpaw, 2012). This is why EEG has relatively poor spatial

resolution. The contamination of measurement signals originating from regions not related to

the task targeted by the BMI can deteriorate the BMI’s performance.

MEG

Neural activity is also reflected in magnetic field fluctuations that can be measured non-

invasively by MEG (Cohen, 1968; Hämäläinen et al., 1993). MEG is most sensitive to cortical

dipoles tangential to the scalp (Cuffin and Cohen, 1979). Compared with EEG, MEG has

a higher spatial resolution because the magnetic fields measured with MEG are not affected
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by volume conduction and can resolve finer structures than EEG (Cuffin and Cohen, 1979;

Grynszpan and Geselowitz, 1973). In contrast to its advantages of higher spatial resolution and

successful application to BMIs (Buch et al., 2008; Chan et al., 2011; Kauhanen et al., 2006;

Mellinger et al., 2007; Waldert et al., 2008), MEG technology is expensive and cumbersome. It

must be used in a magnetically shielded room to avoid external magnetic signals, including the

Earth’s magnetic field, and the coils must be supercooled with liquid helium. These practical

disadvantages make it a method that can be supportive of, but not primary to, BMI development

in natural conditions.

fMRI

fMRI is the most popular modality for non-invasively measuring the hemodynamic response in

the entire brain (Friston, 2009; Ogawa et al., 1990), and is most widely used in neuroscience and

neurodecoding studies (Haxby et al., 2001; Horikawa et al., 2013; Kamitani and Tong, 2005;

Shibata et al., 2011). fMRI measures the blood-oxygen level dependent (BOLD) signal that cor-

relates closely with electrical activity in the cortex (Hermes et al., 2012; Ramsey et al., 2006).

As neural activity increases, oxygen is carried via hemoglobin molecules in the blood (oxy-

genated hemoglobin, oxyHb), and then is consumed by the cells (deoxygenated hemoglobin,

deoxyHb). The important aspect for neuroimaging is that oxyHb and deoxyHb have different

magnetic properties. This gives rise to the BOLD signal (Ogawa et al., 1990), which can be de-

tected by fMRI. The fMRI signal is a complex combination of blood oxygenation, blood flow,

and blood volume (Buxton et al., 2004), and the relationship between neural and fMRI signals is

still controversial (Logothetis, 2008). The best spatiotemporal resolution for whole-brain imag-

ing is obtained using fMRI, and is on the order of 2 mm (Shmuel et al., 2007; Sirotin et al.,

2009). The temporal resolution of fMRI is about 1 Hz, and is limited in principle by the fact

that the hemodynamic response itself is slow; it is much slower than the signals measured by

electrical measuring methods. An advantage of fMRI analysis is that subjects’ brain scans can

be co-registered with template brains, which makes multi-subject analysis possible. Although

fMRI is likely to be most useful as a noninvasive method for localizing brain function in the

entire brain, it is very expensive, cumbersome, and technically complex. It is also not portable.

Thus fMRI cannot be applied to BMIs working in real environments.
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NIRS

As with fMRI, NIRS also measures the hemodynamic response non-invasively using near-

infrared light, which can travel through the intact skull (Boas et al., 2004; Jobsis, 1977; Vill-

ringer and Chance, 1997). NIRS devices consist of light-source and detector pairs positioned on

the scalp. When the light source shines near-infrared light of a particular wavelength through

the skull and scalp, the light passes through to the brain, is reflected back out of the brain, and

is detected by the detector. As oxygenated and deoxygenated blood have different wavelength

absorption characteristics, neural activity can be measured by examining the reflected light.

Whereas fMRI can image the entire brain including deep subcortical structures, fNIRS is lim-

ited to the top few millimeters of the cortex, just below the skull. It has relatively lower spatial

resolution (on the order of centimeters) than that of fMRI, but slightly better spatial resolution

than that of EEG. Its temporal resolution is limited to several seconds primarily because of the

slow response of the hemodynamic activity. Despite its limitations, NIRS has some promise as

a method for BMI apprecations; fMRI for example is very expensive, cumbersome, and tech-

nically complex, whereas fNIRS is inexpensive, relatively easy to use, and portable (Villringer

and Chance, 1997; Wolf et al., 2007). Thus, the optical imaging method of NIRS is a sensi-

ble alternative for measuring hemodynamic activity in BMIs in real environments (Coyle et al.,

2007; Falk et al., 2011; Power et al., 2011; Sitaram et al., 2009).

2.2 Brain functions used in BMI

What type of brain function should be used in BMIs is an ongoing issue, and several approaches

and brain functions have been used to output commands to external devices. Here, some exam-

ples of the most widely used modalities are provided: P300 event-related potentials, sensorimo-

tor rhythms, and steady-state visual evoked potentials.

P300 event-related potentials

P300 is an event-related positive deflection, that occurs around the central parietal region and

is elicited by the subject’s decision during a rare event. The P300 is used in BMI in the con-

text of the Oddball Paradigm (Donchin and Coles, 1988; Farwell and Donchin, 1988), i.e., 1)
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A subject is presented with a series of events, each of which falls into one of two classes. 2)

The events that fall into one of the classes are less frequent than those that fall into the other

class. 3) The subject performs a task that requires classifying each event into one of the two

classes. The P300 is elicited by events of the less-frequent class, and its amplitude depends

on the subject’s attention. Thus, we can decode the choice (decision) of the subject by de-

tecting the P300. P300-based BMIs have been successfully used because of their simplicity,

inexpensiveness, and stable performance (Birbaumer et al., 1999; Farwell and Donchin, 1988;

Hoffmann et al., 2008; Kübler and Neumann, 2005; Nijboer et al., 2008; Sellers et al., 2006,

2010; Vaughan et al., 2006). However, they have relatively slow communication rates, and need

external visual/auditory devices to provide subjects with stimuli for eliciting the P300.

Steady-state visual evoked potentials

Visual evoked potentials (VEPs) are one kind of EEG evoked potential (EP), and are evoked by

a sudden visual stimulus. Steady-state VEPs (SSVEPs) are stable voltage oscillations elicited

by rapid repetitive stimulation such as a strobe light or a pattern-reversing checker box presented

on a monitor. They are induced around the primary visual cortex. In the standard SSVEP-based

BMI, the user views a set of stimuli, which are placed at different locations in the visual field and

flash at different rates (e.g., 8 Hz, 12 Hz, and 15 Hz). When the user looks at one of the stimuli,

the frequency spectrum corresponding to that stimulus shows peaks, and can be detected from

the power spectral density of EEG around the primary visual cortex. As with P300-based BMIs,

SSVEP-based BMIs have also been successfully used because of their robustness (Allison et al.,

2008; Brunner et al., 2010; Lalor et al., 2005; Middendorf et al., 2000; Müller-Putz et al., 2005;

Pfurtscheller et al., 2010); however, they need external visual devices to show visual stimuli to

the user.

Sensorimotor rhythms

Sensorimotor rhythms (SMRs) are electrical oscillations recorded over the sensorimotor cor-

tices. SMR-based BMI is the most widely used modality for BMIs (Blankertz et al., 2007;

Hema et al., 2011; Leeb et al., 2007; McFarland et al., 2010; Pfurtscheller et al., 1993, 2000;

Pfurtscheller and Neuper, 2006; Wolpaw and McFarland, 2004), and is based on much evidence

that the execution or imagination of different parts of the body induces changes in rhythmic
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activity recorded over corresponding regions of sensorimotor cortex (Holmes, 1999; Neuper

et al., 2006, 2009; Pfurtscheller and Aranibar, 1979). The point-to-point correspondence be-

tween body parts and specific cortical regions is called somatotopy. The SMR-based BMIs

translate the imagined particular actions (e.g., left hand movement, right hand movement, and

foot movement) into outputs such as cursor movement. Compared with P300 and SSVEP-based

BMIs, SMR-based BMIs have an advantage in that they do not require external devices to pro-

vide the user with visual stimuli. However, the performance of SMR-based BMI is closely

related to the user’s ability to imagine the motor movements.
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Chapter 3

Decoding from cortical currents

estimated from EEG and NIRS

3.1 Introduction

For practical BMIs, EEG and NIRS are the only current methods that are non-invasive and

available in non-laboratory environments. However, the use of EEG and NIRS involves certain

inherent problems. EEG signals are generally a mixture of neural activity from broad areas,

some of which may not be related to the task targeted by BMI, hence impairing BMI perfor-

mance. NIRS has an inherent time delay as it measures blood flow, which therefore detracts

from practical real-time BMI utility.

Source current localization, which is to reconstruct cortical currents based on measure-

ments outside the scalp, has a potential to address these issues in EEG-NIRS-based BMIs work-

ing in real environments. Compared with decoding directly from EEG or NIRS measurements,

that from cortical currents has several advantages (Toda et al., 2011). First, EEG sensor sig-

nals are mapped onto currents on the cortex, each of which possesses information specific to

a particular cortical region, thus avoiding the volume conduction effect. In addition, artifacts

evoked by, e.g., eye movements can be eliminated by incorporating extra dipoles during the

source current estimation (Morishige et al., 2009). By estimating cortical currents and separat-

ing task-relevant brain activities, improvement in BMI performance can be expected. Second,

we may be able to obtain brain activities with higher spatial resolution by assuming a large
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number of cortical current dipoles compared to that of EEG sensors. Third, a large body of

neuroscientific knowledge can be used for validating the reconstructed cortical activities and

hence BMI decoders based on them. Cortical currents invoked by performing a task can be

analyzed based on the function of active brain regions. Since activity in a specific brain regions

would induce both cortical current and blood flow, we can compare the task-relevant cortical

current sources and the fMRI-based neural correlates involved in the same task. Despite such

advantages, cortical source current estimation is an ill-posed inverse problem because many

different source configurations can generate the same EEG observations (Grech et al., 2008;

Michel et al., 2004). Therefore, some prior assumptions are required to obtain a unique solu-

tion; e.g., L1-norm minimization method (Uutela et al., 1999), L2-norm minimization method

(Wang et al., 1992), LORETTA (Pascual-Marqui et al., 1994), and the Wiener filter or Bayesian

inference (Dale et al., 2000; Kajihara et al., 2004; Phillips et al., 2002; Schmidt et al., 1999)

which resolved the ill-posedness by using fMRI data as prior information on the source current

variance. More recently, VBMEG (Sato et al., 2004; Yoshioka et al., 2008) has been proposed to

incorporate the prior information as a hierarchical prior: the blood-flow information from fMRI

is substituted into the parameter specifying the probability distribution of the current variance

rather than the variance itself, and the variance is estimated through the variational Bayesian es-

timation procedure. This constitutes placing a soft constraint on the variance, and thus is robust

to the vulnerability of inaccuracies in prior information.

The simultaneous use of NIRS measurement is a promising solution for real-

environment BMI as it can reduce the ill-posedness of the EEG source current estimation

and estimate reasonable activation patterns. NIRS measures the concentration changes of

oxygenated and deoxygenated hemoglobins (oxyHb and deoxyHb, respectively) in the super-

ficial layers of the cortex (Villringer et al., 1993). Thus, NIRS can detect active, nonactive,

and deactive cortical regions via blood flow caused by neural activities that also induce EEG

signals. Aihara et al. (2012) showed that, by applying VBMEG to EEG measurement during

a finger tapping task, cortical currents could be estimated better by incorporating NIRS prior

than solely from EEG, though EEG and NIRS were measured by different but similar tasks.

Training a BMI classifier using relatively few data has an issue on the machine learning

side. Estimated current dipoles on the cortical surface are high-dimensional in general, having

more degrees of freedom as compared to the number of available data points, thus causing an
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overfitting problem (Hastie et al., 2009; Kriegeskorte et al., 2009). It is therefore important to

reduce the dimensionality by selecting in a sparse manner current dipoles that are relevant to the

task of interest. Sparse logistic regression (SLR; Yamashita et al., 2008) estimates the weight

parameters of logistic regression with the automatic relevance determination (ARD) hierarchical

prior via Bayesian inference, and can automatically and sparsely select informative features for

decoding (BMI classification) (Miyawaki et al., 2008; Shibata et al., 2011). Thus, by using SLR

for decoding after the cortical current estimation, we can effectively select the current dipoles

having region-specific information related to the task.

Spatial attention is often used as a task for BMI because it is natural in real environments

and justifiable from existing neuroscience/BMI studies. Because BMI users may not be able to

move their eyes, covert spatial attention is a standard and natural way to decode the direction of

intended control. In particular, it would be convenient to control objects in the visual domain

such as a cursor on a computer screen. Recent studies have reported that subjects’ covertly

attended direction could be decoded from brain activities even in a single trial. For instance,

Kelly et al. (2005a,b) showed that shifts in covert spatial attention between the left and right

visual hemifields can be decoded from EEG’s alpha-desynchronization in the posterior sites

contralateral to the attended hemifield; the average accuracy for off-line decoding was 73%

(Kelly et al., 2005a) and for on-line decoding was 62% (Kelly et al., 2005b).*1 This finding has

been followed by an MEG study (Van Gerven et al., 2009) with a reported off-line decoding

accuracy of 61% on average, and an fMRI study Andersson et al. (2011) in real-time with an

accuracy above 90%.

In this study, we propose a novel methodology for decoding covert spatial attention

from cortical currents estimated from EEG with NIRS prior information with an SLR classifier.

Structural MRI data are also used to provide accurate head models. This is the first study apply-

ing cortical current estimation from EEG with NIRS prior information to BMI decoding. We

introduce a novel form of Bayesian prior to capture event related desynchronization (i.e., mod-

ulations in frequency power) which is a well-known phenomenon during many tasks involving

higher-order functions including spatial attention. A major advantage of our new procedure is

*1 This percentage was not directly reported in Kelly et al. (2005b); however we calculated their average accuracy

by dividing the number of correct selections by the sum of the correct and incorrect selections (not including

inconclusive trials), which are shown in Table 1 of their article.
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that it can examine activation patterns on the cortex in light of existing neuroscientific knowl-

edge. Such verification would also imply the possibility that the EEG-NIRS-based decoding

technique contributes to studies of brain functions in non-laboratory and natural conditions.

3.2 Method

3.2.1 Subjects

Experiments were conducted on eight right-handed males between 20 to 40 years of age (mean:

24.6, SD: 6.4) who had normal or corrected-to-normal vision. All subjects gave written in-

formed consent for the experimental procedures, which had been approved by the ATR Human

Subject Review Committee.

3.2.2 Experimental setup

The subjects were seated in a comfortable chair 1 m away from a 19-inch display for visual

presentation. A white cross was displayed at the center of the display as a fixation point. Visual

stimuli of left and right bars were centered at an eccentricity of 8◦. The size of the bars was

1.3◦. The head position of the subject was fixed by chin and forehead supports. A keyboard for

response was placed in front of the subject. This experiment was conducted in a dark room.

3.2.3 Task for subjects

We used a spatial attention task in which subjects attend to the left or right following instruction

by the visual stimulus. This task was modified from Tootell et al. (1998). Figure 3.1A shows

the time course of epochs in a block. One block consisted of two epochs: Attention (8 s) and

Control (4 s). One experiment consisted of 8 sessions, and each session consisted of 24 blocks.

In the Attention epoch, two white flashing bars were presented repeatedly in a rapid

stream until the end of the epoch. These flashing bars were presented for 100 ms followed

by an inter-stimulus interval (600–800 ms) where no bar was presented. At each appearance,

the orientations of each bar were selected randomly with equal probability from the following:

−30◦, 0◦, and 30◦. To inform the subjects of the target direction of an epoch, one bar was
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colored red and the other was colored green at initial presentation in the epoch. The target

direction (Left or Right) was pseudo-randomly selected for each Attention epoch. We informed

the subjects of the target color (red or green) for each session before starting the session, and

the color was fixed during the session. To preclude issues from the difference in target color,

the order of color was pseudo-randomly selected for each session. During the Attention epoch,

subjects were instructed to fixate their eyes to the fixation point, and covertly and continuously

orient their attention to a single bar that was cued by a target color at the initial presentation of

the bars. To check whether the subjects continuously attended to the cued direction, we asked

the subjects to only press the button immediately after the target bar was vertical (0◦). Flash

timings and bars’ orientations were designed to be difficult for the subjects to respond without

the attention to the target direction.

The Control epoch always precedes the Attention epoch. Visual stimuli during the Con-

trol epoch are the same as those during the Attention epoch, i.e., repetitive presentations of left

and right bars. The bars presented for the first time in each Control epoch were colored blue.

The Control epoch was inserted to cancel out the difference of visual stimuli before and after

the onset of the Attention epoch, and to focus only on the modulation caused by selective spatial

attention. During the Control epoch, subjects were instructed to fixate their eyes on the fixation

point and to distribute their attention continuously and evenly over the two bars.

Each session consisted of 24 blocks (12 lefts and 12 rights), with short Rest epochs in

between (6–10 s). In the Rest epoch, nothing was displayed on the screen. The onset of each

block was cued by a short beep. During each block, subjects were instructed to steadily maintain

fixation on the fixation point and to refrain from blinking as much as possible. We conducted

8 sessions for each subject with a brief break between each session. Thus, the total number of

trials (Attention epochs) was 192 for each subject.

3.2.4 Data acquisition

We simultaneously recorded EEG and NIRS signals (Fig. 3.2). Using a Biosemi ActiveTwo

system, the EEG recording was performed at a sampling rate of 256 Hz with a 64-electrode

cap, referenced to the common mode sense (CMS) active electrode. EEG channels were placed

to cover the whole head (Fig. 3.1B, left). We also measured electrooculography (EOG) to
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ensure that subjects did not shift their eye gaze towards the attended directions by analyzing the

performances of decoders with EOG only.

NIRS recording was performed via FOIRE-3000 (Shimadzu Co., Japan), an optical

imaging system. We used 15 emitters and 15 detectors, placed to cover the parietal and oc-

cipital lobes, resulting in 49 channels (Fig. 3.1B, right). An emitter irradiates near-infrared

beams (wavelengths 780, 805, and 830 nm), and diffused beams sampled by a detector at 4 Hz

were used to calculate changes in the concentrations of oxyHb and deoxyHb. The distance

between one emitter and one detector was set at about 3 cm for each pair.

In order to construct forward models used in VBMEG, structural MRI data were

recorded via a 3T Magnetom Trio MRI scanner (Siemens, Germany). T1-weighted images

were acquired with the following parameters: repetition time of 2.25 s, time of echo 3.06 ms,

flip angle 9◦, slice thickness 1 mm, field of view of 256 × 256 mm, imaging matrix of 256 ×

256, and 208 slices.

Before starting a series of experiments, the face surface and the locations of EEG sensors

and NIRS probes were measured by FastSCAN (Polhemus, USA), a laser scanner and stylus.

The positions of EEG electrodes and NIRS probes were coregistered to the coordinates of the

T1-weighted image using the facial scan data and three reference points: the nasion, left pre-

auricular point (LPA), and right pre-auricular point (RPA).

3.2.5 EEG data preprocessing

EEG and EOG signals were passed through a band-pass filter (0.5–40 Hz). The filtered data

were then divided into trials. The baseline for each trial was corrected by subtracting the mean

value from that obtained 2 to 0 s before the Attention epoch.

We performed trial rejection based on the subjects’ task performance in each trial. We

rejected trials that were not significant with α = 0.05 under the null hypothesis that the number

of correct responses was in the chance level. Since a successful subject must not push the

button after non-vertical bar presentations, which occurs with 2/3 chance, the significance for

the chance level is calculated based on the cumulative function of a binomial distribution with

success probability 2/3. For each subject, 5 to 36 trials were rejected (subject-wise mean: 16.3,

SD: 12.2). Although we did not reject trials based on EOG (because the attentional duration
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was too long to keep the eyes open), we removed EOG artifacts from EEG using extra dipoles,

as mentioned in Section 3.2.7.

