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Abstract We show that the special relativistic dynamics when combined
with quantum mechanics and the concept of superstatistics can be inter-
preted as arising from two interlocked non-relativistic stochastic processes
that operate at different energy scales. This interpretation leads to Feynman
amplitudes that are in the Euclidean regime identical to transition probabil-
ity of a Brownian particle propagating through a granular space. Some kind
of spacetime granularity could be therefore held responsible for the emer-
gence at larger scales of various symmetries. For illustration we consider also
the dynamics and the propagator of a spinless relativistic particle. Implica-
tions for doubly special relativity, quantum field theory, quantum gravity and
cosmology are discussed.

1 Introduction

The concept of “emergence” plays an important role in quantum field theory
and, in particular, in particle and condensed matter physics, since it embod-
ies the essential feature of systems with several interlocked time scales. In
these systems, the observed macroscopic-scale dynamics and related degrees
of freedom differ drastically from the actual underlying microscopic-scale
physics [1]. Superstatistics provides a specific realization of this paradigm:
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Břehová 7, 115 19 Praha 1, Czech Republic
E-mail: p.jizba@fjfi.cvut.cz

Fabio Scardigli (*corresponding author)
Dipartimento di Matematica, Politecnico di Milano,
Piazza Leonardo da Vinci 32, 20133 Milano, Italy
and Yukawa Institute for Theoretical Physics, Kyoto University,
Kyoto 606-8502, Japan
E-mail: fabio@phys.ntu.edu.tw



2

It predicts that the emergent behavior can be often regarded as a superpo-
sition of several statistical systems that operate at different spatio-temporal
scales [2, 3]. In particular, many applications have recently been reported,
in hydrodynamic turbulence [4], turbulence in quantum liquids [5], pattern
forming systems [6] or scattering processes in high-energy physics [7].

The essential assumption of the superstatistics scenario is the existence of
sufficient spatio-temporal scale separations between relevant dynamics within
the studied system so that the system has enough time to relax to a local
equilibrium state and to stay within it for some time. In practical appli-
cations one is typically concerned with two scales. Following Ref. [2], we
consider an intensive parameter ζ that fluctuates on a much larger time scale
than the typical relaxation time of the local dynamics. The random vari-
able ζ can be in practice identified, e.g., with the inverse temperature [2, 3],
friction constant [8], volatility [9] or einbein [10]. On intuitive ground, one
may understand the superstatistics by using the adiabatic Ansatz. Namely,
the system under consideration, during its evolution, travels within its state
space X (described by state variable A ∈ X) which is partitioned into small
cells characterized by a sharp value of ζ. Within each cell, the system is de-
scribed by the conditional distribution p(A|ζ). As ζ varies adiabatically from
cell to cell, the joint distribution of finding the system with a sharp value of ζ
in the state A is p(A, ζ) = p(A|ζ)p(ζ) (Bayes theorem). The resulting macro-
scale (emergent) statistics p(A) for finding system in the state A is obtain
by eliminating the nuisance parameter ζ through marginalization, that is

p(A) =
∫

p(A|ζ)p(ζ) dζ . (1)

Interestingly enough, the sufficient time scale separation between two relevant
dynamics in a studied system allows to qualify superstatistics as a form of
slow modulation [11].

In this paper, we recast the Feynman transition amplitude of a relativis-
tic scalar particle into a form, which (after being analytically continued to
imaginary times) coincides with a superstatistics marginal probability (1).
The derivation is based on the Lévy–Khinchine theorem for infinitely divisi-
ble distributions [12,13], and for illustration we consider the dynamics and the
propagator of a Klein–Gordon (i.e., neutral spin−0) particle. Our reasonings
can be also extended to charged spin−0, spin− 1

2 , Proca’s spin−1 particles
and to higher-spin particles phrased via the Bargmann–Wigner wave equa-
tion [10]. Further generalization to external electromagnetic potential has
been reported in Refs. [10, 14].

We also argue that the above formulation can be looked at as if the par-
ticle would randomly propagate (in the sense of Brownian motion) through
an inhomogeneous or granular medium (“vacuum”) [14].

