Catalytic transfer hydrogenation by a trivalent phosphorus compound: phosphorus-ligand cooperation pathway or P(III) /P(V) redox pathway?

AUTHOR(S):
Zeng, Guixiang; Maeda, Satoshi; Taketsugu, Tetsuya; Sakaki, Shigeyoshi

CITATION:

ISSUE DATE:
2014-04-25

URL:
http://hdl.handle.net/2433/199584

RIGHT:
This is the peer reviewed version of the following article: Zeng, G., Maeda, S., Taketsugu, T. and Sakaki, S. (2014), Catalytic Transfer Hydrogenation by a Trivalent Phosphorus Compound: Phosphorus-Ligand Cooperation Pathway or P(III) /P(V) Redox Pathway?. Angew. Chem. Int. Ed., 53: 4633–4637, which has been published in final form at http://dx.doi.org/10.1002/anie.201311104. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.; This is not the published version. Please cite only the published version.; この論文は出版社版ではありません。引用の際には出版社版をご確認ご利用ください。
Catalytic Transfer Hydrogenation by Trivalent Phosphorus Compound: Phosphorus-Ligand Cooperation Pathway or P^III/P^V Redox Pathway?**

Guixiang Zeng,1 Satoshi Maeda,2 Tetsuya Taketsugu,2 and Shigeyoshi Sakaki1*

Main-group element catalyst is a desirable alternative of transition metal catalyst, considering the use of abundant and less expensive element. But the examples are very limited. The catalytic cycle via redox process and E-ligand cooperation (E = main-group element), which are often found in catalytic cycle by transition metal catalyst, has not been reported yet. Here we theoretically investigated a catalytic hydrogenation of azobenzene with ammonia-borane by a trivalent phosphorus compound 1P, which was experimentally proposed to occur through P^III/P^V redox processes via an unusual pentavalent dihydridophosphorane 4PP. DFT and ONIOM(CCSD(T):MP2) calculations disclosed that this catalytic reaction occurs through P-O cooperation mechanism, which resembles well the metal-ligand cooperation mechanism by the transition metal catalyst. In this cycle, P-O-dihydrogenated trivalent phosphorus compound 4OP is an active species, which is formed from 1P through the dehydrogenation with ammonia-borane in a concerted manner. When azobenzene is absent, 4PP is formed from 4OP via a P^III/P^V redox process.

Main-group element compounds experience renaissance in the last decade for their excellent reactivities similar to those of transition metal complexes.[1] For instance, carbene and acetylene addition reactions occur through P-O cooperation mechanism, which was experimentally proposed to occur through P^III/P^V redox processes; see Scheme 1. In this reaction, 1P reacts with ammonia-borane to afford a pentavalent dihydridophosphorane, 10-P-5 ADPO (H); 4PP, which catalyzes the hydrogenation of azobenzene to regenerate 1P. However, the mechanistic details of these reactions and the role of 4PP are still unclear. Such knowledge is necessary for further development of the chemistry of main group element compound.

In this work, we theoretically investigated all the reaction processes involved in Scheme 1. Geometry optimizations were carried out by the DFT method with the B3PW91 functional,[9] where the AFIR method[8] was employed for optimizing several transition states. Electronic energies were calculated by the ONIOM(CCS(T):MP2) method[11] in acetonitrile solution, where the CPCM model[12] was employed. Gaussian98[13] was used here; see Supporting Information (SI) for computational details. Throughout this paper, the discussion was presented based on the Gibbs energy changes relative to the sum of reactants (1P + ammonia-borane + azobenzene) unless otherwise noted. For convenience, the tri-ligated moiety coordinating with the phosphorus centre in 1P is named an ONO ligand hereafter.

Scheme 1. Catalytic cycle of transfer hydrogenation by 1P.

