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Abstract 
 

Daily rhythms in behavior and physiology are controlled by an 

internal self-sustained molecular oscillator, referred to as the 

circadian clock. Circadian rhythms are generated in a 

cell-autonomous manner through transcription/translation-based 

autoregulatory feedback loops, wherein protein products of three 

Period genes (Per1, Per2 and Per3) periodically suppress their 

own transcription. Genetic studies have suggested that, of the three 

Period genes, Per2 has a dominant role in both humans and mice. 

However, little is known about the regulatory mechanism 

underlying expression of this gene. In this thesis, I investigated the 

molecular mechanism driving the circadian transcription of the 

mouse Per2 gene. I find that the Per2 promoter contains a circadian 

cis-element, termed Rhythm-box (R-box). Furthermore, I generated 

novel mutant mice carrying a point mutation in the R-box sequence 

of the Per2 promoter. Analysis of the mutant mice revealed a 

previously unknown in vivo function of this element in regulation 

of circadian transcription of the Per2 gene. 
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Introduction 
 

Daily rhythms in behavior and physiology are controlled by an 

internal self-sustained molecular oscillator, referred to as the 

circadian clock1-5. Circadian rhythms are generated in a 

cell-autonomous manner through transcription/translation-based 

autoregulatory feedback loops5-8, wherein protein products of three 

Period genes (Per1, Per2 and Per3) periodically suppress their 

own transcription (Figure 1). In this general model, the circadian 

positive regulators, CLOCK and BMAL1, promote transcription of 

the Period (Per1, Per2, and Per3) and Cryptochrome (Cry1 and 

Cry2) genes through E-box cis-elements (5ʹ-CACGT[G/T]-3ʹ) 

located in their promoter regions. Once the repressor proteins, PER 

and CRY, reach a critical concentration, they form a complex and 

inhibit CLOCK:BMAL1-mediated transcription. 

 Genetic studies have suggested that, of the three Period 

genes, Per2 has a dominant role in both humans and mice9-11. 

However, little is known about the regulatory machinery of Per2, 

although there are many studies describing Per1 expression 

mechanism12-15. In this thesis, I investigated the molecular 

mechanism driving the circadian transcription of the mouse Per2 
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gene. I found that Per2 promoter contains a circadian cis-element, 

termed Rhythm-box (R-box) (Chapter 1). Furthermore, I generated 

novel mutant mice carrying a point mutation in the R-box sequence 

of the Per2 promoter (Chapter 2). Analysis of the mutant mice 

revealed a previously unknown in vivo function of this element in 

regulation of circadian transcription of the Per2 gene (Chapter 3). 
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Figure 1. Autoregulatory feedback model of the  mammalian 

cellular clock. The circadian clock mechanism involves 

transcription-ranslation feedback loops comprised of a set of core 

clock genes (see main text for details). 
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Results and Discussions 
 

Chapter 1: Autoregulatory feedback model of Per2 

transcription through R-box 

 

Firstly, I sought to determine the circadian oscillation profiles of 

Per2 mRNA and protein in the mouse liver. Mice were sacrificed at 

4 h intervals over a 24-h cycle. Quantitative RT-PCR and Western 

blot analyses revealed that the levels of Per2 mRNA and protein 

exhibit an overt circadian oscillation with a typical phase-	 

relationship. The PER2 protein began to increase 4 hours behind 

mRNA expression and reached its peak when the mRNA levels 

were decreasing. These observations corroborate the current 

negative feedback model, in which PER2 represses its own 

transcription. In an attempt to further test this model, I next 

explored the regulatory cis-element on the Per2 promoter. Mouse 

embryonic fibroblasts were transfected with a luciferase reporter 

vector containing a 1.7-kb fragment of the 5’-flanking region of 

Per2, and its promoter activity was monitored using a realtime 

luminometer system. I observed a robust circadian oscillation of the 

Per2 promoter activity over three cycles. Furthermore, I 
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demonstrated that a single point mutation that was introduced into 

the R-box sequence located in the vicinity of the transcription start 

site of Per216, 17 resulted in a complete abrogation of this 

rhythmicity. These in vitro data strongly suggest that this single 

R-box element is indispensable for the circadian activation and 

repression of Per2 gene. 
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Chapter 2: Generation of mice carrying a point mutation of the 

Per2 R-box 

 