Our argument is based upon a recent observation [9, 10, 14] that the Eu-
clidean path integral (PI) for relativistic particles may be interpreted as
describing a doubly-stochastic process that operates at two separate spatio-
temporal scales. The short spatial scale, which is much smaller than particle’s
Compton length λ

C
= 1/mc (~ = 1), describes a Wiener (i.e., Galilean rela-

tivity) process with a sharp (Galilean-invariant) Newtonian mass. The large
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spatial scale, which is of order λ
C
, corresponds to distances over which the

fluctuating Newtonian mass changes appreciably. At scales much larger than
λC the particle evolves according to a genuine relativistic dynamics, with
a sharp value of the mass coinciding with the Einstein rest mass. Particu-
larly striking is the fact that when we average the particle’s velocity over the
structural correlation distance (i.e., over particle’s λ

C
) we obtain the velocity

of light c. So the picture that emerges from this analysis is that the particle
(with a non-zero mass!) propagates over the correlation distance λ

C
with an

average velocity c, while at larger distance scales (i.e., when a more coarse
grained view is taken) the particle propagates as a relativistic particle with
a sharp mass and an average velocity that is subluminal. Quite remarkably,
one can observe an identical behavior in the well-known Feynman’s checker-
board PI [16,17] to which the transition amplitude (1) reduces in the case of
a relativistic Dirac fermion in 1 + 1 dimensions [10,14].

A considerably expanded presentation including the issue of reparametriza-
tion invariance, bibliography, and proofs of the main statements and formulas
has been given in a companion paper [14].

2 Superstatistics path integrals

When a conditional probability density function (PDF) is formulated through
a PI, then it satisfies the Einstein-Smoluchowski equation (ESE) for contin-
uous Markovian processes, namely [15]

p(y, t′′|x, t) =
∫ ∞

−∞
dz p(y, t′′|z, t′)p(z, t′|x, t) , (2)

with t′ being any time between t′′ and t. Conversely, any transition proba-
bility satisfying ESE possesses a PI representation [16]. In physics one often
encounters probabilities formulated as a superposition of PI’s,

℘(x′, t′|x, t)

=
∫ ∞

0

dζ ω(ζ, T )
∫ x(t′)=x′

x(t)=x

[dxdp] e
∫ t′

t
dτ(ipẋ−ζH(p,x)) .

(3)

Here ω(ζ, T ) with T = t′ − t is a normalized PDF defined on R+× R+. The
form (3) typically appears in non-perturbative approximations to statistical
partition functions, in polymer physics, in financial markets, in systems with
reparametrization invariance, etc. The random variable ζ is then related to
the inverse temperature, coupling constant, volatility, vielbein, etc.

The existence of different time scales and the flow of the information
from slow to fast degrees of freedom typically creates the irreversibility on
the macroscopical level of the description. The corresponding information
thus is not lost, but passes in a form incompatible with the Markovian de-
scription. The most general class of distributions ω(ζ, T ) on R+×R+ for which
the superposition of Markovian processes remain Markovian, i.e., when also
℘(x′, t′|x, t) satisfies the ESE (2), was found in Ref. [9]. The key is to note that
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in order to have (2) satisfied by ℘, the rescaled PDF w(ζ, T ) ≡ ω(ζ/T, T )/T
should satisfy the ESE for homogeneous Markovian process

w(ζ, t1 + t2) =
∫ ζ

0

dζ ′ w(ζ ′, t1)w(ζ − ζ ′, t2) . (4)

Consequently the Laplace image fulfills the functional equation with t1, t2 ∈
R+. By assuming continuity in T , it follows that the multiplicative semi-
group w̃(p

ζ
, T )T≥0 satisfies w̃(p

ζ
, T ) = {w̃(p

ζ
, 1)}T . From this we see that

the distribution of ζ at T is completely determined by the distribution of ζ at
T = 1. In addition, because w̃(p

ζ
, 1) = {w̃(p

ζ
, 1/n)}n for any n ∈ N+, w(ζ, 1)

is infinitely divisible. The Lévy–Khinchine theorem [12,13] then ensures that
log w̃(p

ζ
, T ) ≡ −TF (p

ζ
) must have the generic form

log w̃(p
ζ
, T ) = −T

(
αp

ζ
+

∫ ∞

0

(1− e−p
ζ
u)ν(du)

)
, (5)

where α ≥ 0 is a drift constant and ν is some non-negative measure on
(0,∞) satisfying