3.2.6 NIRS data analysis

Similar to the study by Aihara et al. (2012), we used the oxyHb concentration for this analy-

sis after determining that oxyHb produced a decoding accuracy higher than totalHb with our

technique.*2 For each channel, the baseline trend was removed by DCT-detrending (cutoff:

80 s), which is a standard detrending technique in SPM (Penny et al., 2006). The data were then

normalized by using the standard deviation during the Control epoch. We removed the first prin-

cipal component of data, which is considered to be the skin blood flow artifact (Virtanen et al.,

2009). After applying these filters, the skin-level NIRS signals were projected onto the cortical

surface using structural MRI and the three-dimensional positions of the probes, and interpolated

using the distance along the cortical surface.*3 We then calculated t-values for differences of

the NIRS activities between the Attention epochs and the Control epochs (i.e., mean(Attention

epoch)−mean(Control epoch)/standard error) by using the NIRS-SPM toolbox (Ye et al., 2009)

based on the general linear model with a design matrix calculated from a task schedule. Each

t-value was normalized to have a maximum absolute value of 1 when substituted into the hierar-

chical prior of VBMEG. When visualized on the cortical surface, the (unnormalized) t-statistics

were interpolated using a spatial smoothing matrix provided by VBMEG.

3.2.7 Cortical current estimation using VBMEG

VBMEG (Sato et al., 2004) is an effective method that can address the ill-posed problem of

cortical current estimation from EEG/MEG sensor signals. It can yield high spatiotemporal

resolution by incorporating anatomical (MRI) and functional (fMRI/NIRS) information, and has

been used successfully in previous studies (Shibata et al., 2008; Toda et al., 2011; Yoshimura

*2 Some researchers have reported that oxyHb is more sensitive to cerebral blood flow (CBF) (Hoshi et al., 2001;

Strangman et al., 2002); however, others have found that totalHb is more correlated to CBF (Huppert et al.,

2006).
*3 A more precise mapping of NIRS measurements on the cortical surface may be obtained by solving an inverse

problem called diffusion optimal tomography (DOT) (Shimokawa et al., 2012), but this will require denser

configurations of NIRS probes.
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et al., 2012; Yoshioka et al., 2008). In VBMEG, anatomical information is used to determine

the locations and orientations of current sources (current dipoles), while functional information

is used to provide topographical information of amplitudes of the current sources.

Using FreeSurfer (Dale et al., 2000), a polygon cerebral cortex model was constructed

from the T1 structural image of the subject. The number of vertices (corresponding to current

positions or dipoles) for each subject was downsampled to 1004 to avoid the overfitting prob-

lem and to reduce the computation cost of cortical currents estimation, feature extraction, and

classification. Although the number of vertices in this study (1004) is relatively smaller than

those used in Toda et al. (2011) (∼2500 dipoles) and Yoshimura et al. (2012) (∼2800 dipoles),

the task was different. In reconstructing motor movement in these studies, higher densities of

vertices were effective because cortical currents around the motor cortex have information on a

microscopic region-specific scale (somatotopic organization). In contrast, the present study fo-

cuses on the classification of the subjects’ spatially attended direction (left or right) rather than

the reconstruction of motor movement. Selective spatial attention causes the broad distribution

of band-power modulation (Siegel et al., 2008), thus high resolution as the motor-related activ-

ities was not needed. A single current dipole was assumed at each vertex point perpendicular

to the cortical surface. For the calculation of the lead field, which describes the relationship

between cortical currents and EEG measurement, the brain structure was approximated by a

three-layer model composed of CSF, skull, and scalp. Obtained by FreeSurfer, the boundaries

between the layers were slightly modified by using gray/white/CSF segmentation via SPM2 and

morphological operations. Using the obtained boundaries, the lead fields were calculated by the

boundary element method (Mosher et al., 1999; Tissari and Rahola, 2003) implemented by Sato

et al. (2004).

VBMEG incorporates NIRS/fMRI information as a parameter for the hierarchical dis-

tribution of the current variance. The cortical current at each source location is considered as

an unknown variable and is estimated from the EEG signal by introducing the ARD hierarchi-

cal prior using NIRS/fMRI. The ARD prior distribution is controlled by a prior mean variance

parameter ν̄0i, where i is the index of current dipoles (see Appendix A). For large ν̄0, estimated

currents can be large. In contrast, for small ν̄0, estimated currents tend to be small. In previous

studies (Aihara et al., 2012; Toda et al., 2011; Yoshimura et al., 2012; Yoshioka et al., 2008),
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NIRS/fMRI information is imposed on the prior mean variance parameter by the following:

ν̄0i = ν0base
[
1 + (m0 − 1)t2i

]
, (3.1)

where m0 (≥ 1) is the magnification parameter to be tuned (Yoshioka et al., 2008), ν0base is

the baseline of the current variance estimated from the EEG data, and ti is the NIRS t-value

normalized to [-1, 1]. More specifically, under the assumption that all dipoles have the same

prior current variance (Toda et al., 2011; Yoshioka et al., 2008), the baseline variance ν0base is

computed from the EEG data in the baseline interval (2–0 s before the Attention onset) by a

Bayesian minimum norm method. The expression (3.1) describes that NIRS-activated regions

have larger current variances compared with non-activated regions. Since Eq. (3.1) considers the

squared t-values, it can only represent an increase of neural activity, which is often observed in

event related potential (ERP). Indeed, previous applications of VBMEG so far have dealt with

conditions where the increase in current variances is dominant: retinotopic activities evoked

by visual response (Yoshioka et al., 2008) or motor activities induced by sensorimotor tasks

(Aihara et al., 2012; Toda et al., 2011; Yoshimura et al., 2012).

Existing fMRI studies have shown that spatial attention causes not only activation in

the parietal cortex (Corbetta et al., 2000; Hopfinger et al., 2000; Kastner and Ungerleider, 2000;

Serences and Yantis, 2006) but also deactivation in the visual area (Sylvester et al., 2007; Tootell

et al., 1998). This means that the convention for the prior current variance mean, Eq. (3.1), is

not sufficient because it cannot incorporate deactivation; negative values of ti are mapped to

positive by the square function (t2i ). In this study, we propose a new expression of the prior

variance parameter ν̄0i:

ν̄0i = ν0base ·mti
0 , (3.2)

where ν0base and ti are the same as those in Eq. (3.1), but m0 is another magnification param-

eter different from that in Eq. (3.1). That is, ν̄0i is scaled by multiplying or dividing by m
|ti|
0

according to the positivity or negativity of ti. Thus, NIRS-activated regions (ti > 0) have larger

current variances compared with baseline. In contrast, NIRS-deactivated regions (ti < 0) have

smaller current variances compared with baseline. In 3.3.5, we compare the spatial patterns of

decoder weights trained from cortical currents with Eq. (3.2) and those with Eq. (3.1). We used

this proposed prior variance in the remaining analyses.



22 Chapter 3 Decoding from cortical currents estimated from EEG and NIRS

Since we did not have access to the directional knowledge of left or right when we

estimated cortical currents, we used the same NIRS prior both for the left and right conditions.

In other words, we used the activities of Attention − Control as prior information for both

conditions and did not consider the difference in NIRS activities between the left and right

conditions. In the case of spatial attention task, incorporating the directional knowledge might

not result in the improvement in cortical current estimation. Indeed, an fMRI study using a

spatial attention task reported that brain activities for the left and right conditions relative to the

control condition are similar to each other (Hopfinger et al., 2000).

VBMEG has two hyperparameters that have to be manually tuned: m0 and γ0 (see

Appendix A). We already know that m0 is a prior magnification parameter. The second hyper-

parameter γ0 reflects the reliability (confidence) of the prior knowledge. For very small γ0, the

probability distribution of the current variances (Eq. (A.4) in Appendix A) spreads uniformly

(becoming a non-informative prior) and the prior information ν̄0i has little influence on the cur-

rent estimation. When γ0 is large, since the distribution is concentrated around prior mean ν̄0i,

prior mean ν̄0i constrains the current estimation more strongly. We evaluated BMI performances

for the following hyperparameters (range): m0 ∈ {10, 100} and γ0 ∈ {1, 10, 100, 500, 1000}

(2 × 5 = 10 pairs). These values are within the proper range as analyzed theoretically (Yosh-

ioka et al., 2008), and experimentally in a visual task (Yoshioka et al., 2008) and a motor task

(Aihara et al., 2012). Details of this evaluation method are described in Section 3.2.11.

Once the variance of each cortical current is estimated, we can calculate an inverse filter

and estimate the cortical currents by multiplying sensor signals by the inverse filter (Sato et al.,

2004). To deal with the nonstationarity of brain activities, inverse filters were first estimated for

each sliding window (500 ms length with 250 ms overlap) from 2 s before to 9 s after the Attend

onset under the assumption that the current variance was temporally invariant within each time

window. Then two inverse filters were averaged in the overlapping time intervals. The data from

2 s to 0 s before the Attend onset were used to estimate the baseline of the current variance, ν0base

in Eq. (3.2).

In order to eliminate artifacts evoked by eye movements, we incorporated artifact dipoles

(“extra dipoles”) in the source current estimation problem (Morishige et al., 2009). Artifact

dipoles were placed at the center of the left and right eyeballs whose coordinates were deter-

mined from the structural MRI image. Currents estimated at the extra dipoles can be projected
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back to the EEG signal domain by multiplying corresponding columns of the lead field matrix.

3.2.8 Cortical current estimation using VBMEG without an NIRS prior

and the minimum L2-norm method

In addition to comparing the proposed decoding method with the method decoding solely from

EEG sensor signals, to investigate the effects of using NIRS prior information and that of using

VBMEG as a cortical current estimation method, we compared the following two methods:

Hierarchical Bayesian estimation without NIRS prior and minimum L2-norm estimation (Wang

et al., 1992). Thus, as shown in Fig. 3.1C, the former method eliminate NIRS pathway in the

diagram, and the latter method replace VBMEG with minimum L2-norm estimation method.

VBMEG without NIRS prior information can be obtained by simply setting m0 = 1;

this will cancel the effects from NIRS t-values (see Eq. (3.2)).

Minimum L2-norm estimation is a conventional cortical current estimation method that

resolves the ill-posedness of the inverse problem by regularizing solutions with their L2-norm.

It does not estimate dipole-wise variances; hence it produces less-sparse cortical currents com-

pared to VBMEG. The minimum L2-norm method can be obtained by constraining the vari-

ances of all the dipoles to be the same value, which was estimated from the Attention period.

3.2.9 Feature extraction

We used alpha (8–14 Hz) and beta (14–30 Hz) bands as the feature values for the classifier; the

use of these frequency bands can be justified by prior findings on spatial attention (Kelly et al.,

2005b; Siegel et al., 2008; Van Gerven et al., 2009).*4 The band powers from 0 s to 8 s after the

Attend onset were extracted from each channel (EEG) or vertex (current) using the multitaper

power spectral estimation and transformed to log-band powers. Existing reports (Kelly et al.,

2005b; Van Gerven et al., 2009) suggested that spatial attention induces contralateral alpha-

desynchronization around the visual area, and could be decoded from alpha-band modulations

around occipito-parietal regions. In addition, Siegel et al. (2008) used MEG to show that spatial

*4 The optimization of frequency bands for each subject may improve accuracy (Ang et al., 2008); however, we

used the same bands for all the subjects.
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attention also modulates beta bands around occipito-parietal regions.

3.2.10 Classification

We used SLR (Yamashita et al., 2008), which estimates the weight parameters of logistic re-

gression with the ARD hierarchical prior, and automatically selects a small number of relevant

features.

3.2.11 Evaluation of classifier

We used two criteria for evaluating classifiers, namely, the cross-validation (CV) accuracy and

the nested CV (NCV) accuracy. CV was used for evaluating the decoding performance of a

classifier with given hyperparameter values, whereas NCV was used for evaluating the general-

ization performance of a classifier without bias in hyperparameter selection. When we decoded

solely from EEG or from EOG, we only applied CV because there were no hyperparameters.

For the CV procedure, seven sessions out of eight were used for training, and one session

was used for testing. Using different partitions, we repeated the training and testing with given

hyperparameter values eight times, and then averaged the eight testing accuracies to produce

a CV accuracy for each subject. The mean of CV accuracies across subjects defines the CV

decoding accuracy for the classifier. Since the CV decoding accuracy depends on the hyperpa-

rameters, this procedure for calculating the CV decoding accuracy was repeated for each of the

10 pairs of hyperparameters.

For the NCV procedure, the same eight-fold partition of the data for CV was applied;

however, a two-stage procedure consisting of an outer CV and inner CV was employed. The

outer-CV stage works much like the standard CV procedure, but in its training phase it selects

optimal hyperparameters as opposed to using given values. To select the best hyperparameters

from the 10 settings, the inner-CV procedure partitions the outer-CV training data consisting

of seven sessions into (1) inner-CV training data consisting of six sessions, and (2) inner-CV

testing data consisting of the other session. The inner-CV accuracy is the average of the seven

testing accuracies. We selected the hyperparameter values that achieved the maximum inner-

CV accuracy and used them for obtaining a classifier that was re-trained using the entire outer-

CV training data, and the classifier was used for evaluating outer-CV test accuracy. There is no
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single “optimal” hyperparameter setting for NCV. The NCV decoding accuracy for the classifier

is the mean of the subject-wise NCV accuracies.

Figure 3.1C shows the concepts contrasting the difference between the proposed and the

EEG only (‘sole-EEG’) method. The proposed method was evaluated based on its decoding

accuracy obtained by using the cortical currents estimated from the EEG signals with the NIRS

prior. The sole-EEG method was evaluated by its accuracy of decoding only from the EEG

signals. The above methods, as well as VBMEG without NIRS prior and the minimum L2-

norm method, all used SLR as a classifier.

We examined which anatomical regions contributed to the classification of spatial at-

tention by analyzing trained weights from SLR for EEG sensors and current sources. For vi-

sualization, the weights were averaged across the eight classifiers. The sensor weights were

interpolated on the skin surface, and the source weights were spatially smoothed on the cortical

surface.

3.3 Results

3.3.1 Evaluation of decoding accuracy

The NCV decoding accuracy of attended directions was compared between the two cases:

(a) decoding from the cortical currents estimated with VBMEG, (b) decoding solely from the

EEG sensor signals. We found that the NCV accuracy in case (a), the proposed method with

VBMEG and SLR, was significantly higher than that in case (b) (79.1% vs. 71.4%, p = 0.030

with two-sided paired t-test, Fig. 3.3).

In addition to the main result of comparing between (a) and (b), the proposed method

(a) was compared with the following two cases: decoding from the cortical currents estimated

with (c) VBMEG without NIRS prior, and (d) minimum L2-norm. Without using NIRS prior

estimation, case (c), the NCV decoding accuracy (77.3%) was higher than that by the sole-

EEG method (77.3% vs. 71.4%, p = 0.069 with two-sided paired t-test) but was significantly

decreased compared to the proposed method (77.3% vs. 79.1%, p = 0.046 with two-sided

paired t-test). The NCV accuracy obtained using the minimum L2-norm method, case (d),

was 75.9%, which was higher than the accuracy of the sole-EEG method (75.9% vs. 71.4%,
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p = 0.16 with two-sided paired t-test) but was significantly worse than that of VBMEG case (a)

(75.9% vs. 79.1%, p = 0.011 with two-sided paired t-test).

In Fig. 3.3, accuracy for EEG was obtained without reducing artifact from EEG sig-

nals; however, simple artifact reduction did not result in a significant improvement. We tested

the decoding accuracy from EEG signals whose artifactual component was attenuated by sub-

tracting signals induced from the extra dipoles, and found no significant improvement from the

sole-EEG method (73.7% vs. 71.4%, p = 0.16 with two-sided paired t-test).

The subjects’ spatially attended direction could not be decoded from the EOG signals.

The CV decoding accuracy from the EOG signals was 51.5% (SD: 5.7). The subjects did not

achieve decoding accuracies significantly above the chance level (p > 0.01, one-sided paired

t-test). Thus, we conclude that the EOG artifact did not have enough information for decoding

spatial attention.

We used NCV to evaluate the statistical significance of the difference in the decoding

accuracy between the proposed method and the sole-EEG method in this subsection. In the

following results, we used a fixed hyperparameter pair for each subject, which maximized the

CV accuracy of the subject.*5

3.3.2 EEG sensor signals and NIRS activities

Figure 3.4 shows the estimated cortical currents and EEG and NIRS activities of S2 who showed

the most interpretable effects of the proposed method. The patterns of the estimated cortical

currents (Fig. 3.4C) showed relatively obvious hemispheric lateralization of alpha- and beta-

band powers compared with EEG signals (Fig. 3.4A).

The t-values (Attend right−Attend left) of extracted alpha- and beta-band log powers of

the EEG sensor signals are shown in Fig. 3.4A. We did not observe hemispheric lateralization

(alpha-desynchronization in the posterior sites contralateral to the attended direction), which

has been previously demonstrated in a covert spatial attention task (Thut et al., 2006; Worden

et al., 2000; Wyart and Baudry, 2008). The representative subject shows negative values (i.e.

*5 Although this hyperparameter selection would have introduced a bias to the decoding accuracy, we used that

hyperparameter not for evaluating the decoding accuracy but for evaluating the spatial patterns of activities and

weights of the classifiers.
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relative suppression of the alpha-band power in the right condition or relative enhancement

of the alpha-band power in the left condition) not only in the left hemisphere but also in the

right hemisphere. As a result, we did not see hemisphere-specific modulation of the alpha band

around the posterior sites directly from the EEG signals. We also did not see hemispheric later-

alization around the posterior sites in the beta band. As suggested by Siegel et al. (2008), visual

stimulus to a hemifield (left or right) that is spatially attended induces beta-synchronization in

the posterior sites contralateral to the attended hemifield. Although the subject here showed

slight contralateral beta-synchronization around the parietal area, beta-synchronization was not

evident around the occipital area.

The NIRS activities were reasonable in the light of existing studies of spatial attention

with fMRI (Fig. 3.4B). This figure shows t-values (Attention− Control) of the NIRS activities

from the same subject. We can see the activation around the parietal region, which is consistent

with related studies (Corbetta et al., 2000; Hopfinger et al., 2000; Kastner and Ungerleider,

2000; Serences and Yantis, 2006). In addition, we can see deactivation around the visual area,

which is also consistent with prior findings (Sylvester et al., 2007; Tootell et al., 1998). This

spatial pattern of activation and deactivation was consistent even in a group analysis (data not

shown). These results indicate the importance of considering both positive and negative values

of NIRS activity for cortical current estimation.

3.3.3 Estimated cortical currents using VBMEG

The patterns of the estimated cortical currents of the same subject showed relatively obvi-

ous hemispheric lateralization of alpha- and beta-band powers compared with EEG signals

(Fig. 3.4C). Similar to Fig. 3.4A, Fig. 3.4C shows the t-values (Attend right − Attend left;

p < 0.05; uncorrected) of the extracted alpha- and beta-band log-powers on each vertex of

the estimated cortical currents. Unlike the EEG analysis, the negative values around the right

parietal region did not emerge in the alpha band, and there were clearer contralateral alpha-

desynchronization patterns around the left visual and parietal cortex. In addition, this subject

showed alpha-band activities around the frontal eye field (FEF). Indeed, FEF is known to be in-

volved in the control of spatial attention through the modulation of alpha-band activities (Capo-

tosto et al., 2009). Thus, these activities in FEF are thought to be related to selective spatial
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attention. Moreover, the beta-band activities showed synchronization in the posterior sites con-

tralateral to the attended hemifield, which is consistent with Siegel et al. (2008). These results

suggest that we have achieved appropriate isolation of the cortical currents from the EEG signals

avoiding the contamination of EEG signals.

3.3.4 Anatomical localization of source currents contributing to decod-

ing

We plotted the weights of the classifiers to analyze the anatomical localization of the source

currents that contributed to decoding (Fig. 3.5). We found that the weights of the classifiers

were concentrated on regions consistent with neuroscience knowledge (Fig. 3.5, left).