Figure 1. Geometry changes in the concerted oxidative addition and the P-O cooperation reaction pathways. Bond distances are in Å. In parentheses are the Gibbs energy changes (kcal/mol).
For the dehydrogenation reaction of ammonia-borane, three kinds of reaction pathways are considered to be possible. One is the concerted oxidative addition, which occurs only on the phosphorus center through a transition state TS_{1P/4PP} to directly afford 4PP; see Figure 1. It needs a large Gibbs activation energy ($\Delta G^0 \neq$) of 42.7 kcal/mol, indicating that this reaction pathway is difficult; see Figure 2.

The second is the stepwise pathway, which occurs through the oxidative addition of the B-H or N-H σ-bond to the phosphorus center followed by the β-hydrogen abstraction; see Figure S2 in SI. However, the Gibbs activation energy of the oxidative additions of the B-H and N-H σ-bonds are too large (70.0 and 60.4 kcal/mol, respectively) for the reaction to occur. This is contrast to the facile oxidative addition of the B-H σ-bond of ammonia-borane to the Ir(I) complex.[14]

The third is the P-ONO cooperation pathway, in which the phosphorus center and one atom of the ONO ligand cooperatively react with ammonia-borane. The P-O cooperation pathway is the most favorable with a moderate ΔG^0 value of 27.1 kcal/mol, which is much smaller than those of the aforementioned pathways. In this step, an intermediate 4OP is formed through a transition state TS_{4PP/4OP} with the release of NH$_2$=BH$_2$. In 4OP, the phosphorus centre has a usual three-coordinate structure, where the P-O2 bond is broken (2.657 Å). This P-O cooperation reaction is similar to the dehydrogenation of alcohols by transition-metal complexes with pincer ligand.[15] On the other hand, the P-C1, P-C2, and P-N1 cooperation pathways need much larger ΔG^0 values (56.1, 35.8, and 41.1 kcal/mol, respectively); see Figure S3 in SI. It should be noted that the phosphorus-ligand cooperation mechanism is firstly found here in the chemistry of main-group element compounds.

As shown in Figure 2, 4OP is less stable than 4PP by 8.9 kcal/mol. Also, 4PP was experimentally isolated. Hence, we investigated the isomerization of 4OP to 4PP. In one-step intramolecular pathway, the H2 atom directly migrates from the O2 atom to the phosphorus centre to yield 4PP. However, this isomerization needs a large ΔG^0 value of 42.2 kcal/mol; see Figure S4. Several stepwise intra-molecular pathways, in which the H2 atom transfers from the O2 atom to the phosphorus centre through the C1, C2, or N1 atoms, also need large ΔG^0 values; see Figure S4.

Then, we investigated the NH$_2$=BH$_2$-assisted transformation of 4OP to 4PP, considering that one NH$_2$=BH$_2$ molecule was produced by the dehydrogenation reaction of ammonia-borane; see above. As shown in Figure 3, the BH$_2$ moiety of NH$_2$=BH$_2$ interacts with the N1 atom of 4OP because the BH$_2$ moiety is a Lewis acid and the N1 moiety is a Lewis base; see Figure 3 for N1 etc. Simultaneously, the N2 atom of NH$_2$=BH$_2$ lifts the H2 atom from the O2 atom. This step occurs through a transition state TS_{4OP/5} to form a more stable intermediate 5. In 5, the NH$_2$ group converts to a NH$_3$ group and a B-N1 covalent bond is formed. At the same time, the B=N2 double bond changes to a B-N2 single bond; see Figure 3 for those bond distances. Interestingly, the P-N1 bond is kept and the phosphorus centre has a four-coordinate structure. After that, the BH$_2$ moiety rotates around the B=N1 bond to bring the H2 atom toward the phosphorus atom through a transition state TS_{5/6} to afford an intermediate 6. In 6, the P-N1 bond is broken and the phosphorus centre returns to a usual sp3-like structure with three coordinate bonds. Finally, the H2 atom moves to the phosphorus atom through a transition state TS_{6/4PP} to afford 4PP. In this process, the P-N1 bond is formed again and the phosphorus centre changes from the

Figure 2. The Gibbs energy changes (in kcal/mol) in the dehydrogenation reaction of ammonia-borane by 1P.