∫
R+ min(1, u)ν(du) < ∞. Finally the Laplace inverse of

w̃(p
ζ
, T ) yields ω(ζ, T ). Once ω(ζ, T ) is found, then ℘(x′, t′|x, t) possesses a

PI representation on its own. What is the form of the new Hamiltonian? To
this end we rewrite (3) in Dirac operator form as [9]

℘(x′, t′|x, t) = 〈x′|
∫ ∞

0

dζ w(ζ, T )e−ζĤ |x〉

= 〈x′|{w̃(Ĥ, 1)}T |x〉 = 〈x′|e−TF (Ĥ)|x〉 . (6)

Hence, the identification H(p, x) = F (H(p, x)) can be made. Here one
might worry about the operator-ordering problem. For our purpose it suf-
fices to note that when H is x-independent, the former relation is exact. In
more general instances the Weyl ordering is a natural choice because in this
case the required mid-point rule follows automatically and one does not need
to invoke the gauge invariance [9, 29]. In situations when other non-trivial
configuration space symmetries (such as non-holonomic symmetry) are re-
quired, other orderings might be more physical [9].

3 Statistical origin of Special Relativity – Granular Universe

The Feynman transition amplitudes (or better its Euclidean version — tran-
sition probabilities) naturally fits into the structure of superstatistics PI’s
discussed above.

Note first that the choice α = 0 and ν(du) = 1/(2
√

πu3/2)du leads to
F (p

ζ
) = √

p
ζ
. This identifies w(ζ, T ) with the (unshifted) Lévy distribution

with the scale parameter T 2/2. Moreover, when H(p,x) = p2c2 +m2c4 then



5

(3) can be cast into the form (see also Refs. [9, 10,14])

∫ x(T ) = x′

x(0) = x
[dxdp] exp

{∫ T

0

dτ
[
ip · ẋ − c

√
p2 + m2c2

]}
(7)

=
∫ ∞

0

dm f 1
2

(
m, T c2, T c2m2

) ∫ x(T ) = x′

x(0) = x
[dx dp] exp

{∫ T

0

dτ

[
ip · ẋ − p2

2m
− mc2

]}
,

where t′ − t = T , and

fp(z, a, b) =
(a/b)p/2

2Kp(
√

ab)
zp−1 e−(az+b/z)/2 , (8)

is the generalized inverse Gaussian distribution [13] (Kp is the modified
Bessel function of the second kind with index p). The LHS of (8) repre-
sents the PI for the free spinless relativistic particle in the Newton–Wigner
representation [18]. The full Klein–Gordon (KG) kernel which also contains
the negative-energy spectrum can be obtained from (8) by considering the
Feshbach–Villars representation of the KG equation and making the substi-
tution [10]

f 1
2

(
m, tc2, tc2m2

) 7→ 1+sgn(t)σ3

2
f 1
2

(
m, |t|c2, |t|c2m2

)
. (9)

The matrix nature of the smearing distribution (σ3 is the Pauli matrix)
naturally includes the Feynman–Stuckelberg causal boundary condition and
thus treats both particles and antiparticles in a symmetric way [10,19]. When
the partition function is going to be calculated, the trace will get rid of the
sgn(t) term and 1/2 is turned to 1.

The explicit form of the identity (8) indicates that m can be interpreted
as a Galilean-invariant Newton-like mass which takes on continuous val-
ues distributed according to f 1

2

(
m, T c2, T c2m2

)
with 〈m̃〉 = m + 1/Tc2 and

var(m) = m/Tc2 + 2/T 2c4. Fluctuations of the Newtonian mass can be then
depicted as originating from particle’s evolution in an inhomogeneous or gran-
ular medium. Granularity, as known, for example, from solid-state systems,
typically leads to corrections in the local dispersion relation [20] and hence to
alterations in the local effective mass. The following picture thus emerges: on
the short-distance scale, a non-relativistic particle can be envisaged as prop-
agating via classical Brownian motion through a single grain with a local
mass m. This fast-time process has a time scale ∼ 1/mc2. An averaged value
of the local time scale represents a transient temporal scale 〈1/mc2〉 = 1/mc2

which coincides with particle’s Compton time TC — i.e., the time for light
to cross the particle’s Compton wavelength. At time scales much longer than
TC (large-distance scale), the probability that the particle encounters a grain
which endows it with a mass m is f 1

