
Computational Complexity of Tree Evaluation

Problems and Branching Program Satisfiability

Problems

Atsuki Nagao

Copyright c⃝ 2015 by Atsuki Nagao

All rights reserved.

ii

Contents

Contents iii

List of Figures v

1 Introduction 1

2 Read-Once Branching Programs for Tree Evaluation Problems 7

2.1 Introduction . 8

2.2 Preliminaries . 10

2.3 Lower Bounds . 15

2.4 General Branching Programs for Height-3 TEP 20

2.5 Concluding Remarks . 21

3 Lower Bounds of General Branching Programs for TEP 23

3.1 Introduction . 23

3.2 Extension of Width and Height of TEP . 24

3.2.1 Width Extension . 27

3.2.2 Height Extension . 31

3.2.3 Chapter Summary . 35

4 Efficient Algorithms for k-IBDD Satisfiability 37

4.1 Introduction . 37

4.1.1 Related Work . 38

4.2 Preliminaries . 39

4.3 Algorithms of Transformation for OBDDs 42

4.4 Main Algorithm . 44

4.4.1 Chapter Summary . 47

iii

5 Efficient Algorithms for Sorting k-Sets in Bins 53

5.1 Introduction . 53

5.1.1 Related Work . 54

5.2 Preliminaries . 55

5.3 Greedy Algorithms . 57

5.3.1 Algorithm Description . 57

5.3.2 Analysis of the Number of Swaps . 58

5.4 Recursive Algorithms . 60

5.4.1 Basic Ideas . 60

5.4.2 Formal Description of the Algorithm 61

5.4.3 Analysis of the Number of Swaps . 64

5.4.4 Chapter Summary . 65

6 Conclusion 67

Bibliography 69

iv

List of Figures

2.1 FT3(3) . 11

2.2 Example of f1, f2, f3 . 11

2.3 An example of a read-once branching program solving FT3(3) 12

2.4 Modification rules(i), (ii) and (iii). 14

2.5 Involved nodes in CC(I, j). 16

3.1 An example of a computation path and critical states 26

3.2 Numbering for BT 3
d (k) . 28

3.3 Restriction for BT 4
2 . 32

4.1 a nondeterministic OBDD . 40

4.2 2-IBDD . 40

4.3 a partial branching program . 42

4.4 preprocessing . 44

4.5 BR . 44

5.1 Catching up . 55

5.2 Moving on . 55

5.3 Initial state of n bin as k = 3 . 57

5.4 Target state of n bin as k = 3 . 57

5.5 Greedy Algorithm . 57

5.6 After moving balls n3 and n2 to the n-th bin 60

5.7 After moving balls n− 13 and n− 12 to the (n− 1)-th bin 60

5.8 After moving all balls x3 and x2 to x-th bin for x = n to n/2 + 1 61

5.9 The state after sorting for a recursive structure 61

5.10 After moving the ball n1 to the n-th bin . 61

5.11 After moving the ball n− 11 to the (n− 1)-th bin 62

5.12 Recursive Algorithm . 62

v

Abstract

Computational Complexity of Tree Evaluation Problems
and Branching Program Satisfiability Problems

Atsuki Nagao

2015

This thesis is concerned with the “P vs. L”question which is one of the most famous open

questions in theoretical computer science. Here, the class P is the set of problems which

polynomial-time Turing machines can solve and the class L the set of problems which

logarithmic space Turing machines can solve. Cook, McKenzie, Wehr, Braverman and

Santhanam recently introduced the tree evaluation problem (TEP) and they claimed the

conjecture that any branching program solving tree evaluation problems must need super-

polynomial states (therefore, the tree evaluation problems are not in L.) But they were

actually able to show only a lower bound of Ω(n3/2/(log n)5/2), which is by far insufficient

for the separation of L and P.

To improve upper bounds is also important for theoretical computer science. For NP-

complete problems, to design some algorithm running faster than an exhaustive search

is useful. Recently, many variety of satisfiability problems are extensively studied. How-

ever, there are a very few researches on the satisfiability of branching program. For more

fundamental problems, some kind of sorting problems are also studied.

The first result in this thesis is a super-polynomial lower bound of branching programs

with a restriction. Cook and et al. also show a super-polynomial lower bound with some

restriction against branching programs, but this restriction is related to the order of reading

variable, so it is so-called a ”semantic” restriction and it seems very difficult to get rid of

this restriction. Our restriction is a syntactic and well-known one called the “read-once”

restriction. Introducing this read-once restriction, we can show a branching program lower

bound of Ω(kh) = Ω(nlogn). Note that this lower bound is tight, meaning that the well-

known natural construction of branching programs for TEP is best possible under the

read-once restriction. This fact also supports the conjecture for L̸=P.

Our second result is an improvement of the Cook and other author’s method. Note

that their method is only applicable to tree evaluation problems with height three, binary

complete trees. We modify this method so as to be available for TEPs for height three,

d-ary complete trees, where d is any constant. By this modification, we obtain a lower

bound of Ω(n(2d−1)/d/(log n)(3d−1)/d). This lower bound is again tight.

The third result is about a satisfiability problem for branching programs. A k-indexed

Binary Decision Diagram (abbr. k-IBDD) is a branching program with k-layers and each

layer consists of an Ordered Binary Decision Diagram (abbr. OBDD). k-IBDD Satisfiability

Problem (abbr. k-IBDD SAT) asks whether given a k-IBDD, there exists a consistent path

from a root to sink 1 or not. It is known that k-IBDD SAT is NP-complete for any k ≥ 2.

By exhaustive search, k-IBDD SAT with n variables and m states can be solved in O(m2n)

time. One of the important goal for NP-complete problems is to design an algorithm super-

polynomially faster than the exhaustive search such as an O(m2n−ω(logn)) time algorithm.

This thesis proposes such an algorithm. Namely, when we are given a k-IBDD with n

variables and m = O(nc) states, our algorithm solves it in poly(n) · 2n−nα
time, where

α = 1
2k−1 and poly(n) a polynomial of n

Our last result is about the complexity of some kind of sorting. One of the basic sorting

problems is the Swap-Sort problem: Given a list of n integer numbers in non-increasing

order, if we are only allowed to swap two adjacent rows, how many swaps do we need to sort

them in non-decreasing order? Peter Winkler introduced “Sorting Pairs in Bins” and Ito,

Teruyama and Yoshida extended it to more general problem “Sorting k-Sets in Bins” as

below. When we are given n numbered bins each with k numbered balls, such that bin i is

adjacent to bins i−1 and i+1, bin n is not adjacent to bin 1, and the balls in bin i are each

numbered n+1− i, our task is to get every ball into the bin carrying its number swapping

any two balls between adjacent bins. Then the lower bound of a number of swapping is

(1− k−1
2k2+k−1

)k+1
4 n2+O(n). We propose an algorithm which uses k+1

4 n2+O(kn) swaps, this

upper bound asymptotically approaches to the lower bound. We also propose an algorithm

which uses less swaps when k = 3 and upper bound is 15
16n

2 +O(n)(= 0.9375n2 +O(n)).

ii

Acknowledgement I would like to thank my supervisor Professor Kazuo Iwama. His

lecture for under graduate students got me interested in the computational complexity. He

introduced the computational complexity when I joined the laboratory, I was very happy

to start studying on the computational complexity. Through deep discussions with him, I

learned how to make the idea and the skills for making robust and brief proofs and how a

researcher should be.

I am very thankful to all members of Iwama Lab. for giving me helpful advices and

encouragement. In particular, I would like to thank Professor Suguru Tamaki for helpful

discussions and suggestions.

I would like to express my gratitude to Professor Toniann Pitassi and students of theory

group in Department of Computer Science, University of Toronto. Staying Toronto and

discussing among members helped me so much.

I would like to thank all my co-authors for grateful helps during my studies: Kazuhisa

Seto and Junichi Teruyama.

Finally, I would like to thank all members of Kyoto University Chorus or Ensemble

Reed and my family, who have supported my study at Kyoto University.

Atsuki Nagao

Kyoto, January 7, 2015

iii

Chapter 1

Introduction

Computational complexity theory is a major part of theoretical computer science, which

forces on classifying computational problems in terms of necessary resources such as com-

putational time and storage space. A specific computational problem is given as problem

instances and a description for the yes/no solutions for these instances. For example, Pri-

marily Testing gives us, as an instance, a natural number k and the solution for this k is

yes if and only if k is prime. k is encoded (in a natural fashion, for instance, as a binary

number) to a string of length n that becomes input data to an algorithm. Then a solu-

tion is computed by the algorithm and its required computation time and memory space

are determined as functions in n. Thus each problem needs specific amounts of time and

space, which are given as functions T (n) and S(n), respectively. When we analyse the

complexity of such a problem, we usually evaluate these T and S from both upper bound

and lower bound. Note that the functions have a wide variety of increasing speed; they

can be polynomial in n, exponential in n and logarithmic in n depending on the hardness

of each problem.

For example, it is a famous result that Primality testing requites only polynomial time

[3][27], namely it belongs to class P. Class P is defined as the family of all decision problems

which can be solved deterministically in polynomial time. The equally important class is

class NP that contains all decision problems which can be solved by “non-deterministic”

Turing machines using a polynomial amount of computation time. From this definition,

Class NP obviously includes class P. But there is no known specific problem that is in

NP but not in P. This leads to the question ”Is NP equal to P,” called the ”P vs

NP” question. Recall that this is one of Millennium Prize Problems stated by the Clay

Mathematics Institute[27].

P andNP are by far more popular than other classes, but we do have several interesting

1

2 1 Introduction

classes other than these ones. For instance, L is a family of problems that are solvable by

Turing machines restricted with logarithmic space (and hence obviously included by P).

Furthermore, there are several different classes around this L:

AC0(6) ⊆ NC1 ⊆ L ⊆ LogDCFL ⊆ AC1 ⊆ NC2 ⊆ P (1.1)

Here, LogDCFL includes decision problems that are reducible to the problem of de-

ciding membership in a context-free language with log space. In other words, a problem

in LogDCFL is solvable by Turing machine with a read only input tape, restricted to use

a stack and an amount of memory logarithmic in the size of the input. NCi is the class of

decision problems solvable by a uniform family of Boolean circuits, with polynomial size,

depth O((log(n))i) using fan-in-two gates. And ACi is similarly defined using unbounded

fan-in gates. AC0(6) can use mod 6 gates too. Like the ”P vs NP” problem, separa-

tion between these classes are of course important goals of complexity theory, especially

separation of L and P.

In [10][47], Cook, McKenzie, Wehr, Braverman and Santhanam recently introduced

the tree evaluation problem (TEP) and they claimed the conjecture that any branching

program solving tree evaluation problems must need super-polynomial states. It is not hard

to show that a deterministic logspace-bounded polytime auxiliary pushdown automaton

decides Tree Evaluation Problems: there is an algorithm like depth first search to solve

tree evaluation problems. This implies by [45] that Tree Evaluation Problems belong to

the class LogDCFL, which lies between L and LogDCFL, but not be known about

relationship with NL. Then, if LogDCFL is separated from L, we can separate NC1 and

NC2.

More in detail, they consider the Tree Evaluation Problem in class LogDCFL for trying

to separate LogDCFL from NL. They paid attention to the space of Turing Machines

solving Tree Evaluation Problems. For discussing rather lower classes of space complexity

Branching Programs are often used because it is known that Branching Programs can

simulate Turing Machines. Branching Programs are computation models which represent

a computation flow as a path in directed acyclic graph. When a Turing machine uses s(n)

states to solve a problem with input length n, we can construct a Branching program with

cs(n) size, for S(n) ≥ log n and some constant c [35]. This leads to the fact that the problem

cannot be solved by Turing Machines with log-space if the number of Branching Program

states become super-polynomial. Then we can conclude that the problem does not belong

to class L. But, we have never seen such a large lower bound for any specific problem.

The best known lower bound is only Ω(n2/(log n)2) by Nečiporuk[36]. And this lower

3

bound technique suggests that if we use the same approach, we cannot show stronger lower

bounds. Consequently we need to develop some new techniques for discovering enough

large lower bounds. And [10] introduced “a state sequence method” for calculating lower

bounds of states for Branching Programs solving Tree Evaluation Problems. They show a

lower bound of Tree Evaluation Problem with small height and width by using this method,

which however is not better than the one by the Nečiporuk’s method (Ω(n3/2/(log n)5/2)).

To improve upper bounds is also important for theoretical computer science. For NP-

complete problems, to design some algorithm running faster than an exhaustive search is

useful. SAT is one of central problems in theoretical computer science. There exists many

variants of SAT and many research have been done. In many cases, they are known to

be NP-complete. Recently, many variants of satisfiability problems are extensively stud-

ied. However, there are a very few researches on the satisfiability of branching programs.

Therefore, addition to above argument, we focus on branching program satisfiability prob-

lems. For general branching program satisfiability problems, [8] design an deterministic

algorithm running in O(2n−ω(logn)) time, which solves any instance with n variables and

m = n2−ϵ states, where ϵ is an arbitrary small positive constant. There exist polynomial-

time algorithms solving branching program satisfiability problems with some restriction

so-called k-OBDD [4]. For more fundamental problems, some kind of sorting problems are

also studied. In theoretical computer science, various kinds of sorting problems have been

studied [15, 16, 18].

In this research, we first obtain an exponential lower bound for Tree Evaluation Problem

under a restriction of branching programs. [10] also shows an exponential lower bound by

introducing a restriction to branching programs. This restriction is called a “thrifty”

restriction. [47] shows an exact exponential lower bound introducing the thrifty restriction

and the “read-once” restriction. But the thrifty restriction is specific for the structure of

tree evaluation problems and it is not applicable to other problems. So, there is a natural

question of how the lower bound changes if there is only the read-once restriction. We

show a similar exponential lower bound as an answer of this question. In this technique,

we use a reduction and a bottle neck argument. This reduction is hinted form the state

sequence method and gives similar effect and this bottle neck argument is certificated by

read-once restriction. This lower bound suggests that if there is no fundamental difference

about computation between read-once branching programs and general ones (it looks so),

tree evaluation problems are not in L and L is separated form LogDCFL also P.

Next, as the second result, we show a couple of stronger lower bounds of general branch-

ing programs in the chapter 3. For this lower bounds, we discuss a binary type of Tree

4 1 Introduction

Evaluation Problems. This problem gives us complete d-ary tree, functions, and values like

as general Tree Evaluation Problems, and our task is to check whether the value of a root

node is 1 or not. We denote this problems as BT h
d (k), where h is height of complete d-ary

tree. Because the original method is available only for BT 3
2 (k), we arrange this method

to be available for BT 3
d (k). This arrangement is natural and does not change key ideas of

the original method. Using this method, we get a lower bound of BT 3
d (k) and its value is

Ω(n
2d−1

d
/(logn)

2d+1
d). This lower bound is equal to [10] conjectured and can be shown by a

Nečiporuk like method[36]. This lower bound is also tight.

This results says that, if we want to improve lower bounds of general branching pro-

grams, we must analyze branching programs of height 4 or more Tree Evaluation Problems.

Hence we try to modify the original method to be available for BT 4
2 (k). In the chapter 3

we also discuss extension of height for the method. In this discussion we observe that

natural extension does not work for height BT 4
2 (k). In the case of height 3 Tree Evaluation

Problems, the method divides critical states into disjoint sets where one input set uses

only critical states in one disjoint set. But in the case of height 4, there is a branching

programs where some critical states can not be divided into disjoint sets for input sets.

This difficulty tells us to modify the definition of critical sets may not be useful for height

4 Tree Evaluation Problems.

We also studied upper bounds of branching programs. An OBDD(Ordered Binary

Decision Diagram) is a binary branching program whose all computation paths keep the

order of input variables. And a k-IBDD(k-indexed Binary Decision Diagram) is a branching

program with k layers and each layer consists of an OBDD. k-IBDD Satisfiability Problem

(k-IBDD SAT) asks given a k-IBDD, whether there exists a consistent path from a root

to sink 1 or not. [4] shows k-IBDD is an NP-Complete problem and if we use exhaustive

search, k-IBDD SAT with n variables and m states can be solved in O(m2n) time. Here,

one of our goal is to design a super-polynomially faster algorithm such as an O(m2n−ω(logn))

time algorithm.

As the third result, we design an exponentially fast algorithm for k-IBDD SAT. If

k-IBDD SAT with n variables polynomial states are given, our algorithm can solve it in

poly(n) · 2n−nα
time, where α = 1

2k−1 and poly(n) represents a polynomial of n. This

algorithm uses a partial assignment and longest common sequences. Given a k-IBDD,

we can find a longest common sequence on each layers. After finding longest common

sequences, we fix every variables except in it. Then we can convert that partial branching

program to an OBDD. Because OBDD SAT can be solved in polynomial time by checking

reachability, we can check whether the converted OBDD has a consistent path or not in

5

polynomial time. This idea makes our algorithm super-polynomially faster than exhaustive

search.

As the fourth result we also design algorithms for a kind of a sorting. One of the most

basic sorting problems is the Swap-Sort problem : Given an list with n integer numbers in

non-increasing order, if we are only allowed to swap two adjacent rows, how many swaps

do we need to sort them in non-decreasing order? It is well-known fact that
(
n
2

)
swaps

are necessary and sufficient. Peter Winkler [50] introduced “Sorting Pairs in Bins” and

Ito, Teruyama and Yoshida [26] extended it to a more general problem “Sorting k-Sets in

Bins”. Sorting k-Sets in Bins gives us n numbered bins each with k numbered balls, such

that bin i is adjacent to bins i− 1 and i+ 1 (but bin n is not adjacent to bin 1), and the

balls in bin i are each numbered n+ 1− i. And our task is to swap any two balls between

adjacent bins and to get every ball into the bin carrying its number. For this problem, we

calculate the lower bound as (1 − k−1
2k2+k−1

)k+1
4 n2 + O(n), and show an algorithm which

solve this problem in k+1
4 n2+O(kn) swaps. This means that if k and n increase, this upper

bound asymptotically approaches to the lower bound. We also propose an faster algorithm

for k = 3, this needs only 15
16n

2 +O(n)(= 0.9375n2 +O(n)) swaps.

In this paper, we discuss super-polynomial lower bounds for read-once branching pro-

grams in chapter 2. Lower bound for general branching programs is discussed in chapter 3.

After these, we discus algorithms and upper bounds for two problems. In chapter 4, we

show algorithms for k-IBDD satisfiability problems. Algorithms for sorting k-set bins

problems are also discussed in chapter 5. After all, we summarise all results in chapter 6.

Chapter 2

Read-Once Branching Programs

for Tree Evaluation Problems

In this chapter, we discuss tree evaluation problems (TEPs). This problem is introduced

to separate the complexity classes P and L by Cook, McKenzie, Wehr, Braverman and

Santhanam [10]. The problem is obviously in P and Cook and others showed a conjecture

that this problem is not in L. They also showed branching programs lower bounds with

a special restriction to tree evaluation problems. Their lower bound is Ω(kh) for height h

TEP, where k is a range of the value which nodes in TEP have. Remark that these lower

bounds are tight for upper bound.