The second is the stepwise pathway, which occurs through the oxidative addition of the B-H or N-H σ-bond to the phosphorus centre followed by the β-hydrogen abstraction; see Figure S2 in SI. However, the Gibbs activation energy of the oxidative additions of the B-H and N-H σ-bonds are too large (70.0 and 60.4 kcal/mol, respectively) for the reaction to occur. This is contrast to the facile oxidative addition of the B-H σ-bond of ammonia-borane to the Ir(I) complex.[14]

The third is the P-ONO cooperation pathway, in which the phosphorus center and one atom of the ONO ligand cooperatively react with ammonia-borane. The P-O cooperation pathway is the most favorable with a moderate ΔG^0 value of 27.1 kcal/mol, which is much smaller than those of the aforementioned pathways. In this step, an intermediate 4OP is formed through a transition state TS_{4PP/4OP} with the release of NH$_2$=BH$_2$. In 4OP, the phosphorus centre has a usual three-coordinate structure, where the P-O2 bond is broken (2.657 Å). This P-O cooperation reaction is similar to the dehydrogenation of alcohols by transition-metal complexes with pincer ligand.[15] On the other hand, the P-C1, P-C2, and P-N1 cooperation pathways need much larger ΔG^0 values (56.1, 35.8, and 41.1 kcal/mol, respectively); see Figure S3 in SI. It should be noted that the phosphorus-ligand cooperation mechanism is firstly found here in the chemistry of main-group element compounds.

As shown in Figure 2, 4OP is less stable than 4PP by 8.9 kcal/mol. Also, 4PP was experimentally isolated. Hence, we investigated the isomerization of 4OP to 4PP. In one-step intra-molecular pathway, the H2 atom directly migrates from the O2 atom to the phosphorus centre to yield 4PP. However, this isomerization needs a large ΔG^0 value of 42.2 kcal/mol; see Figure S4. Several stepwise intra-molecular pathways, in which the H2 atom transfers from the O2 atom to the phosphorus centre through the C1, C2, or N1 atoms, also need large ΔG^0 values; see Figure S4.

Then, we investigated the NH$_2$=BH$_2$-assisted transformation of 4OP to 4PP, considering that one NH$_2$=BH$_2$ molecule was produced by the dehydrogenation reaction of ammonia-borane; see above. As shown in Figure 3, the BH$_2$ moiety of NH$_2$=BH$_2$ interacts with the N1 atom of 4OP because the BH$_2$ moiety is a Lewis acid and the N1 moiety is a Lewis base; see Figure 3 for N1 etc. Simultaneously, the N2 atom of NH$_2$=BH$_2$ lifts the H2 atom from the O2 atom. This step occurs through a transition state TS_{4OP/5} to form a more stable intermediate 5. In 5, the NH$_2$ group converts to a NH$_3$ group and a B-N1 covalent bond is formed. At the same time, the B=N2 double bond changes to a B-N2 single bond; see Figure 3 for those bond distances. Interestingly, the P-N1 bond is kept and the phosphorus centre has a four-coordinate structure. After that, the BH$_2$ moiety rotates around the B=N1 bond to bring the H2 atom toward the phosphorus atom through a transition state TS_{5/6} to afford an intermediate 6. In 6, the P-N1 bond is broken and the phosphorus centre returns to a usual sp3-like structure with three coordinate bonds. Finally, the H2 atom moves to the phosphorus atom through a transition state TS_{6/4PP} to afford 4PP. In this process, the P-N1 bond is formed again and the phosphorus centre changes from the

Figure 3. Geometry changes in the isomerization of 4OP to 4PP. Distances are in Å. a) The B3PW91-calculated value. The Gibbs activation energy is comparable with that of the NH$_2$=BH$_2$-assisted pathway.[16]
three-coordinate structure to a five-coordinate hypervalent one. Along with these structural changes, the oxidation state of the phosphorus atom changes from +III to +V. The last step is the rate-determining step with a $\Delta G^{0\circ}$ value of 29.1 kcal/mol, which is much smaller than those of the intra-molecular isomerizations.

