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Twelve measurements of 144 crania representing 14 genera of living New World monkeys 

(Tables 1 and 3) are compared intergenerically by canonical discriminant analysis. Measurement 

items (Table 2) are selected so as to reflect general cranial morphology and temporal muscle 

development. Eigenvalues of the first two canonical variates, which, respectively, represent 

animal’s body size and degree of prognathism, are far exceeding those of the following canonic-
al variates (Table 4). The scattergram of individual crania (Figure 1) shows that the crania of 

Alouatta are aberrant as those of ceboids and that the other ceboid crania vary mainly ac-

cording to the body sizes. Howeverラ onceROSENBERGERラsfamilial division of New World 

monkeys is recognized, a regular arrangement of higher ceboid taxa is.observed. Additionally, 

special points on Alouatta, Aotus, Saimiri and Cebus are discussed on the basis of known fossil 

evidence. Lastly, isometry of facial skeletons on braincase among non-Alouatta ceboids is 

suggested. 

INTRODUCTION 

It is an age of cladism. The configuration of cedoid or platyrrhine phylogeny is now 

better-known than a decade ago. This improvement is mainly brought about by cladistic 

analyses of ceboid morphology (e.g. ROSENBERGER, 1979, mostly on dental and cranial 

characters; FORD, 1980a and 1986, on postcranial features; SETOGUCHI, 1983, on upper 

molar structures; DUNLAP' THORINGTON and AzIZ' 1985ヲ onforelimb muscles; NATORIヲ

1987, on dental and tympanic characters of callitrichids). Cladistic logic or HENNIG’s approach 
is robust for phylogenetics because it is for this purpose that Hennigian cladism was originaliy 

devised (HENNIG, 1966). However, a cladistic analysis tells nothing more than branching 

sequences of the forms under consideration. To show the course and significance of evolu-

tionary events within a group’s phylogeny, or the scenario (DELSONラ ELDREDGEand 
TATTERSALL, 1977), other methods than cladism are needed. One of these methods is 

phenetic comparison. Phenetic comparisons of ceboid genera are not rare even in the recent 

years of cladism (e.g. CIOCHON and CORRUCCINI, 1975; CONROY' 1982). Molecular studies 

might also be included in this category (ROSENBERGER, 1979). Though phylogenetic usages of 

phenetic comparisons are criticized as an inappropriate method, e.g. the criticism by SZALA y 

and DELSON (1979) on CIOCHON and CoRRUCCINI (1975), phenetic comparisons are not 

inappropriate in themselves. It is not the phenetic comparison per se but the direct derivation 

of phylogeny from it that is criticized. 

In this paper, living ceboid genera are located in one figure based on multivariate phenetic 

comparison of cranial measurements selected to represent general morphologies of ceboid 

crania (sensu stricto, that is, devoid of mandibles}, and some discussion will be paid with due 

references to ceboid phylogenies otherwise obtained. 

MATERIALS AND METHODS 

A total of 134 ceboid crania belonging to 14 living genera (Table 1) was measured on 12 

measurement items (Table 2). Table 1 is constructed on ROSENBERGER’s classification of the 
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Table 1. Material 

lnfraorder Platyrrhini 
Family Cebidae 
Subfamily Cebinae 
Tribe Cebini 
Genus Cebus …………………………………………………・………………………...・ H・－－……・・ 17 

Tribe Saimiriini 
Genus Saimiri ・ ・ ・・ H・－－…・…………………...・ H・－・・……………・……………ー…………………… 15 

Subfamily Callitrichianae 
Tribe Callitrichini 
Genus Cebuella ・ ・・・ H・－－…………………………...・ H・－－…………………………………………… 3
Genus Leontopithecus ……...・ H・－－………………………………...・ H・－－……………………・・・ 9 