The weights for the cortical currents classifier were located in areas justifiable from

knowledge of neuroscience (Fig. 3.5, center). In the alpha band, the weights were mainly con-

centrated near the left intraparietal sulcus (IPS) and visual cortex. This spatial pattern was

consistent with existing findings about spatial attention, which suggested that the IPS is impor-

tant for selective spatial attention (Corbetta et al., 2000; Hopfinger et al., 2000). In the beta

band, weight values were located around the left occipital cortex and the parietal cortex, which

are slightly far from the IPS. These weights had opposite signs compared with those for the

alpha band. This is consistent with the opposite activities between the alpha and beta bands

(Fig. 3.4C). Our results imply that the decoding accuracy of this subject was improved by iso-

lating task-relevant brain activities, and by decoding with an appropriate selection of cortical

currents related to spatial attention.

These tendencies were consistent even at the group analysis (Fig. 3.5, left). We can see

that the weight values of the alpha band were mainly located around the left and right IPS with

opposite signs. As mentioned above, IPS is thought to be related to selective spatial attention,

and cause contralateral alpha-desynchronization. These results indicate that cortical currents

were estimated appropriately, and the classifiers could select informative cortical currents, i.e.

IPS, even at the group level.

Weight values of the EEG classifier for the same subject were distributed over the scalp

(Fig. 3.5, right). Large positive weights for the beta band were observed around the parietal area

(P2), and large negative weights were located around the frontal area (AFz). Additionally, the
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weight values were spread over a wide area ranging from occipital to frontal, and from alpha to

beta bands. Thus, it is difficult to interpret the specific brain regions important for decoding of

spatial attention.

3.3.5 Comparison of proposed variance prior, conventional variance

prior, and no variance prior

We contrast the three prior variance models by comparing spatial patterns of the classifier

weights. Figure 3.6 shows the spatial patterns of the weights of classifiers trained using cor-

tical currents estimated with the proposed prior variance model, Eq. (3.2), the conventional

prior variance model, Eq. (3.1), and the no prior variance model obtained by substituting m0 of

Eq. (3.1) by 1. From this figure, we can see that the spatial distribution of the classifier’s weight

with the proposed model is more concentrated in specific regions around IPS compared to those

by the conventional method and the no prior method. In other words, the cortical distribution

of the classifier weights were more scattered with the conventional model, and farther from IPS

with the no prior model than the proposed model (Fig. 3.6). This signifies that the use of NIRS

prior information and the new relationship between NIRS and the hierarchical prior can result

in focal estimation consistent with neuroscience knowledge.

3.4 Discussion

In this study, we decoded spatially attended directions (left or right) of human subjects from

source currents estimated on the cortical surface from EEG, NIRS, and structural MRI data, and

found that the decoding accuracy was superior compared to that solely decoded from sensor

signals, and moreover, the activation patterns on the cortex were reasonable. We employed

VBMEG (Sato et al., 2004; Yoshioka et al., 2008) to estimate cortical currents from EEG signals

with NIRS prior and SLR (Yamashita et al., 2008) to decode spatially attended directions with

automatically selecting relevant cortical currents.

We posit that the selective use of informative cortical currents relevant to the processing

of spatial attention resulted in superior decoding accuracy. First, cortical currents estimated

by solving the inverse problem using VBMEG successfully isolated task-relevant brain activ-



30 Chapter 3 Decoding from cortical currents estimated from EEG and NIRS

ities from non-related ones (Fig. 3.4C), as contamination in EEG signals caused by the vol-

ume conduction effect was eliminated (Fig. 3.4A). Furthermore, assuming extra-current dipoles

outside the brain (on the eyeballs) allowed for the separation of EOG artifacts. The effective-

ness of VBMEG in mapping raw measurements into neurologically meaningful quantities has

been previously demonstrated: Yoshioka et al. (2008) successfully reconstructed retinotopic ac-

tivities in the primary visual areas from MEG signals with the fMRI prior, and Aihara et al.

(2012) estimated cortical currents relevant to motor activities from EEG signals with the NIRS

prior. The results (Fig. 3.4) indicated that although EEG signals were highly contaminated

by the volume conduction effect (and thus decoding directly from the EEG signal would be

difficult), the spatial patterns of alpha- and beta-band activities of estimated cortical currents

showed clear hemisphere-specific activities (Fig. 3.4C) compared with those of EEG signals

(Fig. 3.4A). Although this subject showed contralateral beta-synchronization around the pari-

etal area, some other subjects showed contralateral beta-desynchronization around the parietal

area. One possible reason for this inconsistency between the subjects may be because of the

relatively lower range of the beta band (14–30 Hz) that was used for analysis. This lower range

of the beta band is relatively near the alpha band compared with a previous report (15–35 Hz;

Siegel et al., 2008). Although the subject S2, who was a typical instance, showed contralateral

alpha-desynchronization only around the left visual and parietal cortex, some other subjects

showed that around both left and right regions.

The second possible factor for the performance improvement is the selective use of

features using SLR (Fig. 3.5, left). From cortical currents, which have a dimensionality (1004)

over 10 times higher than the EEG sensors (64), SLR selected sparse features. The spatial

distribution of the estimated weights of SLR was focal and had modes around IPS (Fig. 3.5,

center). Indeed, the contribution of IPS to the functionality of selective spatial attention has

been shown in several studies (Corbetta et al., 2000; Hopfinger et al., 2000). This suggests

that the classification was performed based on the modulations of neural activities caused by

selective spatial attention. Even at the group level (Fig. 3.5, left), the main positive and negative

weights for the alpha band were located around the IPS, and other ‘non-main’ weights were

observed in a few areas including the parietal and occipital cortices. This means that SLR

prevented the overfitting problem and decoded the subjects’ spatial attention by reasonably

selecting the cortical currents relevant to the spatial attention. In contrast, when spatial attention
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was predicted solely from the EEG sensor signals, the weight values of the classifier were

scattered over a wide range of areas ranging from occipital to frontal, and of frequency bands

from alpha to beta (Fig. 3.5, right), and thus it was difficult to infer which regions were important

for classification. These results showed the effectiveness of combining VBMEG and SLR for

decoding from NIRS-EEG.

By comparing our model with VBMEG estimation without NIRS prior and the minimum

L2-norm method, we found that both the NIRS prior information and the sparseness induced

by VBMEG were effective in improving the decoding accuracy of spatial attention. In addition,

we found that the classifier failed to place its weights on IPS without NIRS prior information

(Fig. 3.6, right). These results indicate that using NIRS-prior can enhance the scientific validity

of decoders that are based on cortical currents.

It is clear that both the positive and negative activities of fMRI/NIRS in the hierarchical

prior distribution are necessary, because negative t-values were observed around the occipital

area in our task (Fig. 3.4B). Thus, Eq. (3.2) is preferred to the existing standard in the VBMEG

literature [i.e., Eq. (3.1)]. The NIRS t-values shown in Fig. 3.4B have both positive and negative

peaks, and the negative peaks have magnitudes similar to the positive peaks; these facts support

the validity of the novel model. This mixture of positive and negative activities can be the case

for many tasks involving higher-order functions; e.g., motor movement (Nirkko et al., 2001),

spatial attention (Sylvester et al., 2007; Tootell et al., 1998) and working memory (Tomasi et al.,

2006). Although the NCV accuracy with the novel model exceeded that with the model without

NIRS prior (79.1% vs. 77.3%, p = 0.046 with two-sided paired t-test, cases (a) and (c) in Sec-

tion 3.3.1, respectively), the NCV accuracy with the conventional model was not significantly

better than that with the method without the NIRS prior (78.6% vs. 77.3%, p = 0.068 with

two-sided paired t-test). This result supports the effectiveness of the proposed model. In-depth

comparisons between the proposed prior variance model, Eq. (3.2), and the conventional prior

variance model, Eq. (3.1) are provided in 3.3.5.

The relationship between the number of current dipoles and decoding accuracy needs

further investigation. In this study, we used the number of current dipoles (1004) in the cor-

tical current estimation stage. Although this is considerably larger than that of EEG sensors,

the result did not suffer from an overfitting problem. It is worth mentioning that the subjects’

attended directions were decoded with significantly higher accuracy than that from EEG sensor
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signals alone (79.1% vs. 71.4%, p = 0.030 with two-sided paired t-test); however, the proposed

method did not always outperform the sole-EEG baseline (Fig. 3.3A). Yoshimura et al. (2012)

reported that the accuracies for decoding flexor and extensor muscle activities with for all of

their subjects significantly improved with ∼2800 dipoles, an analysis (not included) of our data

showed that there was no performance gain for the spatial decoding task even after increasing

spatial resolution. Based on these results, an appropriate number of current dipoles might de-

pend on the modality to be decoded. Cortical current estimation may be improved by using a

head model with more detailed structure; e.g., inclusion of gray and white matters in addition

to CSF, skull, and scalp. According to Güllmar et al. (2010), taking into account the anisotropy

of white matter may improve the localization accuracy up to about 5 mm. With our settings,

the mean distance between nearest dipoles is 7.3 mm and thus a denser dipole configuration

is required to receive the benefits from a detailed head model. The relationship between the

marginal quality of the cortical estimation and the decoding accuracy of spatial attention is still

unclear and needs further investigation.

Our study can be extended to real-time decoding in real environments. Although we

measured EEG and NIRS simultaneously, NIRS information was only used as prior knowledge

to analyze EEG signals to produce cortical currents. In other words, we have to process EEG

data in real time but it is sufficient to have off-line NIRS data (used for calculating the prior

mean variance parameter). Fazli et al. (2012) simultaneously measured EEG and NIRS in addi-

tion to multi-modal decoding but without source localization. The authors decoded two classes

of motor movement and motor imagery (left hand or right hand) by using a meta-classifier,

which combined the outputs of three classifiers trained separately for EEG and NIRS (oxyHb

and deoxyHb), and achieved significant improvement of classification accuracy than that with

sole-EEG. The main difference between our present study and Fazli et al. (2012) is that their

meta-classifier needed immediate output from the NIRS classifier, and therefore they would

suffer from the time delay of NIRS activities after a task onset. Other studies that use a similar

methodology have the same limitation (Ma et al., 2012). Since we used NIRS only as prior

information, we could decode in the timescale of EEG. Moreover, when applied to real envi-

ronments, the subject does not have to take on NIRS; this relaxes the measurement conditions

and is beneficial both for the experimenter, in terms of time for putting on NIRS probes, and

for the subject, who is released from the load of NIRS. For a reference, we applied the method
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by Fazli et al. (2012) to our spatial attention data and found its NCV accuracy was 69.3% with

deoxyHb NIRS, which was comparable to the sole-EEG decoding accuracy of 71.4%. Some

issues to bring our methodology to real environments include the reduction of artifacts both in

EEG and NIRS and the acceleration of computation time.

Although NIRS measures only superficial layers, it may give sufficient information for

reconstructing and decoding brain activities related to spatial attention. Indeed, the most im-

portant region for spatial attention was the IPS (Fig. 3.5, left) which is located in a relatively

superficial layer.

Many EEG-based decoding methods are based on spatial filtering (Wolpaw and Wol-

paw, 2012); thus, we show a comparison of the proposed method to common spatial patterns

(CSPs) (Blankertz et al., 2008), a major spatial filter. We followed the settings recommended

in Blankertz et al. (2008): EEG signals were band-pass filtered in the 8–30 Hz frequency band,

reduced to 6 dimensions using the corresponding CSP filters, and then the log-variances of the

6-dimensional data were used as features for linear discriminant analysis (LDA). The CV ac-

curacy of the CSP-based classifier was 72.8%, which was not significantly different compared

to the sole-EEG method (p = 0.74, two-sided paired t-test). Spatial filtering is effectively ex-

tracting information from EEG signals but is not directly capable of localizing relevant brain

activities on the cortical domain.

3.5 Summary

In this study, we proposed a novel methodology for decoding subjects’ covertly attended direc-

tion from cortical currents estimated from EEG with NIRS prior information, which is appli-

cable to real-time BMIs working in real environments. When estimating cortical currents from

EEG measurement, we proposed a new NIRS-based prior variance model suitable for treating

event related desynchronization caused by higher-order functions including spatial attention. In

the estimation procedure, structural MRI data were also used as a head model. After the cor-

tical current estimation, the subjects’ attended direction was decoded by a Bayesian regression

method whose hierarchical prior setting enabled automatic selection of informative cortical cur-

rents. Not only our new procedure outperformed major previous EEG decoding methods and

the other NIRS-EEG decoding method, but it could also reveal reasonable activation patterns
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on the cortex by avoiding the contamination of putative task-irrelevant activations, which al-

lowed us to check the validity of obtained neuro-decoders. We used simultaneous measurement

of NIRS-EEG, which has the advantage of non-invasiveness, portability, and measurability in

real environments. Developments in this field potentially open up possibilities to investigate

brain activities in naturalistic conditions, and hence are expected to impact on the community

of real-world neuroscience.
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Fig. 3.1 Experimental settings and decoding concepts. (A) Timeline of the experimental
block. One block consisted of 2 epochs: Control and Attention. After the onset of a block,
two white flashing bars were presented repeatedly in a rapid stream at the left and right until
the end of the block. During the Attention epoch, subjects were instructed to fixate their eyes
to the fixation point and to covertly and continuously orient their attention to a single bar
that was cued by a target color at the initial presentation of the bars. The target direction
(Left or Right) was pseudo-randomly selected for each Attention epoch. The Control epoch
was inserted to cancel out the difference in visual stimuli before and after the onset of the
Attention epoch, thus focusing only on the modulation caused by selective spatial attention.
During the Control epoch, subjects were instructed to fixate their eyes to the fixation point
and distribute their attention continuously and evenly over two bars. We conducted 8 sessions
for each subject. Each session consisted of 24 blocks (12 lefts and 12 rights), with short Rest
epochs in between. (B) Channel configurations of EEG and NIRS. Left: Placement of EEG
sensors: an International 10-20 system modified for NIRS-EEG simultaneous measurement.
Right: NIRS probe positions. Emitters and detectors are indicated by red and gray circles, re-
spectively. NIRS channels are shown by dotted lines. (C) Comparison of the concepts for the
proposed method and the conventional EEG only decoding method. In the proposed method,
subjects’ attended direction was decoded from cortical currents estimated from EEG sensor
signals with structural magnetic resonance imaging (MRI) data and an NIRS prior, where
NIRS data was used as hierarchical prior information on the source current variance. The
EEG only decoding scheme directly decodes attended direction from EEG sensor signals.
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Fig. 3.2 The experimental environment used in this study for recording NIRS and EEG
sensor signals simultaneously.
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Fig. 3.3 The nested cross-validation (NCV) decoding accuracies based on (a) cortical cur-
rents estimated by VBMEG (red), (b) EEG sensor signals (white), (c) cortical currents esti-
mated by variational bayesian multimodal encephalography (VBMEG) without NIRS prior
(blue), and (d) cortical currents estimated by the minimum L2-norm method (cyan). The left-
most quadruplet of bars denote the NCV accuracies (79.1%, 77.3%, 75.9%, and 71.4%). The
other bars denote NCV decoding accuracies for each subject (S1–S8). Standard deviations
are denoted as the error bars. Chance level performance is indicated by the horizontal line
(50%; not corrected for trial rejection).
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Fig. 3.4 EEG sensor signals, NIRS activities, and estimated cortical currents of S2. (A) The
spatial pattern of the t-values (Attend right − Attend left) computed from EEG signals, is
separately shown for two different frequency bands (alpha and beta bands), viewed from the
posterior, and rotated slightly to enhance visibility. The pattern is superimposed on the sub-
ject’s polygon cerebral cortex and scalp models. (B) The cortical pattern of NIRS activities.
The activities are shown as t-values (Attend − Control), and rendered on an inflated cortical
surface. (C) The cortical pattern of the estimated currents by VBMEG. Displayed are t-value
thresholds at p < 0.05 (Attend right − Attend left; uncorrected) for two different frequency
bands (alpha and beta bands). Sulci (concave) and gyri (convex) are indicated by dark and
light-gray shading, respectively.
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Fig. 3.5 Weights of the classifiers. Right: Weight values for EEG sensors in the classifier
decoding attended direction from sensor signals in the same subject as in Fig. 3.4. These
values were averaged across training sets and rendered on the scalp surface; these are shown
for two different frequency bands (alpha and beta bands). Signed values of weights are
represented by pseudo-color, and weight values whose absolute value is smaller than 25%
of the maximum absolute value are not displayed for each panel. Center: Weights for the
cortical currents in the classifier decoding attended direction from cortical currents in the
same subject as in Fig. 3.4. Averaging, coloring, and thresholds are the same as the left
panel, and rendered on the inflated cortical surface. Left: Weights for the cortical currents,
averaged across all of the subjects. Weight values for the cortical currents for each subject
were projected to a template brain and averaged. Coloring and thresholds are the same as the
panels on the left, and rendered on the inflated cortical surface of the Montreal Neurological
Institute template brain.
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Fig. 3.6 Classifier weights. Left: Weights on cortical currents estimated with the proposed
mean prior variance model, Eq. (3.2). Weights were first averaged across training sets for
each subject, then projected to a template brain, and finally averaged over all of the subjects
on the template. This operation was performed separately for the alpha and beta bands.
Weights whose absolute value were smaller than 25% of the maximum absolute value were
not rendered. Center: Cortical patterns of weights on cortical currents with the conventional
mean prior variance model, Eq. (3.1). Right: Cortical patterns of weights on cortical currents
with the no prior variance model.
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Chapter 4

Learning a common dictionary

4.1 Introduction

One major issue in neural decoding for BMI (Dornhege et al., 2007; Graimann et al., 2011;

Tan and Anton, 2010; Wolpaw and Wolpaw, 2012), as well as neuroscience studies (Haxby

et al., 2001; Haynes and Rees, 2006; Horikawa et al., 2013; Kamitani and Tong, 2005; Shibata

et al., 2011) is how to deal with undesired variability among different subjects or different

recording sessions from a single subject. Brain signals measured over a series of experiments

have inherent variability because of different physical and mental conditions among multiple

subjects and sessions. Such variability complicates the analysis of data from multiple subjects

and sessions in a consistent way, and degrades the performance of subject-transfer decoding in

a BMI.

Several researchers (Devlaminck et al., 2011; Fazli et al., 2009; Kang and Choi, 2014;

Lotte and Guan, 2010; Samek et al., 2014) tackled the subject-to-subject variability of EEG to

achieve subject-transfer decoding, the goal of which is to classify the mental state of a previ-

ously unseen target subject based on the data or pre-trained decoders of other training subjects,

so that BMI is instantly usable. There are two main approaches. First, the subject-invariant ap-

proach (Fazli et al., 2009; Samek et al., 2014) builds a universal decoder that is constructed only

with data from training subjects, ignoring the specificity of target subjects. It thus reconciles to

suboptimality if the target subject is dissimilar to any of the training subjects. Second, the task-

calibration approach (Devlaminck et al., 2011; Kang and Choi, 2014; Lotte and Guan, 2010)
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conducts experiments with the target subject to obtain a task-based calibration dataset, which

is used for tuning the decoder. This approach can accommodate subject-specific variation, but

acquiring the task-based calibration data is often too costly in practice, especially in daily-life

applications of BMI. A third approach is thus needed, which explicitly considers the variability

of target subjects but is applicable based on small efforts by them.