Now we try to show super polynomial lower bounds of branching programs with more

moderate restriction, “read-once” restriction. The above authors introduced a restriction

called thrifty against the structure of branching programs (i,e., against the algorithm for

solving the problem) and proved that any thrifty branching program needs Ω(kh) states,

where h is the height of tree evaluation problems. The thrifty restriction roughly means that

when the BP reads an internal node v (actually reads its associated function), it has already

read all the values of the v’s subtree. Thus this algorithmic restriction strongly restricts the

order of tree nodes that are read by the branching programs. (The thrifty restriction also

applies to nondeterministic branching programs, in which case its meaning is more subtle.)

The authors claim that this restriction is “natural,” but we can of course think of different

kind of branching programs that guess (read) function values first and then check the leaf

values if they actually realize the function values. In fact our lower bound proof gets messy

in this case. Recall that we have another popular restricted type of branching programs,

namely the read-once restriction, where a read-once branching program reads each input

value at most once in any computation path. In fact the above O(kh) construction is

7

8 2 Read-Once Branching Programs for Tree Evaluation Problems

not only thrifty but also read-once and [47] proves that if our branching program is both

thrifty and read-once, then this explicit construction with (k+ 1)h − k states is absolutely

optimum. Now the natural question is what if we impose only the read-once restriction.

Our new lower bound technique show the same lower bound although branching programs

are not thrifty but also read-once. This technique is shown after introduction of key tools.

2.1 Introduction

Settling the P vs. NP question is obviously the biggest goal of theoretical computer

science, but the fact is that almost nothing is known for separation of other complexity

classes, either. For example, separation of L (= Log space) and P, which has been much

less popular than P vs. NP, should be equally important to make clear the whole view

of complexity classes. To this end, Cook, McKenzie, Wehr, Braverman and Santhanam

introduced a simple but very general problem called the tree evaluation problem (TEP)

[10]. For fixed h, k > 0, FTh(k) is given as a complete, rooted binary tree of height h in

which each internal node is associated with a function from [k]2 to [k], and each leaf node

with a number in [k]. The value of an internal node v is defined naturally, i.e., if it has a

function f and the values of its two child nodes are a and b, then the value of v is f(a, b).

Our task is to compute the value of the root node by sequentially executing this function

evaluation in a bottom-up fashion. Note that the original definition in [10] is based on a

d-ary tree. In this chapter, we only consider a binary tree for our TEP.

Our computation model is branching programs (BP’s) that are sometimes more useful

to discuss complexity bounds rather than Turing machines (TM’s) especially for problems

having relatively low complexities like TEP. It is known that the size of a branching program

(the number of its states) and the space of a TM are closely related, namely a lower bound

s(n) for BP’s size implies a lower bound Θ(log(s(n))) for TM’s space. It then turns out that

if we can prove that any BP solving FTh(k) needs at least k
r(h) states for any unbounded

function r, then this problem is not in L. Since it is obviously in P, we would be able to

separate L and P. For details of these observations, see [10].

It is not hard to construct a branching program that computes FTh(k) of size O(kh) (see

Fig. 2.3 given later) and this construction strongly seems optimal. As mentioned above,

we only need a much more moderate bound, kr(h), and that is the natural reason why we

think this problem would fit our goal. In fact, [10] proves, by using the black pebbling

game [37][9], that if our BP’s satisfy a certain property, called the thrifty restriction, then

we do need Ω(kh) states. The thrifty restriction roughly means that when the BP reads an

internal node v (actually reads its associated function), it has already read all the values

2.1. Introduction 9

of the v’s subtree. Thus this algorithmic restriction strongly restricts the order of tree

nodes that are read by the BP. (The thrifty restriction also applies to nondeterministic

BP’s, in which case its meaning is more subtle.) The authors claim that this restriction is

“natural,” but we can of course think of different kind of BP’s that guess (read) function

values first and then check the leaf values if they actually realize the function values. In

fact our lower bound proof gets messy in this case.

Recall that we have another popular restricted type of BP, namely the read-once re-

striction, where a read-once BP reads each input value at most once in any computation

path. In fact the above O(kh) construction is not only thrifty but also read-once and [47]

proves that if our BP is both thrifty and read-once, then this explicit construction with

(k + 1)h − k states is absolutely optimum. Now the natural question is what if we impose

only the read-once restriction.

Our contribution. It is shown that if a read-once BP B solves FTh(k), then B needs

Ω(kh) states, thus proving a lower bound on the size of read-once BP’s similar to that of

thrifty BP’s. Actually B needs to be read-once only for states reading leaf values, i.e.,

the result holds for even less restricted BP’s such that in every computation path, if the

last leaf-reading state s reads a leaf node v, any state appearing before s on the path

does not read v. Note that there is no restriction at all on states reading internal nodes

(associated with functions). Furthermore, since our main lemma bounds the number of

only leaf-reading states, we do not have to care about the number of these non-leaf-reading

states.

Since there are no restrictions on the order of nodes visited by the BP any longer, there

is no obvious way of directly using the pebbling game for lower bound proof. Instead,

we use a similar notion from slightly different angle, namely we use what we call a cut

configuration, a set of the values of h − 1 nodes that ”cut” paths between leaf nodes and

the root of the given FTh(k). The key lemma is that if a last leaf-reading state accepts

two or more inputs having different cut configurations, then the function part in the inputs

is severely restricted, which means the number of different inputs whose paths go through

this state is very small. Thus there must be a lot of inputs whose function part does not

have this restriction, and we can imply that those inputs have only one cut configuration

for any of the last leaf-reading states. For such a fixed function part, the number of inputs

having that cut configuration for the last leaf-reading state is easily bounded from above.

Thus follows the lower bound for the number of such states. Of course there should still

exist a big gap between this class of BP’s and general ones, but at least we can get rid

10 2 Read-Once Branching Programs for Tree Evaluation Problems

of the issue of node orders visited by BP’s, which was quite annoying for the attempt of

generalising our lower bound proofs.

Related Work. Other than the lower bounds for thrifty BP’s, [10] includes several impor-

tant results, for instance, it gives a lower bound, k3, for unrestricted BP’s solving FT3(k),

which is tight up to the constant factor. This is still the best lower bound for general BP’s

solving TEP. [31] studies mainly nondeterministic BP’s for TEP. Its main result is that

”bitwise-independent” thrifty nondeterministic BP’s for TEP have at least 1
2k

h/2 states,

which is tight against the upper bounds shown in [10]. Their main technique is so-called

the entropy method developed in [30]. See [10] for several other attempts trying to separate

relatively low complexity classes. For instance [20] studies the complexity of BP’s solving

GEN (known to be P-complete) that asks a certain kind of reachability to a target element

repeatedly using a binary operation.

Studies on branching programs have been quite popular since their introduction by

Masek [34], and there is a large amount of literature even restricted to studies on their size

lower bounds (the following is only a small fraction): The best general deterministic lower

bound is still Ω(n2/(log n)2), which was proved almost half a century ago by Nečiporuk [36].

Note that the above lower bound for FT3(k) is Ω(n3/2/(log n)5/2) in terms of the binary

input length. (For a general d-ary TEP, [10] obtains a stronger Ω(n2/(log(n))2) lower

bound applying the Nečiporuk method.) On the other hand, about read-once branching

programs, we have much better lower bounds. In 1984, Žák [51] first obtained a super-

polynomial lower bound, Ω(2
√
n−logn), for the half-clique function, which was improved to

more than 2n/3−o(n) by Wegener [46]. For the triangle parity function, Ajtai [1] gave a

2cn lower bound and the value of c was later improved by Simon(1993) [44]. Jukna [29]

relaxed the read-once restriction to the k-read-once restriction (i.e., all variables except k

ones are read-once). He obtained a lower bound of 2Ω((n
k
)1/2) for k = O(n/ log n) and this

is extended by Žak [41] into a hierarchy theorem based on this value k.

2.2 Preliminaries

For the Tree Evaluation Problem (TEP), FTh(k), we are given a complete binary tree

T h of height h with nodes 1 through 2h − 1 (see Fig. 2.1 for h = 3). Each internal

node 1 ≤ i ≤ 2h−1 − 1 is associated with some explicit function fi : [k]2 7→ [k], where

[k] = {1, 2, . . . , k}. Each leaf node j (2h−1 ≤ j ≤ 2h − 1) is associated with a number in

[k]. Our task is to compute the value of the function f1 at the root node in the natural

way: Suppose that we have inputs f1, f2, f3, a4, a5, a6, a7 for the tree of Fig. 2.1. Then the

2.2. Preliminaries 11

32 1
54 76

Figure 2.1: FT3(3)

2

1 2 3

1

2

3

1 2 3

1

2

3

1 2 3

1

2

3

3 1 2

2 2 1

3 1 3

2 1

3 2 1

3 2 1

2 1 3

2 2 3

1 1 1

Figure 2.2: Example of f1, f2, f3

value we want to obtain is

f1(f2(a4, a5), f3(a6, a7)).

Note that each fi is given as an explicit sequence of values, e.g., fi(1, 1), fi(1, 2), fi(1, 3),

fi(2, 1), fi(2, 2), fi(2, 3), fi(3, 1), fi(3, 2), fi(3, 3) for k = 3. In some cases, it is convenient

to use a k×k matrix instead of the above sequence. For instance Fig. 2.2 shows an example

of f1,f2,f3 for h = 3. Now if (a4, a5, a6, a7)=(3, 3, 1, 2), then the solution for this inputs is

f1(f2(3, 3), f3(1, 2))= f1(3, 2)= 1. In our lower bound proof, the nodes located at height

h− 1 (parents of leaves) play an important role. We call them second-leaves.

Our computation model is a (deterministic) branching program (BP) B, which is a

directed, rooted, acyclic graph. Its vertices are called states including a unique initial

state and k sink states. Each non-sink state (or simply a state if no confusion would

arise) has k outgoing edges labelled by 1 through k, while each sink state has no outgoing

edges. Each state has a label of the form (i1, i2, i3) or j, where 1 ≤ i1 ≤ 2h−1 − 1,

1 ≤ i2, i3 ≤ k and 2h−1 ≤ j ≤ 2h − 1. Each sink state has a label l where 1 ≤ l ≤ k.

A BP B computes the solution of TEP in the following way. Suppose that our input is

I = (f1(1, 1), f1(1, 2), . . . , f2h−1−1(k, k), a2h−1 , . . . , a2h−1). Then its computation path, P ,

for input I is defined as follows. P starts from the initial state. If P is now at a state with

label (i1, i2, i3), then P is extended by the edge labelled by fii(i2, i3). If P is at a state

with label j, then it is extended by the edge labelled by aj . We often say that B ”reads”

the input attached to the node i1 (a non-leaf node) or j (a leaf) and branches due to its

value between 1 and k. P ends with some sink state; if its label is l, then the outcome of

the computation is l. If this outcome is equal to the correct solution for all possible inputs

I, then we say B solves FTh(k).

Fig. 2.3 shows an example of a BP that solves FT3(3). The computation path for the

input previously given (f1, f2, f3 in Fig. 2.2, and (a4, a5, a6, a7) =(3, 3, 1, 2)) is given by a

thick line. A BP is called read-once if all paths from the root to sinks do not have two or

more same labels. The BP in Fig. 2.3 is read-once.

Our lower bound proof is based on the following simple idea: Suppose that A (|A| = m1)

12 2 Read-Once Branching Programs for Tree Evaluation Problems

4

5

(2,1,1)

(2,1,2)

(2,1,3)

5

(2,2,1)

(2,2,2)

(2,1,3)

5

(2,3,1)

(2,3,2)

(2,3,3)

6

7

(3,1,1)

(3,1,2)

(3,1,3)

7

(3,2,1)

(3,2,2)

(3,2,3)

7

(3,3,1)

(3,3,2)

(3,3,3)

7

6

(3,1,1)

(3,2,1)

(3,3,1)

6

(3,1,2)

(3,2,2)

(3,3,2)

6

(3,1,3)

(3,2,3)

(3,3,3)

6

7

(3,1,1)

(3,1,2)

(3,1,3)

7

(3,2,1)

(3,2,2)

(3,2,3)

7

(3,3,1)

(3,3,2)

(3,3,3)

(1,1,1)

(1,1,2)

(1,1,3)

(1,2,1)

(1,2,2)

(1,1,3)

(1,3,1)

(1,3,2)

(1,3,3)

1

2

3

Figure 2.3: An example of a read-once branching program solving FT3(3)

is a carefully selected subset of all the possible inputs for FTh(k). Let B be any (read-once)

BP that solves FTh(k). Then our proof says that we can always select a set S of states

such that each computation path corresponding to each input in A goes through some state

in S and any state in S accepts computation paths of at most m2 inputs in A, concluding

that |S| is at least m1/m2. To introduce such an input set A, we consider the following

constraint for functions fi: Suppose that

X =

α11 α12 · · · α1k

α21
. . . · · · α2k

...
...

. . .
...

αk1 α12 · · · αkk

is the matrix representation of fi. Then it has to satisfy the following three constraints:

(i) α11 . . . α1k (= the first row) is a permutation of (1, . . . , k) (ii) α11 . . . αk1 (= the first

column) is a permutation of (1, . . . , k) (iii) For ∀j ≥ 2, αj1 . . . αjk is a permutation that

2.2. Preliminaries 13

can be written as δl(α11 . . . α1k) for some 1 ≤ l ≤ k where δ is the cyclic permutation

δ =

(
1 2 · · · k − 1 k

2 3 · · · k 1

)

and δl is a composition of l δ’s. Thus each row is a permutation, and it is not hard to see

that each column is also a permutation. X is fixed by determining its first row and the

first column, and hence there are k!(k − 1)! different fi’s. Let F be the class of functions

satisfying these constraints. In this paper, we assume that our function fi is always selected

from F unless otherwise stated (but of course, our BP’s must give correct solutions for all

inputs). Now here are easy but important lemmas.

Lemma 1 Suppose that two inputs I and I ′ (their function parts satisfy the constraint)

are exactly the same except only one leaf value at node j. Then the final value of FTh(k)

is different between I and I ′.

Proof. Suppose that the final value is the same and consider the path from the root to

j. Since the root value is the same and the leaf value is different, there must be a node i

on the path such that the value of i is the same but the value of i’s next node i′ on the

path is different, say, a in I and a′ in I ′. Let i′′ be the sibling of i′ (both i′ and i′′ have i

as their parent). Then the value of i′′ is the same, say b, in both I and I ′. Thus we have

fi(a, b) = fi(a
′, b) for a ̸= a′, which contradicts that fi ∈ F . □

Lemma 2 Suppose that a BP B solves FTh(k). Then (1) for any internal node i of FTh(k)

and for any a, b ∈ [k], there must be a state whose label is (i, a, b) in B. (2) If P is a legal

computation path, then for any leaf node j, P includes a state that reads j.

Proof. For (2), suppose that P corresponds to input I and it does not read j. Then

consider another input I ′ which is different from I only in j. Then B obviously outputs

the same value for I and I ′, contradicting the previous lemma. (1) is proved similarly

by considering two inputs I and I ′ that differ only in fi(a, b) and such that both inputs

actually use fi(a, b) (meaning the values of i’s two children are a and b under I and I ′).

Note that if I satisfies the restriction, then I ′ does not. Now one can see, exactly as in

the proof of the previous lemma, that the final value is different between I and I ′, but B

outputs the same value, a contradiction. □

The next lemma (hinted by Th. 5.8 and Th. 5.9 of [10]) relates the number of states

reading leaf nodes and the number of state reading second-leaf nodes. By this lemma, we

14 2 Read-Once Branching Programs for Tree Evaluation Problems

(i,a,b) i

(i,a’,b’)

Figure 2.4: Modification rules(i), (ii) and (iii).

can increase the degree of k by one in the lower bound given in the next section. Note that

this lemma holds for general BP’s (and see Subsec. 4 for its by-product).

Lemma 3 For h ≥ 1, if there is a BP Bh+1 solving FTh+1(k) such that the number of

states that read second-leaf nodes is n, then there is a BP Bh solving FTh(k) such that the

number of states that read leaf nodes is at most n/k2. Furthermore, if Bh+1 is read-once,

so is Bh, also.

Proof. we construct Bh from the given Bh+1 as follows. Let i be a second-leaf node of

FTh+1(k) and (a, b) is a pair of inputs to fi such that the number of states in Bh+1 that

read fi(a, b) is less than or equal to the number of states reading fi(a
′, b′) for any (a′, b′).

Let m be the number of such state s reading fi(a, b). By Lemma 2, there is at least one

state that reads fi(a, b) for any (a, b) ∈ [k]× [k]. So, m is at most (1/k2)×(the number of

states that read fi). Now we make the following modification against Bh+1 (see Fig. 2.4).

The basic idea is that we fix the values of the two child (leaf) nodes of i to a and b. Then i

looks like a leaf node of FTh(k) and among the states in Bh+1 that read i, only 1/k2 ones

survive by the following construction. This holds for any i and hence the lemma holds.

(i) Change the label of the above m states from (i, a, b) to i. (Namely this state reads a

leaf node of FTh(k).) (ii) Suppose that j1 and j2 are the two leaf nodes whose parent is i.

Then we remove all the states q of Bh+1 that read j1 (j2, respectively) by connecting q’s

incoming edges to the state to which the edge from q labelled by a (b, respectively) goes.

(iii) We remove all the state q of Bh+1 that read fi(a
′, b′), ((a′, b′) ̸= (a, b)), by connecting

q’s incoming edges to the state to which the edge from q labelled by 1 goes (this “1” is not

important or it may be any number in [k]).

We repeat this change for all second-leaf nodes of FTh+1(k), obtaining Bh. We omit

2.3. Lower Bounds 15

the proof that this construction is correct, since it is almost obvious from the construction.

□

2.3 Lower Bounds

In this section we obtain a lower bound for the number of states that read leaf nodes

of FTh(k). Then combining it with Lemma 3, we obtain a better lower bound for the

number of states that read second-leaf nodes of FTh(k). Recall that our input satisfies the

constraint (its functions belong to F) and all BPs in this section are read-once. Let B be a

BP that solves FTh(k) and P be its arbitrary computation path. (To avoid confusion, we

sometimes say that P is a legal computation path to emphasise that P is based on an input

whose function part satisfies the constraint.) Then by Lemma 2, P reads all leaf values

(for any leaf j, there is a state in P that reads j). Let q be the last state on P that reads

a leaf value, i.e., there is no state after q on P that reads a leaf. Since B is read-once, q is

also the last leaf-reading state on any other legal computation path that includes q. Thus,

as far as we are looking at only legal computation paths, we can define a last leaf-reading

state without specifying a computation path.

Now we define our key tool in the proof in this section. Suppose that I = (f1, . . . , f2h−1−1,

a2h−1 , . . . , a2h−1) is currently associated with FTh(k) and let j be a leaf. Then the cut con-

figuration (CC) for I with respect j, denoted as CC(I, j), is defined as follows.

CC(I, j) = (a1, a2, . . . , ah−1)

where, (i) a1 is the value of j’s sibling and (ii) if ai, 1 ≤ i ≤ h− 2, is the value of node i,

ai+1 is the value of the sibling of i’s parent (see Fig. 2.5). Suppose that we know functions

f1 to f2h−1−1. Then if we further know these n − 1 values as well as the value of j, then

we can compute the solution (= the value of node 1). In fact, it is well-known that we

can compute the solution in such a way that we need at most (h− 1)⌈log k⌉ memory space

at any stage of its computation (by recursively obtaining the values of a1, a2, and so on,

in this order first, then the associated function values from bottom to top). What will

be done in the rest of this section is to count the number of legal inputs with a certain

restriction on its CC that go through a last leaf-reading node. Our first lemma is an upper

bound on the number of inputs having a single CC.