Tribe Callimiconini 
Genus Callimico 

Family Atelidae 
Subfamily Atelinae 
Tribe Atelini 
Genus Ate/es …………………………...・ H ・－－－…………………………………………………... 5 
Genus Brachyteles ………………………………...・H・.....・ H・－・………...・ H・－－…………………・ 9
Genus Lagoth1・ix ……………...・ H・－－………………………………………………………………・ 9

Tribe Alouattini 
Genus Alouatta …………………………・－ ………………………………………………………・・ 25 

Subfamily Pitheciinae 
Tribe Pitheciini 
Subtribe Pitheciina 
Genus h’thecia …………………………… … ……・・…－……… ………………...・H・－－ 3 
Genus Chiropotes …………………………………………一………...・H・－－……－…・…………. 10 
Genus Cacajao …...・H・－－……...・H ・－－………………………・……………………………...・ H・.... 9 
Subtribe Callicebina 
Genus Callicebus ・・・・H ・－－………………………...・ H・－・………・………...・ H ・－－…………………・. 12 

Tribe Aotina 
Genus Aotus ……………...・H・－………………………...・ H・－－………...・ H・H・H・－－…………・…. 7 

Total 134 

Table 2. Measurement items 

a. Mid-sagittal measurements 
1. N-i: Nasion-inion length 
2. N-p: Nasion-prosthion length 
3. N-b: Nasion-basion length 
4. B-p: Basion-prosthion length 
5. B・i: Basion-inion length 

b. Breadths on the level of zygomatic arches 
6. Bzb: Bizygomatic breadth 
7. Pob: Post-orbital breadth 

c. Breadths from one temporal line to the other 
8. Fmt: Upper facial breadth (fmt-fmt) 
9. Mfb: Mid-frontal breadth 
10. Csb: Stephanion-to-stephanion breadth 
11. Brb: Breadth crossing bregma 
12. Mpb: Mid-pariteal breadth 

higher (than species level) taxa ( 1979), which is followed in this paper unless otherwise noted. 
Measurements were done at the Instituto de Ciencias de la Universidad Nacional (Bogota), 

the Instituto de Desarrollo de los Recursos Naturales Renovables (Bogota), the Field Museum 

of Natural History (Chicago), the Museu Nacional de Rio de Janeiro (Rio de Janeiro), the Japan 



Mo此eyCenter (lnuyama) and the Primate Research Institute of Kyoto University (Inuyama). 

An effort was made to restrict materials to crania of wild-shot male adults of one species for 
each genus. Selected species are Ce bus ape/la, Saimiri sciureus, Cebuella pygmaea (or Callithrix 

pyglηaea), Leontopithecus rosalia, Callimico goeldii, Ateles geoffroyi, Brachyteles arachnoides, 

Lagothrix lagotricha, Alouatta seniculus, 1有theciamonachus, Chiropotes satanas, Cacajao 

melanocephalus，αllicebus moloch and Aotus trivirgatus. However, the intention was not 
attained completely. Cacajao crania are from three species, including two from C calvus and 

two from C. rubicundus as well as five from C. melanocephalus. Sample of Ate/es contains two 

crania of A. paniscus. For genera whose crania do not show strong sexual dimorphisms except 

加 caninesor canine-second premolar complexes, crania of female or sex-unknown animals are 

also included in the sample; included female crania are four Aotus, two Chiropotes, five 

Cacajao, one Lagothrix, two Pithecia, four Ateles and one Callicebus, and sexes are not known 

for four of Chiropotes, four of Callicebus, nine of Leontopithecus and two of Cebuella crania. 

Crania of Ateles and Saimiri are not from wirld but from captive monkeys. 

Measurement items are selected to represent at-a-glance appearances of crania and degrees of 

temporal muscle developments (Table 2). First five items are on mid-sagittal plane of crania. It 

should be noted that the inion used here is not the true inion but the most posterior mid-

sagittal point of braincase measured from nasion. Therefore, present inions are usually several 

millimeters higher than true inions in relatively round-skulled monkeys such as Aotus, and are 

at the tips of external occipital protuberances in Alouatta. Post-orbital breadth (no. 7) is the 

breadth of braincase where the post-orbital constriction of the braincase is most marked. Items 

from no. 8 to no. 12 are the transverse distances from left to right temporal line. Measurements 

are taken on maximum complete millimeters, neglecting decimal fractions in millimeters. 