To resolve these difficulties, we develop a novel framework for analyzing multisub-

ject EEG data using the unsupervised signal processing technique of dictionary learning after

compensating for variations between subjects and sessions, and design low-cost calibration for

subject-transfer decoding using resting-state data. The proposed framework decomposes mul-

tichannel EEG data into a subject- (and session-) invariant dictionary of spatial pattern bases,

subject- (and session-) specific linear transforms to adjust the dictionary to each subject (and

session), and sparse codes. The subject-session-specific transforms are newly introduced to

the dictionary learning framework to modulate the dictionary to allow compensating for vari-

ability across subjects and sessions. Dictionary learning is useful in its own right, e.g., for

clearer visualizations of spatial patterns to disambiguate their neurophysiological interpreta-

tions (Barthélemy et al., 2013; Chevallier et al., 2014), and recently used for neural decod-

ing (Hammer et al., 2011; Zhou et al., 2012). Kang and Choi (2014) has recently proposed

the idea of using a latent subspace shared across subjects and tuning it with subject-specific

transforms based on a Bayesian probabilistic model. We then develop a novel subject/session-

transfer scheme, which uses resting-state brain activities as calibration data. The resting-state

data are easy to collect, and the proposed scheme does not require expensive task-based cali-

bration, which would be beneficial for subjects to easily use BMI. The underlying idea is that

resting-state brain activity reflects the subject-specific nature of brain activity that is consistent

over subsequent task sessions. Recent studies have revealed that brain activity during resting

states exhibits quite organized and stable patterns of functional connectivity, such as the default

mode and the dorsal attention networks (Brookes et al., 2011; de Pasquale et al., 2012; Fox

et al., 2005), and is likely intrinsic to individual brains (Baldassarre et al., 2012; Massar et al.,

2014; Mueller et al., 2013; Wu et al., 2014). We thus make use of resting-state data to extract

subject-specific characteristics that are intrinsic and specific to individual brains, and supposed

to vary more between different brains than in the same brain between different sessions. To our

knowledge, the present study is the first to apply resting-state EEG data to BMI applications.
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The contribution of this study is threefold.

1) We develop a new dictionary learning technique for extracting common spatial bases

while compensating for variability across subjects/sessions (Fig. 4.1A).

2) We propose the use of resting-state data for calibration in subject-transfer decoding,

which is made possible with the proposed dictionary learning technique (Fig. 4.1B).

3) By using real EEG recordings from more than forty subjects performing a selective

visual-spatial attention task (see previous chapter), we validate the proposed dictionary

learning technique, estimating interpretable spatial patterns that are consistent with exist-

ing neuroscience knowledge, and also show that the proposed subject-transfer decoding

framework performs better than existing decoding methods.

4.2 Method and material

Figure 4.1 shows an overview of the proposed method described in this subsection.

4.2.1 Three core assumptions

The proposed method is based on the following three core assumptions:

A1) At each time point, brain activities as a spatial pattern can be expressed as a combination

of a small number of spatial bases common across subjects and sessions.

A2) Actual signals measuring the brain activities are deformed by subject-session-specific

spatial transforms.

A3) For the same subject, spatial transforms are consistent over task sessions and preceding

resting-state sessions.

Figure 4.2 depicts the outline of the proposed method built based on these assumptions.

4.2.2 Requirements for data

To accomplish our goal, we require that a dataset satisfies the following three properties, which

correspond to the three assumptions above, respectively:
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Spatial bases
common across

subjects and sessions

Subject-session-
specific transforms

Subject
database

Target
subject

Feature extraction
and classification

Transfer

S. 1 S. 2 S. N-1 S. N

A Section 4.2.4: Extractions of common and 
variable components

B Section 4.2.5: Application to subject-transfer decoding

C Section 4.2.6: Data dependent considerations

Fig. 4.1 The overview of the proposed method described in Section 4.2. The proposed
method can be divided mainly into two parts; i.e., the novel dictionary learning method
for extracting spatial bases common across subjects and sessions after compensating vari-
ability by simultaneously estimating subject-session-specific spatial transforms (A: Subsec-
tion 4.2.4), and its application to subject-transfer decoding with resting calibration (B: Sub-
section 4.2.5). Note that since the proposed dictionary learning method (A) is unsupervised, a
subject-session-specific transform can be learned from resting-state data of the target subject.
Subsection 4.2.6 (C) describes data dependent considerations including feature extractions
and classifications.

R1) All data samples share common underlying activities; that is, all the subjects perform the

same mental task such as selective spatial attention or sensorimotor rhythm modulation.

R2) Yet, the data generation process may vary over subjects and sessions due to, e.g., varia-

tions in the brain structure, differences in channel positions, changes of the conductance

of skin and gel, and slight differences of brain regions activated by the same task between

subjects and even sessions of the same subject.

R3) Recordings of resting-state activities of the target subjects just before performing BMI

task sessions are available.

4.2.3 Basic dictionary learning

Dictionary learning is a data analysis method that estimates overcomplete bases for sparsely

representing measurable signals. It has its origin in neuroscience under the name of sparse

coding (Olshausen and Field, 1997), which is still a current research topic (Hunt et al., 2013),
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and has been applied to signal processing (Elad, 2010; Mallat, 2008; Patel and Chellappa, 2013)

for denoising, compression, and so on. Sparse representation has also been shown to improve

classification performance in pattern recognition (Gao et al., 2010; Mairal et al., 2008; Zhang

and Li, 2010). Instead of using predefined bases like discrete cosine transform (DCT) basis

or wavelets, dictionary learning adaptively constructs a set of bases, or a dictionary, from the

given data with sparseness constraints, so that the dictionary is best suited for representing the

data at hand. Principal component analysis (PCA) also estimates an orthogonal bases from the

given data; however, the sparse method is more flexible as its overcomplete basis can cover

some dynamic characteristics that may be possessed by many real-world signals.

We satisfy the first assumption A1) by dictionary learning. According to the basic for-

mulation of dictionary learning, a vector of measured signals*1 xt ∈ RM at time t is represented

by

xt ≈ Dαt, (4.1)

where D = [d1, . . . ,dK ] ∈ RM×K is a dictionary matrix whose column vectors dk are called

atoms and αt ∈ RK is called a sparse code. This equation can be seen as a conversion from a

signal xt to a sparse code αt. If D were fixed at a DCT basis, then α would be a frequency do-

main variable. Dictionary learning estimates D adaptively based on the given data. In general,

we take K > M (more bases than the signal dimensionality), that is, we use an “overcom-

plete” dictionary D. The dictionary is estimated from the given data by solving the following

optimization problem:

min
D,A

1

2

∑
t

∥xt −Dαt∥22

s.t. ∀t : ∥αt∥0 ≤ L, ∀k ∈ {1, . . . ,K} : ∥dk∥2 = 1,

(4.2)

where A ≡ [αt] is a set of sparse codes, ∥·∥0 is the ℓ0-norm, and ∥·∥2 is the ℓ2-norm. Each

sparse code αt ∈ RK is constrained to have L or less non-zero elements. The unit ℓ2 norm con-

straint for dk is to eliminate the scale indeterminacy between D and α (actually, the product of

scaled variables (sD)(s−1α) would give the same x for any s ̸= 0). Solving this unsupervised

reconstruction problem, we obtain the dictionary (and the sparse codes) that best represents the

*1 The vector x may be direct measurements, or signals preprocessed depending on the characteristics of the data.

We will revisit the preprocessing in Section 4.2.6.
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given signals. In the context of our EEG neuroimaging, M is the number of channels spread

over the scalp and each element of the signal vector x is the measurement at the corresponding

channel. The learned dictionary D is then interpreted as the bases of spatial activity patterns

(i.e., spatial bases). With the sparsity assumption of αt, EEG signals x are represented by a

linear combination of sparsely selected spatial bases, and this is what our first assumption A1)

has stated.

The variability in the signal measurement is ignored in the basic formulation of dictio-

nary learning, Eq. (4.1), which deals with the variety in signal patterns by means of an overcom-

plete basis. That is, variations in the measured signal xt can only be explained in the variety in

the bases (atoms) in the dictionary. If the dataset contains measurements with different channel

alignments on the scalp, the dictionary needs to have an individual set of bases for each of the

different physical settings, even for representing the same underlying brain activities. As a re-

sult, the dictionary can be too redundant and lack generalization capability. A similar situation

may occur when brain activities involve non-stationarity. This in turn makes sparse representa-

tion unstable and will result in decreased classification performance, which poses a challenge

in developing neuro-decoders that generalize over different subjects and/or different sessions.

4.2.4 Proposed dictionary learning for common and variable compo-

nents

To resolve the problem in the basic formulation of dictionary learning, we adopt the second

assumption A2) and propose a novel formulation, which includes subject-session-specific trans-

formation of the dictionary (Fig. 4.2A). To accommodate the variability over different settings,

we introduce a spatial transform that modulates the common dictionary. The transform depends

on subjects and sessions so as to be responsible for compensating for the differences in subjects

and sessions. Note that if we do not consider subject-session-specific spatial transforms (or em-

ploy an identity mapping for the transform), the proposed formulation reduces to the original

formulation in Eq. (4.1).

Based on assumptions A1) and A2), we re-formulate Eqs. (4.1) and (4.2). In our pro-
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Spatial bases
common across

subjects and sessions
(Dictionary)

Subject-session-specific
transforms

Activities on
spatial bases

(sparse codes)

Subject N
(resting, j = 0)

Subject N-1

Subject 1

Subject N
(task, j > 0)

Measured signals
A

B

Session ( j )Subject ( i )

Classification

Transfer

Training subjects

Training data
Target data

Target subject

Fig. 4.2 The proposed method for multi-subject-session data analysis and subject-transfer
decoding. (A) Measured signals are decomposed into three factors: dictionary (spatial bases)
common across subjects and sessions D, spatial transforms Zij that modulate the common
dictionary to be specific to subjects (indexed by i) and sessions (indexed by j), and sparse
codes αijt representing the use profile of the spatial bases. The dictionary and transforms
are learned from the training data consisting of all sessions of training subjects and a resting
session (indexed by j = 0) of a target subject (indexed by i = N ), in an unsupervised manner
so that the signals in the training data can be well represented by a sparse combination of
the spatial bases in the dictionary. (B) Subject-transfer decoding based on calibration using
resting-state activities. For the target subject (i = N ), the subject-session-specific transform
for the resting-state activities, ZN0, is re-used as those for the task sessions, ZNj (j > 0).
The two matrices D and ZN0 are obtained in the dictionary learning stage of (A) based on
the training data, and are thus available before getting access to the EEG measurements of the
target subject during the decoding task sessions. Using the EEG signals of the target subject
during the decoding task, sparse codes α are estimated and used for later classification.

posed method, signal measurements are given by

xijt ≈ ZijDαijt, (4.3)

where i, j, t are indices for subjects, sessions, and time points, respectively, xijt ∈ RM is a
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vector of measured signals at (i, j, t), Zij ∈ RM×M is a matrix of a spatial transform specific to

the subject-session pair (i, j), D ∈ RM×K is a dictionary common across subjects and sessions,

and αijt ∈ RK is a sparse code for xijt. Whereas the dictionary D is unique and shared over

subjects and sessions, different Zij are prepared for each subject-session pair. Here, Zij does

not depend on the time point t; that is, the spatial transform may be different for each subject-

session, but stays the same during a session. The transformed dictionary ZijD serves as the

set of bases for representing xijt. In Eq. (4.3), Zij and D lack identifiability in their rotation

and permutation; e.g., if two rows of D are swapped and the corresponding columns of Zij are

also swapped, their product still produces the same matrix as the one without the swap. Our

proposed optimization problem for estimating the transforms and the dictionary is as follows:

min
Z,D,A

1

2

∑
i∈S

∑
j∈Si

∑
t∈Sij

{
∥xijt − ZijDαijt∥22 + λ∥Zij − I∥2F

}
s.t. ∀i, j, t : ∥αijt∥0 ≤ L, ∀k ∈ {1, . . . ,K} : ∥dk∥2 = 1,

(4.4)

where i ∈ S indexes the subjects, j ∈ Si indexes the sessions performed by subject i, t ∈ Sij
indexes the time points in session j by subject i, Z ≡ [Zij ] is a set of the spatial transforms,

A ≡ [αijt] is a set of the sparse codes, λ ≥ 0 is a regularization constant, and ∥·∥F is the

Frobenius norm. We also let X ≡ [xijt] be a matrix comprising the given signals. Ideally,

the variation across subjects and sessions is absorbed into the subject-session-specific spatial

transforms Zij , allowing us to estimate dictionary D and sparse code αijt by disregarding the

subject-session dependent variations.

The regularization term newly introduced in Eq. (4.4) controls to what degree each Zij

may be deviated from the identity transform, which preserves the consistent correspondence

between row vectors in the dictionary and sensor positions over subjects, and also reduces the

inherent indeterminacy of Zij and D. In this regularization, we prefer a spatial transform (Zij)

which is not distant from the identity transform, assuming that spatial variability among subjects

and sessions is not very large, so that the role of the spatial transform is to slightly distort

the subject-session-independent dictionary. This assumption is realistic since the shapes of

heads or brains share some degree of similarity among subjects, and we usually try to keep the

channel positions consistent over sessions according to the 10-20 system, even if those cannot be

completely the same. Importantly, the regularization allows us to interpret the dictionary atoms
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Input: X (given signals), K (dictionary size), L (sparseness constant), λ (regularization con-

stant), R (number of iterations), and ρ and r0 (learning rate constants)

1: Initialize {Zij} and D (see text)

2: for r = 1 to R do

3: Draw a pair of indices (subject, session) = (i, j)

4: Draw a time index t for (i, j) and xijt from X.

5: Sparse coding: Compute α⋆ using OMP:

α⋆ ← argmin
α
∥xijt − ZijDα∥22 s.t. ∥α∥0 ≤ L

6: Choose the learning rate ρr ← ρmin(1, r0/r).

7: Update the matrices by a gradient descent:

D← D− ρr(−ZT
ij(xijt − ZijDα⋆)α⋆T),

Zij ← Zij − ρr(−(xijt − ZijDα⋆)(Dα⋆)T + λ(Zij − I)).

8: Normalize the dictionary atoms to make their ℓ2 norms unity.

9: end for

10: Sparse coding: Compute A using OMP for all (i, j, t) with Step 5.

11: return Z, D, and A

Fig. 4.3 A stochastic gradient descent algorithm for the optimization problem Eq. (4.4).

as activity patterns on the channel positions for all the subjects. Such an interpretation cannot

be made, e.g., if Zij permutes the rows of dictionary matrix D; our regularization prevents Zij

from being close to any non-identity permutation matrix. Another important consequence of this

regularization is that it reduces the indeterminacy of Zij and D: Given a solution ([Z∗
ij ],D

∗) of

the problem (4.4), ([Z∗
ijR

T],RD∗) with any orthogonal matrix R also gives another solution

if λ = 0, but this does not hold if λ > 0. The regularization thus removes the indeterminacy of

rotation in our model. Notice also that if every Zij is set to the identity matrix (i.e., λ → ∞),

the problem (4.4) reduces to the basic one (4.2). Our method thus includes the basic dictionary

learning as a special case by not allowing any variability across subjects and sessions.

Figure 4.3 shows a stochastic gradient descent algorithm (Mairal et al., 2012) for solving

the constrained optimization problem Eq. (4.4). Since the optimization problem is not convex,

the solution quality depends substantially on the initial setting of the algorithm. The dictionary

D was initialized as a solution of the basic dictionary learning problem, Eq. (4.2), by running
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the SPAMS toolbox (Mairal et al., 2010). Although the basic dictionary learning problem is

also non-convex, the stochastic gradient descent algorithm for it has empirically been found to

be stable regardless of an initialization (Mairal et al., 2012, 2010); in our initialization, we used

a dictionary whose atoms were randomly drawn samples from a training dataset. The initial

values for Zij were obtained by ridge regression, fixing D and A at the solution of Eq. (4.2),

and then by scalar scaling to minimize ∥Zij−I∥F. After the initialization, the stochastic gradient

descent algorithm for our optimization Eq. (4.4) (Fig. 4.3) was executed. In the “for” loop of the

algorithm, we draw one combination of a subject and a session (i.e., i and j) in lexicographic

order, and then draw a signal vector xijt from the selected (i, j) from randomly permuted

within-session time indices. For the signal vector xijt, the sparse code α⋆ was computed by

the orthogonal matching pursuit (OMP) algorithm (Mallat and Zhang, 1993) so that xijt ≈

ZijDα⋆. After that, we updated D and Zij in the gradient descent step. The learning rate ρr

at the rth iteration in the loop was set at a constant ρ during the first 10% iterations (i.e., r =

1, . . . , R/10), and afterward it decreased in reciprocal proportion to the number of iterations.

The scheduling was controlled in Step 6, where we set r0 = R/10. In actual implementation, to

achieve acceleration, we adopted a mini-batch strategy (Mairal et al., 2012), which was to draw

many (η) time indices and signal vectors, rather than single ones, in Step 4 of the algorithm. In

that case, η sparse codes were calculated from the drawn η samples (in Step 5), and gradients

for D and Zij were calculated from the η sparse codes (in Step 7).

4.2.5 Application to subject-transfer decoding

The objective of subject-transfer decoding is to predict the mental state of a target subject using

a classifier that has been trained by a dataset mainly from subjects other than the target subject,

whereas the standard “self-decoding” scheme attempts to predict the mental state of a target

subject using a classifier that has been trained by a dataset collected from the same subject per-

forming the task sessions. When constructing a BMI decoder, there are two stages. Since brain

activities are usually of high dimensionality, we first extract an essential feature vector from

brain signals so as to well represent the mental state of the subject. Such a feature vector is then

provided to a classifier that predicts the mental state based on the feature vector. When training

a decoding classifier, we know the true mental state as experimental data, so the classifier can
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be trained to well associate the input feature vector with the output label both registered in the

training dataset. When testing, the trained classifier is required to predict the label when pro-

vided each feature vector in the test dataset, and then its performance is evaluated based on how

accurately the labels in the test dataset are predicted.

The use of the representations of brain activities on the common spatial bases for train-

ing/testing the classifier allows us to compare different brain activities on a common domain,

hence leading to successful subject-transfer decoding. As the feature vector, we use sparse

codes αijt, which are interpreted as the brain activities mapped onto the domain of spatial

bases spanned by the dictionary atoms common across subjects and sessions.

Although the estimation of the sparse codes of the training subjects is straightforward

from the algorithm shown in Fig. 4.3, that of the target subject needs special consideration

because we do not have the data from BMI task sessions of the target subject in the training

stage; this is a natural consequence of the problem setting of subject-invariant decoding. This

means that we cannot prepare the transforms specific to the target subject in the training stage,

while those transforms are necessary to estimate sparse codes of the task sessions of the target

subject. Since we compute feature vectors provided to the classifier from sparse codes, the lack

of these transforms makes the BMI/decoding scenario collapse.

To cope with this, we use resting session data from the target subject, which are assumed

to be available in the training stage, and use the transform ZN0 for the resting session (j = 0)

of the target subject (i = N ) as a substitute for ZNj (j > 0). The transform ZN0 is estimated

simultaneously with those of all sessions of the other training subjects. This operation is simply

performed by applying our dictionary learning algorithm (Fig. 4.3) to the dataset of the training

subjects added by the resting session data of the target subject (Fig. 4.2A). In each trial in the

target subject’s task session (indexed by j (> 0)), we can immediately compute the sparse code

αNjt by OMP, Step 5 in Fig. 4.3, by using the transform ZN0 instead of unknown ZNj (j > 0),

and the subject/session independent dictionary D. See Fig. 4.2B for a schematic diagram. The

basic idea of our subject-transfer decoding is to transfer the subject/session independent dic-

tionary D into the subject-session dependent dictionary ZN0D, by using the spatial transform

calibrated with the resting-state activities, ZN0. This transfer of the resting session’s transform

to the task session’s transforms is based on the third assumption A3); the transform estimated

from the resting session data is assumed to be comparable to those estimated from the task ses-
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sion data. The brain activities of the target subject in the task sessions are decoded by applying

the estimated sparse codes to the classifier trained based on the task sessions performed by the

training subjects.

Since how to convert sparse codes to features supplied for the classifier depends on the

characteristics of the data and the task, we devote the following subsection to describing an

evaluation dataset and feature extraction procedures.

4.2.6 Data-dependent considerations: Experimental procedure and

feature extraction

We evaluated the proposed method both for extracting spatial bases common across subjects

and for subject-transfer decoding using the settings described below.

