1	A case of maxillary sarcoma in a chimpanzee (Pan troglodytes)
2	Michiko Fujisawa ^{1,2} , Toshifumi Udono ¹ , Etsuko Nogami ¹ , Mari Hirosawa ¹ , Naruki Morimura ¹ ,
3	Aya Saito ¹ , Michael Seres ³ , Migaku Teramoto ¹ , Kunitoshi Nagano ¹ , Yusuke Mori ¹ , Hirosuke
4	Uesaka ¹ , Kazuyo Nasu ¹ , Masaki Tomonaga ³ , Gen'ichi Idani ¹ , Satoshi Hirata ³ , Tatsuaki
5	Tsuruyama ⁴ , Kozo Matsubayashi ²
6	
7	1. Kumamoto Sanctuary, Wildlife Research Center, Kyoto University, Uki, Kumamoto,
8	Japan
9	2. Center for Southeast Asian Studies, Kyoto University, Kyoto, Kyoto, Japan
10	3. Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
11	4. Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Kyoto, Japan
12	
13	Acknowledgments of funding
14	This study was financially supported by MEXT (20002001, 20040001, 22659141) and WISH Grant and
15	Human Evolution Grant to the Primate Research Institute, Kyoto University.
16	
17	Corresponding author: Michiko Fujisawa
18	Center for Southeast Asian Studies, Kyoto University
19	46, Shimoadachi-cho, Yosida, Sakyo-ku, Kyoto-shi, Kyoto 606-8501, Japan

20	D Tel: 075-753-7302,
2	1 Fax: 075-753-7350,
22	2 E-mail: mfujisaw@cseas.kyoto-u.ac.jp
23	3
2^2	4 Running Title
28	5 A case of maxillary sarcoma in a chimpanzee.
20	3
2'	7 Total numbers of figure
28	8 2
29	9
3(0 Key Words
3	ape, malignant neoplasm, aging, care
32	2
33	3
34	4 Abstract
38	5 Oral malignancy is rare in chimpanzees. A 34-year-old female chimpanzee (Pan troglodytes) at Kumamoto
30	Sanctuary, Japan had had developed it. Treatment is technically difficult for chimpanzees while malignant
3′	7 neoplasm is seemingly rising in captive populations. Widespread expert discussion, guidelines for
38	8 treatment, especially for great apes in terminal stages is urgently needed.

39

40 Case Report

41	Genetically chimpanzees are the closest living relatives of human. We were diverged almost 7 millions
42	years ago, and the changes in disease conditions could have occurred in conjunction with evolutionary
43	changes. As our life expectancies increased, the later-onset diseases such as malignant neoplasm,
44	arteriosclerotic diseases, and dementia have also increased, thus, becoming a serious issue. These diseases
45	are dependent on the lifestyle and aging; they could be referred to as age-dependent diseases.
46	In contrast, very little is known about the nature of age-dependent diseases in chimpanzees. The
47	question remains whether the age-dependent diseases are exclusively human, or simply undiagnosed in
48	chimpanzees. For example, malignancy is extremely rare in chimpanzees [4]. Previous studies have shown
49	only few examples of such diseases in chimpanzees [2, 5].
50	This is the first report of oral sarcoma in a chimpanzee. The case occurred in an estimated 34-year-old
51	wild born female. She was utilized in hepatitis C virus (HCV) infection research at another facility
52	between 1979 and 1987. Persistent HCV infection was observed without other specific notations.
53	The subject's right cheek had started swelling in February 2011. We suspected bacterial infection of the
54	dental root. Antibiotics were administered; however, no improvement was observed (Figure 1). Blood
55	analysis showed slight increases in white-blood-cell, C-reactive protein, and γ -glutamyl
56	transpeptidase levels and decrease in albumin level. No other noteworthy observations were made. Her
57	weight was 43 kg.