2

(
m, T c2, T c2m2

)
. As a result one may

view a single-particle relativistic theory as a single-particle non-relativistic
theory where the particle’s Newtonian mass m represents a fluctuating pa-
rameter which approaches on average the Einstein rest mass m in the large t
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limit. We stress that t should be understood as the observation time, a time
after which the observation (position measurement) is made. In particular,
during the period t the system remains unperturbed. One can thus justly
expect that in the long run all mass fluctuations will be washed out and
only a sharp time-independent effective mass will be perceived. The form of
〈m〉 identifies the time scale at which this happens with t ∼ 1/mc2, i.e. with
the Compton time T

C
. It should be stressed that above mass fluctuations

have nothing to do with the Zitterbewegung which is caused by interference
between positive- and negative-energy wave components. In our formulation
both regimes are decoupled.

We may also observe that by coarse-graining the velocity over the corre-
lation time T

C
we have

〈|v|〉TC
=

〈|p|〉
〈m〉

∣∣∣∣
TC

= c . (10)

So on a short-time scale of order λ
C

the spinless relativistic particle propa-
gates with an averaged velocity which is the speed of light c. But if one checks
the particle’s position at widely separated intervals (much larger than λC ),
then many directional reversals along a typical PI trajectory will take place,
and the particle’s net velocity will be then less than c — as it should be for a
massive particle. The particle then acquires a sharp mass equal to Einstein’s
mass, and the process (not being hindered by fluctuating masses) is purely
Brownian. This conclusion is in line with the well-known Feynman checker-
board picture [14, 17] to which it reduces in the case of (1 + 1)D relativistic
Dirac particle.

4 Emergent doubly special relativity

Understanding the robustness of the emergent Special Relativity under small
variations in the mass-smearing distribution function f 1

2
can guide the study

of the relation between Einsteinian SR and other deformed variants of SR,
such as Magueijo–Smolin and Amelino-Camelia’s doubly special relativity [21,
22], or (quantum) κ-Poincaré deformation of relativistic kinematics [23]. In
DRS models a further invariant scale ` is introduced, besides the usual speed
of light c, and ` is typically considered to be of order of the Planck length. A
small variation δf 1

2
of the smearing function originates the new Hamiltonian

H̄ =
ε1
4

+
(
1 +

ε0
2

) √
p2c2 + m2c4 +

ε2
4

, (11)

with ε1 = −2 (1 + ε0/2)
√

ε2 (see Ref. [14] for details). By setting

ε1 = 2

(√
1

1− c2m2`2
− 1

)
, ε2 =

4c6m4`2

1− c2m2`2
,
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the new Hamiltonian H̄ can be easily identified with

H̄ = c
−m2c2`∓

√
p2(1−m2c2`2) + m2c2

1−m2c2`2
, (12)

which coincides with the Magueijo–Smolin’s doubly special relativistic Hamil-
tonian, in, say, its version [24]. It should be stressed that the Hamiltonian
(11) (when also negative energy states are included) violates CPT symme-
try. This is a typical byproduct of the Lorentz symmetry violation in many
deformed SR systems.

For the Hamiltonian (12) a relation analog to (8) holds, where now
the smearing function has the form f 1

2

(
m, T c2λ, Tc2m2λ

)
with λ = 1/(1 −

m2c2`2). The correlation distance 1/mcλ can be naturally assumed as the
minimal size LGRAIN of the “grain of space” of the polycrystalline medium,
which is linked to the new invariant scale ` by

LGRAIN :=
1

mcλ
= λC(1−m2c2`2) . (13)

By tuning the size LGRAIN of these ”grains of space” it is possible to pass
continuously from Lorenz symmetry to other different symmetries, as those
enjoyed by DSR models. We can in principle speculate that each large scale
symmetry could originate from a specific kind of space(time) granularity.

5 Quantum field theory

The superstatistics transition probability (6) was constructed on the premise
that H is associated with a single particle. Of course, a single-particle rela-
tivistic quantum theory is logically untenable, since a multi-particle produc-
tion is allowed whenever the particle reaches the threshold energy for pair
production. In addition, Leutwyler’s no-interaction theorem [25] prohibits
interaction for any finite number of particles in the context of relativistic
mechanics. To evade the no-interaction theorem it is necessary to have an
infinite number of degrees of freedom to describe interaction. The latter is
typically achieved via local quantum field theories (QFT).