Experimental procedure

Fifty-one volunteers participated in the experiments, and we used only data of 45 out of 51 sub-

jects who performed both resting and task sessions without experimental or measurement instru-

ments’ problems. All the subjects gave written informed consent for an experimental procedure

described below, which had been approved by the ATR Human Subject Review Committee.

In the task sessions, the subjects performed a selective visual spatial attention task

(attend-left or attend-right); the subjects were requested to covertly attend to left or right fol-

lowing visual stimulus cues without moving their eyes.

The experimental procedures were almost the same as that used in the previous chap-

ter except for the acquisition of resting-state activities. During the first (0th) session for each

subject, resting-state activities were measured for five minutes; the subjects were requested to

stay awake, relax, keep their body still, fixate their open eyes on a central white cross, and not

concentrate on a specific thought. After the resting session, each subject performed eight (1st

to 8th) task sessions, each consisting of 24 blocks. Thus, the total number of trials (Attention

epochs) was 192 for each subject.

Data acquisition and preprocessing

In this chapter, we assumed that only EEG measurements were available for analyses, which
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is a natural situation for the practical BMI. Although EEG has advantages of low cost and low

burden, it has a disadvantage of large variability across subjects and sessions. In addition, in

this case the cortical current estimation is not available because we need NIRS and MRI data

in addition to the EEG data for a reliable cortical current estimation (Chapter 3). That means

whether we perform the cortical current estimation or not depends on a tradeoff between costs

for data acquisition and a quality of signals.

EEG signals were measured using an ActiveTwo system by Biosemi (Amsterdam, the

Netherlands), at a sampling rate of 256 Hz with a 64-electrode cap that was configured according

to the international 10-20 system. We also measured EOG to ensure that the subjects did not

shift their eye gaze towards the attended direction by checking if the attended direction could

not be decoded only from EOG (see the first paragraph of Section 4.3.2).

We preprocessed the raw EEG signals to obtain the input, X, to the dictionary learning

algorithm. First, the raw EEG signals were re-referenced to a common average reference and

passed through a band-pass filter (0.5–40 Hz). Next, we derived the spectral power in seven

frequency bands using Morlet wavelets. We chose a spectral standard deviation of 5.83 and

spaced the center frequencies evenly in the logarithmic scale from 22 to 25 with a step of 0.5, that

is, [22, 22.5, 23, 23.5, 24, 24.5, 25] ≈ [4, 5.7, 8, 11.3, 16, 22.6, 32]. We used the F = 7 frequency

bands based on the knowledge that the selective spatial attention task modulates a wide range

of frequency bands (Daitch et al., 2013; Siegel et al., 2008); this knowledge has also been used

in other BMI studies to enhance decoding performance (Ang et al., 2008). After the wavelet

transform, the data were downsampled to 32 Hz and normalized to have zero mean and unit ℓ2

norm for each time point and frequency, leading to X = [xijt] in Fig. 4.3. The dimensionality

M of the input xijt was the same as the number of channels, 64, for each frequency band.

We excluded behaviorally poor trials from the later analysis with the same criterion as in

the previous chapter, which rejected trials that were not significant with the significance level of

0.05 under the null hypothesis that the rate of correct responses was comparable to the chance

level. In addition, we excluded subjects whose trial rejection rate was more than 25%. Based

on the latter criterion, four subjects were removed, and henceforth we analyzed 41 subjects.
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Feature extraction and classification

The performance of subject-transfer decoding was evaluated by one-subject-out CV accuracy;

that is, we picked up one subject from the 41 subjects as a target subject, constructed a decoder

based on a training dataset consisting of the data from the remaining 40 subjects and the resting-

state data from the target subject, evaluated the decoding accuracy by decoding the task dataset

from the target subject, and repeated this by replacing the target subject 41 times. We call the

decoding accuracy in one repetition the transfer performance for the picked target subject, and

the median of the 41 transfer performances is called the CV transfer performance.

Classification was performed using a linear support vector machine (SVM) which has

been successfully used for image classifications based on the dictionary learning and sparse

coding (Wang et al., 2010; Yang et al., 2009). The SVM was trained using the task data from

the training subjects, and objective of the SVM was to predict the labels of the spatial attention

trials performed by a target subject.

The sparse codes averaged over each trial were used as a feature vector for training and

testing the SVM classifier (Fig. 4.2). The sparse codes of the training subjects were estimated

using data points within 1) Attention epochs of task sessions of the training subjects, and 2) en-

tire intervals of resting sessions of the training and target subjects, using the proposed dictionary

learning algorithm (Fig. 4.3). In the estimation procedure, when we picked up a resting session

in Step 3 in Fig. 4.3 (i.e., when j = 0), we updated only Zij in Step 7 in order to make D

specific to task sessions. After obtaining the sparse codes, we averaged the sparse codes in each

trial, producing a vector of length K, and normalized it to have a unit ℓ2 norm. We concatenated

the averaged sparse codes over the F = 7 frequency bands to make the feature vector for the

trial (the dimensionality of the feature vector is FK). The SVM was trained based on these

feature vectors obtained from the training subjects, which were associated with the correspond-

ing task label (left or right) for each trial. In each Attention epoch of task sessions of the target

subject, sparse codes were extracted by using the transfer scheme described in Section 4.2.5.

The feature vector for the target subject was computed in the same way as the training subjects,

by taking average of the sparse codes in a trial, and supplied to the SVM trained by the dataset

of the training subjects. The decoding accuracy was the proportion of correctly predicted labels

for task trials of the target subject.
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Parameter settings

We set the parameters in dictionary learning based on the practice in dictionary learning and

some initial attempts: 1) Dictionary size K = 128, which was twice the feature dimensionality

to keep a variety of dictionary atoms while reserving computational efficiency. 2) Sparseness

constant L = 20, which was about one third of the feature dimensionality, reducing the number

of active elements to lead to sparse solutions while keeping enough information for decoding.

3) Regularization constant λ = 10−7, which well balanced the stability and adaptability of

Zij . Although these parameters were chosen based on some initial attempts in this study, these

values can be chosen based on a reconstruction error or a nested-CV scheme. Other parameters

in the optimization procedure were determined based on the convergence profile of the objective

function, Eq. (4.4), during the stochastic gradient descent algorithm: Number of iterations R =

6 × 105, initial learning rate ρ = 5, and mini-batch size 512. A hyperparameter of the linear

SVM was determined without using the target subject’s data by nested CV; that is, by running a

CV procedure for each of the 41 training datasets.

4.3 Results

We examined the proposed method in terms of the following two aspects: 1) capability to extract

common bases and 2) applicability to subject-transfer decoding.

4.3.1 Spatial bases common across subjects and sessions

We examined how the variability across different subjects and sessions was compensated for by

our dictionary learning method. We show here analysis for the alpha frequency band (at a center

frequency of 23.5 = 11.3 Hz) because it is known to be most relevant to our selective spatial

attention task (Capotosto et al., 2009; Thut et al., 2006).

The proposed formulation of dictionary learning in Eq. (4.3) extracted sparse codes A

that were more similar across subjects and sessions, and thus were more consistent than those by

the basic formulation of Eq. (4.2) (Fig. 4.4A). To see how the dictionary learning with subject-

session-dependent spatial transformation works, we compared the intersession distances in the

sparse codes estimated using the proposed dictionary learning with those using basic dictionary
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learning (Fig. 4.4A). The distance between two sessions is defined to be the cosine distance of

the averaged sparse codes (i.e., for a training subject-session pair ij and a target subject-session

pair i′j′, we took the cosine distance between αij =
∑

t αijt and αi′j′ =
∑

t αi′j′t; i.e.,

1−αij ·αi′j′/∥αij∥∥αi′j′∥). Paying particular attention to the consistency of the sparse codes,

we calculated the distances of the sparse codes in task sessions between training subjects and

a target subject within the CV procedure. In the CV procedure, we selected one target subject

out of 41, and the remaining 40 subjects were used for dictionary learning. After learning, we

measured the distance between each of the 40 pairs of a target subject and a training (reference)

subject; since every subject performed eight task sessions, there were 40 × 8 × 8 = 2, 560

session-wise distances over all the pairs of a target subject and reference subject. The total

of 41 × 2, 560 = 104, 960 distance values are shown in each of the histograms in Fig. 4.4A.

Whereas basic dictionary learning produced session-wise cosine distances that were widely

distributed over [0.2, 1], the distance distribution of the proposed method incorporating subject-

session dependent transforms Zij is sharply peaked at around 0.2, leading to more consistent

sparse codes.

The subject-session-specific spatial transforms Zij obtained by our dictionary learning

were similar to each other in individual subjects, regardless of whether they were from resting

sessions or task sessions. Figure 4.4B is a multidimensional scaling (MDS) plot of the spatial

transforms Zij for all the pairs of 41 subjects (indexed i) and nine sessions (indexed j). The

distance for MDS was given by the Frobenius norm of the difference, (∥Zij − Zi′j′∥F). Here

we did not employ CV but used the entire data for learning. The spatial transforms formed

clusters for each subject, suggesting that the intersubject variability of the spatial transforms was

larger than the intrasubject (intersession) variability. Another important point is that the spatial

transforms of the same subject are closely located regardless of the session type, suggesting the

subject-wise consistency of the spatial transforms between resting and task sessions.

The learned dictionary D included spatial activity patterns relevant to the selective spa-

tial attention task. The left panels of Fig. 4.4C show learned prototypes (atoms) that had the

top four largest differences in the associated sparse codes between the two attention conditions,

left and right, in the task sessions. The displayed prototypes were associated with the smallest

p values based on the Wilcoxon rank sum test, for which only the sparse code time courses

(right panels) from 100 ms to 500 ms after each onset of visual stimulus during the Attention
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epoch were used. The prototypes (spatial bases) labeled (i)–(iv) in Fig. 4.4C can be interpreted

as activities in (i) the middle temporal area (MT+), (ii) the posterior intraparietal sulcus (pIPS),

(iii) the FEF, and (iv) the ventral intraparietal sulcus (vIPS). The right panels of Fig. 4.4C show

the temporal activity patterns of the sparse codes for the four prototypes, averaged over all the

subjects for each of the two task conditions, attend left and attend right. Since the Attention

epochs of 8 s were separated into “attend-left” and “attend-right” conditions, the time courses

were averaged separately within each of the two attention conditions, colored orange and blue,

respectively. When taking the average over the subjects, sparse code activities were time-aligned

to the average times of the visual stimulus onsets indicated with the black bars by a cutting win-

dow between −100 ms and 600 ms from each onset (out-of-window regions are colored gray).

For the sake of visualization, the activities were smoothed with a Hann window of a 600 ms full

width. The prototype (ii) has a specific temporal pattern of an initial strong activation in sparse

codes (i.e., an inhibition in the alpha-band power) triggered by the onset cue. Following this

initial event-related desynchronization, the alpha-band power moved slowly back to the base-

line level, but relatively large residuals remained in the right condition even after 2 s from the

Attention onset.

Figure 4.5 shows how the most discriminative dictionary atom, prototype (i) in Fig. 4.4,

was modulated by subject-session-specific spatial transforms over different subjects and differ-

ent sessions. Although they were from the same dictionary atom, they showed specific patterns

for each subject; i.e., modulation of the prototype between sessions was weaker than that be-

tween subjects. This observation is consistent with the result shown in Fig. 4.4B.

4.3.2 Subject-transfer decoding

We evaluated the performance of the subject-transfer decoding. Before proceeding to the main

analyses, we found that it was unable to decode the subjects’ spatially attended direction from

wavelet-transformed EOG signals under the one-session-out CV setting (p > 0.05, one-sided

paired t-test, FDR corrected, avg. 51.5%, s.d. 4.9%). Thus, EOG artifacts did not contain

enough information to allow us to decode spatial attention in our EEG measurements.

We compared our method with the following three baseline subject-transfer decoding

methods:
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(a) divCSP-MS: The divergence-based common spatial pattern (CSP) for multiple subjects

proposed by Samek et al. (2014), which extracted a discriminative feature subspace in-

dependent of subjects.*2

(b) Ensemble: Sparse ensemble of classifiers derived from subject-session-specific temporal

and spatial filters proposed by Fazli et al. (2009), where the ensemble was sparsified by

ℓ1 regularization to facilitate generalization for each target subject not included in the

ensemble.*3

(c) BasicDL: The same subject-transfer settings with the proposed method but with dictio-

nary learning based on the basic formulation (Eq. (4.2)).

Both (a) and (b) construct subject-invariant decoders that we can then attempt to generalize over

target (unseen) subjects. Since we defined in this study that subject-transfer decoding may use

resting-state data but may not use task data from target subjects, we did not evaluate here the

performance by other subject-transfer decoding methods that need data when target subjects

perform task sessions (Devlaminck et al., 2011; Kang and Choi, 2014; Lotte and Guan, 2010).

Figure 4.6 shows the subject-transfer decoding performance of the proposed method

and the three baseline methods. The CV transfer performance by the proposed method was

significantly higher than those by the baseline methods: (a) p = 2.26 × 10−7, (b) p = 0.0291,

(c) p = 0.0227 with the Wilcoxon signed-rank test. The favorable performance by the proposed

method compared with those by the existing methods, (a) and (b), can be attributed to the

consideration of the intersubject variability in the proposed dictionary learning method.

There was no significant correlation between the transfer performance and the behavior

performance defined by the accuracy of button pressing: (a) p = 0.910, (b) p = 0.663, (c) p =

0.207, (d) p = 0.652 with t-test.

*2 We followed the settings by Samek et al. (2014): The frequency band was 8–30 Hz, the dimensionality of

CSP patterns was six, and the divergence measure for extracting CSP was the symmetric beta Kullback-Leibler

(KL) divergence whose parameter was selected from 0, 0.5, and 1 by a nested CV procedure. We used the

implementation provided by Samek et al. (2014) for our analyses (http://www.divergence-methods.org/ ).
*3 We modified the original method to use the same frequency bands with those in our method, whereas Fazli et al.

(2009) used nine predefined bands with different widths and positions. The feature dimensionality used in CSP

filters was four, which is the same as in the original study. The ℓ1 regularization parameter was determined by

nested CV.
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To see which part of spatial activity patterns contributed to decoding of the spatial atten-

tion task, Fig. 4.7 shows frequency-wise dictionary atoms that had the highest absolute weights

in the classifier. The spatial patterns estimated by the proposed method (upper row) were more

focal than those by BasicDL (lower row). The prototypes obtained by the proposed method

showed large activities around 1) right vIPS on the alpha-band (23.5 = 11.3 Hz) and 2) right

MT+ and the motor area on the low-gamma band (25 = 32 Hz). These regions have been found

to be involved in the spatial attention task based on cortical currents estimation (Morioka et al.,

2014; Siegel et al., 2008) and MEG analysis (Bauer et al., 2006). In contrast, the spatial pat-

terns obtained by BasicDL were spread over different areas in wide frequency bands (Fig. 4.7,

lower), making it difficult to observe which brain regions and frequencies were important for

the decoding of spatial attention.

We examined the relationship between the subject-transfer decoding performance and

the self-decoding performance by linear regression analysis.*4 In the regression analysis, we

drew a line y = a(x−50)+b, where the explanatory variable x was a self-decoding performance

(in %) and the dependent variable y was a transfer performance (in %). We are interested in

the intercept, or the bias, b because it represents the subject transfer performance for a virtual

subject whose self-decoding performance is at the chance level; that is, by using data from

other training subjects, we may be able to decode from the test subject whose self-decoding

is difficult. By taking the dependent variable y to be one of (b) Ensemble, (c) BasicDL, or

(d) ProposedDL, we performed least-square fitting for (b), (c), and (d) (Fig. 4.8). Data samples

for the regression analysis were (xi, yi) (i = 1, . . . , 41). The estimated intercepts and their

p-values when compared to the chance level (50%) with t-test were (b) b = 51.0 (p = 0.50),

(c) b = 54.3 (p = 0.012), and (d) b = 54.7 (p = 0.0044). Thus, the intercepts of (c) and (d)

were significant.

*4 The self-decoding performance denotes the decoding accuracy of a classifier trained using the target subject’s

data, which are not available in the subject-transfer scheme. For a self-decoding method, we employed CSP

(Blankertz et al., 2008), one of the most popular methods for BMI. We followed the settings recommended

in Blankertz et al. (2008): EEG signals were band-pass filtered in the 8–30 Hz frequency range, reduced to

six dimensions using CSP filters, and then the log-variances of the six-dimensional data were used as features

for linear discriminant analysis. For each target subject, the self-decoding performance was evaluated using a

one-session-out CV procedure.
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4.4 Discussion

In this study, we proposed a novel dictionary learning method that dissociates subject/session-

independent spatial bases, subject-session-specific spatial transforms, and sparse codes, and

designed a subject-transfer decoding scheme using resting-state brain activities as calibration

data. Since this dissociation was effective in removing subject-session-specific variability in

the EEG measurement signals, the obtained sparse codes provided robust features to subject-

transfer decoding of the spatial attention task. Particularly in subject-transfer decoding, we

estimated the subject-session specific transforms based on the resting-state data, with which

we built decoders for target subjects without using calibration by task data. The transfer per-

formance of our method was found to be superior to those of other subject-invariant decoding

methods.

We suggest that the proposed dictionary learning method estimates dictionary atoms that

are robust against the variability in the EEG measurements, which is supported by the consis-

tency of the sparse codes over subjects and sessions (Fig. 4.4A). The consistency of the sparse

codes implies that a limited set of dictionary atoms were frequently used in task sessions, so that

the acquired dictionary was more focused for representing task-related brain activities. On the

other hand, the basic dictionary learning method yielded sparse codes that were relatively in-

consistent. The reason for this is that the dictionary estimated from the measurements involving

variability had to prepare a variety of atoms (e.g., spatially shifted ones according to different

sensor positions on the scalp), which resulted in low generalization capability. This consis-

tency was indeed important for improving the decoding performance based on the sparse codes.

Fig. 4.5 also supports the assumption that the spatial transforms modulated specific patterns for

each subject-session. Accordingly, our dictionary learning satisfied our basic assumptions A1)

and A2).

Since the spatial transform of the resting session was located close to those of the task

sessions (Fig. 4.4B) and our subject-transfer decoding method using resting calibration per-

formed favorably to the existing decoding methods, our approach of calibration using resting-

state data based on the third assumption A3) has been justified. Since the physical configuration

of EEG electrodes stays almost identical in a resting session and subsequent task sessions,
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the similarity of the transforms between these sessions can be naturally understood. Although

recording resting-state activities is required by our subject-transform decoding scheme, it is

much easier than conducting task sessions of several tens of minutes to calibrate the decoder;

in resting sessions, subjects do not need to concentrate on a task but only need to stay quiet

for several minutes. Previous neuroscience studies have reported that task-relevant evoked ac-

tivities are embedded in a subspace of a larger space outlined by spontaneous activities (Kenet

et al., 2003; Luczak et al., 2009); our re-use of the spatial transforms estimated from resting-

state EEG activities could have been effective because of the extraction of such a subspace

in a subject-specific manner. This unsupervised calibration method incorporating resting-state

brain activities is the most notable feature of the proposed method, compared with the existing

subject-invariant learning techniques.

The results in Fig. 4.4 indicate that the proposed method can also serve as a tool for reli-

able multi-subject-session analysis since the dictionary extracted essential brain activities rele-

vant to the performed task. All of the brain regions activated in (i)–(iv) have been reported to be

relevant to the selective spatial attention task (Siegel et al., 2008). In particular, we can observe

hemispheric lateralization in the following two ways. First, prototypes (ii) and (iv) exhibited

desynchronization in the posterior regions contralateral to the attended directions of right and

left, respectively; this desynchronization in the alpha band has previously been demonstrated

in a covert spatial attention task (Thut et al., 2006; Worden et al., 2000; Wyart and Baudry,

2008). Second, prototype (iii) involved alpha-synchronization in FEF contralateral to the at-

tended direction. Moreover, the temporal activity patterns displayed in the right panels were

also consistent with previous findings (Capilla et al., 2012; Grent-’t Jong et al., 2011; Händel

et al., 2011).