Lemma 4 Fix functions f1, . . . , f2h−1−1, an arbitrary leaf node, j, and an arbitrary (a1, . . . , ah−1),

ai ∈ [k]. Then the number of leaf values whose CC with respect to j is (a1, . . . , ah−1) is at

16 2 Read-Once Branching Programs for Tree Evaluation Problems

Figure 2.5: Involved nodes in CC(I, j).

most k2
h−1−h+1

Proof. Let Tv be a subtree of FTh(k) whose root is a node v at height i of FTh(k). Let

v1, . . . , v2i−1 (we used a simplified numbering) be the leaf nodes of Tv, and g(v1, . . . , v2i−1)

be the value of v. We first calculate the number of different leaf values (b1, . . . , b2i−1) such

that g(b1, . . . , b2i−1) = a for a fixed a ∈ [k]. For fixed b1, . . . , b2i−1−1, g(b1, . . . , b2i−1−1, x) is

a function from [k] to [k] (denoted by g′(x)). By lemma 1, g′(x1) ̸= g′(x2) if x1 ̸= x2, in

other words, g′ is a bijection. Hence, for any a ∈ [k], value b ∈ [k] such that g′(b) = a is

fixed. Since this holds for any b1, . . . , b2i−1−1, the number of leaf values b1, . . . , b2i−1 such

that g(b1, . . . , b2i−1) = a is k2
i−1−1.

Now we calculate the number N of leaf values such that their CC with respect to leaf

j is (a1, . . . , ah−1). Let the node taking value ai be vi. See Fig. 2.5 again. First, note that

node j can take any of the k values. Next, the value of node v1 is fixed to a1; it takes

only one value. Since node v2 is a top node of a subtree with height 2, its leaf nodes can

take k2
2−1−1 = k different values by the above fact. Similarly, v3’s leaf nodes can take

k2
3−1−1 = k3 different values and so on. Therefore,

N = k · 1 · k · k3 · · · · · k2h−2−1

= k · k21+22+···+2h−2−(h−2)

= k · k2h−1−2−(h−2) = k2
h−1−(h−1)

Then this lemma is proved □

Now we are ready to prove our main lemma. We divide an input (f1, . . . , f2h−1−1,

a1, . . . , a2h−1) into two parts, the function part (f-part) f = (f1, . . . , f2h−1−1) and the leaf

value part (l-part) l = (a1, . . . , a2h−1). Let B be any (read-once) BP solving FTh(k) and

s be any last leaf-reading state, reading a leaf j. Let c1 and c2 be two different CC’s with

2.3. Lower Bounds 17

respect to j whose inputs have the same f-part, and G(c1, c2, s) be the set of such f-parts

(i.e., if f ∈ G(c1, c2, s), then there are two l-parts a1 and a2 such that (f ,a1) and (f ,a2)

have CC’s c1 and c2, respectively). Note that there are (k!(k − 1)!)2
h−1−1 different f-parts

in total and we denote this number by N0.

Lemma 5 Suppose that k is a prime number. Then for any c1, c2, s, |G(c1, c2, s)| ≤ N0
k
k!

Proof. Let c1 = (a1, . . . , ah−1), c2 = (b1, . . . , bh−1), and let v1, . . . , vh−1 be the nodes

providing these two CC values. Also let g1,gh−1 be the functions associated with

v1, . . . , vh−1 producing both c1 and c2 (for different leaf values). Recall that s is a last

leaf-reading state (reading node j) and our BP is read-once. Hence, the value of j is first

read at s, which means two computation paths realizing c1 and c2 are not affected by the

value of j until the state s. Furthermore, these paths must go to the same sink-node for

each fixed value a of the node j, because after the state s our BP reads only function values

being the same for c1 and c2.

g1(a1, g2(a2, . . . , gh−1(ah−1, a) . . .)) = g1(b1, g2(b2, . . . , gh−1(bh−1, a) . . .)) (2.1)

Note that for a fixed ah−1, gh−1(ah−1, a) is a bijection form [k] to [k] and can be

represented as a permutation

δh−1 =

(
1 2 · · · k

α1 α2 · · · αk

)

where α1 . . . αk are the (ah−1)th row of the matrix of gh−1. Using similar representations

for g1 to gh−2, (2.1) can be written as

δ1δ2 . . . δh−1 = δ′1δ
′
2 . . . δ

′
h−1 (2.2)

where δi is the (ai)th row of (the matrix of) gi and δ
′
i is the (bi)th row of gi. Due to our

constraint for gi, we can write δ′i = δliδi for some 0 ≤ li ≤ k − 1 (recall that δ is the cyclic

permutation).

Now (2.2) can be rewritten as

δ1δ2 . . . δh−1 = δl1δ1δ
l2δ2 . . . δ

lh−1δh−1

Suppose that ai and bi are the first different values in the two CC’s (i,e., a1 = b1, . . . ai−1 =

18 2 Read-Once Branching Programs for Tree Evaluation Problems

bi−1). Then l1 = l2 = · · · = li−1 = 0 and hence

δ1δ2 . . . δh−2δh−1 = δl1δ1δ
l2δ2 . . . δh−2δ

lh−1δh−1

⇔ δiδi+1 . . . δh−2 = δliδiδ
li+1δi+1 . . . δ

lh−1

⇔ δi = δliδiδ
li+1δi+1 . . . δ

lh−1δ−1
h−2 . . . δ

−1
i+1

⇔ δ∗ = δ−1
i δcδi (2.3)

where δ∗ = (δli+1 . . . δ−1
i+1)

−1 and δc = δli .

Now let

δi =

(
α1 α2 · · · αk

1 2 · · · k

)
and δ∗ =

(
1 2 · · · k

β1 β2 · · · βk

)
,

Then (2.3) can be written as(
1 2 · · · k

β1 β2 · · · βk

)

=

(
1 2 · · · k

α1 α2 · · · αk

)(
1 2 · · · k

1 + c 2 + c · · · k + c

)(
α1 α2 · · · αk

1 2 · · · k

)

=

(
α1 α2 · · · αk

α1+c α2+c · · · αk+c

)

where 1+c, . . . , k+c are all MOD k. Note that δ∗ and δc are conjugate and therefore their

cycle structures are the same. Since δ is the cyclic permutation, δc has a single cycle and

therefore δ∗ also has a single cycle.

It then turns out that if we fix α1 to d ∈ [k], then by the left hand side, d should be

mapped to βd, meaning α1+c = βd. Then again by the left hand side, βd should be mapped

to ββd
, meaning α1+2c = ββd

, and so on. Namely once α1 is fixed, all the other αi’s are

sequentially fixed one after another or δi itself is fixed. Since k is prime, this sequence of

value transfer does not end in the middle. Thus we have at most k different possibilities

for δi (due to k different values for α1). Recall that δi can take k! different permutation

in general. (The whole matrix is determined by fixing the first row and the first column,

but it should be noted that it is also determined by fixing any row and then any column).

But now there are only k possibilities as shown above. So the number of different gi is at

most N0
k
k! for each combination of other h − 2 functions. Note that s may have another

CC, say c3, other than c1 and c2. Then we have another restriction for functions, which

2.3. Lower Bounds 19

results in even a smaller number of possible functions. Thus it is enough to consider only

the case that the state s has two different CC’s, for the upper bound of the lemma. □

Now we imply a contradiction if the number of leaf-reading states is less than kh−1,

through the following two lemmas.

Lemma 6 Suppose that s1, s2, . . . , skh−1−1 are kh−1− 1 different last leaf-reading states of

the BP B. Then there is an f-part f0 such that for any si (1 ≤ i ≤ kh−1 − 1), if inputs

(f0,a1) and (f0,a2) go through si, their CC’s are the same.

Proof. We count the number of f-parts f that do not satisfy the condition of the lemma.

By Lemma 5, there are N0 · k
k! such f for each combination of state si, CC c1 and CC

c2. Note that we have kh−1 − 1 si’s and there are at most kh−1 different CC’s in general.

Therefore the number of such f ’s is at most

N0 ·
k

k!
· (kh−1 − 1) · (kh−1)2 ≤ N0k

3h−2/k!,

which is strictly less than N0 for a large (prime) k. Thus an f0 of the lemma must exists.

□

Lemma 7 B needs at least kh−1 last leaf-reading states.

Proof. Suppose B has at most kh−1 − 1 last leaf-reading states. Then by Lemma 6,

there is an f-part f0 such that inputs having this f0 as their f-part show at most one CC for

any of these last leaf-reading states. However, Lemma 4 shows each state accepts at most

k2
h−1−h+1 l-parts, meaning these kh−1 − 1 states accept at most k2

h−1−h+1 · (kh−1 − 1) <

k2
h−1

l-values in total. Since each of the all k2
h−1

l-values must be accepted by some last

leaf-reading state, this is a contradiction. □

Theorem 1 Any read-once BP Bh solving FTh(k) needs at least kh states.

Proof. The contraposition of Lemma 4 claims that if the number of leaf-reading states

of Bh is at least m, then the number of second-leaf-reading states of Bh+1 is at least k2m.

Now the theorem is immediate from Lemma 7. □

20 2 Read-Once Branching Programs for Tree Evaluation Problems

2.4 General Branching Programs for Height-3 TEP

Recall that Lemma 3 holds for general BPs. Also it turns out that the TEP of height two

is somewhat special. Thus we can obtain the following general lower bound for BPs for

the height-3 TEP with a simpler proof than that of [10].

Theorem 2 Any (general) BP solving FT3(k) needs at least k3 states.

Proof. Due to Lemma 3, it suffices to show that any BP solving FT2(k) needs at least

k leaf-reading states. In the following, we show it needs at least k + 1 leaf-reading states,

which is optimal by a construction similar to that of Fig. 3. Recall that FT2(k) has three

nodes, 1, 2 and 3, where node 1 is associated with a function f1 and nodes 2 and 3 are

leaf nodes. Suppose that we have a BP B that solves FT2(k) and that has at most k

leaf-reading states. We fix f1 to an arbitrary function in F and then B can be modified to

the BP that reads only leaf nodes; we also denote this BP by B.

We give a new label (in addition to the original label of B), a set of pairs (a,b),

1 ≤ a, b ≤ k, to each state and each edge of B by the following rule: (i) The initial node

of B has label {(a, b) | 1 ≤ a, b ≤ k}, i.e., the set of all possible pairs. (ii) Suppose that a

state s has a label S and an edge e from s reads node 2 to get value i. Then the label to

the edge e is {(i, b) | 1 ≤ b ≤ k} ∩ S, namely the (possibly empty) set of pairs in S whose

first element is i. Similarly for the case that s reads node 3 (we do the same thing with the

second element of the pair). (iii) Suppose that all the edges entering state s already have

labels. Then the label of s is the union of the labels of those incoming edges. Now it is

easy to see that such labels “describe” an execution of B in the following sense: Suppose

that the label of an edge e includes a pair (a, b). Then the computation path of B goes

through this edge e if and only if the values of nodes 2 and 3 are a and b, respectively (and

f1 is the current fixed function).

Now suppose for contradiction that B has at most k states other than k sink states and

we look at edges that go to these sink states. Note that the number of all edges is k2 since

each of the k states has k edges. Also note that B has to read both of the two leaf states

in its computation path, so at least one edge goes to non-sink states. Consequently the

number of the above (going to sink states) edges is at most k2 − 1. Since the total number

of pairs is k2, it is impossible to map all those pairs to the edges in a one-to-one fashion,

or one of the following two cases must happen:

(1) Some pair (a, b) does not appear in any label of these edges. B obviously does not

do a correct computation when the values of nodes 2 and 3 are a and b, respectively.

2.5. Concluding Remarks 21

(2) Some edge has two (or more) pairs, say (a, b) and (a′, b′). Notice that if the state

this edge outgoes from reads node 2, then we have a = a′. Then the computation of B is

not correct again since the output would be the same if the values of node 2 is the same

and the values of node 3 are different (recall that our f1 is in F). Similarly for the case

that the state reads node 3 (then b = b′).

Thus we can conclude that such B is not a correct BP. □

2.5 Concluding Remarks

The obvious future work is to remove the read-once restriction. Since our main lemma

(Lemma 5) heavily depends on the read-once restriction, we do not have any specific

approaches to this ultimate goal at this moment. There are a couple of more reasonable

sub-goals: One is to prove that if a BP B is thrifty, then B can be converted to a read-

once BP without increasing the number of leaf-reading states drastically, or equivalently,

to prove that reading a same leaf node twice or more do not help much in thrifty BP’s.

Another possibility is to attack the case for h = 4. This seems more tractable since we can

restrict ourselves to the number of leaf-reading states of BP’s for FT3(k) that have several

specific properties as shown in [10]. Also this lower bound will outperform the longstanding

one by Nečiporuk [36].

Chapter 3

Lower Bounds of General

Branching Programs for TEP

In this chapter, we discuss tree evaluation problems (TEP). Cook, McKenzie, Wehr, Braver-

man and Santhanam also showed branching programs lower bounds for “small” tree eval-

uation problems, and have a conjecture that “big” tree evaluation would have tight lower

bounds with upper bounds.

3.1 Introduction

Next our target is to analyse greater lower bounds of general branching programs. It is

known that if any branching program solving TEP must need super polynomial size in input

length, then TEP is not in L. They also showed Ω(k3/ log k) lower bound for branching

programs solving TEP with height 3, 2-ary(binary) tree.

First, to improve their lower bounds, we analyse branching programs solving TEP with

height three, d-ary tree, where d is any constant. Because above lower bound technique

is only for TEP having height three binary complete tree, we modify this technique to be

applicable for height three d-ary complete tree. Using this modification, we show a tight

lower bound Ω(k2d−1/ log k). This lower bound supports the conjecture that upper bounds

of branching programs solving any TEP is tight for lower bounds and it leads to “L ̸= P”.

This result also suggests that if this technique become to apply to height four binary tree

evaluation problems, we can also get lower bounds of branching programs solving height

four d-ary TEP.

Next, we try to modify for height four tree evaluation problems. Because above modi-

fication is correct and useful, we do not change the key idea of the original technique. This

23

24 3 Lower Bounds of General Branching Programs for TEP

modification seems good, but has many difficulties. In this chapter, although we could not

complete modification, we discuss what we think and analyse. These two modifications are

discussed in each subsection.

3.2 Extension of Width and Height of TEP

[10] introduced “state sequence method” and shown a lower bound for BT 3
2 (k), where

BT h
d (k) is the binary type of tree evaluation problems having rooted, d-ary, complete tree

of height h. Our task is to detect whether the root value is 1 or not. This method shows

any general branching program must have Ω(n1.5/(log n)2.5) states. Although this lower

bound is not stronger than Nečiporuk’s lower bound Ω(n2/(log n)2) , it is tight for an upper

bound and supports the conjecture that upper bounds of branching programs for any TEP

is tight for lower bounds. This upper bound is shown by constructing a branching program

based on a depth first search algorithm. Let n is the length of input and d is some constant,

upper bounds of branching programs solving BT h
d (k) (denoted as BP (BT h

d (k)) is below.

BP (BT h
d (k)) = O(k(h−1)(d−1)+1) = O(nh) (3.1)

Using r(h) as any unbounded function of h, if lower bounds grow up to Ω(nr(h)), TEP

are not in class L. So one of natural motivation is to generalize this method and apply

to larger TEP such as BT 4
3 (k) or BT 5

2 (k): These upper bound is O(k7/3/(log k)10/3) and

O(k5/2/(log k)7/2) respectively. Tight lower bounds for BT 4
3 (k) or BT

5
2 (k) beat Nečiporuk’s

lower bound.

One of our observation is modifying the state sequence method. In this subsection,

we introduce this method and discuss some modifications. Because the original method is

only for BT 3
2 (k), now we focus on BT 3

2 (k). The outline of the original method is as below.

Set a branching program solving BT 3
2 (k) We consider the lower bound of BPs. There-

fore, the BP analysed with this method is assumed be optimal.

Restrict input for BP We divide a set of states into k2 sets of states disjointly. One set

of inputs shows computation paths using states in one set. Any other set of inputs

does not shows computation paths using states in the same set.

Get computation paths Once a BP gets an input, a BP shows the computation path,

that is consisted by states (not label).

Define critical states We find some states which must be used.

3.2. Extension of Width and Height of TEP 25

See “learning interval” We check the flow of a BP and distinct-ability between this

function and input from critical states.

Set a transition function We can see a different transition function if a input has dif-

ferent f1.

Compare with f1 The number of various of transition functions is represented by the

number of critical states.

Now we discuss the detail of the state sequence method. Note that this method shows

a lower bound as BP (BT 3
2 (k)) = Ω(k3/ log k)

Once a branching program gets an input, and computes an output, there exists a com-

putation path, which starts on the root state and ends to the sink state. The computation

path is a sequence of states whoes input goes through. Because a branching program is

acyclic, one state exists at most once in a computation path.

For thinking a lower bound, we define “critical states” and count the amount of these.

There are some labels which is used in some measure in any branching programs. This

means that it is suffice to show lower bounds that we count the number of states reading v2

or v3. To check how states are critical, check all computation paths under some restrictions

for inputs. These restrictions make us see the value of v2 and v3 and other nodes have a

fixed value. Precisely,

• v4 = v6 = r, v5 = v7 = s

• f2(s, t) = vI2 , f3(s, t) = vI3

• f2, f3’s other entries are fixed 0.

• f1’s all entries are 0 or 1 then, |f1| = 2k
2

From this restriction, all inputs are denoted as (vI2 , v
I
3 , f1).

Now, we can get the computation path C(a, b, f) from input (a, b, f). To count the

amount of states, we denote Γj as the amount of states labeled as (j, r, s) for j = 2, 3.

Because one state has exact one label, Γj is disjoint over all pairs (r, s). If the pair (r, s)

are set to make Γ2 + Γ3 minimum, it suffice to show

Γ2 + Γ3 ≥ k/ log k (3.2)

To count an amount of states labeled v2 or v3, we define “learning interval” This learning

interval is shown by “critical state” defined as below. In each computation path,

26 3 Lower Bounds of General Branching Programs for TEP

• The first state is critical.

• If we see first state or a critical state labeled (2, r, s),

the next critical state is the first one labeled (3, r, s) or 1, . . . , k

• If we see a critical state labeled (3, r, s),

the next critical state is the first one labeled (2, r, s) or 1, . . . , k

labeled

Figure 3.1: An example of a computation path and critical states

Then “learning interval” is defined as a pair of critical states. In above case,(s1, sa),(sa, sb),(sb, sd)

and (sd, sAcc) are learning intervals.

Learning intervals show the amount of states. To count those, we set more assumption

on branching programs. Unique root state is denoted as s1, accepting state as sAcc, and

rejecting state as sRej . Under this assumption, if function f1 is fixed, then one input shows

a computation path. This computation path reach a critical state and read some value,

should go to next critical state. This transition is represent as function using critical states.

This transition function under fixed function f1 = f is described as below.