Next, an inter-molecular hydrogen exchange pathway was also examined, which occurs through the mutual hydrogen transfers between two 4OP molecules via $\text{TS}_{4OP/4PP}$; see Figure 3. $\text{TS}_{4OP/4PP}$ is not symmetrical, in which the O2-H2 (1.025 Å) and O2'-H2' (1.457 Å) distances are very different. As shown in Figure 2, 4PP is somewhat less stable than the reactants (1P + ammonia-borane) by 4.6 kcal/mol. When the cyclic dimerization of NH$_2$BH$_2$ to (NH$_2$BH)$_2$ is considered, the endothermicity decreases but the reaction is still endothermic by 2.2 kcal/mol; see the dashed line in Figure 2. These results are consistent with the experimental observation that 4PP is converted to 1P with the release of H$_2$.\cite{17}

Summarizing the above results, 1P reacts with ammonia-borane via the P-O cooperation pathway to afford an intermediate 4OP. Then, 4OP isomerizes to 4PP either through the assistant of NH$_2$BH$_2$ or through the inter-molecular hydrogen transfer between two 4OP molecules.\cite{18}

4PP was experimentally proposed to be an active species in the hydrogenation reaction of azobenzene with ammonia-borane. Considering this proposal, we investigated the reaction of 4PP with azobenzene. When azobenzene approaches 4PP, the H2 atom migrates from the phosphorus atom to the N3 atom through a transition state $\text{TS}_{4PP/4OP}$ to form an intermediate 8; see Figure 4. The $\Delta G^{0\circ}$ and ΔG^\ddagger values are 27.5 and 29.4 kcal/mol, respectively.\cite{19}

The intermediate 8 is understood to be an ion-pair between a phosphonium cation and a deprotonated diphenylhydrazine anion [PhN-NHPh]$.^-$ Then, the N4 atom of the [PhN-NHPh]$.^-$ is bound with the cationic phosphorus center to form a very stable intermediate 9 through a rotational transition state of the [PhN-NHPh]$.^-$ moiety. Though the transition state could not be optimized, it is likely that this process easily occurs because the [PhN-NHPh]$.^-$ moiety is sufficiently distant from the phosphorus center. This step is significantly exothermic by 39.8 kcal/mol. At last, the reductive elimination occurs to yield diphenylhydrazine and regenerate 1P with a large $\Delta G^{0\circ}$ value of 43.2 kcal/mol relative to 9 which is the most stable intermediate.

Considering that the insertion of the C=O double bond of ketone into the Ge-H bond was experimentally and theoretically reported\cite{1h,2,3,20} we investigated the insertion reaction of the N=N double bond of azobenzene into the P-H bond. However, it needs a large $\Delta G^{0\circ}$ value (53.5 kcal/mol); see Figure S5 in SI. All these results indicate that 4PP is not an active species for the hydrogenation of azobenzene.

Besides 4PP, 4OP is expected to be able to perform the hydrogenation of azobenzene, because the H1 and H2 atoms of 4OP are considered to be reactive for hydrogenation reaction. This reaction occurs through a concerted transition state $\text{TS}_{4OP/1P}$ to produce 1P and diphenylhydrazine 10; see Figure 4. The $\Delta G^{0\circ}$ value is 28.1 kcal/mol, which is much smaller than that of the hydrogenation reaction by 4PP as discussed above. This $\Delta G^{0\circ}$ value is not different very much from the experimental value (23.7 kcal/mol at 313.15 K), where the experimental ΔH^\ddagger and ΔS^0 values (12.4 ± 0.7 kcal/mol and -36 ± 7 eu, respectively)\cite{21} were employed. Based on these results, it should be concluded that not 4PP but 4OP is the active species for the transfer hydrogenation reaction.