Our study is a novel extension of the dictionary learning scheme to multisubject analy-

ses under variability across subjects and sessions such to allow subject-transfer decoding with

resting-calibration. Several studies have exploited dictionary learning for characterizing neu-

ral representation; e.g., spatio-temporal patterns of a P300 evoked potential (Barthélemy et al.,

2013), spike sorting for electrophysiological data (Carlson et al., 2014), and resting state fMRI

networks (Eavani et al., 2012). Some other studies have used dictionary learning and sparse

coding for classifying EEG sensor signals (Hammer et al., 2011; Shin et al., 2012; Zhou et al.,

2012), which attempt to decode subjects’ intentions from sparse representations. Although Shin
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et al. (2012) proposed a decoding scheme of motor-imagery BMI based on sparse representa-

tion, they did not estimate the dictionary adaptively from data, but used a mere concatenation

of training data after CSP filtering (Blankertz et al., 2008). Since these studies did not model

variability across subjects and sessions explicitly, they lacked the ability of summarizing brain

activities on the common signal representation domain and were not effectively applicable to

multisubject data analysis. Kang and Choi (2014) have recently proposed to share a latent

subspace of CSP among different subjects and tune it by subject-wise linear transforms for ex-

ploiting multisubject EEG data. They analyzed only labeled data during EEG recording of task

sessions of target subjects. Our unsupervised feature extraction by dictionary learning is ap-

plicable to resting-state data, which achieves low-burden resting-calibration for subject-transfer

decoding.

Another idea to compensate for the variability caused by different physical conditions in

measurements, e.g., misalignment of EEG sensors and degradation of sensor impedance, would

be to estimate cortical currents and to co-register them on a standard brain. However, corti-

cal current estimation incurs an additional burden on practical applications because it requires

the measurement of three-dimensional locations of EEG channels using a stylus and moreover

structural MRI (Aihara et al., 2012; Morioka et al., 2014; Yoshimura et al., 2012). Cortical cur-

rent estimation does not preclude the adoption of our dictionary learning technique, which can

be applied to any kinds of signals including cortical currents and their derivatives. The combina-

tion of cortical current estimation and the compensation for the variability inherent to the brain

activities by the proposed method is a promising approach to analyze multiple subject-session

data in the cortical domain.

The good transfer-decoding performance (Fig. 4.6) and the focal weighted atoms

(Fig. 4.7) imply that effective information sharing across subjects was achieved by the proposed

method. Thanks to the signal representation in the common dictionary, we can compare

activities from different subject-session pairs on the same standing point.

In the two-dimensional plane consisting of the self-decoding performance and the

subject-transfer performance (Fig. 4.8), we found that the proposed method gained a significant

decodability improvement especially when the self-decoding performance was in the chance

level (50%). This result advocates that the proposed method is applicable not only to the

subjects who showed favorable self-decodability but also those with poor self-decodability.
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Since the poor self-decoding performance might be associated with non-discriminative EEG

activities in the task sessions, subject-transfer decoding can be a good alternative. This is an

advantage of the proposed method over the conventional subject-invariant decoding methods.

Although we presented in this study offline analysis results, the proposed method of

subject-transfer decoding with resting-calibration can be applied to online experiments, where

recorded brain signals are immediately decoded. This is because, once a common dictionary

D and a target-subject-specific transform ZN0 are available, the feature vector supplied to the

trained classifier, i.e., the sparse code for a single task trial of the target subject, can be computed

rapidly (0.01 s with our Matlab with SPAMS implementation on a computer with Intel Xeon

3.6 GHz CPU and 96 GB memory). The calculation of the transform ZN0 took 97.5 s,*5 which is

affordable as a preprocessing time between the end of a resting session and the start of (possibly

online) task sessions. The learning of the common dictionary D from the 40 training subjects’

data took about 9 h, which has to be done before starting an experiment with the target subject.

It was unclear how many training subjects are sufficient to obtain a good transfer per-

formance and what is the performance limit of the transfer decoding approach, and further

investigations would be needed. In our preliminary experiments (Fig. 4.9),*6 we observed that

1) at least five training subjects were required to achieve a significant performance increase

compared to the chance level and 2) the transfer performance did not reach a plateau even with

the full dataset consisting of 40 training subjects and one target (testing) subject. Using larger

datasets may improve the transfer performance but there are many factors to be considered,

including the characteristics (similarity) of subjects and the type of mental tasks.

For comparison, we also evaluated a task-calibration approach (Lotte and Guan, 2010)

(Fig. 4.10) using our dataset and found that around 24–48 task trials of a target subject were

necessary for the task-calibration method to realize a transfer performance comparable with

that of the proposed resting-calibration method. The task-calibration method of Lotte and Guan

*5 If D is fixed, ZN0 can be calculated only from the resting data of the target subject.
*6 To evaluate the transfer performance in this additional experiment, we collected 41 values of transfer decoding

accuracy for each Ntr; in the Ntr = 40 case we made full use of the 41-subjects dataset by employing one-

subject-out CV, but when Ntr was less than 40 we performed a CV-like procedure as follows: For a given

Ntr, we repeated training and testing 41 times, where in one repetition one target subject was used (differently

between the repetitions) for testing and Ntr training subjects were randomly selected from the other 40 non-target

subjects (when Ntr = 40 this procedure reduces to the one-subject-out CV).
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(2010) estimates a CSP filter by combining a covariance matrix of target subject’s task data

and those of the other training subjects’ task data.*7 To see how the size of data from a target

subject impacts on the decoding accuracy for the target subject, we carried out experiments

to compute transfer performances with the number of task trials of the target subject (Ntrial)

equal to 12, 24, 36, 48, and 60, and found that the task-calibration method requires around

24–48 task trials of the target subject to be comparable with the proposed method. This result

supports the advantage of the lower burden of the proposed method than the task-calibration

method (Lotte and Guan, 2010) because 1) the proposed method needs only resting-state data

and 2) the duration of the resting-state (5 minutes) is shorter than that of 24–48 task trials (about

8–16 minutes). Note that since Ntrial was limited, these transfer performances were lower than

the self-decoding accuracy.

There is some room for improving our methodology to make it applicable to a wider

range of decoding and BMI. Temporal similarities of spatial transforms and sparse codes were

not considered in the current formulation of dictionary learning (Eq. (4.4)), but incorporating

them into the formulation will encourage the sparse codes to be more consistent over subjects

and sessions, facilitating effective information sharing for subject-transfer decoding. This can

be achieved by introducing additional constraints to the spatial transforms and/or sparse codes in

the objective function in the dictionary learning. A similar modification can also be performed

in the frequency domain; namely, we can apply a constraint encouraging close frequency bands

to have similar properties. Spatial similarity of smoothness may also be introduced through reg-

ularizations or constraints to make spatially neighboring elements of Zij have similar values.

Such incorporation of prior knowledge into the subject-session-specific transforms has a poten-

tial to enhance the performance of the proposed method. In the proposed dictionary learning

scheme, no special constraint, other than the ℓ2 norm constraint on each atom, was imposed

on dictionary atoms. More problem-specific constraints, e.g., positivity constraints, on the dic-

tionary may enhance its performance and interpretability. For this purpose adopting a variant

of non-negative dictionary learning schemes (Dikmen and Févotte, 2011, 2012) would enhance

*7 We used the implementation provided by Lotte and Guan (2011) for our analyses (http:// sites.google.com/site/

fabienlotte/code-and-softwares/rcsptoolbox). In this implementation, LDA is trained only from task data of the

target subject. This strategy is slightly different from that proposed in Lotte and Guan (2010), in which they

trained the LDA by combining data from both training subjects and a target subject.
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the interpretability of the decomposed matrices. The automatic determination of the number of

dictionary atoms is potentially possible based on, e.g., Bayesian nonparametrics (Zhou et al.,

2009; Kang and Choi, 2014). Although we applied the proposed method only to the EEG sig-

nals, the methodology is applicable to other measurement modalities such as MEG and fMRI.

Since the development of better classifiers was not the focus of this study, we used the linear

SVM, as the most typical supervised classifier. Consideration of classifier design may be im-

portant for further improving the decoding performance and building a more widely applicable

subject-transfer decoding method. Although the proposed method needs only resting resting-

state data for a calibration, the online adaptation of the spatial bases and the classifier by using

task data from the target subject is a promising approach to realize more reliable BMI system.

4.5 Summary

In this study, we proposed a novel dictionary learning scheme to extract spatial bases common

across multiple subjects and sessions in an unsupervised manner and a new subject-transfer de-

coding method based on the features extracted via dictionary learning. To calibrate the decoder

for a target subject, our subject-transfer decoding method used resting-state data from the tar-

get subject. Using resting-state activities for subject-transfer decoding is a novel concept and

its relatively low burden for the target subject will enlarge the applicability of BMI decoding

systems. Our newly developed method did not only outperform the existing subject-invariant

decoding methods, but also extracted reasonable spatial bases common over multiple subjects

by avoiding disturbance from subject- and session-specific variations. As we move toward the

era of large-scale neuroscientific databases, our newly developed data-driven methodology can

provide a new tool applicable to various studies in neuroengineering, such as the implementa-

tion of robust BMI systems working in realistic environments.
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Fig. 4.4 Characteristics of the common spatial bases (dictionary), subject-session-specific
transforms, and sparse codes, obtained by the proposed dictionary learning method. (A) His-
tograms of cosine distances of sparse codes between training and target subjects. The orange
and gray histograms show the distances by the proposed formulation (Eq. (4.4)) and by the
basic formulation (Eq. (4.2)), respectively. The introduction of the subject-session transform
into the dictionary learning changed the distance distribution closer to the origin, imply-
ing that the sparse codes (to be used as decoding features) were made similar between the
training and target subjects. (B) Multidimensional scaling of subject-session-specific spatial
transforms Zij . Each circle corresponds to a single session (indexed by j); the filled and
open circles signify task and resting sessions, respectively. Temporally-adjacent sessions in
the EEG experiment are connected by a line, and thus a single string of lines corresponds
to one subject (indexed by i). The transforms of the same subject, including one for a rest-
ing session, are located nearby, implying they are consistent over resting and task sessions.
(C) Prototypes (learned dictionary atoms) and the time courses of the associated sparse codes.
The left panels show the prototypes with the top four largest differences (from (i) to (iv)) in
the sparse codes between the two attention conditions, left and right. The right panels show
the time courses of the sparse codes averaged over all the subjects for each task condition,
“attend-left” (orange) and “attend-right” (blue). The horizontal axis in the right panels de-
notes the elapsed time relative to the onset of the Attention epoch. The vertical axis denotes
the activity amplitude, in percent, relative to that in the Rest epoch (in a window between
−8 s and −4 s from the Attention onset). The thick gray and red bars on the horizontal axis
indicate the Control and Attention epochs, respectively.



4.5 Summary 67

Resting session

Subj. 4 Subj. 6 Subj. 10 Subj. 11 Subj. 19 Subj. 29 Subj. 36 Subj. 40

Task session 1

Task session 8

Fig. 4.5 Spatial patterns of the most discriminative atom, prototype (i) in
Fig. 4.4, modulated by subject-session-specific spatial transforms, Zijd(i) for
i ∈ {4, 6, 10, 11, 19, 29, 36, 40} and j ∈ {0, 1, 8}. We show three sessions (resting
(0th), first, and eighth sessions) of eight distinct subjects whose transforms were most distant
from the center of mass in the MDS space (Fig. 4.4B).
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Fig. 4.6 Subject-transfer decoding performance by (a) divCSP-MS (Samek et al., 2014),
(b) Ensemble (Fazli et al., 2009), (c) BasicDL (Eq. (4.2)), and (d) the proposed method. The
leftmost panel shows boxplots of the transfer performances by the four methods, and the
other panels show scatter plots comparing the transfer performances between the proposed
method (d) and the three baseline methods (a−c). Each circle corresponds to a single target
subject. The median transfer performance in the cross-validation (CV) procedure of the four
methods was (a) 49.7%, (b) 54.0%, (c) 54.5%, and (d) 57.6%. The horizontal line shows the
chance level (50%; not corrected for trial rejection).
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Fig. 4.7 Frequency-wise dictionary atoms with the largest absolute weights in the classifier.
Upper: Dictionary atoms estimated by the proposed method. The dictionary and the classi-
fier were trained using the training dataset in a CV repetition when the target subject was
subject 38, who exhibited the highest transfer performance. Each column corresponds to a
single frequency band. The dictionary atoms were normalized to make their values reside in
the range [−1, 1] after each was multiplied by the corresponding weight in the linear SVM
classifier. Lower: Dictionary atoms estimated by BasicDL.
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Fig. 4.8 Self-decoding performance (horizontal axis) vs. subject-transfer decoding perfor-
mance (vertical axis); the latter was performed by (b) Ensemble (left panel), (c) BasicDL
(middle panel), and (d) the proposed method (right panel). In each panel, a circle corre-
sponds to a single target subject and is colored when the subject-transfer decoding perfor-
mance was higher than the self-decoding performance (i.e., when the circle is plotted over
the diagonal line, y > x). The colors for the over-the-diagonal circles are the same as in
Fig. 4.6. Note that for each circle the x-value on the horizontal coordinate is common over
the three panels, but its y-value on the vertical axis is different. The red lines are estimated
least-square fits: (b) y = 0.26(x − 50.0) + 51.0, (c) y = 0.062(x − 50.0) + 54.3, and
(d) y = 0.16(x− 50.0) + 54.7.
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Fig. 4.9 The boxplots show the effect of the number of training subjects (Ntr, horizontal
axis) to the transfer performance (vertical axis). Statistical significance in comparison to the
chance level performance (50%) with the Wilcoxon signed-rank test: *p < 0.001; **p <
0.0001.
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Fig. 4.10 (Left) The comparison with a task-calibration method (Lotte and Guan, 2010).
The leftmost column shows the transfer performance of the proposed resting-calibration
method (d) (same with Fig. 4.6), and the other columns show that of the task-calibration
method with changing the number of task trials of a target subject (Ntrial, horizontal axis).
Statistical significance of comparison between the proposed method and the task-calibration
method with the Wilcoxon signed-rank test: *p < 0.05; **p < 0.01. (Right) The boxplot
shows the self-decoding performance same with Fig. 4.8.
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Chapter 5

An autonomous navigation

method toward BMI-controlled

wheelchairs

5.1 Introduction

Robotic wheelchairs have been regarded as a major candidate for an application of BMI that

improves the quality of life of handicapped people. Millions of people around the world suffer

from mobility impairments, and it has been thought that between 1.4 and 2.1 million individuals

might not be able to use a manual wheelchair because of lack of muscle control, and thus

benefit from a smart powered wheelchair (Wästlund et al., 2010) that can provide autonomous

assistances to the user based on the user’s possible interfaces (e.g., joystick, voice, gaze, tongue,

and bite) (Simpson et al., 2008). Some studies have proposed a wheelchair controlled by BMI

in which the user can continuously give locomotion commands to the wheelchair (Galán et al.,

2008; Hema et al., 2011). These BMI-wheelchairs can provide a novel methods for moving

around to people who have severe motor-disabilities and are unable to use the conventional

interfaces.

In recent years, to increase the reliability using BMI wheelchairs in daily life, we set

up a BMI house that monitors and supports the wheelchair and the user living there (Kanemura
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et al., 2013) (Fig. 5.1). The BMI house installations and the wheelchair are fully electrically

powered and are controllable by the BMI user’s intentions through the central server. As a

means of output for mobility, we use a robotic wheelchair that can navigate autonomously

between different locations in a living environment using a waypoint-based BMI framework.

Conventional BMI controllers (Carlson and Millan, 2013; Galán et al., 2008; Hema et al., 2011)

continuously read the user’s intentions from their brain activity throughout the operation period.

This continuous control requires the user to constantly concentrate, which makes the user tired,

and needs a high ITR (or decoding accuracy) of BMI.*1 However, in general, such high self-

decoding accuracies are limited to small group of subjects, and thus it is not always suitable

for daily life support without a practical design. In the framework of waypoint-based BMI,

to increase user comfort, the user of the wheelchair does not need to concentrate or control it

continuously, but just needs to make decisions at an a priori waypoint prepared in the house to

decide their subsequent destination (i.e., the next waypoint). This framework has the advantage

that the user does not necessarily have to have a high ITR of BMI.*2 The waypoints are placed

on landmark spots that exist in the living environment. They are selected manually by the user

at places such as in front of the entrance door, living room, bedroom, kitchen, and in front

of television. At each waypoint there is a list of possible destinations from which the user

can choose for the next direction the BMI-controlled wheelchair should go. For the decision

making, they used Left/Right hand’s motor imagery because it can be naturally associated with

the direction of movement (Left/Right) and does not require an extra monitor for destination

*1 It should be noted that in the asynchronous BMIs, the calculation of ITR is difficult because the timing of

operation may vary dramatically depending on the user, and the user may choose not to send any commands for

long periods. Thus, asynchronous BMIs often report decoding accuracies and task performances without using

an ITR at all. For example, Carlson and Millan (2013) reported that four participants of their experiments had

average self-decoding accuracies of 93.3%, 90.0%, 96.7%, and 100.0% with 2-class motor imagery task (Left

hand/Right hand), and then successfully completed driving tasks twice without any collision; four participants in

Hema et al. (2011) had average self-decoding accuracies of 96.5%, 95.7%, 87.7%, and 96.2% with 4-class motor

imagery task (Relax/Both hands/Left hand/Right hand), and reached target points with a range of performances

from 83.3% to 100%.
*2 The participant in Kanemura et al. (2013) had self-decoding performance of 78.1%, which was lower than that

reported in the asynchronous BMIs (Carlson and Millan, 2013; Hema et al., 2011) and comparable with that

reported in our off-line experiment in Chapter 3 (79.1%), but the participant could perform BMI navigation with

high success ratio of 91.7%.
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Fig. 5.1 Experimental environment used in Kanemura et al. (2013). (Left) BMI house fa-

cade. (Right) Wheelchair in the living room.

selection.

Although semi-autonomous navigation reduces the user’s stress and the load by not hav-

ing to control the wheelchair continuously with a high ITR of BMI, the navigation framework

needs robust navigation methods to stably and autonomously control the robotic wheelchair.

There are two main modalities used to measure the environment for the robotic wheelchair’s

localization and navigation: the laser range finder (LRF) and the camera. In the system devised

by Kanemura et al. (2013), the wheelchair localizes itself with a particle filter that corrects the

position of the robot based on LRF scans using a laser data pre-processing method. Recently,

vision-based mobile robots’ SLAM and navigation have been the source of countless research

contributions because of the rich sensory output and cost-effectiveness of the vision sensors.

Many of these vision-based methods use local features such as corner points, scale-invariant

feature transform (SIFT) (Lowe, 1999), and speeded-up robust features (SURF) (Bay et al.,

2006) as landmarks. However, these systems cannot perform stable SLAM and navigation in

crowded, bustling environments such as train stations and shopping malls, because when ex-

tracting feature points in such complicated environments, dynamic objects such as humans may
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disturb stable feature point detection. If such feature points are used as landmarks, the algorithm

collapses and errors occur in map building and self-localization. These difficulties complicate

the realization of semi-autonomous BMI-wheelchairs that can be used with human beings in

real environments.

In this study, we propose a vision-based SLAM and navigation method that is stable

even in crowded, bustling environments. In our method, we extract relatively stable feature

points called position-invariant robust features (PIRF) (Kawewong et al., 2010, 2011) from

monocular omnidirectional sequential images. PIRFs are extracted from sequential images by

matching local feature points between all adjacent images and removing the feature points that

do not match between certain adjacent images. Thus, we can eliminate numerous feature points

that appear to be sensitive to changes in the observer’s position. Because a PIRF is an image

feature point, it cannot be directly applied to SLAM. Therefore, in this study, we propose a

method to map PIRFs in three-dimensional (3D) space by combining local features extracted

from sequential images and odometry information. In the proposed method, the mobile robot

performs a learning phase and a navigation phase. In the learning phase, the mobile robot is

controlled by a navigator and learns the route. In the navigation phase, the mobile robot plans

the path on the learned route and moves to an arbitrary position autonomously. By using the

proposed method, we can perform the SLAM and the navigation even in a crowded environment.