58	Figure 2 shows histopathological image of the lesion. Abnormal undifferentiated cells including
59	spindle cells and adipose-like cells proliferated papillary or focally. Increased N/C ratio and multiple
60	images of mitosis showed this tumor was highly malignant. By immunohistological stain, vimantin was
61	positive, cytokeratine was partially slightly positive. On X-ray examination maxilla invasion was identified,
62	however, no pulmonary metastasis could be observed. Cervical lymph nodes were not swollen.
63	The common treatment for sarcoma in humans is mainly surgical resection with radiation or
64	chemotherapy. In this case, because extensive resection was required, the reconstruction of the oral cavity
65	must be considered. Surgical resection and radiation could not be options due to technical difficulties.
66	Chemotherapy was avoided as the side effects were thought to be too severe in proportion to the potential
67	results. It was also difficult to give her injection due to risking anesthesia on a daily basis. A conservative
68	palliative treatment was chosen instead during the remaining progression of the disease.
69	The tumor reached the end of hard palate, began to construct the pharynx. However, food intake was
70	still achieved by altering the texture of food. A timetable was created incorporating contact time with other
71	chimpanzees, with staffs, and time spent alone. Gradually, the time spent being recumbent increased,
72	however, she would still rise to interact with staff. Breathing difficulty appeared except when lying on her
73	right side. On August 15, she had eventually attempted to roll over and reached with her arms and legs out
74	to staff. She died at 9:30 am on August 17. Euthanasia was debated during the course, but was not
75	performed because she was still able to ingest food and did not appear to be in great distress.
76	When she died her weight was 26 kg. Pathological autopsy showed that the tumor had already invaded

77	her maxilla. The mass had protruded into the oral cavity, and it was largely necrotic and ulcerated but the
78	tumor had not yet progressed into the orbital cavity. Despite the tumor extended almost to cover the entire
79	palate it did not reach the pharynx. The mandible and cervical lymph nodes were largely swollen and the
80	right cervical lymph nodes entwined the carotid artery. Multiple metastatic lesions were identified in
81	lymph nodes of the pulmonary hilum and of posterior mediastinum, in lungs, and in diaphragm. The right
82	lung showed poor aeration with the lower lung atelectasis. No pleural effusion was observed. No
83	intraperitoneal spread was detected.
84	Pathological diagnosis: (1) maxillary sarcoma with multiple metastases, (2) respiratory failure due to
85	metastases.
86	There are very few reports of malignant tumors in chimpanzees. Till recently, a number of hypotheses
87	have been raised, including claims that malignant tumors are simply remain undiagnosed [5] or that
88	because apoptosis suppression difference between human and chimpanzees, there is a known relationship
89	between suppression of apoptosis and increased risk of the onset of malignancy [3][12]. Recent studies
90	also have shown multiple genetic differences associated with malignancies [1, 8, 14, 15]. From these
91	findings, it is now understood that currently, there are very few identified genetic predispositions for
92	malignant neoplasm in chimpanzees.
93	The ratio that of chimpanzees actually reaches an advanced age is low [9]. Although the frequency of
94	occurrence of malignancy because of gene restoration anomalies increases with aging, the frequency of
95	malignancy remains low in chimpanzees due to the shorter lifespan. This can be a possible explanation for

96 the minimal number of age-related diseases that are observed in chimpanzees.

97	The case subject had persistent HCV infection. In humans, oral squamous-cell carcinoma is considered
98	as a complication of HCV infection [7, 10, 11, 13]. Chimpanzees with a history of being utilized in
99	hepatitis research are numerous in Japan and in several countries, including USA. Although cases of
100	hepatic carcinoma have been reported, thus far there have been no reports of oral malignancy.
101	As outlined above, the possibility is that HCV infection is partially responsible for the oral sarcoma.
102	Since the subject was not young, the potential for gene restoration mistakes to occur at a higher rate along
103	with advancement in age must also be taken into consideration.
104	Noteworthy, that the subject was able to ingest food orally till the end; further, pain did not seem to
105	appear. The subject was able to live out the remainder of her life in relative comfort during the terminal
106	phase of the disease due to devoted staff until her very last day. The actual treatment of a chimpanzee
107	during the terminal phase of disease may be decided on a case-to-case basis. The number of aging
108	chimpanzees in captivity is increasing, and so we have to consider the need for terminal care cases will
109	also increase. Therefore, we think the necessity for a widespread discussion, regarding these issues is
110	inevitable among other chimpanzee holding facilities.
111	