ψ2[f] : [k]× (Γr,s
2 ∪ {s1}) → (Γr,s

3 ∪ {sAcc, sRej}) (3.3)

ψ3[f] : [k]× Γr,s
3 → (Γr,s

2 ∪ {sAcc, sRej}) (3.4)

This function shows transitions from critical states to critical states. According to input

restriction, if a computation path reaches to the state labeled (2, r, s), this computation

path goes to the state labeled (3, r, s) or sink states depends on vI2 . In the case of a

computation path reaches to the state labeled (3, r, s), this computation path goes to the

state labeled (2, r, s) or sink states depends on vI3 . This function’s range is expressed by

amount of states labeled as (2, r, s) or (3, r, s). The various of ψ2[f] and ψ3[f] is

|(ψ2[f], ψ3[f])| = (Γ3 + 2)k(Γ2+1)(Γ2 + 2)kΓ3 ≤ (Γ2 + Γ3 + 2)k(Γ2+Γ3+1) (3.5)

And, here is a fact that this transition function should be different if f1 has a different

function. Here, f1’s outputs are distinct 1 or not 1.

3.2. Extension of Width and Height of TEP 27

Claim 1 this function is distinct for distinct f.

Proof : If not, there are functions f, g such that ψj [f] = ψj [g] but f(a, b) ̸= g(a, b). From

C(a, b, f), C(a, b, g), both are accepted or rejected. This leads contradiction. □

From this claim and |f | = 2k
2
,

2k
2 ≤ (Γ2 + Γ3 + 2)k(Γ2+Γ3+1) (3.6)

k2 ≤ k(Γ2 + Γ3 + 1) log (Γ2 + Γ3 + 2)

(Γ2 + Γ3 + 1) ≥ k/ log (Γ2 + Γ3 + 2) (3.7)

This leads to Γ2 + Γ3 ≥ k/logk and BP (BT 3
2 (k) = Ω(k3/ log k))

3.2.1 Width Extension

Now we get a lower bound of BT 3
2 (k) as previous subsection. Thus, next target is to verify

a lower bound for BT h
d (k) with d > 2 or h > 3 for a greater lower bounds. In case of h > 3 ,

we find it difficult that to use state sequence method with any arrangement without losing

its main ideas. But we find it can be true that to use state sequence method with some

arrangement in case of d > 2. Fortunately, this arrangement is useful in case that d any

integer constant (d ≥ 2). So we discuss a lower bound of BT 3
d (k) instead of any other TEP.

With arranging state sequence method, we show stronger lower bound than previous

subsection.

Theorem 3 (Lower bounds of BT 3
d (k))

BP (BT 3
d (k)) = Ω(k2d−1/ log k) = Ω(n(2d−1)/d/(log n)(3d−1)/d) (3.8)

Original state sequence method is defined for only BT 3
2 (k). That is because the defi-

nition of key ideas in state sequence method depend on BT 3
2 (k). So we need to arrange

state sequence method for calculating a lower bound of BT 3
d (k).

Let us number each node of BT 3
d (k) as suggested by the heap structure. Thus the root

node is numbered 1, and the leftmost height 2 node is number 2, the rightmost height 2

node is number d+ 1. The leftmost leaf node is number d+ 2 and the rightmost leaf node

is d2 + d+ 1. An internal node i has function fi : [k]
d 7→ [k], (1 ≤ i ≤ d+ 1). A leaf node

j has a value from 1 to k, (d + 1 ≤ i ≤ d2 + d + 1). So an input I can be represented as

(xd+2, . . . , xd2+d+1, x(d+1,1,...,1), . . . ,

28 3 Lower Bounds of General Branching Programs for TEP

r45mm

2

1

…

3

… …

………………

Figure 3.2: Numbering for BT 3
d (k)

x(d+1,k,...,k), . . . , x(2,k,...,k), x1[1,...,1], . . . , x1[k,...,k]). This means that from xd+2 to xd2+d+1

denotes the value of node from d + 2 to d2 + d + 1. And from x(d+1,1,...,1) to x(1,k,...,k)

denotes a function fi for a internal node ni. x(i,k,...,k) whose the value of node 1 when all

node i’s children has value 1.

Original state sequence method counts amount of state labeled by variables (2, r, s) or

(3, r, s) in the case of BT 3
2 (k). So we arrange state sequence method for case of BT 3

d (k).

More specifically we count amount of state labeled by variables which is related in height

2 nodes, and we define critical state similarly.

In the case of BT 3
2 (k), all critical states are divided into disjoint sets. This division

is realized because the label (i, r, s) is different if the pair (r, s) is different. We can see

similar situations in case of BT 3
d (k). The difference is the number of children which height

2 node has.

Now we start modifying state sequence method to apply for BT 3
d (k). First modification

occurs in an input restriction step. Each input of BT 3
d (k) is obviously different from input of

BT 3
2 (k). So we restrict input carefully not to change the key idea of state sequence method.

In this sight, we can divide states similarly which labeled by height 2 node variable in case

BT 3
2 (k). This leads that divided states keep disjointness like as BT 3

2 (k)’s input restricted.

Precisely, the state labeled by (j, l1, . . . , ld) and the state labeled by (j, l′1, . . . , l
′
d) is

different if (l1, . . . , ld) is not equivalent to (l′1, . . . , l
′
d). Then arranged restriction is

• (xd+1+j , . . . , x2d+j) = lj (li ∈ [k], 1 ≤ j ≤ k)

• fi(l1, . . . , ld) = x(i,l1,...,ld) = vIi (2 ≤ i ≤ d+ 1)

• fi’s other entries are fixed 1. (2 ≤ i ≤ d+ 1)

• f1’s all entries are 0 ore 1 then, |f1| = 2k
d

3.2. Extension of Width and Height of TEP 29

Thanks for this restriction, we can denote an input I as (vI2 , . . . , v
I
(d+1), f1). And we denote

Γrest
i as the set of state labeled by x(i,l1,...,ld) as above restriction. As stated earlier, Γrest

i

is disjoint for Γrest’
i which is a set of state labeled by xi[l′1,...,l′d] in case of (l′1, . . . , l

′
d) ̸=

(l1, . . . , ld).

Second modification is definition of critical states. To see the states on which branches

some computation path in branching programs, we defined critical states in case of BT 3
2 (k).

But BT 3
d (k)’s input data is so different from BT 3

2 (k)’ one. How do we see branching

programs solving BT 3
d (k)? This answer is shown in the arranged restriction for input.

In case of BT 3
d with new restriction, we have variables as only vI2 , . . . , v

I
(d+1), f1. The

purpose of definition of critical states is to find state transition functions, and compare

the variety of these functions and the range of input f1. So we see states labeled by

(i, l1, . . . , ld)(i = 2, . . . , (d + 1)) where the computation path on branching programs can

branch. And we check these states are critical or not. Each computation path starts with

the root state, visits some critical states, and end with a sink node. If an input shows the

value of the root node as 1, computation path end with sAcc. If an input does not show

the value of the root node as 1, computation path end with sRej . From these discussion,

we can arrange the definition for critical states for BT 3
d (k) as below.

Definition 1 (critical state for BT 3
d (k))

• The first state(root state) is critical.

• If we see the first state or a critical state labeled (2, l1, . . . , ld), the next critical state

is the first one labeled (i, l1, . . . , ld)(i = 3, . . . , (d+ 1)) or sAcc,sRej

• If we see a critical state labeled (i, l1, . . . , ld), (i = 3, . . . , (d + 1)), the next critical

state is the first one labeled (j, l1, . . . , ld), (j ̸= i)(j = 2, . . . , (d+ 1)) or sAcc,sRej

Third modification is for state transition functions but it is tiny. State transition

functions in state sequence method is consisted by Learning Intervals. This Learning

Intervals look as pair of critical states. Because we arrange how critical state is, we have

to arrange how state transition functions is constructed. And this needs a large number of

word to description but not complicated as below.

Definition 2 (State transition function for BT 3
d (k))

Each state transition function φ2, φ3 or φd+1 is f ∈ [k]d 7→ {0, 1}. φ2 shows the next

critical state which is in Γrest
i (i = 3, . . . , d+ 1) or which is sink state from a critical state

in Γrest
2 or the root node. φi(i = 3, . . . , d + 1) shows the next critical state in Γrest

j (j =

30 3 Lower Bounds of General Branching Programs for TEP

2, . . . , d+ 1 and (i = 3, . . . , d+ 1) or sink states from a critical state in Γrest
i .

φ2[f] : [k]× (Γrest
2 ∪ {s1}) 7→ (Γr,s

j ∪ {sAcc, sRej})(j = 3, . . . , d+ 1)

φj [f] : [k]× Γrest
j 7→ (Γr,s

i ∪ {sAcc, sRej})(j = 3, . . . , d+ 1), (i = 2, . . . , d+ 1), (i ̸= j)

Any other definition in state sequence method does not depend on d = 2. For example,

we can get computation paths from restricted input, we can define learning intervals from

critical states, and we can get inequality similarly from state transition functions with no

dependant. Like in case of BT 3
2 (k), we can count up an amount of critical state from

comparing these functions.

Then state sequence method has been arranged for BT 3
d (k). Applying arranged state

sequence method to BT 3
d (k), we can prove Theorem 3.

Proof. Now we have a branching programs solving BT 3
d (k). According to modifications,

we can denote an input as (vI2 , . . . , v
I
(d+1), f1) uniquely. A computation path should branch

at the states labeled by (2, l1, . . . , ld), (3, l1, . . . , ld),. . . , (d+ 1, l1, . . . , ld) or (1, ∗, . . . , ∗) in
branching programs. Lower bounds are calculated by counting up the amount of these

states.

Similarly the case of BT 3
2 (k), we can divide some state into disjoint sets. From one

restriction case, we can denote Γrest
i as a set of states labeled by (i, l1, . . . , ld). Γrest

i is

disjoint from Γrest’
i the set of states used in case of another restriction case. This is clearly

true because each state have only one label. Then, we can say belows with denoting Γi as

the set of states labeled by (i, l1, . . . , ld) in the whole of branching programs.

|Γi| ≥ kd × |Γrest
i | (3.9)

BP (BT 3
d (k)) ≥

d+1∑
i=2

|Γi| (3.10)

And it suffice to show below.

d+1∑
i=2

|Γrest
i | = Ω(kd−1/ log k) (3.11)

Now we count up
∑d+1

i=2 |Γrest
i |. From definition of critical states, we can set learning

intervals similarly in the case of BT 3
2 (k).

To count critical states, we can set state transition functions form learning intervals as

definition. And we can say a similar claim.

3.2. Extension of Width and Height of TEP 31

Claim 2

A group of state transition function |(φ2[f], . . . , φd+1[f])| is distinct for distinct f1 = f .

Proof. Use contradiction. If not, there are f, g such that f(l1, . . . , ld) ̸= g(l1, . . . , ld) but

φj [f] = φj [g](j = 2, . . . , d+1). In this case, we can check C(l1, . . . , ld, f) and C(l1, . . . , ld, g)

with φj [f] = φj [g](j = 2, . . . , d+1). This should lead to that both are accepted or rejected.

But, it should be true that f(l1, . . . , ld) outputs a value different from g(l1, . . . , ld). This

means C(l1, . . . , ld, f) should reach a sink node labeled by different sink node reached by

C(l1, . . . , ld, g). This is contradiction.

This claim leads to equations for comparison. Note that the root function f ’s range is

2k
d
.

|(φ2[f], . . . , φd+1[f])| ≥ |f | (3.12)

(

d+1∑
i=2

|Γrest
i |+ 2)k(

∑d+1
i=2 |Γrest

i |+1) ≥ 2k
d

(3.13)

k(
d+1∑
i=2

|Γrest
i |+ 1) log (

d+1∑
i=2

|Γrest
i |+ 2) ≥ kd

(

d+1∑
i=2

|Γrest
i |+ 1) ≥ kd−1/ log (

d+1∑
i=2

|Γrest
i |+ 2) (3.14)

(
d+1∑
i=2

|Γrest
i |+ 1) = Ω(kd−1/ log k) (3.15)

Equation 3.13 follows using 3.12, 3.11 and |f | = 2k
d
. And we take logarithm then

3.13 leads to 3.14. At last, we use Ω representation on 3.15. 3.9, 3.10 and 3.15 leads to∑d+1
i=2 |Γrest

i | = Ω(k2d−1/logk) and BP (BT 3
d (k)) = Ω(k2d−1/ log k)

3.2.2 Height Extension

Now, we try to extent the state sequence method from BT 3
2 (k) to BT

4
2 (k). Known upper

bound is BP (BT 4
2 (k)) = O(k4/ log k) = O(n2/(log n)3). Although if we show tight lower

bounds for BT 4
2 (k), it is not larger than Nečiporuk’s lower bound. But this extension

would be the first step to BT 5
2 (k) or BT 4

3 (k). If we show tight lower bounds for BT 5
2 (k)

or BT 4
3 (k), it beats Nečiporuk’s lower bound.

As above, a state sequence method counts the amount of states labeled the variable of

height two nodes. In upper bound case, an amount of these states dominate the amount

of states in branching programs. So natural idea is to restrict input to divide these states

as below.

32 3 Lower Bounds of General Branching Programs for TEP

r45mm

Figure 3.3: Restriction for BT 4
2

• Leaf node : x8 = x10 = x12 = x14 = r, x9 = x11 = x13 = x15 = s

• Height 2 node : All entries are fixed 1 except fi(r, s) = xi, i = 4, 5, 6, 7, xi is some

constant ∈ [k].

• Height 3 node : All entries are fixed 1 except f2(x4, x5) = t, f3(x6, x7) = u

• f1’s all entries are 0 or 1.(No restriction) Then, |f1| = 2k
d

Next,we get the computation path. Because of optimality of branching programs,

computation paths have no (1, t, u)) except before sink node. Input restriction shows that

the computation path in a branching program should branch at (i, r, s), (j, t, u), i = 4, 5, 6, 7

and j = 2, 3. Using this restriction, critical states can be defined. Critical states are defined

as the state which must branch some inputs. In original method, we set critical state labeled

(2, r, s) or (3, r, s) because they can be divided in disjoint sets. A branching program solving

BT 4
2 (k) shows that states labeled (i, r, s) (i = 4, 5, 6, 7) can make disjoint set about a pair

(r, s). Furthermore, it is conjectured that some of them after a state labeled (2, t, u) or

(3, t, u) are used in disjointing case. From these fact, we denote Γr,s,u
4 as a set of “states

labeled (4, r, s) after the state labeled (3, t, u)”. In this definition, Γr,s,∗
i would be a disjoint

3.2. Extension of Width and Height of TEP 33

set for triplet (r, s, t)or(r, s, u). From these disjoint sets, it suffice to show

Γr,s,u
4 + Γr,s,u

5 + Γr,s,t
6 + Γr,s,t

7 ≥ k4/ log k (3.16)

Critical states tell us which is to be learning intervals on computation path. Paying

attention to defining critical states, we can see that elements of Γr,s,u
4 or Γr,s,t

5 comes after

the last (3, r, s), which is not dummy. And elements of Γr,s,u
6 or Γr,s,t

7 comes after the last

(2, r, s), which is not dummy too. So we should check this two relation of critical states.

This leads to below definition.

• The root state is critical.

• On each computation path, the last state labeled (2, x4, x5) is critical.

• If computation path reach to a critical state labeled (2, x4, x5),

the next critical state is the first one labeled (6, r, s) or (7, r, s) or 1, . . . , k.

• If computation path reach to a critical state labeled (6, r, s)

the next critical state is the first one labeled (7, r, s) or 1, . . . , k.

• If computation path reach to a critical state labeled (7, r, s)

the next critical state is the first one labeled (6, r, s) or 1, . . . , k.

• On each computation sequence, the last state labeled (3, x6, x7) is critical.

• If computation path reach to a critical state labeled (3, x6, x7),

the next critical state is the first one labeled (4, r, s) or (5, r, s) or 1, . . . , k.

• If computation path reach to a critical state labeled (4, r, s)

the next critical state is the first one labeled (5, r, s) or 1, . . . , k.

• If computation path reach to a critical state labeled (5, r, s)

the next critical state is the first one labeled (4, r, s) or 1, . . . , k

34 3 Lower Bounds of General Branching Programs for TEP

Then, the transition functions, which shows the chain of critical state, are described as

ψ2[f] : Γ
r,s
2 7→ Γr,s,t

6 ∪ Γr,s,t
7 ∪ {sAcc} ∪ {sRej} (3.17)

ψ3[f] : Γ
r,s
3 7→ Γr,s,u

4 ∪ Γr,s,u
5 ∪ {sAcc} ∪ {sRej} (3.18)

ψ4[f] : [k]× Γr,s,u
4 7→ Γr,s,u

5 ∪ {sAcc} ∪ {sRej} (3.19)

ψ5[f] : [k]× Γr,s,u
5 7→ Γr,s,u

4 ∪ {sAcc} ∪ {sRej} (3.20)

ψ6[f] : [k]× Γr,s,u
6 7→ Γr,s,u

7 ∪ {sAcc} ∪ {sRej} (3.21)

ψ7[f] : [k]× Γr,s,u
7 7→ Γr,s,u

6 ∪ {sAcc} ∪ {sRej} (3.22)

And using these transition functions, we would get target lower bound as below in-

equality.

|ψ4[f]||ψ5[f]||ψ6[f]||ψ7[f]| ≥ |f1|
(3.23)

LHS ≤ (|Γr,s,u
4 |+ |Γr,s,u

5 |+ |Γr,s,t
6 |+ |Γr,s,t

7 |+ 2)k(|Γ
r,s,u
4 |+|Γr,s,u

5 |+|Γr,s,t
6 |+|Γr,s,t

7 |+1)

(3.24)

RHS = 2k
2

(3.25)

(|Γr,s,u
4 |+ |Γr,s,u

5 |+ |Γr,s,t
6 |+ |Γr,s,t

7 |+ 2)k(|Γ
r,s,u
4 |+|Γr,s,u

5 |+|Γr,s,t
6 |+|Γr,s,t

7 |+1) ≥ 2k
2

(3.26)

k(|Γr,s,u
4 |+ |Γr,s,u

5 |+ |Γr,s,t
6 |+ |Γr,s,t

7 |+ 1) ≥ k2/ log (|Γr,s,u
4 |+ |Γr,s,u

5 |+ |Γr,s,t
6 |+ |Γr,s,t

7 |+ 2)

(3.27)

|Γr,s,u
4 |+ |Γr,s,u

5 |+ |Γr,s,t
6 |+ |Γr,s,t

7 |+ 1 ≥ k/log(|Γr,s,u
4 |+ |Γr,s,u

5 |+ |Γr,s,t
6 |+ |Γr,s,t

7 |+ 2)

(3.28)

|Γr,s,u
4 |+ |Γr,s,u

5 |+ |Γr,s,t
6 |+ |Γr,s,t

7 | = Ω(k/ log k)

(3.29)

This modification seems to work well. But there are some difficulties in this idea. First,

this idea depends on how the states are dummy or not. In the trivial construction or some

heuristic construction, there are no dummy states. Even branching programs are optimal,

there is no way to find some states are dummy or not about some input sets. Second,

this idea divides states reading nodes whose lie in the second level of TEPs. But some

branching programs can have states which can be used in different input sets about t or u.

From these reasons, a natural modification for a state sequence method is not effective for

3.2. Extension of Width and Height of TEP 35

height four TEP.