This chapter is organized as follows. Section 5.2 describes related works on mobile

robot navigation in dynamic environments. The proposed method is described in Section 5.3.

The experimental results are presented in Section 5.4, and we see that the mobile robot learns

the route and moves autonomously in a crowded environment. Section 5.5 features concluding

comments.

5.2 Related Work

Many conventional methods of SLAM and navigation in dynamic environments use LRFs.

These methods propose the separation of LRF data into static and dynamic objects. Using

this approach, they allow the application of LRF to SLAM and navigation in a dynamic envi-

ronment. An example of a technique used for navigation in dynamic environments is Foka and

Trahanias (2010). In this approach, the robot predicts the movement of people from the LRF
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Fig. 5.2 The left image is an example of a crowded environment. This image was obtained

by the robot in our experiment. Many people are constantly moving. The right image is the

mobile robot used in this study. This robot has an omnidirectional camera at the top.

data so as to move autonomously, avoiding collisions with people; however, the robot had to be

given a map in advance. There are also navigation methods in which the robot learns the map by

itself in advance (Hatao et al., 2009; Müller et al., 2008). In Müller et al. (2008), map building

had to be performed in a static environment, so there were difficulties in this method’s practical

application. In Hatao et al. (2009), the robot was able to build the map in a dynamic environ-

ment. However, the experiments were performed in a relatively low-population environment,

so the method was not sufficiently robust.

In contrast to LRFs, the attention paid to vision-based SLAM and navigation methods

has been growing in recent years. However, using a camera for SLAM and navigation in dy-

namic environments is more difficult than using LRFs. When extracting feature points from an

image in a crowded environment, many feature points are extracted from not only static objects

but also dynamic objects such as humans, making it difficult to separate static and dynamic

objects. By recognizing such feature points as landmarks, the algorithm collapses and errors

occur in map building and self-localization (Ballantyne et al., 2008).

Some examples of vision-based SLAM and navigation methods in dynamic environ-

ments are Booij et al. (2007); Gamallo et al. (2008); Koch et al. (2010); Shen and Hu (2006);

Thrun et al. (1999). In Gamallo et al. (2008), the robot recognizes overhead lighting as land-

marks using an omnidirectional camera that is pointing to the ceiling. Therefore, by reducing



76 Chapter 5 An autonomous navigation method toward BMI-controlled wheelchairs

the influence of environmental features other than the overhead lighting, these methods can per-

form SLAM in a dynamic environment. However, these methods can be used only in certain

environments in which there are overhead lights, and where data can be associated with these

lights accurately. MINERVA (Thrun et al., 1999) is a museum guide robot, and has a camera

pointing to the ceiling, similar to Gamallo et al. (2008). By combining the data from the camera

with the LRF data, the robot can navigate in a crowded environment such as a museum. MIN-

ERVA can build a map by itself, but map-building has to be performed in a static environment.

ATLAS (Shen and Hu, 2006) is a vision-based museum guide robot. In this situation, ATLAS

made a vision-based topological map and localized itself using image-based matching algo-

rithms. However, the topological map was too sparse to localize the robot with a high degree of

accuracy; hence, ATLAS used LRF to localize itself more accurately. Booij et al. (2007); Koch

et al. (2010) created the dictionary of local features by extracting SIFT features from images

and built a topological map. These methods are similar to the proposed method; however, the

types of feature points are different. In addition, these methods cannot learn a map in crowded

environments, so they have to perform their initial map building in a static environment. More-

over, they build topological maps, so they cannot perform a shortest-path search from distance

information.

In this study, we propose a vision-based method that performs map building and navi-

gates to the given goal point from the given start point in crowded environments. In the proposed

method, we perform robust SLAM and navigation in crowded environments by extracting stable

feature points from sequential images and odometry, and building the map using these feature

points. Using the proposed method, we can perform SLAM and navigation in more crowded

environments. Here, the proposed method is based on a hybrid approach (Blanco et al., 2008;

Bosse et al., 2004), which is a technique combining a metrical approach and topological ap-

proach. In the hybrid approach, each node contains local metric information, which we can

use to perform shortest-path planning. For these reasons, we built a hybrid map and performed

SLAM and navigation using the map.
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Fig. 5.3 Proposed system for SLAM and Navigation. (A) In the learning phase, the mo-

bile robot is controlled by a navigator and learns trajectories to follow. By extracting three-

dimensional position-invariant robust features (3D-PIRFs) from sequential images and odom-

etry, the robot constructs a hybrid map. (B) In the navigation phase, the robot autonomously

performs localization, path planning, and navigation on the basis of the learned trajectory.

5.3 Method

In this section, we propose a robust SLAM and navigation method by extracting 3D feature

points from images that are stable even in crowded environments. We use a monocular omni-

directional camera and wheel encoder as sensors (Fig. 5.2). The proposed method is shown in

Fig. 5.3. The following subsections describe the details of each process.
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5.3.1 Stable 3D feature points extraction even in a crowded environ-

ment

Many vision-based methods use local feature points such as corner points, SIFT, and SURF. In

general, it is easy to use local feature points to perform data association, so they are suitable for

visual SLAM. However, when we extract these feature points from an image in a crowded en-

vironment, many feature points are extracted from dynamic objects and less-observable objects

that become unobservable as the robot shifts a little. These unstable feature points impair map

building and self-localization.

Recently, a new local feature point called the PIRF was proposed (Kawewong et al.,

2010, 2011). The PIRF is a local feature point extracted from multiple sequential images by

matching local feature points between all adjacent images and removing feature points that

are not matched between certain adjacent images (Fig. 5.4). The number of sequential im-

ages (τ ) for extracting the PIRF is set by the user. To extract PIRFs, first local feature points

(e.g., corner point, SIFT, and SURF) are extracted for each image, and then matching of these

feature points is performed sequentially for every adjacent pair of the past τ images, i.e.,

(It−τ+1, It−τ+2), ..., (It−1, It). By tracing the matching information from the oldest image

It−τ+1 to the newest image It, feature points that appear repeatedly in all sequential images

are retrieved; such feature points are called PIRFs (see Kawewong et al. (2010) for more de-

tails). The PIRF method can extract feature points for which the variation of appearance is small

relative to the robot motion and, in contrast, eliminate feature points extracted from dynamic

objects for which the variation of appearance is relatively large. Despite their simplicity, PIRFs

are robust, especially against highly dynamic changes in scenes (Kawewong et al., 2010, 2011).

However, a PIRF is an image feature point, so it cannot be directly applied to hybrid

SLAM. Thus, in this study, we propose a method to map PIRFs in 3D space by combining

image feature points extracted from sequential images and odometry information. In this study,

we call the proposed feature points mapped on 3D space 3D-PIRFs. Figure 5.5 outlines the 3D-

PIRF concept. A 3D-PIRF is extracted as a 3D feature point by combining sequential images

and odometry data obtained by the robot at each time step.

Here, because a 3D-PIRF is a 3D feature point, we have to estimate the 3D position
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of the feature point. Because the 3D-PIRF requires multiple observation steps, we require

more sophisticated methods to estimate the 3D position. In general, because extended Kalman

filter (EKF) methods incrementally record the observed feature points, the calculation time

required to update the map increases quadratically. Accordingly, we used a formulation of a

sliding window filter (SWF) (Sibley et al., 2007). A SWF is an intermediate method (between

online methods such as EKF and offline methods) that reduces computational complexity by

marginalizing old poses and feature points. This attribute is suitable for our method because, in

the navigation phase, we do not need the old feature points (This is detailed in section 5.3.4).

Using this method, we can estimate the 3D position of the 3D-PIRF.

Fig. 5.5 shows the SWF notations, where Xt−τ :t = {xt−τ , ...,xt} is the set of robot

poses, τ is the length of the time window, and Mt−τ :t = {m1, ...,mn} is the set of the feature

point positions, which were observed in all steps from t − τ to t, zi,j is the measurement of

the ith feature point observed from the jth pose, and ui is a control vector that was applied

to the robot at time i − 1 to take it to time i. Note that the image feature points are same

as those extracted by the original PIRF (Fig. 5.4). The SWF method is used to estimate the

maximum a posteriori (MAP) robot poses X̂t−τ :t and the feature point positions M̂t−τ :t from a

set of odometry data U1:t = {u1, ...,ut} and a set of measurements Z1:t = {z1,1, ..., zn,t} by

maximizing the posteriori p(Xt−τ :t,Mt−τ :t|U1:t,Z1:t) (by minimizing the negative log of the

joint distribution − log(p(Xt−τ :t,Mt−τ :t,U1:t,Z1:t))). Here we note that because 3D-PIRFs

are extracted as feature points that are observed in each step, all 3D-PIRF feature points are

observable from all robot poses from t− τ to t.

Consider the Bayesian network in Fig. 5.5, where each node represents a random vari-

able in the system. The gray nodes represent observed variables, the white nodes represent

hidden variables, and the arrows in the graph represent the dependence between variables.

The joint probability of Xt−τ :t, Mt−τ :t, U1:t, and Z1:t can be factorized as follows:

p(Xt−τ :t,Mt−τ :t,U1:t,Z1:t)∝ p(xt−τ ,Mt−τ :t|U1:t−τ ,Z1:t−τ )

×
t∏

i=t−τ+1

p(xi|xi−1,ui)
∏
j

p(zj |xi,mj). (5.1)

Here p(xt−τ ,Mt−τ :t|U1:t−τ ,Z1:t−τ ) is the prior used at time t and is just the posterior at time

t − τ ; that is, the distribution of vehicle pose and map at the beginning of the sliding window.
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SIFT from sequential image	
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Fig. 5.4 PIRFs extracted from sequential images. The PIRF is a local feature extracted

by matching local feature points of sequential images. The PIRF method can exclude local

features showing motion.

measurement	

at each step	


robot pose	

at each step	


odometry	


3D-PIRF	


SIFT from 
sequential image	


Fig. 5.5 3D-PIRFs extracted from sequential images and odometry. The 3D-PIRF is an ex-

tension of the PIRF and represents appearance and 3D position. In this figure, we show the

simultaneous localization and mapping (SLAM) notations and a Bayesian network represen-

tation. Note that all feature points are observable at every step.

p(xt|xt−1,ut) is the model of xt (i.e., the probability of the new pose xt given the last robot

pose xt−1 and the odometry ut), and p(zi|xt,mi) is the model of zi (i.e., the probability of

the measurement zi given the robot pose xt and feature point mi). Here, we make Gaussian



5.3 Method 81

assumptions as follows:

p(xt|xt−1,ut) ∝ exp(−1

2
∥ f(xt−1,ut)−xt ∥2Qt

) (5.2)

p(zi|xt,mi) ∝ exp(−1

2
∥ h(xt,mi)− zi ∥2Rt

). (5.3)

Here, Qt and Rt are covariances, f is the motion model, and h is the measurement model.

In experiments, we assume the motion model as

f(xt−1,ut) = xt−1 ⊕ ut. (5.4)

Here ⊕ denotes the transformation composition operator. We restrict the robot motion to the

two-dimensional (2D) region; therefore, xt = [xt,x, xt,y, xt,θ]
T is the position and angle of

the robot in the 2D region, and ut = [ut,x, ut,y, ut,θ]
T is the vector motion relative to pose

xt−1 calculated by odometry. In this study, because we use a monocular camera, the mea-

surement z = [zh, zv]
T is the feature point direction measured from the robot: zh is the

horizontal angle and zv is the vertical angle. Thus, if the 3D feature position is assumed as

mi = [mi,x,mi,y,mi,z]
T , the measurement model h is

h(xt,mi) =

 tan−1 mi,y−xt,y

mi,x−xt,x
− xt,θ

tan−1 mi,z−xt,z√
(mi,x−xt,x)2+(mi,y−xt,y)2

 (5.5)

which is the prediction of the measurement calculated from the robot pose and feature point

position.

Using the SWF formulation, we can estimate the positions of 3D-PIRFs from multiple

observation steps.

5.3.2 Hybrid map building by 3D-PIRF

In the proposed method, we use a hybrid approach, which facilitates path planning using the

graph structure and shortest-path planning using the distance information. In Fig. 5.3, we show

the hybrid map of the proposed method. The robot trajectory is represented by nodes and edges

in the graph: each node represents local map information, and each edge represents the relative

pose information v between the nodes.

First, we describe how to build the local map. We can estimate the mean and covari-

ance of a 3D-PIRF position by using the method mentioned in the previous section. Thus, we
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can build the local map containing the 3D-PIRF information by transforming the mean and

covariance to relative coordinates and preserving them.

Second, the edge information is obtained by calculating the relative pose between the

nodes. We already estimated the robot poses at each time step, so using this result, the relative

pose vt is calculated from xt⊖xt−1. Here⊖ is the inverse motion composition operator; hence,

xt ⊖ xt−1 is the pose xt relative to the pose xt−1.

5.3.3 Trajectory modification by loop closure

In general SLAM problems, the longer the distance the robot travels, the more errors accu-

mulate. In the proposed method, the error is accumulated as a distortion of the trajectory. To

correct the distortion of the trajectory, we need to recalculate the trajectory by using the infor-

mation that the robot returned to a previously visited location (loop closure). In the proposed

method, we use the previously proposed online loop closure detection method (Tongprasit et al.,

2011). This method uses a PIRF as an image feature point and can detect loop closure online

and incrementally in a crowded environment.

Fig. 5.6 shows the concept of correcting the trajectory by loop closure. The robot checks

loop closure at each step. For example, we assume that the robot detects a loop closure between

the current pose xT and old pose x0. Here, for the convenience of using Eq. (5.6), we label

xT and x0 as xL(i) and xL0(i), respectively. Next, we look for feature points matched between

these local maps.

Then, we calculate the relative pose between these local maps by using the feature

matching information between these local maps. In the proposed method, the relative pose

αi is calculated by an eight-point algorithm (Hartley and Zisserman, 2003). However, there is

no guarantee that all feature point associations calculated by matching the feature point descrip-

tors are correct, so we eliminate outliers by random sample consensus (RANSAC) (Fischler and

Bolles, 1981).

Using the above results, we modify the trajectory {x0, ...,xN} by minimizing the fol-

lowing expression:

NL∑
i=1

∥xL0(i)⊕αi−xL(i) ∥2PL
+

N∑
i=1

∥xt−1⊕vt−xt ∥2Pv
, (5.6)
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Fig. 5.6 Modifying the trajectory by loop closure. In step T , the robot detects a loop closure

between xT and x0. When the loop closure is detected, the robot estimates the relative pose

α between these local maps by feature point correspondence and modifies the trajectory by

minimizing Eq. (5.6).

where PL and Pv are weights of the Mahalanobis distance, xL(i) is the robot pose where the

robot detected the loop closure with xL0(i), NL is the number of loop closures, N is the total

number of time steps, and vt is the relative pose between adjacent nodes. By minimizing this

expression, we can modify the trajectory.

In addition, when a loop closure is detected, we insert a new edge joined to the previ-

ously visited node in the hybrid map. Using this process, we can perform shortest path planning

in the navigation phase.

5.3.4 Navigation

The goal of this study is mobile robot navigation, so the robot performs a learning phase and a

navigation phase.

In the learning phase, the mobile robot is controlled by a navigator and learns the route

by building the hybrid map using the method mentioned above.

Next, in the navigation phase, the robot navigates autonomously along the learned route.

First, we specify the target point and start point that corresponds to the current robot pose. Thus,

the robot searches the shortest path from the start point to the target point. In the proposed

method, because we use a hybrid approach, the learned route is represented as a graph structure;

thus, we can apply Dijkstra’s algorithm (Dijkstra, 1959) to search for the shortest path on the

graph.
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planned trajectory	

(learned map)	


current pose	

current map	


Fig. 5.7 Modifying the trajectory and estimating the current robot’s pose by loop closure.

The robot checks loop closure at each step in the learned hybrid map. If the robot detects a

loop closure, it calculates the relative pose β between these local maps, modifies the trajec-

tory, and estimates the current robot pose by minimizing Eq. (5.7).

Second, the robot navigates autonomously, building the hybrid map. In the navigation

phase, the robot detects a loop closure as in the learning phase. However, in the navigation

phase, the robot detects loop closures in the learned hybrid map. By detecting loop closures in

the learned map and modifying the current trajectory, the robot can estimate its pose relative to

the learned trajectory.

Fig. 5.7 illustrates the concept of estimating the robot pose in the navigation phase. The

robot checks the loop closure at each step in the learned hybrid map. If the robot detects a loop

closure between the current pose and the learned hybrid map, it calculates the relative pose β

between these local maps using the same method mentioned in the previous section. Using the

above results, we modify the trajectory {xt−τL , ...,xt} by minimizing the following expression:

∑
i∈SR

∥∥x́R0(i) ⊕ βi−xR(i)

∥∥2
PR

+

t∑
i=t−τL

∥ xi−1 ⊕ vi−xi ∥2Pv
, (5.7)

where X́ = {x́0, ..., x́N} is the learned trajectory, which is fixed in the navigation phase; τL

is the length of time window; PR is the weight of the Mahalanobis distance; xR(i) is the robot

pose where the robot detected the loop closure with x́R0(i), which is in the learned map, and

SR = {i | t − τL ≦ R(i) ≦ t, is where the robot detected the loop closure in xR(i) with

the learned map.}. By minimizing this expression, we can modify the trajectory. Here, in the

navigation phase, we modify the trajectory by using the new information in the τL step, as well
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as using the SWF method, and we do not modify the old trajectory. Therefore, we can keep the

calculation time for modifying the trajectory constant. By modifying the trajectory, the current

robot pose xt is also modified. Thus, we can estimate the robot pose using the loop closure

information.

After the pose estimation, the robot moves toward the goal. Initially, the robot finds the

closest node on the planned path and decides that the node several steps forward from this closest

node is the subgoal. Next, the robot determines the velocity of the right and left wheels required

to move toward the subgoal. Using these processes, the robot can autonomously navigate along

the planned path and reach the goal using the shortest route. In our method, a robot can move

along the edges of a learned hybrid map. The robot’s direction and sequence of movement in

the navigation phase are not limited to those in the learning phase. Hence, if the robot detects

obstacles in a path, it can avoid the path or replan another path to reach the goal.

These are the processes of the proposed method. By considering this architecture, the

robot can perform SLAM and navigation even in crowded environments.

5.4 Results and discussion

For the experiments, a iWs09 robot (Fig. 5.2) was used. The robot is equipped with an om-

nidirectional vision system consisting of a hyperbolic mirror and an ordinary camera with a

resolution of 800 × 600 at a height of 1300 mm. In addition, the robot is equipped with

encoder-equipped motors, which help detect the rotation of the motor. It also has a simple

obstacle avoidance function using a 2D LRF to avoid collision with humans or obstacles. Note

that we do not use the LRF to estimate the robot’s position. The algorithms were created using

Matlab and ran on an Intel Core2Duo computer (2.54 GHz, 2 GB) in the robot.

Feature point extraction in a dynamic environment

In this experiment, we showed that we could estimate the position of a 3D-PIRF.

The sliding window size τ was set at 4. The number of feature points depends on the

robot’s speed and the window size, and was set by the user. The larger the window size, the

fewer the number of feature points. In contrast, when the window size is smaller, there are
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more feature points, so we cannot eliminate the dynamic objects. We extracted a 3D-PIRF from

SURF, which can be calculated faster than SIFT and is rotation-invariant similar to SIFT; this

attribute is suitable for an omnidirectional camera. We used standard feature matching, the same

as that used by Lowe (2004). Here, the position estimation of the feature points in the front-

back direction of the robot suffered from calculation errors because the measurement change

was small relative to the robot’s motion. Therefore, we eliminated SURF points that were in the

front-back direction of the robot within a range of 40 degrees at each step. With this setup, we

can estimate the 3D position of 3D-PIRF.