Radosevich et al. reported that 4PP could catalyze the transfer hydrogenation but less efficiently than 1P.\cite{22} This fact is explained, as follows: 4PP transforms to 4OP via the NH\equivBH\equiv-assisted or the inter-molecular hydrogen transfer pathway; see Figure 3. Then, 4OP reacts with azobenzene to regenerate 1P with the release of 10. After that, the catalytic hydrogenation is performed by 1P. Besides the transformation to 4OP, 4PP can also react with azobenzene. This reaction leads to a very stable intermediate 9 as discussed above. Note that both the β-H abstraction and the reductive elimination are difficult to occur from 9; see Figure 4. This means that some amount of 4PP is trapped as 9 during the reaction. As a result, the catalytic hydrogenation by 4PP occurs more slowly than that by 1P.

We investigated the substituent effect on the activity of the catalyst. The substitution of CF$_3$ for Bu somewhat decreases the $\Delta G^{0\circ}$ values for $\text{TS}_{1P/4OP}$ and $\text{TS}_{4OP/1P}$ to 20.9 kcal/mol and 23.5 kcal/mol, respectively, indicating that the electron-withdrawing group is favorable for the catalytic reaction; see Figures S6 in SI. On the other hand, the substitution of H for Bu little changes the $\Delta G^{0\circ}$ value for $\text{TS}_{1P/4OP}$ and moderately decreases the $\Delta G^{0\circ}$ value for $\text{TS}_{4OP/1P}$, indicating that the bulkiness of the substituent is not important; see Figure S7 in SI. However, the transformation of 4OP to 4PP is little influenced by both substitutions; see Figure S8 in SI.

Figure 4. Geometry changes in the hydrogenation reaction of azobenzene by 4PP and 4OP. Distances are in Å.

$\Delta G^{0\circ}$ represents the standard free energy change at 0 K for the reaction.

ΔG^\ddagger represents the free energy barrier of the reaction.

ΔH^\ddagger represents the enthalpy barrier of the reaction.

ΔS^0 represents the entropy barrier of the reaction.

Note that both the β-H abstraction and the reductive elimination are difficult to occur from the intermediate.
In conclusion, the mechanistic details of the transfer hydrogenation reaction by a trivalent phosphorus compound P^3 were theoretically disclosed here. As summarized in Scheme 2, 1) the catalytic cycle occurs through a new concerted P-O cooperation mechanism, 2) the active species of the transfer hydrogenation is P^IV, which is produced from P^3 through dehydrogenation of ammonia-borane, 3) this P-O cooperative reaction resembles well the metal-ligand cooperation reaction by the transition metal complex with pincer ligand, 4) the $\text{P}^\text{III}/\text{P}^\text{V}$ redox certainly occurs in the mutual conversions between P^IV and P^V, but it is not involved in the catalytic cycle, and 5) the substitution of an electron-withdrawing CF$_3$ group for ‘Bu improves the catalytic activity of the trivalent phosphorus compound.

\textbf{Scheme 2.} Catalytic cycle of transfer hydrogenation by P^3 via the P-O cooperation and mutual transformation between P^IV and P^V via the $\text{P}^\text{III}/\text{P}^\text{V}$ redox processes.

Received:
Published online on

\textbf{Keywords:} main-group element compound • catalysis • theoretical calculation • phosphorus• P(III)/P(V) redox • phosphorus-ligand cooperation
Entry for the Table of Contents (Please choose one layout)

Layout 2:

((Catch Phrase))

G. Zeng, S. Maeda, T. Taketsugu, S. Sakaki* __________ Page – Page

Catalytic Transfer Hydrogenation by Trivalent Phosphorus Compound: Phosphorus-Ligand Cooperation Pathway or P^{III}/P^{V} Redox Pathway?

The catalytic transfer hydrogenation of azobenzene with ammonia-borane by 1P occurs via the P-O cooperation mechanism, where an active species is 4OP. This P-O cooperation mechanism is newly found here in the main-group element compound, which resembles well the M-L cooperation by the transition-metal complex with pincer ligand. When azobenzene is absent, the P^{III}/P^{V} redox certainly occurs in the isomerization of 4OP to 4PP but it is not involved in the catalytic transfer hydrogenation.