3.2.3 Chapter Summary

In this chapter, we discuss state sequence method introduced by [10]. This method shows

lower bounds of general branching programs solving BT 3
2 (k). We propose modifications

for this method and show greater lower bound with applying modified method to BT 3
d (k),

where d is a constant. This lower bound is n
2d−1

d /(log n)
3d−1

d , therefore Nečiporuk’s lower

bound is still the best.

We also try to modify state sequence method to be available for height four tree eval-

uation problems. For this modification, there are some difficulties. Because this method

compare the amount of variety of a function and the amount of states in a disjoint set, we

find a lower bound only k/ log k as the amount of states in one disjoint set. Therefore, if

we show k4/ log k lower bounds, we should divide critical states in k3 disjoint sets. Unfor-

tunately, our input restriction could not realize this situation and we could not get tight

lower bounds. To conquer these difficulties, we find the way of dividing critical states or the

way to define critical set. For another possibility, a totally new method can be established

for tight lower bounds of branching programs for height four tree evaluation problems.

Chapter 4

Efficient Algorithms for k-IBDD

Satisfiability

4.1 Introduction

In this chapter, we propose a polynomial space and deterministic algorithm for solving

the satisfiability of k-indexed Binary Decision Diagram (abbr. k-IBDD), which is one of

a variant of the satisfiability problems (abbr. SAT). Our algorithm runs in time poly(n)

·2n−n1/2k−1

, which is super-polynomially faster than an exhaustive search. SAT is one

of central problems in theoretical computer science. There exists many variants of SAT

and many research have been done. In many cases, they are known to be NP-complete.

Therefore, it is a natural task to design some algorithm running faster than an exhaustive

search, which check all possible satisfying assignments. One of central research for SAT

is about CNF SAT. CNF SAT is to ask whether given a conjunctive normal form, there

exists an assignment satisfying it. An exhaustive search algorithm solve CNF SAT with

nvariables and m clauses in time O(m · 2n). In CNF SAT, there exist many excellent

algorithms such as [2, 7, 12, 13, 23, 38, 42]. The current best algorithm for CNF SAT with

m clause runs in time O
(
2
(1− 1

log(m/n)
)n
)
shown in [7]. This implies that if the number of

clause is bounded by cn (c is an arbitrary positive constant), we can solve CNF SAT in

time O
(
2(1−µ(c))n

)
, where µ(c) is some constant depending on c.

Recently, Circuit SAT is also extensively studied. Circuit SAT, is given a Boolean

Circuit C with n variables, to check whether there exists an assignment to the input

variable such that C outputs 1. It includes CNF SAT as a special case. AC0 are constant

depth circuits consisting of AND, OR gates of unbound fan-in and unary NOT gates.

AC0 SAT with cn size and depth d can be solved in time O
(
2(1−1/O(log c+d log d)d−1)n

)
37

38 4 Efficient Algorithms for k-IBDD Satisfiability

[25]. ACC0 are constant depth circuits consisting of AND, OR, Modulo gates of unbound

fan-in and unary NOT gates. ACC0 SAT with cn size and depth d can be solved in time

O

(
2n−Ω(n2−O(d)

)

)
[49]. U2 formula are formulas with binary AND, OR and unary NOT

gates. U2 formula SAT with cn size can be solved in time O
(
2(1−1/cO(1))

)
[40]. B2 formula

are formulas with all binary boolean gates. B2 formula SAT are with cn size can be solved

in time O
(
2(1−1/cc

3))
)
[43].

However, there are a very few researches on the satisfiability of branching program.

One important result is about k-OBDD SAT. OBDD are branching programs such that

all paths from a root to a shank have the same order of the variables. k-OBDD are one of

extensions from OBDD such that they consist of k layers and each layer is OBDD with the

same order of the variables. k-OBDD SAT asks whether given ak-OBDD there exists an

consistent path from a root to a 1-sink. For any constant k, this problem can be solvable

in polynomial time shown in [4]. Another result is about the satisfiability of general

branching programs. [8] design an deterministic algorithm running in O(2n−ω(logn)) time,

which solves any instance with n variables and m = n2−ϵ states, where ϵ is an arbitrary

small positive constant. However, this algorithm requires an exponential space and cannot

applies for an instance of k-IBDD SAT with ω(n2) states. In addition, this algorithm uses

an exponential space.

In this chapter, the satisfiability of k-indexed Binary Decision Diagram (abbr. k-IBDD).

k-IBDD is one of extensions of k-OBDD, which is the same as k-OBDD except that each

layer has different order of the variables. k-IBDD SAT is shown to be NP-complete for

any k ≥ 2 in [4]. Our goals is to design an algorithm super-polynomially faster than

an exhaustive search such as an O(m2n−ω(logn)) time algorithm. We get the following

theorem,

Theorem 4 For any instance of k-IBDD SAT with n variables and m = O(nc) states (c

is an arbitrary positive constant), there exists a deterministic polynomial-space algorithm

which solves it in poly(n) ·2n−nα
time, where α = 1

2k−1 and poly(n) represents a polynomial

of n.

4.1.1 Related Work

Chen et al. gave a deterministic exponential space algorithm solves satisfiability problems of

general branching programs with n variables and m = O(n2−ϵ) states in O(2n−nδ
) time [8];

where ϵ is an arbitrary small positive constant and δ is a constant such as 0 < δ < 1

depending on ϵ. Bollig et al. designed a polynomial time algorithm for k-OBDD SAT

4.2. Preliminaries 39

which is a special case of k-IBDD SAT [4]. For k-IBDD SAT, Jain et al. proposed an

experimental efficient algorithm [28].

4.2 Preliminaries

Let X = {x1, . . . , xn} be a set of variables and Boolean true be 1, false be 0. x is the

negation of variable x ∈ X. A nondeterministic branching program is underlying on rooted

directed multigraph B = (G,ϕV , ϕE). Each node in G is called state. ϕV : V → X ∪{0,1}
is a function of label for states, and ϕE : E → {0, 1} is a function of label for edges.

The root state is denoted as r and there exists exact two sink states denoted as t0, t1.

Let ϕ(t0) = 0 and ϕ(t1) = 1. t0 and t1 are called 0-sink and 1-sink, respectively. For

all states v ∈ V {t0, t1}, ψV (v) ∈ X. Each edge in G is given a label 0 or 1 by ϕE . A

edge (u, v) denotes a directed edge from a state labeled u to a state labeled v,and u is

called as initial vertex, v is called as terminal vertex. Figure 4.1 show an example of a

nondeterministic branching program. Each circle represents a state and a symbol in a

circle represents a label of the state. An arrowed line represents an directed edge and a

0/1 along the edge represents a label of the edge. For an input a = (a1, . . . , an) ∈ {0, 1}n,
a branching program B trace a computation path as sequence of states from a root state

to a sink state. If computation path reach a state labeled xi, it is extended to a next

state through an outgoing edge with label ai. As computation path can reach a sink t1, B

outputs 1, otherwise 0. Let f : {0, 1}n → {0, 1} be a boolean function. For any assignment

a ∈ {0, 1}n, if f(a) equals to outputs of B, we call B represents f . The size of B, denoted

by |B|, is defined as the number of edges in G. If any states except t0 and t1 in B has

one 0-edge and one 1-edge, B is a deterministic branching program. In this chapter, a

branching program is a deterministic one unless otherwise noted.

A permutation π = (π(1), π(2), . . . , π(n)) is an arbitrary order from 1 to n. For i ∈
{1, . . . , n}, let π−1(i) be j with π(j) = i. Introduced permutations, an ordered binary

decision diagrams (OBDD) and a k-indexed binary decision diagrams (k-IBDD) are defined

as below.

Definition 3 An OBDD is a branching program with a fixed π．It holds that π−1(i) <

π−1(j) if there exists an edge from a state labeled xi to a state labeled xj.

Definition 4 A k-IBDD is a branching program as follows. It can be separated to k layers

and i-th layer is a OBDD with a permutation πi. An arbitrary edge from i layer reaches

to j layer or a sink state where j < i. If all πi are the same permutation, it is called as a

k-OBDD.

40 4 Efficient Algorithms for k-IBDD Satisfiability

Figure 4.1 represents a nondeterministic OBDD with π = (1, 2, 3)．Figure 4.2 represents

a (deterministic) 2-IBDD with π1 = (1, 2, 3) and π2 = (2, 3, 1).

Figure 4.1: a nondeterministic OBDD

Figure 4.2: 2-IBDD

k-IBDD SAT is a problem which asks whether given a k-IBDD B with n variables and

m states, there exists an input a ∈ {0, 1}n such that B outputs 1 If k = 1, a 1-IBDD (equal

to an OBDD) can be solved in O(m) time by detecting reachability from a root state to

1-sink. It is known to be NP-complete when k ≥ 2 [4].

In our algorithm, permutations are sometimes modified. Some the key kinds of permu-

tations or sequences are need to note. Recall π = (π(1), π(2), . . . , π(n)). A reverse permu-

tation of π is defined as πR = (πR(1), πR(2), . . . , πR(n)) = (π(n), π(n − 1), . . . , π(1)). A

subsequence with length m of π is π′ = (π′(1), π′(2), . . . , π′(m)) = (π(i1), π(i2), . . . , π(im)),

where 1 ≤ i1 < i2 < · · · < im ≤ n. A longest increasing subsequence σinc is a subse-

quence with length m of π with maximum m such that it satisfies π′(i) < π′(j) for all

1 ≤ i < j ≤ m. A longest decreasing subsequence σdec is a subsequence with length m of

π with maximum m such that it satisfies π′(i) > π′(j) for all 1 ≤ i < j ≤ m.

About a longest increasing or decreasing subsequence, the following theorem of is well

known.

Theorem 5 (The Erdős-Szekeres theorem [17]) A sequence of real number with length

n contains a longest increasing subsequence with length m ≥
√
n or a longest decreasing

subsequence with length m ≥
√
n.

Proof. Use induction. Let f(n) be the minimum length of a sequence which contains

a increasing or decreasing subsequence with length n. For the base case, f(1) = 1. Next,

assuming that we get a increasing or decreasing subsequence with length n from a length

f(n), let us show

f(n+ 1) = f(n) + 2n− 1 (4.1)

4.2. Preliminaries 41

An equation 4.1 and the base case lead to f(n) = n2 + 1. So, it suffice to show an

equation 4.1 to prove this theorem.

Think about a sequence with length f(n) + 2n − 1. Let A1 be the set of numbers of

left most f(n) numbers and ni is the number on the (f(n) + i)th left. From assumption,

we can obtain a increasing or decreasing subsequence with length n from A1 Let S1 be

the set of numbers which is a member of this increasing or decreasing subsequence in

A1. After finding a subsequence, let r1 be a right most number in S1. Next, Let A2

be A1 ∪ {n1}\{r1}, and S2 be the set of numbers which is a member of this increasing or

decreasing subsequence in A2. Continue these procedures, we can get 2n subsequences form

a whole sequence. We think about 3 cases. (i) There exists n+1 increasing subsequences. If

there exist rj ≤ rk(j ≤ k), Sj ∪{rk} must be a increasing subsequence with length n+1. If

not, the set of all rj(Sj is increasing subsequence) should be a decreasing subsequence with

length n+1. (ii) There exists n+1 decreasing subsequence. there must be a decreasing or

increasing subsequence from similar arguments. (iii) There exists n increasing subsequences

and n decreasing subsequences. In this case, each ri in increasing subsequences represents

a decreasing subsequence, and each rj in decreasing subsequences represents a increasing

subsequence. Let the smallest one of ri be r
∗
i and the largest one of rj be r

∗
j If r∗i > r∗j , we

can take a n+1 decreasing or increasing subsequence. If not, without lose of generality, let

r∗i lies on right side of r∗j . then, r
∗
i can join to some decreasing subsequence as the n+1th

number. In the case of let r∗i lies on left side of r∗j should be discuss similarly. Then, in any

case, we can get n+1 increasing or decreasing subsequence from f(n)+2n− 1 sequence.□

Note that these subsequence can be found in O(n2) time.

A partial assignment for x = (x1, . . . , xn) is a = (a1, . . . , an) ∈ {0, 1, ∗}n. This means

that xi is assigned to 0 or 1 if ai is 0 or 1, respectively. For any partial assignment

a ∈ {0, 1, ∗}n, a support of a is defined as S(a) := {xi | αi ̸= ∗}. B|a is a partial branching

program B followed by a partial assignment a, and this is constructed as follows.

(1) Remove all edge labeled ai which is an outgoing edge from a state labeled with

xi ∈ S(a).

(2) For any state v with indegree is 0 except for a root state, remove a state labeled v

and all outgoing edges from it.

(3) For any state v labeled xi ∈ S(a) except for a root state, let U be {u | (u, v) ∈ E}.
Note that there exists an edge (v, w) labeled ai. For all u ∈ U , we add an edge (u,w)

labeled the same label of (u, v) and remove an edge (u, v). Remove an edge (v, w).

42 4 Efficient Algorithms for k-IBDD Satisfiability

(4) If a label of a root state r is in S(a), remove an edge (r, v), then make a state v a

new root state.

Figure 4.3 is a partial branching program of Figure 4.2 followed by a partial assignment

a = (1, ∗, ∗).

Figure 4.3: a partial branching program

4.3 Algorithms of Transformation for OBDDs

In this section, we introduce two key modules for Theorem 4. One constructs a new OBDD

representing conjunction of two OBDDs. The other constructs a new nondeterministic

OBDD with reversed permutation from an OBDD.

Lemma 8 Let B1 be a nondeterministic OBDD with π which represents a Boolean function

f1. Let B2 be a nondeterministic OBDD with π which represents a Boolean function f2.

Then there exists an algorithm that constructs an OBDD B with π which represents f1∧f2
from B1 and B2 and takes O(|B|) time,where |B| ≤ 2|B1| · |B2|.

Proof. We show that Algorithm 1 produce an OBDD satisfying this lemma. This

algorithm is extended from Brayant’s algorithm [6]. OBDD B constructed by this algorithm

simulates both OBDD B1 and B2 at the same time. Let r1 and r2 be root states of B1 and

B2, respectively. B starts a computation by moving a token from a state (r1, r2). If the

token is on a state (v1, v2) in B, it means that the token is on a state v1 in B1 and a state

v2 in B2. A computation for a ∈ {0, 1}n proceeds on B as follows. Let the label of v1 be xi

and the label of v2 be xj . u1 is defined as a state pointed from v1 along with an outgoing

edge labeled ai and u2 is defined as a state pointed from v2 along with an outgoing edge

labeled aj .

4.3. Algorithms of Transformation for OBDDs 43

In lines 14–23, the token on B moves from (v1, v2) to (u1, u2) if v1 and v2 have the same

label xi. This means that the token on B1 and the token on B2 move from v1 to u1 and

from v2 to u2, respectively.

In lines 24–36, the token on B moves from (v1, v2) to (u1, v2) if v1 and v2 have a different

label and π−1(i) < π−1(j). This means that the token on B1 moves form v1 to u1 and the

token on B2 remains on the current state. In these reason, B follows from a permutation

π. In lines 4–5, the token of B reaches 0-sink if one token of OBDD B1 or B2 reaches

0-sink. In lines 6–7, the token of B reaches 1-sink if both tokens of OBDD B1 and B2

reach 1-sink. Thus, this OBDD constructed by this algorithm represents f1 ∧ f2.
B has at most |B1| · |B2| edges which represents transitions on B1. B has at most

|B1| · |B2| edges which represents transitions on B2. Thus, the total number of edges in

B is at most 2|B1| · |B2|. And, this algorithm needs constant steps per one edge. So, this

algorithm takes O(|B|) times and |B| ≤ 2|B1| · |B2| □

Lemma 9 Let B be an OBDD with π．Then there exist an algorithm that construct a

nondeterministic OBDD BR with πR in O(|B|) time. The size of BR, denoted by |BR|, is
O(|B|).

Proof. We show that Algorithm 2 produces BR satisfies this lemma. In lines 1–5, all

edges into 0-sink are removed. In lines 4–13, this algorithm adds new states to all states

having the same label parents. For each state v and if a set of states U = {u | (u, v) ∈ E}
includes at least two different labels, let xℓ be a state labeled xi in U such as π−1(i) is

maximum. For any state u ∈ U with r(u) ̸= xℓ,

(1) Add a new state w labeled xℓ to B.

(2) Add a new edge (u,w) labeled the same label of edge (u, v) to B.

(3) Add two new edges (w, v) labeled 0 and (w, v) labeled 1.

(4) Remove an edge (u, v)．

By these operation, we can construct an modified OBDD which represents the same func-

tion of the original OBDD B. In addition, for each states in modified OBDD, its parents

have the same label. Because each new states have only one in-degree, this modification is

not applied to them. Thus, the number of iteration is at most |E| and the size of modified

OBDD becomes at most three times as that of B. Figure 4.4 is an example of this operation

applied to Figure 4.1.

In lines 14–26，this algorithm construct BR from above modified OBDD as follows．

44 4 Efficient Algorithms for k-IBDD Satisfiability

(1) A label of any state is replaced from a label of an initial state of a direct edge into

it．A label of a root state is rewrite as 1.

(2) Reverse the direction of each edge.

(3) For any state v, if there exists no edge (v, w) labeled b ∈ {0, 1}, where w ∈ V , add a

new edge (v, t0) labeled b.

Each computation path on BR corresponds to the reverse computation path of B. This

module takes only O(|B|) steps. Note that BR can be nondeterministic OBDD if there

exist at least 2 edges whose labels are the same and whose terminal vertices are the same.

Figure 4.5 is a nondeterministic OBDD produced by this algorithm applied to Figure 4.1. In

this way, algorithm can construct a nondeterministic OBDD BR with πR which represents

the same function of B. The size of BR, denoted by |BR|, is O(|B|). □

Figure 4.4: preprocessing Figure 4.5: BR

4.4 Main Algorithm

It is known that k-OBDD SAT with n variables can be solvable in poly(n) time [4]. It

means that k-IBDD SAT with π1 = π2 = · · · = πk can be solvable in polynomial time.

Therefore, the main idea of our algorithm is to find a common permutation in each πi and

check all the assignment to variables not included that common permutation. At first, we

show that a special k-IBDD SAT including k-OBDD SAT can be solvable in polynomial

time. Algorithm 3 shows this algorithm.

Lemma 10 Let k be a positive constant. Permutations π1, π2, . . . , πk satisfies that πi = π1

of πi = πR1 for all i (2 ≤ i ≤ k). There exists a poly(n) time algorithm for k-IBDD SAT

with n variables and m = O(nc) (c is an arbitrary positive constant) states.

4.4. Main Algorithm 45

Proof. We extend Theorem 2 in [4] to nondeterministic k-OBDDs. Let B be an arbitrary

nondeterministic k-OBDD and it satisfies the condition of this lemma. For i-th layer

(1 ≤ i ≤ k), let Bi be a nondeterministic OBDD and Vi be a set of states for i-th layer

In lines 1–12, our algorithm transforms B to a new B such that for each edge (u, v),

there exists i such as u, v ∈ Vi, or u ∈ Vi and v ∈ Vi+1.

Algorithm do the following operations if (u, v) ∈ E and j− i > 1 for u ∈ Vi and v ∈ Vj .