This experiment was performed in an indoor room about 4 m × 7 m, and five people

were moving around in the left corner of the room. Fig. 5.8(a) shows the SURF feature points

extracted from one image; the number of extracted SURF points was 1097. We see from this

figure that many SURF points were extracted from the people who were moving around the

robot.

In contrast, Fig. 5.8(b), Fig. 5.8(c), and Fig. 5.8(d) show the 3D-PIRFs extracted by the

method mentioned in Subsection 5.3.1; the number of extracted 3D-PIRFs was 22. Fig. 5.8(b)

shows the 3D-PIRFs with the image. We see from this figure that no feature points were ex-

tracted from the left corner in which people were moving. This result was derived from the

process by matching the SURF between all adjacent images and removing the feature points

that did not match between certain adjacent images. This process eliminated the feature points

for which the variation of appearance was larger relative to the robot movement (e.g., moving

people) and extracted the feature points for which the variation of appearance was small (e.g.,

desks, displays, and bookshelves). Fig. 5.8(c) and Fig. 5.8(d) show the plan view and elevation

view of the estimated position of 3D-PIRFs, respectively. In these figures, circles indicate the

3D-PIRF position and triangles indicate the camera position. Here, the number of camera posi-

tions displayed in the figure was 4 because we set the sliding window size τ as 4. The position

of a 3D-PIRF was estimated from the measurements obtained by the robot in these four places.

We see from these figures that 3D-PIRF points were extracted from static objects such as desks,

displays, and bookshelves, and distance errors between estimated positions of 3D-PIRFs and

their ground truth positions were smaller than 200 mm. Fig. 5.8(e) shows the evaluation of

the estimation of 3D-PIRF position. We evaluated the accuracy of the 3D-PIRF position by

comparing the estimated and actual distance of the robot to the feature points. The estimated
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distance was calculated from the estimated current robot position and feature point positions,

and the actual distance was measured manually. Here the combined number of the estimated

and actual distances of each feature point was 4 because the sliding window size τ was 4; thus,

we evaluated the error of a feature point by subtracting each estimated distance from the actual

distance of the point and averaged the obtained values. The maximum error was 164 mm. From

Fig. 5.8(e), we can see that the errors of the feature points that were closest to the robot (e. g.,

10th–17th feature points) are relatively small. In contrast, the errors of the feature points that

were furthest from the robot are relatively large.

As seen above, we can extract stable feature points even in crowded environments and

estimate their position. Following the proposed method, we built a hybrid map containing ex-

tracted 3D-PIRF points, so that we could perform SLAM and navigation stably even in crowded

environments.

Navigation in a crowded environment

In this subsection, we outline the navigation experiment and confirm the efficiency of the pro-

posed method. This experiment was conducted in an indoor environment, a 20 m × 20 m sized

school cafeteria. Fig. 5.2 is an image obtained by the robot in this experiment. In this envi-

ronment, the general public was in disarray. In such a crowded environment, the conventional

approaches could not perform SLAM and navigation stably because unstable features extracted

from dynamic objects adversely affect map building and self-localization. Furthermore, in this

environment, almost every wall surface was covered with glass, providing a huge amount of

ambient light, making it somewhat difficult to obtain good feature points and perform SLAM

and navigation. Nonetheless, the proposed method could perform SLAM and navigation stably

even in such a crowded environment.

First, in the learning phase, the mobile robot was controlled by a navigator to learn a

route by building the hybrid map. Fig. 5.9 shows a ground truth map and the route the robot

adopted. At the beginning, we manually controlled the robot, moving it along the lower-left

solid loop twice in the clockwise direction, then moving it to the upper right, and finally mov-

ing it along the large dotted loop twice in the clockwise direction. The total number of control

steps was 1022, and in the learning phase, there were approximately 30–40 people in this en-
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vironment. The maximum number of people concurrently observed by the omnidirectional

camera was about 30. Note that because there was no ground truth of the robot’s position, the

route shown in the figure is not its true value.

Fig. 5.12(a) shows the trajectory calculated only from odometry. In the figure, the left

circle is the start point, the upper-right circle is the goal point, and the calculated trajectory is

described as a solid line. We see from the figure that the longer the distance the robot traveled,

the more errors accumulated, so the robot could not learn the route correctly.

Fig. 5.10 shows an example of 3D-PIRFs extracted in this experiment. The number

of extracted 3D-PIRFs was 44. We see from this figure that 3D-PIRFs were extracted from

stably observable points (e.g., distant notices, fluorescent lights, and window frames), and were

not extracted around moving people. Similarly, 3D-PIRFs were extracted only from stably

observable objects, so we could perform SLAM and navigation stably even in this crowded

environment.

Fig. 5.12(b) shows the trajectory learned by the proposed method. In the figure, red

points indicate the places in which the robot detected a loop closure. We see from the figure

that the trajectory was modified correctly even if the robot moved a long distance. However, we

have no ground truth, so quantitative evaluation remains an issue. Here, the average number of

3D-PIRFs contained in a local map was 43.5.

In the next navigation phase, the robot navigated autonomously along the planned path

using the process mentioned in Section 5.3.4. This time we designated a lower-left position as

the start point, and a top-right position as the goal point. Thus, the robot planned the shortest

path and navigated autonomously. In the navigation phase, there were approximately 60–70

people in this environment. The maximum number of people concurrently observed by the om-

nidirectional camera was about 30. Fig. 5.13 shows the robot trajectory in the navigation phase.

In the figure, the gray line indicates the learned trajectory, the blue line indicates the robot tra-

jectory in the navigation phase, and the circles indicate places in which the robot detected a

loop closure. We see from this figure that by detecting a loop closure in the learned map and

modifying the current trajectory, the robot could estimate its pose relative to the learned trajec-

tory and navigate autonomously to the goal point along the learned trajectory. Fig. 5.11 shows

the robot and environment in the navigation phase; the robot could navigate autonomously in

a crowded environment. The total number of control steps was 172, the average number of
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3D-PIRFs contained in a local map was 55.1, and the detection rate of loop closure was 44.2%.

Here, the robot strayed from the planned path in a left-hand curve. This is because the

robot could not detect the loop closure around this point and could not modify the localization

error because many people were around the robot. The deviation from the planned route peaked

here at 535 mm. The robot could make its way back to the planned route when the loop closure

was detected again. The average deviation from the planned route was 150 mm. Here we

could not observe the ground truth of the robot position; hence, we evaluated the deviation by

comparing the learned hybrid map and the hybrid map in the navigation phase. The accuracy

and robustness of the algorithm depended on the detection rate of loop closure. As long as the

robot could detect a sufficient number of loop closures during τL of the previous steps, it could

follow the learned path correctly, and the deviation from the learned map did not accumulate.

Therefore, as τL increased, the accuracy and robustness of the algorithm increased. However,

the calculation time also increased.

The average calculation time was 3.87 s and the average moving speed was 38.4 mm/s.

So far, the average moving speed is relatively slow because the calculation time is large. In

future work, we need to optimize the algorithm and rewrite the program in another language

to accelerate the calculation. In addition, some feature fusion methods might be important for

simplifying information.

5.5 Summary

In this study, we proposed a vision-based SLAM and navigation method that is stable even in

crowded environments. Conventional approaches cannot perform SLAM and navigation stably

in crowded environments because unstable features are extracted from dynamic objects such as

moving humans. In contrast, the proposed method produces stable SLAM and navigation even

in crowded environments by extracting 3D-PIRF feature points that can eliminate feature points

from dynamic objects. We confirmed the validity of the proposed method through experiments

in crowded environments. First, we checked that 3D-PIRFs were extracted from stable points

even in crowded environments. Second, we checked that the robot could learn a route without

accumulated errors, and could navigate to a given goal point from a given start point along the

learned route in the crowded environment.
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This approach is necessary for robots to be able to adapt to the real world and interact

with human beings, so we can expect it to contribute to the wide variety of practical applications

for robots such as vehicles, humanoids, and BMI-controlled wheelchairs. The application of the

proposed method to the BMI-controlled wheelchairs is a promising framework for supporting

BMI users with low decoding accuracy and low ITR because the autonomous navigation tech-

nologies have the potential to complement BMI users’ intentions with its autonomous systems.
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(a) SURF features. Many feature points

were extracted from the places where

people were moving.

(b) 3D-PIRF features. No feature points

were extracted from the places where

people were moving.

(c) Plan view of 3D-PIRF. The moving

direction of the robot was right. Cir-

cles indicate feature positions, and trian-

gles indicate robot poses. Colored area

shows the area where people were mov-

ing.

(d) Elevation view of 3D-PIRF. The

robot moved to the right. Circles indi-

cate feature positions, and triangles in-

dicate robot poses.
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(e) Feature position errors evaluated with a ground truth.

Fig. 5.8 Results of experiment 1.
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Fig. 5.9 The route in the learning phase. This environment is the same as in Fig. 5.2.

Fig. 5.10 3D-PIRFs. Feature points were extracted at the stable points.

Fig. 5.11 The robot and the environment in the navigation phase. The robot could navigate

autonomously in a crowded environment.
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(a) Trajectory calculated from only odome-

try. Errors accumulated gradually.

(b) Trajectory learned using the proposed

method. The trajectory was modified from

(a).

Fig. 5.12 Trajectory calculated from only odometry, and trajectory learned using the proposed method.

Fig. 5.13 Trajectory in the navigation phase. The robot was able to move autonomously

from the start to the goal.
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Chapter 6

Conclusions and Future Directions

In this thesis, novel methods for decoding from neuroimaging data and performing robot navi-

gation, which can be applied to BMIs in real environments, have been presented.

The framework of cortical current estimation from EEG with NIRS prior information

enables the analysis of human brain activity at the cortical level with high spatial resolution by

avoiding the contamination of putative task-irrelevant activations. No previous studies have ap-

plied cortical current estimation from EEG with NIRS prior information to BMI decoding. We

introduced a novel form of Bayesian prior to capture event related de-synchronization (i.e. mod-

ulations in frequency power) which is a well-known phenomenon during many tasks involving

higher-order functions (e.g., spatial attention, and so on). By using sparsified logistic regression

technique and then automatically selecting informative current sources for decoding, our new

procedure outperformed major previous EEG decoding methods and another NIRS-EEG de-

coding method. Not only does our new procedure achieve significant accuracy improvements,

but it also reveals reasonable activation patterns on the cortex, i.e. on IPS known to be involved

in spatial attention, which allows us to check the validity of obtained neuro-decoders. Develop-

ments in this field potentially open up possibilities to investigate brain activities in naturalistic

conditions, and hence are expected to develop powerful tools for BMI in real environments.

The second framework of the extraction of a dictionary common across subjects enables

a robust analysis of multi-subject brain activity despite inherent variability across subjects. This

methodology robustly extracted common spatial activity patterns that capture task-related ones

while compensating for their inherent variability. Its application to subject-transfer decoding
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made it possible to employ resting-state brain activity to calibrate the decoder. This calibration

technique is important for practical reasons because we can reduce the burden of conducting

the standard task-performing calibration sessions for BMI users. We demonstrated the utility

and validity of the methodology through its application to an EEG dataset of a selective spatial

attention task, and showed that the method exhibited the best performance available. This study

has a large impact as a novel methodology to robustly analyze multisubject brain activities

under inherent variability across subjects, and as a novel concept in BMI to use resting-state

brain activities for calibrating decoders specific to each user. The novelty would contribute to

the neuroscience and neuroengineering communities and deserve broad interests because they

will be important in the coming era of large-scale brain databases.

The third framework of a vision-based mobile robot’s SLAM and navigation, which is

workable even in crowded environments, is applicable to semi-autonomous BMI-controlled

wheelchairs that coexist with human beings. Through experiments conducted in real and

crowded environments, we showed that the proposed method was effective even in crowded

environments by extracting robust 3D feature points from sequential vision images and

odometry. The novelty would contribute to the practical application of BMI to wheelchairs that

is workable in real environments, such as the BMI house where people are moving around.

These frameworks have the potential to be applied to BMIs in real environments and to

enhance BMI performance, and hence are expected to impact on the community of real world

neuroscience and neuroengineering.

Here we list remaining issues and possible directions that may be launched as immediate

research topics.

For the first concept of cortical currents estimation (Chapter 3), there are several im-

provements in our methodology that are needed for applications to real environments. They

include the reduction of the number of EEG electrodes and NIRS probes, and the efficient con-

figuration of cortical current dipoles. The reduction of the number of EEG electrodes and NIRS

probes is desirable for minimizing the physical burden on the subjects, and is also necessary for

portable measurement systems since such systems’ hardware would limit the affordable num-

ber of channels. According to Fig. 4.7 (left), which showed that the cortical currents effective

for classification were located around fairly limited regions of the occipital and parietal areas,

a strategy for minimizing the number of electrodes and probes could be considered. Aihara
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et al. (2012) showed that the combination of low-density EEG with NIRS-prior was better than

high-density EEG without NIRS-prior. A natural question to ask next is how cortical current

estimation behaves when the number of NIRS channels is decreased. Thus, further investiga-

tion on relationship between the number of NIRS channels and decoding accuracy is important

for capturing more practical BMIs. The number of cortical currents is also an important factor.

If we use a large number of cortical currents, we will suffer from the overfitting problem and

a huge calculation cost. In contrast, if we use a small number of cortical currents, we can-

not exploit the higher spatial resolution of cortical currents. Moreover, an appropriate number

of cortical currents is related to the number of sensor signals. Thus, further investigation to

determine the appropriate number of cortical currents is necessary for reliable BMIs in real en-

vironments. We used fixed ranges for band-pass filtering in the alpha and beta bands, but further

improvements in decoding accuracy may be attained by optimizing the frequency band for each

individual, because it is known that the spectral features of EEG signals have subject-dependent

components (Ang et al., 2008).

For the second concept of learning a common dictionary (Chapter 4), there is some room

for improving our methodology to make it applicable to a wider range of decoding and BMI.

Temporal similarities of spatial transforms and sparse codes were not considered in the current

formulation of dictionary learning (Eq. (4.4)), but incorporating them into the formulation will

encourage the sparse codes to be more consistent over subjects and sessions, facilitating ef-

fective information sharing for subject-transfer decoding. This can be achieved by introducing

additional constraints to the spatial transforms and/or sparse codes in the objective function in

the dictionary learning. A similar modification can also be performed in the frequency domain;

namely, we can introduce a constraint that encourages close frequency bands to have similar

properties. In the proposed dictionary learning scheme, no special constraint, other than the ℓ2

norm constraint on each atom, was imposed on the dictionary learning. More problem-specific

constraints, e.g., positivity constraints, on the dictionary may enhance its performance and in-

terpretability. The automatic determination of the number of dictionary atoms is potentially

possible based on, e.g., Bayesian nonparametrics (Zhou et al., 2009). Although we applied the

proposed method only to the EEG signals, the methodology is applicable to other measure-

ment modalities such as MEG and fMRI. Since the development of better classifiers was not the

focus of this study, we used the linear SVM, as the most typical supervised classifier. Consider-
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ation of classifier design may be important for further improving the decoding performance and

building a more widely applicable subject-transfer decoding method. Although we extracted

a common dictionary directly from EEG sensor signals, the common dictionary can also be

extracted from cortical currents estimated in Chapter 3. The combination of compensation for

physical variability by cortical current estimation and that for mental variability by learning a

common dictionary is a promising approach to analyze multiple subject data in real environ-

ments in a more robust way. Whether to perform the cortical currents estimation depends on a

tradeoff between data acquisition costs and a quality of signals.

Although these two methodologies can be applied to the analysis of neuro-imaging data

in real environments, we evaluated their performance based only on datasets obtained in an

experimental laboratory. Thus, the evaluation of the proposed methods using datasets obtained

in more naturalistic conditions is necessary for further consideration of their applicability to

BMIs in real environments.

For the third concept of a vision-based mobile robot’s SLAM and navigation (Chap-

ter 5), there are several improvements necessary for its practical applications. We see from

the results that the calculation complexity was relatively high (about 3.87 s for each step), and

then the robot’s average moving speed was relatively slow (38.4 mm/s). Thus, for its practical

application, we have to reduce the calculation complexity by optimizing the algorithm and its

implementation. In this study, the robot only used an equipped camera for localizing itself.

However, since the wheelchair being used in the BMI house is also equipped with LRFs, we

would be able to increase the accuracy of position estimation by adding information obtained

by the LRFs. Such a combination of information from the camera and that from the LRF is a

promising approach to realize robust and stable BMI-controlled wheelchairs that coexist with

human beings.

Although these three methodologies were proposed and evaluated separately, the com-

bination of these methodologies is a promising approach to realize a BMI-controlled navigation

system which is robust and comfortable for subjects. Currently, almost every system of the

BMI-controlled navigation systems (e.g., Kanemura et al. (2013)) trains mental decoders spe-

cific to each subject directly from sensor signals. In general BMIs in real environments, such

framework tends to suffer from external artifacts and contaminations by non-target brain activ-

ities, and imposes a lot of load on users for training the decoders specific to them. The com-
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bination of the proposed methods have advantages that we can decode the users’ mental states

without the contamination of sensor signals and we can save the users from burden of training

the decoders and themselves. In addition, a combination of the newly-proposed vision-based

robot navigation method and the conventional system (Kanemura et al., 2013) has a potential

to provide a more robust complementary system to users who need external devices to move

around the environment with BMI-based controllers.
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Appendix A

VBMEG

Details of VBMEG are provided here and in previous reports (Sato et al., 2004; Yoshioka et al.,

2008). The relationship between the amplitude of cortical currents and observed EEG sensor

signals is described as

E = G · J+ ϵ, (A.1)

where E ∈ RN×1 is the observed EEG signals, J =
[
JT

brain JT
eye

]T
is a vector of current

sources comprised of Jbrain ∈ RL×1, corresponding to cortical currents and Jeye ∈ RK×1,

corresponding to “extra” eye currents, and finally ϵ ∈ RN×1 is observation noise. Constants N ,

L, and K denote the number of EEG sensors, cortical current sources, and eye current sources,

respectively. Here, G =
[
Gbrain Geye

]
, where Gbrain ∈ RN×L and Geye ∈ RN×K are lead

field matrices that describe the sensitivity of the sensors to the source currents. These lead fields

are calculated from structural MRI data or its approximation by spherical models. Assuming

that the EEG observation noise ϵ obeys a Gaussian distribution with a spherical covariance

β−1I, where β is an unknown inverse variance, we have the likelihood function

P (E|J) ∝ exp

[
−β

2
∥E−G · J∥2

]
. (A.2)

The prior probability distribution of J is assumed to be

P0(J|α) ∝ exp

[
−1

2
JT · diag(α) · J

]
, (A.3)

where α =
[
αT

brain αT
eye

]T
, and αbrain ∈ RL×1 and αeye ∈ RK×1 are the inverse variances of

the brain and eye current sources, respectively. VBMEG estimates the current inverse variances
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α by introducing an ARD hierarchical prior as follows:

P0(α) =
∏
i

Γ(αi|ᾱ0i, γ0), (A.4)

where i is a current source index running from 1 to L+K, Γ(αi|ᾱ0i, γ0) is the Gamma distri-

bution with mean ᾱ0i and degree of freedom γ0.

The design of the hyperparameters in the hierarchical prior ν̄0i = ᾱ−1
0i and γ0 char-

acterizes VBMEG estimates. If ν̄0i is large, prior knowledge implies that estimated currents

should have large variances whereas small values of ν̄0i encourages estimated currents to be

close to zero, leading to sparse solutions. The definition of the mean prior variance ν̄0i, with

hyperparameters m0 and γ0, has been discussed in Section 3.2.7.
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