To investigate the role of R-box in regulation of Per2 oscillation in 

vivo, I generated Per2 R-box mutant mice. To introduce a point 

mutation into this element, I employed a piggyBac (PB) transposon 

system. PB is a moth-derived DNA transposon18 whose 

functionality is retained in mammals19, 20. Unlike the well- 

established methods relying on the Cre/loxP and Flp/FRT-based 

recombination systems21, 22, PB transposase (PBase)/PB-based 

system achieves a ‘seamless’ excision of a PB-flanked target 

sequence without any residual ‘footprint’18, 20. This allows, for 

example, ‘complete’ removal of a neomycin resistant gene-coding 

cassette from a mutant mouse genome without leaving any 

unwanted residual sequence23, 24. I therefore constructed a targeting 

vector, carrying a mutant R-box sequence and a neomycin resistant 

cassette flanked by PB terminal repeats. Targeted mouse embryonic 

stem cell clones were injected into blastocysts to generate chimeric 

mice. To remove the PB-flanked neomycin cassette from the 

genome, F1 heterozygotes were intercrossed with ROSA26-PBase 
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mice that carry a ubiquitously expressed PBase gene at the 

ROSA26 locus25. I performed Southern blot analysis and confirmed 

that the neomycin cassette was deleted without reintegration into 

the host genome. Finally, a seamless excision of the cassette was 

confirmed by DNA sequencing. The sequence analysis also verified 

that a point mutation was indeed introduced into the R-box. 

Genotypes were also determined by allele-specific TaqMan qPCR. 

Moreover, the established mutant mice were backcrossed to the 

C57BL/6J background, and at the end of backcrossing, I confirmed 

that 64 microsatellite markers covering all individual mouse 

chromosomes were replaced with those of the C57BL/6J mouse 

strain. 
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Chapter 3: Characterization of in vivo role of the Per2 R-box 

 

To evaluate whether the R-box mutation in vivo abrogates 

rhythmicity of Per2 expression, I measured circadian profiles of 

Per2 mRNA in the mouse liver samples collected every 4 hours in 

constant darkness. Quantitative RT-PCR analysis revealed that the 

point mutation of the Per2 R-box caused alteration of the circadian 

rhythm of Per2. This mutation impairs circadian repression of Per2 

expression and thereby elevates the levels of the baseline. Similar 

results were obtained for the suprachiasmatic nucleus (SCN) in the 

brain, which serves as the mammalian circadian center. Thus, the 

R-box appears to be important for repression of Per2 transcription 

in vivo. The current feedback model expects the repressor proteins 

PER and CRY to be recruited to the E-box elements in their target 

gene promoters2. I therefore hypothesized that the Per2 R-box 

might play an important role in recruitment of the circadian 

transcriptional repressors in vivo. To test this hypothesis, I 

performed chromatin immunoprecipitation (ChIP) assays. To detect 

chromatin binding of PER and CRY, I employed a dual 

crosslinking ChIP method26, 27, which uses disuccinimidyl glutarate 
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(DSG) prior to formaldehyde crosslinking. DSG has a longer 

spacer arm than formaldehyde and has been used to crosslink 

transcription factor (cofactor) protein-protein interactions on 

DNA28. Firstly, to validate the specificity of the method, ChIP 

assays for PER1, CRY1, and CRY2 were performed with the 

mouse liver samples from wild-type (WT) and respective mutant 

mice (Per1−/−, Cry1−/−, and Cry2−/−). The results demonstrate that 

the antibodies I used for PER1, CRY1, and CRY2 

immunoprecipitate the Per2 R-box fragment from WT sample 

more efficiently than the corresponding mutant. Then, to determine 

circadian binding profiles of the negative regulators to the Per2 

promoter R-box, WT mice were sacrificed every 4 hours over a 

24-hr cycle in constant darkness (DD) and their liver samples were 

subjected to ChIP assays for PER1, CRY1, and CRY2. The results 

revealed that PER1, CRY1, and CRY2 were all recruited to the 

Per2 R-box in a circadian time specific manner in the wildtype 

mouse liver. The recruitment of PER1 predominantly occurred at 

CT12 (CT represents circadian time; CT0 denotes the beginning of 

the subjective day and CT12 the beginning of the subjective night). 

In comparison, CRY2 binding was observed from CT12 to CT20. 
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On the other hand, CRY1 binding started to increase at CT20 with 

a peak at CT4. Considering that Per2 transcription reaches its 

maximum and minimum at CT16 and CT4, respectively, the 

negative regulators, PER1, CRY1, and CRY2, might play distinct 

roles in circadian transcriptional repression of Per2. 

 Finally, I tested whether the R-box mutation abrogates the 

recruitment of PER1, CRY1 and CRY2 to the Per2 promoter. I 

found that ChIP values of PER1, CRY1 and CRY2 were all 

reduced to near basal levels throughout the circadian cycle by the 

R-box mutation, demonstrating that the R-box is required for 

binding of the negative regulators. Based on these results, I 

conclude that the R-box is responsible for circadian repression, 

rather than activation, of Per2 transcription in vivo. 
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