(1) Add a state wℓ labeled xπℓ(1) to Bℓ for all ℓ (i < ℓ < j).

(2) Add an edge (u,wi+1) labeled the same label of (u, v) between Bi and Bi+1．

(3) Add two edges (wℓ, wℓ+1) labeled 0 and (wℓ, wℓ+1) labeled 1 for all ℓ between Bℓ and

Bℓ+1(i < ℓ < j − 1).

(4) Add two edges (wj−1, v) labeled 0 and (wj−1, v) labeled 1 between Bj−1 and Bj

(5) Remove a edge (u, v)．

Note that this procedure does not change added states and edges. Thus, the above opera-

tion is iterated E times and the size of new B is at most 2k times as that of B.

Each computation path which satisfies B reaches to 1-sink through r2 ∈ V2, r3 ∈ V3,

. . ., rk ∈ Vk. The number of such paths is at most (2k|B|)k−1. Algorithm check whether

each path can reach to 1-sink. It chooses k − 1 states r2, . . . , rk (ri ∈ Vi) and constructs

k OBDDs B′
1, B

′
2, . . . , B

′
k from B1, B2, . . . , Bk, respectively. Note that each OBDD B′

i has

a permutation πi. For simplicity, let r1 be the root state of B and rk+1 be 1-sink. It

constructs each OBDD B′
i with a source state ri from Bi for each i (1 ≤ i ≤ k) as follows.

At first, let V ′
i be a set of states such as ti,0，ti,1 and a states (∈ Vi) which is reachable from

ri. A set of edges of B′
i contains any edge e′ labeled ϕE(u, v) with the following property

for all edge e ∈ {(u, v) | (u, v) ∈ E ∧ u ∈ V ′
i }.

• e′ := (u, v) if v ∈ V ′
i．

• e′ := (u, ti,1) if v = ri+1．

• e′ := (u, ti,0) if v ̸= ri+1．

From this sight, if and only if k-IBDD B has an input whose computation path reach

1-sink, each B′
i shows computation path reaching ti,1 with the same input. By Lemma 9，

we can construct a nondeterministic OBDD B′R
i with πRi = π1 which is equivalent to a

deterministic OBDD B′
i with πi = πR1 . We rename this B′R

i by B′
i. Thus, it is sufficient to

46 4 Efficient Algorithms for k-IBDD Satisfiability

check if there exists a satisfiable assignment such that it satisfies all k nondeterministic OB-

DDs B′
1, B

′
2, . . . , B

′
k with the same permutation π1. Applying Lemma 8 to B′

1, B
′
2, . . . , B

′
k

continuously，we can get the OBDD B∗ which outputs 1 if and only if each B′
i has the

same input whose computation path goes to ti,1. Because |Bi| ≤ |B|, This construction

ends in O(|B|k) time and the size of |B∗| is O(|B|k). We can check the satisfiability of

OBDD B∗ in O(|B∗|) = O(|B|k) times by solving reachability. Thus, a satisfiability of B

can be solvable in O(|B|2k−1) time. □

Before proving Theorem4，we show that 2-IBDD SAT can be solvable in time polyno-

mially faster than 2n. Algorithm 4 shows a deterministic polynomial space algorithm for

2-IBDD SAT.

Theorem 6 For any instance of k-IBDD SAT with n variables and m = O(nc) states (c

is an arbitrary positive constant), there exists an deterministic polynomial-space algorithm

which solves it in poly(n) · 2n−
√
n time, where poly(n) represents a polynomial of n.

Proof. Let B be a given 2-IBDD with π1, π2. Without loss of generality, π1 = (1, 2, . . . , n).

We describe the detail of our algorithm. It computes a longest increasing sequence σinc and

decreasing sequenceσdec of π2 and let σ be the longest of the two. |σ| denotes the length of

σ. Let Y := {σ(i) | 1 ≤ i ≤ |σ|}. Then this algorithm check the satisfiability for all partial

assignment on X\Y . For each partial assignment a, we check if B|a is satisfiable or not.

Note that B is satisfiable if there exists a such that B|a is satisfiable. B is unsatisfiable if

there exists no a such that B|a is satisfiable. Now B|a is a 2-OBDD withσ, σ if σ = σinc,

and B|a is a 2-OBDD withσR, σ. By Lemma 10 and [4], for any case, the satisfiability of

B|a can be solvable in polynomial time. By Theorem 5, |Y | ≥
√
n, then |X\Y | ≤ n−

√
n.

Thus, the overall running time of our algorithm is at most poly(n) · 2n−
√
n. □

Finally, we show a deterministic polynomial space algorithm for k-IBDD SAT in Algo-

rithm 5.

Theorem 4 (Restate) For any instance of k-IBDD SAT with n variables and m = O(nc)

states (c is an arbitrary positive constant), there exists an deterministic polynomial-space

algorithm which solves it in poly(n) · 2n−nα
time, where α = 1

2k−1 and poly(n) represents a

polynomial of n.

Proof. Let B be a given k-IBDD with π1, π2, . . . , πk. Without loss of generality, π1 =

(1, 2, . . . , n). We describe the detail of our algorithm. At first, our algorithm computes a

longest increasing and decreasing sequence of π2 and let σ2 be the longest of the two. |σ2|

4.4. Main Algorithm 47

denotes the length of σ2. By Theorem 5, |σ2| ≥
√
n．In line 3, we obtain a subsequence

π′3 from π3 such that any element in π′3 is in σ2. Next, our algorithm computes a longest

increasing and decreasing sequence of π′3 and let σ3 be the longest of the two. |σ3| denotes
the length of σ3. Note that σ3 is a increasing or decreasing sequence which consist of the

elements in σ2. As σ2 itself is a increasing or decreasing sequence, σ3 is a subsequence of

σ2 or σR2 . Thus, π1, π2, π3 has a subsequence σ3 or σR3 . By |π′3| = |σ2| and Theorem 5,

|σ3| ≥ n1/4. Similarly, for 2 ≤ i ≤ k, let π′i be a subsequence of πi such that any element

in π′i is in σi−1. Our algorithm computes a longest increasing and decreasing sequence of

π′i and let σi be the longest of the two. |σi| denotes the length of σi. π1, π2, . . . , πi have a

subsequence σi or σ
R
i , and inductively |σi| ≥ n1/2

i−1
by Theorem 5. Note that each σi can

be computed in poly(—σi) time. Let Y := {σk(i) | 1 ≤ i ≤ |σk|}. Similarly to the proof

of Theorem 6, our algorithm check the satisfiability for all partial assignment on X\Y .

For each partial assignment a, we check if B|a is satisfiable or not. As π1, π2, . . . , πk has

a subsequence σk or σRk , for each partial assignment a, each layer of k-IBDD B|a is an

OBDD with σk or σRk . By Lemma 10, we can check the satisfiability of B|a in polynomial

time. As setting α = 1
2k−1 , |X\Y | = n− |σk| ≤ n− nα. Thus, the overall running time of

our algorithm is at most poly(n) · 2n−nα
. □

4.4.1 Chapter Summary

In this chapter, we propose the algorithm for k-IBDD SAT and this algorithm runs in

poly(n) · 2n−nα
time, where α = 1

2k−1 and poly(n) represents a polynomial of n. This algo-

rithm finds the longest common sequence among every layers and assign to variables except

variables in the common sequence. After the partial assignment, this algorithm conjoins

every layers and makes one OBDD. Because OBDD SAT is solved in polynomial time, we

can solve k-IBDD SAT faster. For more improving, we should find longer subsequence

dividing each layer into smaller layers. This idea would give us more faster algorithms and

these are our future works.

48 4 Efficient Algorithms for k-IBDD Satisfiability

Algorithm 1 Conjunction(B1, B2)

Require: OBDD B1 = (G1(V1, E1), ϕV1 , ϕE1) with π which represents f1, OBDD B2 =
(G2(V2, E2), ϕV2 , ϕE2) with π which represents f2

Ensure: OBDD B = (G(V,E), ϕV , ϕE) with π which represents f1 ∧ f2
1: V := V1 × V2
2: E := ∅
3: for all v := (v1, v2) ∈ V do
4: if ϕV1(v1) = 0 or ϕV2(v2) = 0 then
5: ϕV (v) = 0
6: else if ϕV1(v1) = 1 and ϕV2(v2) = 1 then
7: ϕV (v) = 1
8: else
9: ϕV (v) = xℓ, where π

−1(ℓ) = min{π−1(i), π−1(j)} and ϕV1(v1) = xi, ϕV2(v2) = xj
10: for all v := (v1, v2) ∈ V do
11: E′

i := {(vi, ui) | (vi, ui) ∈ Ei}, i ∈ {1, 2}
12: if ϕV1(v1) = ϕV2(v2) then
13: for all e1 = (v1, u1) ∈ E′

1 do
14: for all e2 = (v2, u2) ∈ E′

2 do
15: if ϕE1(e1) = ϕE2(e2) then
16: e := ((v1, v2), (u1, u2))
17: E := E ∪ {e}
18: ϕE(e) = ϕE1(e1)
19: else if ϕV (v) = ϕV2(v2) then
20: for all e = (v2, u2) ∈ E′

2 do
21: e := ((v1, v2), (v1, u2))
22: E := E ∪ {e}
23: ϕE(e) = ϕE2(e2)
24: else
25: for all e = (v1, u1) ∈ E′

1 do
26: e := ((v1, v2), (u1, v2))
27: E := E ∪ {e}
28: ϕE(e) = ϕE1(e1)
29: return B = (G(V,E), ϕV , ϕE)

4.4. Main Algorithm 49

Algorithm 2 Reverse(B)

Require: An OBDD B = (G(V,E), ϕV , ϕE) with π.
Ensure: A nondeterministic OBDD BR = (GR(V R, ER), ϕV R , ϕER) with πR and repre-

sents the same function of B
{preprocedure}

1: for all e = (u, v) ∈ E do
2: if ϕV (v) = 0 then
3: E := E\{e}
4: for all v ∈ V do
5: L(∗,v) := {i | xi = ϕV (u) and (u, v) ∈ E}
6: if |L(∗,v)| > 1 then
7: Choose ℓ ∈ L(∗,v) such that π−1(ℓ) ≥ π−1(i) for all i ∈ L(∗,v).
8: for all e = (u, v) ∈ E do
9: if ϕ(u) ̸= xℓ then

10: V := V ∪ {w} and ϕV (w) = xℓ
11: E := E ∪ {e1 := (w, v), e2 := (w, v), e′ := (u,w)}
12: ϕE(e1) := 0, ϕE(e2) := 1, ϕE(e

′) := ϕE(e)
13: E := E\{e}

{A construction of GR(V R, ER)}
14: V R := V , ER := E
15: for all e = (u, v) ∈ E do
16: ϕV R(v) := ϕV (u)
17: ϕV R(r) := 1，where r is a root state of G
18: for all e = (u, v) ∈ E do
19: eR := (v, u)
20: ϕER(eR) = ϕE(e)
21: ER = ER ∪ {eR}\{e}
22: for all v ∈ V R do
23: if there exists no edge (v, w) labeled b ∈ {0, 1} then
24: eR := (v, t0)
25: ER = ER ∪ {eR}
26: ϕER(eR) = b
27: return B = (GR(V R, ER), ϕV R , ϕER)

50 4 Efficient Algorithms for k-IBDD Satisfiability

Algorithm 3 (π, πR)-k IBDD SAT(B)

Require: k-OBDD B = (G,ϕV , ϕE) with π1, . . . , πk, where πi = π1 or πi = πR1 (2 ≤ i ≤ k)
Ensure: outputs “Yes” if B is satisfiable, “No” otherwise．
1: for all e = (u, v) ∈ E do
2: if j − i > 1，where u ∈ Vi, v ∈ Vj then
3: for ℓ = i+ 1, . . . , j − 1 do
4: Vℓ := Vℓ ∪ {wi} and ϕV (wi) := xπℓ(1)

5: E := E ∪ {e′ := (u,wi+1)}
6: ϕE(wi) := xπℓ(1)

7: for ℓ = i+ 1, . . . , j − 2 do
8: E := E ∪ {e′0 := (wℓ, wℓ+1), e

′
1 := (wℓ, wℓ+1)}

9: ϕE(e
′
0) := 0, ϕE(e

′
0) := 1

10: E := E ∪ {e′0 := (wj−1, v), e
′
1 := (wj−1, v)}

11: ϕE(e
′
0) := 0, ϕE(e

′
0) := 1

12: E := E\{e}
13: for all (r2, . . . , rk) ∈ V2 × · · · × Vk do
14: for i = 1, . . . , k do
15: V ′

i := {v | v ∈ Viandvis reachable fromri} ∪ {ti0, ti1}
16: ϕV ′

i
(ti0) := 0, ϕV ′

i
(ti1) := 1

17: E′
i := ∅

18: for all e = (u, v) ∈ E，where u ∈ V ′
i do

19: if v ∈ V ′
i then

20: E′
i := E′

i ∪ {e′ := (u, v)}
21: else if v = ri+1 then
22: E′

i := E′
i ∪ {e′ := (u, ti1)}

23: else
24: E′

i := E′
i ∪ {e′ := (u, ti0)}

25: ϕE′
i
(e′) := ϕE(e)

26: B′
i := (G′

i(V
′
i , E

′
i), ϕV ′

i
, ϕE′

i
)

27: for i = 2, . . . , k do
28: if πi = πR1 then
29: B′

i :=Reverse(B′
i)

30: B′
1 :=Conjunction(B′

1, B
′
i)

31: if B′
1 has a path from a root state to 1-sink then

32: return “Yes”
33: return “No”

4.4. Main Algorithm 51

Algorithm 4 2-IBDD SAT

Require: 2-IBDD B = (G,ϕV , ϕE) with π1, π2, where π1 = (1, . . . , n).
Ensure: outputs “Yes” if B is satisfiable, “No” otherwise.
1: Compute a longest increasing sequence σinc and a longest decreasing sequence σdec of
π2.

2: if |σinc| ≥ |σdec| then
3: σ = σinc
4: else
5: σ = σdec
6: Y := {σ(i) | 1 ≤ i ≤ |σ|}
7: for all a ∈ {0, 1, ∗}n, where S(a) = X\Y do
8: if (σ, σR)-k-IBDD SAT(B|a) = “Yes” then
9: return “Yes”

10: return “No”

Algorithm 5 k-IBDD SAT

Require: k-IBDD B = (G,ϕV , ϕE) with π1, . . . , πk, where π1 = (1, . . . , n)
Ensure: outputs “Yes” if B is satisfiable, “No” otherwise.
1: σ1 := π1
2: for i = 2, . . . , k do
3: π′i := (πi(j1), πi(j2), . . . , πi(j|σi−1|)), where j1 < j2 < · · · < j|σi−1| and ∀p, ∃q, π′i(p) =

σi−1(q)
4: Compute a longest increasing sequence σinc and a longest decreasing sequence σdec

of π′i.
5: if |σinc| ≥ |σdec| then
6: σi := σinc
7: else
8: σi := σdec
9: Y := {σk(i) | 1 ≤ i ≤ |σk|}

10: for all a ∈ {0, 1, ∗}n, where S(a) = X\Y do
11: if (σk, σ

R
k)-k-IBDD SAT(B|a) = “Yes” then

12: return “Yes”
13: return “No”

Chapter 5

Efficient Algorithms for Sorting

k-Sets in Bins

5.1 Introduction

The Sorting problem is a classical fundamental problem in theoretical computer science.

Various kinds of sorting problems have been studied [15, 16, 18]. One of the most basic

sorting problems is the Swap-Sort problem : Given an list with n integer numbers in non-

increasing order, if we are only allowed to swap two adjacent rows, how many swaps do

we need to sort them in non-decreasing order? It is well-known fact that
(
n
2

)
swaps are

necessary and sufficient. In this chapter, we consider a natural extension of this problem.

Peter Winkler [50] introduced “Sorting Pairs in Bins” and Ito, Teruyama and Yoshida [26]

extended it to more general problem “Sorting k-Sets in Bins”.

Sorting k-Sets in Bins: We are given n numbered bins each with k numbered balls, such

that bin i is adjacent to bins i− 1 and i+ 1, bin n is not adjacent to bin 1, and the balls

in bin i are each numbered n+ 1− i. We may swap any two balls between adjacent bins.

How many swaps are necessary to get every ball into the bin carrying its number?

For k = 2, Winkler [50] showed a lower bound ⌈
(
2n
2

)
/3⌉ = ⌈n(2n−1)

3 ⌉ and asked whether

this lower bound is optimal or not. It is easy to see n2 swaps is sufficient by using bubble sort

twice. West [48] proposed an algorithm with 4
5n

2 swaps. Ito, Teruyama and Yoshida [26]

gave an affirmative answer to Winkler’s question by designing an almost optimal algorithm

with 2
3n

2 − O(n) swaps, and Püttman [39] independently showed a similar result. Ito,

Teruyama and Yoshida also stated (without proof) a lower bound for any k and proposed

53

54 5 Efficient Algorithms for Sorting k-Sets in Bins

the question of whether there exists an algorithm satisfying the lower bound when k ≥ 3.

When k = 3, by using bubble sort three times, we can easily get an algorithm with at most
3
2n

2 swaps. Moreover, by combining bubble sort with the algorithm in [26], the number

of swaps decreases to 7
6n

2. However, the lower bound is 9
10n

2. There still remains a large

gap between the upper bound and the lower bound even when k = 3. Therefore, a natural

problem is to design a more efficient algorithm for k = 3. In this paper, we give two

efficient algorithms, one greedy, one recursive, for this problem when k = 3 and show that

our greedy algorithm is applicable to the problem for any k and its performance approaches

to the lower bound as k and n increase.

Our Contribution

We show two algorithms for Sorting 3-Sets in Bins, one of which can be applied to Sorting

k-Sets in Bins. We call the algorithms Greedy(n, k) and Recursive(n). For the Sorting 3-

Sets in Bins problem, the number of swaps is n2+O(n) for Greedy(n, 3) and 15
16n

2+O(n)(=

0.9375n2+O(n)) forRecursive(n). These values are close to the 9
10n

2(= 0.9n2) lower bound

shown in [26]. For Sorting k-Sets in Bins problem, Greedy(n, k) achieves k+1
4 n2 + O(kn)

swaps. This result asymptotically approaches to the lower bound (1− k−1
2k2+k−1

)k+1
4 n2+O(n)

as k and n increase. Formally, we prove the following two theorems.

Theorem 7 There exists a greedy algorithm Greedy(n, k) which solves Sorting k-Sets in

Bins with k+1
4 n2 +O(kn) swaps.

Theorem 8 There exists a recursive algorithm Recursive(n) which solves Sorting 3-Sets

in Bins with 15
16n

2 +O(n) swaps.

5.1.1 Related Work

There are very few results to our problem. However, many other kinds of sorting problems

have been well studied. For example, Partial Quicksort is the problem that given a list

with integer, how many comparison do we need to sort the first l-th smallest elements

in the list? It was introduced by [24] and shown a tight upper bound in [33]. Another

example is the sorting problem for partially ordered sets, in which some pairs of elements

are incomparable. Faigle and Tuŕan introduced this problem [19] and very recently [14]

made substantial advances. For other sorting problems, e.g. [5, 11, 15, 16, 18, 21, 22].