It should be underlined in this context that the PI for a single relativistic
particle is still a perfectly legitimate building block even in QFT. Recall that
in the standard perturbative treatment of, say, generating functional for a
scalar field each Feynman diagram is composed of integrals over product of
free correlation functions (Feynman’s correlators):

∆F (y, cty; z, ctz)=
1
4

∫ ∞

−∞
dτ sgn(τ − ty)℘(y, τ |z, tz), (14)

and may thus be considered as a functional of the PI ℘(x′, t′|x, t). In fact,
QFT in general, can be viewed as a grand-canonical ensemble of fluctuating
particle histories (worldlines) where Feynman diagrammatic representation
of quantum fields depicts directly the pictures of the world-lines in a grand-
canonical ensemble. This is the so-called “worldline quantization” of particle
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physics, and is epitomized, e.g., in Feynman’s worldline representation of the
one-loop affective action in quantum electrodynamics [26], in Kleinert’s dis-
order field theory [27] or in the Bern–Kosower and Strassler “string-inspired”
approaches to QFT [28].

Because of (14), the relationship between bosonic Bern–Kosower Green’s
function GB(τ1, τ2) and the PI ℘(x′, t′|x, t) can be found easily through the
known functional relation between GB and ∆F , cf. Refs. [28].

6 Gravity, local Lorentz invariance, and Cosmology

When spacetime is curved, a metric tensor enters in both PI’s in (7) in
a different way, yielding different “counterterms” [15, 29]. For instance, in
Bastianelli–van Nieuwenhuizen’s time slicing regularization scheme [29] one
has (when ~ is reintroduced)

p2

2m
7→ gijpipj

2m
+
~2

8m
(R + gijΓm

il Γ l
jm) ,

√
p2 + m2c2 7→

√
gijpipj +

~2

4
(R + gijΓm

il Γ l
jm) + m2c2

+ ~4Φ(R, ∂R, ∂2R) + O(~6) , (15)

where gij , R, Γ j
kl and Φ(. . .) are the (space-like) pull-back metric tensor, the

scalar curvature, the Christoffel symbol, and non-vanishing function of R and
its first and second derivatives, respectively. This causes the superstatistics
identity (7) to break down, as can be explicitly checked to the lowest order
in ~. The respective two cases will thus lead to different physics. Because the
Einstein equivalence principle requires that the local spacetime structure can
be identified with the Minkowski spacetime possessing Lorentz symmetry,
one might assume the validity of (8) at least locally. However, in different
space-time points one has, in general, a different typical length scale of the
local inertial frames, depending on the gravitational field. The characteristic
size of the local inertial (i.e. Minkowski) frame is of order 1/|K|1/4 where
K = RαβγδR

αβγδ is the Kretschmann invariant and Rαβγδ is the Riemann
curvature. Relation (8) tells us that the special relativistic description breaks
down in regions of size smaller than λ

C
. For curvatures large enough, namely

for strong gravitational fields, the size of the local inertial frame can become
smaller than λC , that is 1/|K|1/4 . λC . In such regions the special relativistic
description is no more valid, and according to (8) must be replaced by a
Newtonian description of the events. For instance, in Schwarzschild geometry
we have K = 12 r2

s/r6, and the breakdown should be expected at radial
distances r . (λ2

C
rs)1/3 (rs is the Schwarzschild radius) which are — apart

from the hypothetical case of micro-black holes (where λ
C
' rs) — always

deeply buried below the Schwarzschild event horizon. In the cosmologically
relevant Friedmann-Lemâıtre-Robertson-Walker (FLRW) geometry, we have
K = 12 (ȧ4 + a2ä2)/(ac)4, and the breakdown happens when (ȧ4 + a2ä2) &
(ac/λ

C
)4, where a(t) is the FLRW scale factor of the Universe and ȧ =

da/dt. Applying the well-known Vilenkin–Ford model [30] for inflationary
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cosmology, where a(t) is given by: a(t) = A
√

sinh(Bt) with B = 2c
√

Λ/3 (Λ
is the cosmological constant), we obtain a temporal bound on the validity of
local Lorentz invariance, which, expressed in FLRW time, is

t . 1
B

arcsinh

[
Bλ

C

(8c4 − (Bλ
C
)4)1/4

]
≡ t̄ . (16)