112 ACKNOWLEDGMENTS

113 We thank Drs Yasunori Sumi and Zenzo Isogai of National Center for Geriatrics and
114 Gerontology Hospital for providing valuable suggestion on treating malignanct tumor in oral

115	cav	ity and skin. This study was financially supported by the following grants: MEXT
116	200	02001, 20040001, 22659141, and WISH Grant and Human Evolution Grant to the Primate Research
117	Inst	itute, Kyoto University.
118		
119	Ref	erences
120	1)	Ahmed J, Günther S, Möller F, Preissner R. A structural genomics approach to the regulation of
121		apoptosis: chimp vs. human. Genome Inform 2007; 18: 22-34.
122	2)	Amyx HL, Salazar AM, Newsome DA, Gibbs CJ Jr, Gajdusek DC: Nasopharyngeal carcinoma with
123		intracranial extension in a chimpanzee. J Am Vet Med Assoc 1982; 181: 1425-1426.
124	3)	Arora G, Polavarapu N, McDonald JF. Did natural selection for increased cognitive ability in humans
125		lead to an elevated risk of cancer? Med Hypotheses 2009; 73: 453-456.
126	4)	Bailey J: An examination of chimpanzee use in human cancer research. Alter Lab Anim 2009; 37:
127		399-416.
128	5)	Brown SL, Anderson DC, Edward J. Dick Jr., Rodolfo G-M, AnaPatricia G, Gene BH. Neoplasia in the
129		Chimpanzee. (Pan spp.)J Med Primatol. 2009; 38: 137-144.
130	6)	Carrozzo M. Oral diseases associated with hepatitis C virus infection. Part 1: sialadenitis and salivary
131		glands lymphoma. Oral Dis 2008; 14: 123-130.
132	7)	Carrozzo M. Oral diseases associated with hepatitis C virus infection. Part 2: lichen planus and other
133		diseases. Oral Dis 2008; 14: 217-228.

134	8)	Calarco JA, Xing Y, Cáceres M, Clarco JP, Xiao X, Pan Q, Lee C, Preuss TM, Blencowe BJ. Global
135		analysis of alternative splicing differences between humans and chimpanzees. Genes dev 2007; 21:
136		2963-2975.

- 1379) Finch CE. Evolution of the human lifespan and disease of aging: role of infection, inflammation, and nutrition. Proc Natl Acad Sci 2010; 107: 1718-1724.
- 13910) Gandolfo S, Richiardi L, Carrozzo M, Broccoletti R, Carbone M, Pagano M, Vestita C, Rosso S,
- Merletti F. Risk of oral squamous cell carcinoma in 402 patients with oral lichen planus: a follow-up 140
- study in an Italian population. Oral Oncol 2004; 40: 77-83. 141

- . - - .

138

-- ~ .

- 14211) Grossmann SM, Teixeira R, de Aguiar MC, de Moura MD, do Carmo MA. Oral mucosal conditions in
- 143chronic hepatitis C Brazilian patients: a cross-sectional study. J Public Health Dent 2009; 69: 168-175.
- 14412) Lowe SW, Lin AW. Apoptosis in cancer. Carcinogenesis 2000; 21: 485-495.
- 14513) Nagao Y, Sata M, Noguchi S, Seno'o T, Kinoshita M, Kameyama T, Ueno T: Detection of hepatitis C
- 146virus RNA in oral lichen planus and oral cancer tissues. J Oral Pathol Med 2000; 29: 259-266.
- 14714) Wallace DC, Brown MD, Lott MT. Mitochondrial DNA variation in human evolution and disease.
- 148Gene 1999; 238: 211-230.
- 14915) Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A
- 150dawn for evolutionary medicine. Annual Rev Genet 2005; 39: 359-407.

Figure 1