Paper Organization In subsection 5.2, we give a proof of the lower bound of Sorting k-

Sets in Bins and some notation needed for the description of our algorithms. In subsection

5.3, we present the algorithm Greedy(n, k) and provide an analysis of its performance.

5.2. Preliminaries 55

In subsection 5.4, we present a more efficient algorithm Recursive(n) and analyze its

performance.

5.2 Preliminaries

Lower Bounds

In this section, we give a precise proof of the lower bound for any k [26]. Our proof is

based on the point system used by Winkler [50]. An algorithm starts with 0 points. With

each swap, it gets some number of points corresponding to the change in the states of the

bins. We can easily calculate the total points t needed to complete the sorting and the

maximum points m obtained by any one swap in the algorithm. Thus, we get the lower

bound t/m. We prove the following theorem:

Theorem 9 To solve Sorting k-Sets in Bins, we need at least
⌈(

kn
2

)
/(2k − 1)

⌉
swaps if n

is even, and
⌈((

kn
2

)
−
(
k−1
2

))
/(2k − 1)

⌉
swaps if n is odd.

Proof. We first construct our point system. Given two balls numbered x and y, x ̸=
y, (without loss of generality x > y), we will refer to these balls as “ball x”, “ball y”

respectively.

Passing (1 point) : Ball x passes ball y from left to right. In other words, we swap

balls x and y.

Catching up (1/2 point) : Before the swap, ball x and y are in different bins. After

the swap, they are in the same bin. (See Fig. 5.1.)

Moving on (1/2 point) : Let u > v. Before the swap, balls x and y are in the same

bin. After swap, ball x is in the u-th bin and ball y is in the v-th bin. (See Fig. 5.2.)

x
y

x

u v
y

x
y

u v

Figure 5.1: Catching up

y y
x

u v
y

x x

u v

Figure 5.2: Moving on

It is easy to see that for any x and y, a set of “catching up” and “moving on” operations

is the same as a “passing” operation.

56 5 Efficient Algorithms for Sorting k-Sets in Bins

Next, we consider the case where x = y. Because we refer to two different balls, we will

continue to refer to “ball x” and “ball y”.

Separate (1/2 point) : Before the swap, balls x and y are in the same bin. After the

swap, they are in different bins.

Recombine (1/2 point) : Before the swap, balls x and y are in different bins. After

the swap, they are in the same bin.

Now, we calculate the total points needed to complete sorting. We first assume the

initial state is in reverse order. If balls x and y have different numbers and x > y, clearly

ball x must pass ball y. Thus, for any pair of different numbered balls, either a passing

operation or a set of moving on and catching up operations must occur at least once. If

balls x and y have the same number, then balls x and y must separate at some swap and

recombine at some other swap. In each case, a 1 point charge is incurred. Thus, to complete

sorting, we need at least
(
kn
2

)
points. Note that if n is odd, k − 1 balls labeled ⌈n/2⌉ may

not move, so the point total is
(
k−1
2

)
less than the case when n is even. Therefore, we

charge at least
(
kn
2

)
points if n is even, and

(
kn
2

)
−
(
k−1
2

)
points if n is odd.

Let us consider how many points can be obtained in one swap. Suppose that ball x is

in the v-th bin and ball y is in the u-th bin, where u > v. The maximum amount of points

that we can get by swapping x and y is 1 (by passing). Therefore, it suffices to consider

the case of x > y. In this case, we focus on the other balls in the v-th bin and u-th bin.

Let ball zi, i ∈ {1, . . . k− 1}, be a non-y ball in the u-th bin. If each ball zi satisfies zi ≤ x,

for each zi we can get 1
2 point by catching up or recombine. In addition, we consider

the relation between ball y and ball z, for each zi satisfying y ≤ z we obtain 1
2 point by

applying moving on or separate operations between ball y and ball zi. The algorithm gets

at most 2 · 1
2(k − 1) points by these arguments. By a similar argument on the balls in the

v-th bin, it is possible to get at most 2 · 1
2(k − 1) points. Thus, the maximum total point

we can get is 1 + 4 · 1
2(k − 1) = 2k − 1. Let T (n) be the number of swaps necessary to

complete sorting. T (n) ≥ ⌈
(
kn
2

)
/(2k − 1)⌉ if n is even, T (n) ≥ ⌈(

(
kn
2

)
−
(
k−1
2

)
)/(2k − 1)⌉ if

n is odd. □

Notations and Definitions

In this section, we provide some notations and definitions used to explain our algorithms.

To be distinguishable and comparable, we assign all same-numbered balls an index from

1 to k. Let xi be the ball labeled x and indexed i. We define the total order of balls as

xi < yj if x < y or if x = y and i < j. We represent the state of balls and bins as in Fig 5.3.

5.3. Greedy Algorithms 57

The numbers in the bottom row are the labels of bins and the other numbers correspond

to balls.

The initial state of the n bins is the state where the i-th bin has k balls labeled n+1−i.
(See Fig. 5.3.) The target state of the n bins is the state where the i-th bin has k balls

labeled i. (See Fig. 5.4.) The solution for n bins begins with an initial state and ends with

a target state for n bins.

If we move a ball xi to the u-th bin, we swap xi for the lowest-labeled ball in the bin

to xi’s right until xi arrives at the u-th bin. We know the following fact directly from the

properties of “move”.

n1 n− 11 21 11
n2 n− 12 · · · 22 12
n3 n− 13 23 13
1 2 · · · n− 1 n

Figure 5.3: Initial state of n bin as k = 3

11 21 n− 11 n1
12 22 · · · n− 12 n2
13 23 n− 13 n3
1 2 · · · n− 1 n

Figure 5.4: Target state of n bin as k = 3

Fact 1 Suppose that the ball xi is in the u-th bin and the ball yj is in the v-th bin with

v < u. If the ball xi shifts to the (u−1)-th bin by moving the ball yj to the w-th bin (where

w ≥ u), then the ball xi must have the minimum label in the u-th bin.

5.3 Greedy Algorithms

5.3.1 Algorithm Description

Fig. 5.5 introduces a greedy algorithm Greedy(n, k) which solves Sorting k-Sets in Bins

with n bins for any n, k.

Greedy(n, k), n, k: integer
1: for x = n to 2
2: for i = k to 1
3: Move the ball xi to the x-th bin
4: end for
5: end for

Figure 5.5: Greedy Algorithm

Lemma 11 The algorithm Greedy(n, k) solves Sorting k-Sets in Bins with n bins.

Proof. Let us consider a ball ni (i ∈ [k]). At first, we see that the n-th bin contains all

balls labeled ni at the end of the loop on line 1 in this algorithm when x = n. All balls

58 5 Efficient Algorithms for Sorting k-Sets in Bins

labeled ni go to the n-th bin on lines 2–4. If a ball nj (j ∈ [k]) leaves from the the n-th

bin, it must be the minimum number in the n-th bin by Fact 1. This situation occurs only

when the n-th bin has k balls labeled ni and j is 1. This means the loop on line 1 with

x = n is over. Thus, the n-th bin must contain all balls ni and the other balls are in the

other bins at the end of the loop on line 1 with x = n. Next, let us consider the loop on

line 1 with x = n− 1. By substituting n with n− 1 and using the fact that this algorithm

does not swap the balls in the (n− 1)-th bin with the n-th bin, we get a similar result. By

repeating this argument, we conclude that Greedy(n, k) correctly solves Sorting k-Sets in

Bins with n bins. □

5.3.2 Analysis of the Number of Swaps

In this section, we estimate the number of swaps used by Greedy(n, k) to solve Sorting

k-Sets in Bins with n bins.

Lemma 12 The number of swaps performed by the algorithm Greedy(n, k) is at most
k+1
4 n2 +O(kn).

Proof. To prove Lemma 12, we prove the following lemma.

Lemma 13 For any x and any i, where 1 ≤ x ≤ n and 2 ≤ i ≤ k, if a ball xi shifts left

from its initial (n − x + 1)-th bin, then xi has the minimum label of all balls in any bin

from (n− x+ 1) to n.

Proof. Let us consider the case where a ball xi shifts left from its initial (n− x+ 1)-th

bin. From Fact 1, the ball xi is the minimum-labeled ball in the (n−x+1)-th bin. Because

i ≥ 2, the (n − x + 1)-th bin must have a ball yj , where y > x and j ∈ [k]. Initially, that

ball yj started in the (n−y+1)-th bin, which is further left than the (n−x+1)-th bin. In

each iteration of the loop on line 1, no balls shift right except when they go to their target

bin. So, if the above situation happen, y must be (n − x + 1) and loop iterations from n

to y + 1 on line 1 are over. By the proof of Lemma 11, for all u > n− x+ 1, the u-th bin

contains all balls ul (l ∈ [k]). Thus, the proof is completed. □

First, we count the total number of swaps needed for a ball labeled in [⌊n/2⌋+ 1, n] to

go to its target bin.

From Lemma 13, for ⌊n/2⌋+1 ≤ x ≤ n and 2 ≤ i ≤ k, a ball xi does not shift left until

it moves to the x-th bin. This means that these xi balls are in the (n− x+1)-th bin. The

5.3. Greedy Algorithms 59

number of swaps needed for a ball xi to move to the x-th bin is 2x − n − 1. In addition,

the number of swaps needed for a ball x1 moves to x-th bin is trivially at most x− 1.

Thus, the total number of swaps needed for all balls xi (x ∈ {⌊n/2⌋+1, . . . , n}, i ∈ [k])

to move to their target bins is at most

n∑
x=⌊n/2⌋+1

{x− 1 + (k − 1)× (2x− n− 1)} =
2k + 1

8
n2 +O(kn). (5.1)

Next, we count the total number of swaps required to move the remaining balls to their

target bins. To analyse this, we need some lemmas. From Fact 1 and Lemma 13, we have

Lemma 14 as follows.

Lemma 14 For x, 1 ≤ x ≤ ⌊n/2⌋ and i ∈ {2, . . . , k}, suppose that a ball xi has shifted

left at least once and is currently in the l-th bin, where l < n − x + 1. Then, all balls in

the u-th bin have greater labels than xi for all u > l.

Lemma 15 For x, 1 ≤ x ≤ ⌊n/2⌋ and i ∈ {2, . . . , k}, a ball xi does not shift left from the

x-th bin.

Proof. Assume that a ball xi shifts left from the x-th bin. From Fact 1, this ball xi

must have the minimum label in the x-th bin. Moreover, from Lemma 14, all balls in the

u-th bin are greater than xi for all u > x. This means that the number of balls which

are greater than xi is at least (n− x+ 1)k − 1. However, the number of balls which have

greater labels than xi is (n − x)k + k − i = (n − x + 1)k − i. It leads to a contradiction,

because i ≥ 2. □

Now we have all the tools required to count the total swaps to move the remaining

balls to their target bins. From the proofs of Lemmas 11 and 15, for y ≤ ⌊n/2⌋, k− 1 balls

yi (i ∈ {2, . . . , k}) are in the y-th bin after the iteration of loop on line 1 with x = y. Thus

we only need to move the ball y1 to complete the loop iteration on line 1 with x = y. That

is, the number of swaps we need to move ball y1 is trivially at most y − 1. Therefore, in

total, the number of swaps required for the loop on line 1 with y = ⌊n/2⌋ to 2 is at most

⌊n/2⌋∑
y=2

(y − 1) =
1

8
n2 +O(n). (5.2)

From equations 5.1 and 5.2, in total, the number of swaps Greedy(n, k) needs is at

most
2k + 1

8
n2 +O(kn) +

1

8
n2 +O(n) =

k + 1

4
n2 +O(kn). (5.3)

60 5 Efficient Algorithms for Sorting k-Sets in Bins

Thus the Lemma 12 is proved. □

Proof of Theorem 7. Directly follows from Lemmas 11, 12. □

5.4 Recursive Algorithms

5.4.1 Basic Ideas

In this section, we present a recursive algorithm which is more efficient for the case k = 3.

Before describing the details of our recursive algorithm, we outline it using the case where

n is a multiple of 6 as an example.

First, we move the ball n3 from the 1st bin to the n-th bin by using n− 1 swaps. Next,

we move the ball n2 from the 1st bin to the n-th bin by using n− 1 swaps, and the state

becomes as in Fig. 5.6. Then, we move the ball n− 13 from the 2nd bin to the (n− 1)-th

bin using n − 3 swaps, and move the ball n − 12 from the 2nd bin to the (n − 1)-th bin

using n − 3 swaps. Now, the state is as in Fig. 5.7. For x = n to n/2 + 1, we similarly

move the ball labeled x3 to the x-th bin, and then move the ball labeled x2 to the x-th

bin. Now, the resulting state is as in Fig. 5.8.

n− 21 n− 31 n− 41 11 12 13
n− 11 n− 12 n− 22 · · · 32 22 n2
n1 n− 13 n− 23 33 23 n3
1 2 3 · · · n− 2 n− 1 n

Figure 5.6: After moving balls n3 and n2 to the n-th bin

n− 21 n− 51 n− 61 22 23 13
n− 11 n− 41 n− 22 · · · 32 n− 12 n2
n1 n− 31 n− 23 33 n− 13 n3
1 2 3 · · · n− 2 n− 1 n

Figure 5.7: After moving balls n− 13 and n− 12 to the (n− 1)-th bin

Here, for the first n/3 bins (i.e. from the 1st bin to the (n/3)-th bin), we relabel the

ball x1 to ⌈x/3⌉ where x ∈ [n]. Using this state as the initial state of the n/3 bins problem,

5.4. Recursive Algorithms 61

n− 21 11 12 42 n/2− 22 n/23 23 13
n− 11 · · · 21 22 52 · · · n/2− 12 n/2 + 12 · · · n− 12 n2
n1 31 33 62 n/22 n/2 + 13 n− 13 n3
1 · · · n/3 n/3 + 1 n/3 + 2 · · · n/2 n/2 + 1 · · · n− 1 n

Figure 5.8: After moving all balls x3 and x2 to x-th bin for x = n to n/2 + 1

we can recurse. After the recursive call, returning the labels of the balls in the first n/3

bins to their original labels yields a state where the 1st bin contains balls 11, 21 and 31,

the 2nd bin contains balls 41, 51 and 61, and so on. (See Fig. 5.9.)

11 41 n− 21 12 n/2− 22 n/23 23 13
21 51 · · · n− 11 22 · · · n/2− 12 n/2 + 12 · · · n− 12 n2
31 61 n1 33 n/22 n/2 + 13 n− 13 n3
1 2 · · · n/3 n/3 + 1 · · · n/2 n/2 + 1 · · · n− 1 n

Figure 5.9: The state after sorting for a recursive structure

Finally, for x = n to 2, we move ball x1 to the x-th bin as follows. First, when we

move the ball n1 from the (n/3)-th bin to the n-th bin, each ball 12, 42, 72, . . . n/2− 22 and

n/23, n/2−13, . . . , 13 is shifted left. (See Fig. 5.10.) Next, when moving the ball n−11 from

the (n/3)-th bin to the (n−1)-th bin, each ball 22, 52, 82, . . . , n/2−12 and n/2−13, . . . , 13

is shifted left. (See Fig. 5.11.) Similarly, we move balls n−21, n−31, . . . , 21 to their target

bins respectively in this order, the sorting completing.

11 12 22 n/2− 12 n/2− 13 13 n1
21 · · · n− 21 32 · · · n/22 n/2 + 12 · · · n− 12 n2
31 n− 11 43 n/23 n/2 + 13 n− 13 n3
1 · · · n/3 n/3 + 1 · · · n/2 n/2 + 1 · · · n− 1 n

Figure 5.10: After moving the ball n1 to the n-th bin

For n which are not multiples of 6, the same strategy can be applied. The details are

shown in the next subsection.

5.4.2 Formal Description of the Algorithm

We present a recursive algorithm Recursive(n). (See Fig 5.12.) This algorithm solves n

bins with k = 3.

Now, we prove the correctness of our algorithm.

62 5 Efficient Algorithms for Sorting k-Sets in Bins

11 12 32 n/2− 13 n/2− 23 n− 11 n1
21 · · · 22 42 · · · n/22 n/2 + 12 · · · n− 12 n2
31 n− 21 52 n/23 n/2 + 13 n− 13 n3
1 · · · n/3 n/3 + 1 · · · n/2 n/2 + 1 · · · n− 1 n

Figure 5.11: After moving the ball n− 11 to the (n− 1)-th bin

Recursive(n), n: integer
1: for x = n to ⌈n/2⌉+ 1
2: Move the ball x3 to the x-th bin
3: Move the ball x2 to the x-th bin
4: end for
5: for x = 1 to n
6: Relabel the ball x1 (in the 1st bin to ⌈n/3⌉-th bin) to ⌈x/3⌉
7: end for
8: If the ⌈n/3⌉-th bin has any ball y2 or y3 (y ∈ [n])
9: then Relabel this ball with ⌈n/3⌉
10: Solve for the first ⌈n/3⌉ bins by applying Recursive(⌈n/3⌉)

(By lines 5–9, all balls in the first ⌈n/3⌉ bins are numbered at most
⌈n/3⌉. Therefore the first ⌈n/3⌉ bins are reduced to an instance of
Sorting 3-Sets in Bins with ⌈n/3⌉ bins.)

11: relabel all balls in the first ⌈n/3⌉ bins with their original numbers
12: for x = n to 2
13: Move the ball x1 to the x-th bin
14: end for

Figure 5.12: Recursive Algorithm

Lemma 16 The algorithm Recursive(n) solves Sorting k-set Bins with n bins.

Proof. We divide the algorithm into three steps as follows: Step 1 is lines 1–4, Step 2

is lines 5–11 and Step 3 is lines 12–14, respectively. We will show which bins have which

balls after each step.

[Step 1] We will consider three cases, where each case is with respect to the index of the

balls (e.g. x1, x2, x3).

A. Let x1 be an arbitrary ball with index 1 and x ∈ [n]. Let m be the number of times

the ball x1 moves left. Note that the ball x1 is initially in the (n− x+1)-th bin. We

consider what happens when we move balls n− y+13 or n− y+12 from the y-th bin

to the (n − y + 1)-th bin for each y. If the ball x1 is located in the u-th bin, where

u > y, then x1 shifts left once during this movement. After iterating 2 · ⌊n/2⌋ times,

the ball x1 goes to the (n− x+ 1−m)-th bin, where m is the largest integer which

5.4. Recursive Algorithms 63

satisfies ⌈m/2⌉ < n− x+ 2−m. That is,

m = max{0 ≤ i ≤ n− 1 | i+ ⌈i/2⌉ < n− x+ 2}.

We set r and q such that n− x+ 2 = 3r+ q, q ∈ {0, 1, 2}. Then, m is 2r− 1 if q = 0

and 2r if q = 1, 2. After Step 1, the ball x1 is in the bin numbered

n− x+ 1−m = 3r + q − 1−m =

{
r (q = 0, 1)

r + 1 (q = 2)
.

As x = n− 3r− q + 2, the r-th bin contains the three balls n− 3r+ 11, n− 3r+ 21,

and n− 3r + 31 after Step 1, where x ∈ [n], 1 ≤ r ≤ ⌈n/3⌉.

B. Let x2 be an arbitrary ball with the index 2 and x ∈ {1, . . . , ⌈n/2⌉}. By analysis

similar to the proof of Lemma 13, one can see the following fact.