By using the presently known [31] value Λ ' 10−52m−2 and the τ -lepton
Compton’s wavelength λτ

C
' 6.7×10−16m (yielding the tightest upper bound

on t), we obtain t̄ ' 4× 10−24s. Note that, since BλC ¿ c, then t̄ ' λC /c =
t

C
. Such a violation of the local Lorentz invariance naturally breaks the

particle-antiparticle symmetry since there is no unified theory of particles
and antiparticles in the non-relativistic physics — formally one has two sep-
arate theories. If the resulting matter-antimatter asymmetry provides a large
enough CP asymmetry then this might have essential consequences in the
early Universe, e.g., for leptogenesis. In this respect, t̄ is compatible with the
nonthermal leptogenesis period that typically dates between 10−26–10−12s
after the Big Bang.

7 Conclusions and perspectives

The new superstatistics PI representation of a relativistic point particle intro-
duced in this Letter, realizes an explicit quantum mechanical duality between
Einsteinian and Galilean relativity. It also makes explicit how the SR invari-
ance is encoded in the grain smearing distribution. Notably, the exact LS
of a spacetime has no fundamental significance in our analysis, as it is only
an accidental symmetry of the coarse-grained configuration space in which a
particle executes a standard Wiener process. In passage from grain to grain
particles’s Newtonian mass fluctuates according to an inverse Gaussian dis-
tribution. The observed inertial mass of the particle is thus not a fundamental
constant, but it reflects the particle’s interaction with the granular vacuum
(cosmic field). This, in a sense, supports Mach’s view of the phenomenon of
inertia.

Interactions can be included in our framework in two different ways. The
interaction with a background field (such as electromagnetic field) can be
directly treated with the superstatistics prescription (8), see [10]. On the
other hand, the multi-particle interactions can be consistently formulated by
“embedding” the relativistic PI in QFT via the worldline quantization. Such
an embedding may help to study several cosmological implications of systems
with granular space. If any of such systems quickly flows to the infrared
fixed point, any direct effect due to the space discreteness, and related SR
violation, might be insignificant on cosmological scales (where Lorentz and
diffeomorphism invariance are restored), while it might be crucial in the early
Universe, e.g., for leptogenesis and the ensuing baryogenesis. Consequences
on the detailed structure of the Cosmic Microwave Background spectrum will
be explored in future work.

The presented approach implies a preferred frame. In this connection it is
worth of noting that, despite the fact that (8) is not manifestly LS invariant,
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one may use the Stückelberg trick and introduce a new fictitious variable into
the PI (8), in such a way that the new action will have the reparametrization
symmetry, but will still be dynamically equivalent to the original action.
For relevant details see Ref. [14]. By not knowing the source, one may then
view this artificial gauge invariance as being a fundamental or even a defining
property of the relativistic theory. One might, however, equally well, proclaim
the “polycrystalline” picture as being a basic (or primitive) edifice of SR
and view the reparametrization symmetry as a mere artefact of an artificial
redundancy that is allowed in our description. It is this second view that we
favored here.

The presented scenario cannot directly accommodate the massless parti-
cles such as photons (identity (8) holds true only for m 6= 0). One possibility
would be to use the PI representation of Polyakov–Wheeler for massless par-
ticles and try to construct a similar superstatistics duality as in the case of
massive particles. This procedure is, however, not without technical difficul-
ties and currently is under investigation. Conceptually is far more simpler to
assume that the photon has a small mass. At present, there are a number
of experimental limits to the mass of the photons [32]. For instance, tests
based on Coulomb’s law and the galactic vector potential set the upper limit
of mγ . 10−18 eV/c2 ' 10−57g. This gives the domain correlation distance
for the photon ' 1/mγc2 ' 1043m which is bigger than the radius of observ-
able Universe (' 1026 m) and so in this picture the photon mass does not
fluctuate — it is a quasi-invariant.

Finally, this approach should reinforce the links between superstatistics
paradigm and the approach to quantum gravity based on stochastic quantiza-
tion [33]. In particular, the outlined granular space could be a natural model
for the noise terms in a Parisi–Wu stochastic-like quantization approach to
gravity.
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