Fact 2 The ball x2 does not shift before the ball n−x+12 moves to the (n−x+1)-th

bin in Step 1.

We consider what happens to x2 when we move balls n−y+12 or n−y+13 from the

y-th bin to the (n− y+1)-th bin, where n− y+1 ≤ n−x+1. If the ball x2 is in the

u-th bin, where u > y, x2 shifts left during this movement. By a similar argument to

case A, the ball x2 goes to the (n+ x−m)-th bin, where m is the maximum integer

which satisfies ⌈m/2⌉ < (n− x+ 1)− (m− 1− 2x+ 1); that is,

m = max{0 ≤ i ≤ n− 1 | i+ ⌈i/2⌉ < n+ x+ 1}.

We set n+ x+1 = 3r+ q, q ∈ {0, 1, 2}. By calculation, m is 2r− 1 if q = 0 and 2r if

q = 1, 2. Thus, after Step 1, the ball x2 is in bin

n+ x−m = 3r + q − 1−m =

{
r (q = 0, 1)

r + 1 (q = 2)
.

As x = 3r+ q − n− 1, the r-th bin contains the three balls 3r− n− 22, 3r− n− 12,

and 3r − n2 after Step 1, where ⌈(n+ 1)/3⌉ ≤ r ≤ ⌈n/2⌉.

C. Any ball x3 (x = 1, . . . , ⌈n/2⌉) does not shift.

64 5 Efficient Algorithms for Sorting k-Sets in Bins

[Step 2] Applying the recursive algorithm, balls x1 (x = 1, . . . , n) are sorted in the first

⌈n/3⌉ bins. Each ball x1 is in the ⌈x/3⌉-th bin.

[Step 3] Let us observe the state after moving the ball n1 to the n-th bin. Note that the

ball n1 is in the ⌈n/3⌉-th bin after Step 2.

Balls of the form x1 (x = 1, . . . , n − 1) do not shift, since their bin numbers are less

than or equal to ⌈n/3⌉.
Balls of the form x2 (x = 1, . . . , ⌈n/2⌉) are each in some bin between ⌈(n + 1)/3⌉

and ⌈n/2⌉ after Step 2. From the analysis of Step 1 for x2, the r-th bin has three balls

3r − n − 22, 3r − n − 12, and 3r − n2. As the ball 3r − n − 22 shifts left once while the

ball n1 moves to the right, the r-th bin will have the three balls 3r − n− 12, 3r − n2, and

3r − n+ 12 after completing this movement.

Before moving ball n1, each ball of the form x3 (x = 1, . . . , ⌊n/2⌋) is in the (n− x)-th

bin, which is not its target bin. These balls each shift left once as the ball n1 moves to the

n-th bin. That is, every ball x3 (x = 1, . . . , ⌊n/2⌋) shifts to the (n− x− 1)-th bin.

From the above arguments, the state of the first n − 1 bins after moving the ball n1

to the n-th bin is the same as the state after Step 2 when we apply Recursive(n − 1) to

Sorting 3-Sets in Bins with n− 1 bins. After the second-last execution of the Step 3 loop

(when x = 3), the state of the first two bins is the same as the state after Step 2 in the

solution of Sorting 3-Sets in Bins with two bins. In other words, the state is as follows:

11 13

12 22

21 23

1 2

We can complete the sorting by moving 21 to the second bin. □

5.4.3 Analysis of the Number of Swaps

We count the number of swaps for Recursive(n).

Lemma 17 The number of swaps performed by Recursive(n) is less than 15
16n

2 + 12n.

Proof. We will use induction. Let S(n) be the number of swaps performed byRecursive(n).

When n = 2, S(2) = 3 < 15
162

2 + 24.

Suppose that S(l) < 15
16 l

2 + 12l holds for any l < n. We count the number of swaps

performed by Recursive(n), where n ≥ 3.

5.4. Recursive Algorithms 65

In Step 1, we need 2i− n− 1 swaps to move each ball i3 and i2 to the i-th bin, so the

total number of swaps in Step 1 is at most

⌈n/2⌉+1∑
i=n

(2i− n− 1)× 2 = 2 · ⌈n/2⌉ · (n− ⌈n/2⌉) ≤ 1

2
n2.

Step 2 needs S (⌈n/3⌉) < 15
16 (⌈n/3⌉)

2 + 12⌈n/3⌉ swaps.

It remains to count the number of swaps in Step 3. We consider the state of each bin.

The r-th bin (r ∈ {1, . . . , ⌈n/3⌉}) has three balls each labeled 3r − 3 + j1 (j ∈ {1, 2, 3}.)
The total number of swaps needed for these three balls to move to the target bin is at most

3∑
j=1

(3r − 3 + j − r) = 6r − 3.

Therefore, Step 3 needs at most

⌈n/3⌉∑
r=1

6r − 3 = 3(⌈n/3⌉)2

swaps. Thus,

S(n) <
1

2
n2 +

15

16
(⌈n/3⌉)2 + 12⌈n/3⌉+ 3(⌈n/3⌉)2

<
15

16
n2 + 12n, (∵ ⌈n/3⌉ < n/3 + 1 and n ≥ 3)

as required. □

Proof of Theorem 8. Directly follows from Lemmas 16 and 17. □

5.4.4 Chapter Summary

In this chapter, we propose two algorithms for sorting k-set in bins. One is the greedy

algorithm, which is based on a simple idea. This algorithm shows that some balls need

only the smallest number of swaps. The another is the recursive algorithm, which divides

an original instance into a sub instants and sorted balls. This algorithm shows that the

step for merge does not much swaps. Using these algorithms, we have non-trivial upper

bounds.

Chapter 6

Conclusion

In this thesis, we study the lower bounds of branching programs and upper bounds of

algorithms solving Sorting k-set Bins Problems. Both of lower bounds and upper bounds

are the fundamental point of view for computational complexity. We conjecture that the

class L is not equivalent to the class P. Through a study of branching program, we have

interest in branching program satisfiability problems and establish efficient upper bounds

for this problems. Some idea comes up with a good upper bound for a mathematical puzzle.

In Chapter 2, we have a new super polynomial lower bound for TEP by introducing

read-once restriction to branching programs. Using the key idea of Cook et al., we induce

a number of leaf reading state to a number of critical states. We do not count the amount

of leaf reading states, but count the amount of “last leaf reading states”. This technique

does not depend on the height of TEP. The lower bound for FTh(k) is Ω(k
h)= Ω(nlog(n))

and tight. From this lower bound, our motivation naturally goes to if branching programs

are not restricted, lower bound is to be super polynomial or not? This is so big issue on

computational complexity.

In Chapter 3, we discuss general branching programs solving TEP. We modify the

method Cook et al. showed, and show a new lower bound of branching programs as

Ω(k2d−1/ log k) = Ω(n
2d−1

d /(log n)
2d+1

d) for FT 3
d (k). This modification does not change the

key ideas in the original method and makes it to be available for TEP with height 3 and

d-ary complete tree, where d is any constant. This lower bound is also tight. Therefore

this result gives us a further motivation for modification to apply to greater tree evaluation

problems.

We also try to modify the original method for height 4 tree evaluation problems. But

there are some difficulties and modification is not completed. To overcome these difficulties,

we must find a way to divide leaf reading states into disjoint sets. If we do not introduce

67

68 6 Conclusion

any restriction, we can construct a branching program whose critical states are not divided

into disjoint sets for distinct k3 input sets. We seem to need substantially new approaches.

In Chapter 4, we propose a exponentially faster algorithm solving k-IBDD satisfiability

problems. This algorithm solves O(nc) size k-IBDD SAT in O(2n−ω(logn)) time. This

algorithm uses partial assignments and longest common sequences. Because an IBDD has

states in some order, a longest common sequence shows the labels which are not fixed. We

can solve a polynomial size OBDD SAT with testing reachability. This algorithm would

be improved if we can take more “efficient” longest common sequences.

In Chapter 5, we consider the sorting k-set bins problems. This problem is a natural

extension of Winkler’s “Sorting Pairs in Bins”. We propose two algorithms; Greedy(n, k)

and Recursive(n). Greedy(n, k) works for any n and k for sorting k-set bins problems and

needs k+1
4 n2+O(n) swaps. Recursive(n) works for k = 3 and any n and needs 15

16n
2+O(n)

(= 0.9357n2 + O(n)) swaps. So, Recursive(n) are faster than Greedy(n, 3) in the case of

k = 3. On the other hand, the known lower bound is (1 − k−1
2k2+k−1

)k+1
4 n2 + O(n). This

means that, if k and n increase, upper bound from Greedy(n, k) asymptotically approaches

to the lower bound.

There are two future works for us. One is to improve the lower bound of branch-

ing programs solving tree evaluation problems. If we do not introduce any restriction to

branching programs, our next target is to analyse height 4 tree evaluation problems. Since

there are no greater than k3 lower bound of branching programs solving any tree evalua-

tion problems, we do not need to analyze a tight lower bound; our next target is a little

greater lower bound. If we introduce some restriction to branching programs, it would be

“read-k-times” restriction. This is a natural extension of read-once restriction. There exist

so many studies about read-k-times restriction, and they would help us.

The other is to improve the upper bound of algorithms solving any branching program

satisfiability problems. One result shows a exponentially faster algorithm. Or, there would

be an efficient algorithm which solves other restricted branching program satisfiability.

These algorithms also contribute to more knowledge in computational complexity.

Bibliography

[1] M. Ajtai, L. Babai, P. Hajnal, J. Komlós, P. Pudlák, V. R odl, E. Szemerédi, and

G. Turán. Two lower bounds for branching programs. In Proceedings of the eighteenth

annual ACM symposium on Theory of computing, pages 30–38. ACM, 1986.

[2] Vikraman Arvind and Rainer Schuler. The quantum query complexity of 0-1 knap-

sack and associated claw problems. In Algorithms and Computation, pages 168–177.

Springer, 2003.

[3] Pedro Berrizbeitia. Sharpening “primes is in p” for a large family of numbers. Math-

ematics of computation, 74(252):2043–2059, 2005.

[4] Beate Bollig, Martin Sauerho, Detlef Sieling, and Ingo Wegener. On the power of

different types of restricted branching programs. Dekanat Informatik, Univ., 1994.

[5] Miklos Bona and Ryan Flynn. Sorting a permutation by block moves. arXiv preprint

arXiv:0806.2787, 2008.

[6] Randal E Bryant. Graph-based algorithms for boolean function manipulation. Com-

puters, IEEE Transactions on, 100(8):677–691, 1986.

[7] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. A duality between clause

width and clause density for sat. In Computational Complexity, 2006. CCC 2006.

Twenty-First Annual IEEE Conference on, pages 7–pp. IEEE, 2006.

[8] Ruiwen Chen, Valentine Kabanets, Antonina Kolokolova, Ronen Shaltiel, and David

Zuckerman. Mining circuit lower bound proofs for meta-algorithms. In Electronic

Colloquium on Computational Complexity (ECCC), volume 20, page 57, 2013.

[9] S. Cook. An observation on time-storage trade off. Journal of Computer and System

Sciences, 9(3):308–316, 1974.

69

70 Bibliography

[10] S. Cook, P. McKenzie, D. Wehr, M. Braverman, and R. Santhanam. Pebbles and

branching programs for tree evaluation. ACM Transactions on Computation Theory

(TOCT), 3(2):4, 2012.

[11] Daniel W Cranston, I Hal Sudborough, and Douglas B West. Short proofs for cut-

and-paste sorting of permutations. Discrete Mathematics, 307(22):2866–2870, 2007.

[12] Evgeny Dantsin, Edward A Hirsch, and Alexander Wolpert. Algorithms for sat based

on search in hamming balls. In STACS 2004, pages 141–151. Springer, 2004.

[13] Evgeny Dantsin, Edward A Hirsch, and Alexander Wolpert. Clause shortening com-

bined with pruning yields a new upper bound for deterministic sat algorithms. In

Algorithms and Complexity, pages 60–68. Springer, 2006.

[14] Constantinos Daskalakis, Richard M Karp, Elchanan Mossel, Samantha J Riesenfeld,

and Elad Verbin. Sorting and selection in posets. SIAM Journal on Computing,

40(3):597–622, 2011.

[15] Harry Dweighter. E 2569 in: Elementary problems and solutions. Amer. Math.

Monthly, 82(1):1010, 1975.

[16] Sergi Elizalde and Peter Winkler. Sorting by placement and shift. In Proceedings of

the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 68–75.

Society for Industrial and Applied Mathematics, 2009.

[17] P Erdös and G Szckeres. A combinatorial problem in geometry. In Classic Papers in

Combinatorics, pages 49–56. Springer, 1987.

[18] Henrik Eriksson, Kimmo Eriksson, Johan Karlander, Lars Svensson, and Johan

Wästlund. Sorting a bridge hand. Discrete Mathematics, 241(1):289–300, 2001.

[19] Ulrich Faigle and Gy Turán. Sorting and recognition problems for ordered sets. SIAM

Journal on Computing, 17(1):100–113, 1988.

[20] A. Gál and P. McKenzie M. Koucký and. Incremental branching programs. Theory

of Computing Systems, 43(2):159–184, 2008.

[21] William H Gates and Christos H Papadimitriou. Bounds for sorting by prefix reversal.

Discrete Mathematics, 27(1):47–57, 1979.

[22] Mohammad H Heydari and I Hal Sudborough. On the diameter of the pancake net-

work. Journal of Algorithms, 25(1):67–94, 1997.

BIBLIOGRAPHY 71

[23] Edward A Hirsch. Exact algorithms for general cnf sat. Encyclopedia of Algorithms,

pages 286–289, 2008.

[24] Charles Antony Richard Hoare. Algorithm 63: partition, algorithm 64: quicksort,

algorithm 65: find. Communications of the ACM, 4(7):321–322, 1961.

[25] Russell Impagliazzo, William Matthews, and Ramamohan Paturi. A satisfiability

algorithm for ac 0. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium

on Discrete Algorithms, pages 961–972. SIAM, 2012.

[26] Hiro Ito, Junichi Teruyama, and Yuichi Yoshida. An almost optimal algorithm for

winkler ’s sorting pairs in bins. Progress in Informatics, 9:3–7, 2012.

[27] Arthur M Jaffe. The millennium grand challenge in mathematics. Notices of the AMS,

53(6), 2006.

[28] Jawahar Jain, James Bitner, Magdy S Abadir, Jacob A Abraham, and Donald S

Fussell. Indexed bdds: Algorithmic advances in techniques to represent and verify

boolean functions. Computers, IEEE Transactions on, 46(11):1230–1245, 1997.

[29] S. Jukna and A. Razborov. Neither reading few bits twice nor reading illegally helps

much. Discrete Applied Mathematics, 85(3):223–238, 1998.

[30] S. Jukna and S. Žák. On uncertainty versus size in branching programs. Theoretical

computer science, 290(3):1851–1867, 2003.

[31] B. Komarath and J. Sarma. Pebbling, entropy and branching program size lower

bounds. In 30th International Symposium on Theoretical Aspects of Computer Science

(STACS), page 622, 2013.

[32] Meena Mahajan. Polynomial size log depth circuits : Between nc1 and ac1. Bulletin

of the EATCS, 91:42–56, 2007.

[33] Conrado Mart́ınez and Uwe Rösler. Partial quicksort and quickpartitionsort. In 21st

International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the

Analysis of Algorithms (AofA’10), pages 47–60. DMTCS Proceedings, 1991.

[34] W. Masek. A fast algorithm for the string editing problem and decision graph com-

plexity. PhD thesis, Massachusetts Institute of Technology, 1976.

[35] William Joseph Masek. A fast algorithm for the string editing problem and decision

graph complexity. PhD thesis, Massachusetts Institute of Technology, 1976.

72 Bibliography

[36] È. Nečiporuk. A boolean function. In Doklady of the Academy of the USSR, volume

169, pages 765–766, 1998. English translation in Soviet Mathematics Doklady 7:4,

pp.999–1000.

[37] M. Paterson and C. Hewitt. Comparative schematology. In Record of the Project MAC

Conference on Concurrent Systems and Parallel Computation, pages 119–127. ACM,

1970.

[38] Pavel Pudlák. Satisfiability algorithms and logic. In Mathematical Foundations of

Computer Science 1998, pages 129–141. Springer, 1998.

[39] Annett Püttmann. Krawattenproblem. HTML version is available on

http://www.springer.com/cda/content/document/

cda downloaddocument/SAV Krawattenraetsel Loesung Puettmann.

[40] Rahul Santhanam. Fighting perebor: New and improved algorithms for formula and

qbf satisfiability. In Foundations of Computer Science (FOCS), 2010 51st Annual

IEEE Symposium on, pages 183–192. IEEE, 2010.

[41] P. Savický and S. Žák. A read-once lower bound and a (1,+ k)-hierarchy for branching

programs. Theoretical Computer Science, 238(1):347–362, 2000.

[42] Rainer Schuler. An algorithm for the satisfiability problem of formulas in conjunctive

normal form. Journal of Algorithms, 54(1):40–44, 2005.

[43] Kazuhisa Seto and Suguru Tamaki. A satisfiability algorithm and average-case hard-

ness for formulas over the full binary basis. computational complexity, 22(2):245–274,

2013.

[44] J. Simon and M. Szegedy. A new lower bound theorem for read-only-once branching

programs and its applications. Advances in Computational Complexity Theory, 13:183–

193, 1993.

[45] Ivan Hal Sudborough. On the tape complexity of deterministic context-free languages.

Journal of the ACM (JACM), 25(3):405–414, 1978.

[46] I. Wegener. On the complexity of branching programs and decision trees for clique

functions. Journal of the ACM (JACM), 35(2):461–471, 1988.

[47] D. Wehr. Exact size of smallest minimum-depth deterministic bps solving the tree

evaluation problem. Unpublished. http://www.cs.toronto.edu/˜wehr/.

[48] Douglas B. West. http://www.math.illinois.edu/ dwest/regs/sortpair.html.

[49] Ryan Williams. Nonuniform acc circuit lower bounds. Journal of the ACM (JACM),

61(1):2, 2014.

[50] Peter Winkler. Mathematical puzzles: a connoisseur’s collection. AMC, 10:12, 2004.

[51] S. Žák. An exponential lower bound for one-time-only branching programs. In Math-

ematical Foundations of Computer Science 1984, pages 562–566. Springer, 1984.

73

List of Publications

K. Iwama and A. Nagao ”Read-once branching programs for tree evaluation problems.”

In 31st International Symposium on Theoretical Aspects of Computer Science (STACS

2014), volume 25, pages 409–420. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2014.

A. Nagao, K. Seto, and J. Teruyama. ”Efficient algorithms for sorting k-sets in bins.”

In Sudebkumar Prasant Pal and Kunihiko Sadakane, editors, WALCOM, volume 8344 of

Lecture Notes in Computer Science, pages 225–236. Springer, 2014.

K. Iwama and A. Nagao ”Read-once branching programs for tree evaluation problems.”

The 7th Asian Association for Algorithms and Computation Annual Meeting, Proc. of

AAAC 2014, April, 2014 (Hangzhou, China)

K. Iwama and A. Nagao ”A Lower Bound of Tree Evaluation Problem with Constant

Ary.” The 5th Asian Association for Algorithms and Computation Annual Meeting, Proc.

of AAAC 2012, April, 2012 (Shanghai, China)

74