Canonical discriminant analysis (TANAKA, TAR UM I and WAKIMOTO, 1984) is applied to 
obtain a figure representing intergeneric variations of ceboid crania. In the resulting figure, data 

of an individual cranium of Callimico goeldii are incorporated after the canonical discriminant 

analysis is finished, using the same linear equations for canonical variates. 

RESULTS 

Means and standard deviations of measurements are shown in Table 3. The canonical 

discriminant analysis generates a total of 12 canonical variates (CV). Since the eigenvalues of 

the first two CVs, 66. 7510 and 29.3870 respectively, are far exceeding that of the third 

(4.3919), only the results concerning these two CVs are dealt with. The eigenvalues and the 

canonical coefficients of the first two CVs are shown in Table 4. The scores of the first and the 

second CVs of individual crania are plotted in Figure 1 

Though the biological interpretations of CVs based only on statistical canonical coefficients 

are said to be at best hazardous or at worst unjustified (CORRUCCINI, 1984), following 

interpretations of the first two CVs are tentatively offered, using not only the canonical 

coefficients but also the individual points plotted in Figure 1 or original measurements. 

The first CV represents animal’s size or size-related change of cranial morphology. As shown 

in Figure 1, the scores of the first CV of individual crania are fairly proportional to the animals' 

body sizes, from small Cubuella to large Alouatta or Brachyteles. This interpretation is also 

enhanced by the mostly positive canonical coefficients of this CV, though two variables have 

negative coefficients；ー0.1944for nasion-inion length (no. 1) and -0.0963 for transverse 
distance between temporal lines at the points where temporal lines intersect coronal suture (no. 

10). Incidentally, high positive coefficients of the first CV are 0.3251 for basion-inion length 
(no. 5) and 0.2165 for postorbital breadth (no. 7). 

The canonical coefficients of the second CV suggest that this CV might represent the degree 
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Table 3. Means and standard deviations of measurements 

Measurements 1. N-i 2. N-p 3. N-b 4. B-p 5. B-i 6. Bzb 7. Pob 8. Fmt 9. Mfb 10. Csb 11. Brb 12. Mpb 
九句、、

Ce bus ロ1ean 7 5.4 35.8 59.2 68.2 33.7 68.5 40.3 44.9 5.77 6.29 5.88 7.06 

s.d. 2.90 2.48 3.13 4.45 1.69 5.86 1.45 3.67 8.92 9.93 10.3 11.1 

Saimiri ロ1ean 53.7 19.8 35.5 38.4 25.5 38.5 29.7 27.8 20.7 19.1 21.9 24.2 

s.d. 2.54 1.52 2.10 3.20 1.89 2.85 1.11 1.27 5.45 5.74 8.45 7.72 

Cebu el ロ1ean 30.3 9.33 23.3 24.0 12.3 21.7 17.7 18.0 14.7 14.7 14.3 16.3 

s.d. 1.16 .577 .577 1.00 .577 1.53 .577 .000 2.08 2.08 4.16 4.04 

Leon to. ロ1ean 46.6 17.4 36.7 39.1 18.'.7 34.4 23.0 26.0 12.8 9.00 5.89 4.11 

s.d. .882 1.51 1.32 1.62 .866 1.33 1.12 1.00 3.03 3.50 3.79 3.44 

Callimico 42 77 32 34 19 37 26 28 19 19 17 19 

A tel es mean 85.6 37.4 62.2 74.8 38.6 67.0 50.2 50.4 44.8 4 7.4 49.8 52.2 

s.d. 6.03 1.34 2.05 4.09 2.41 5.24 1.92 2.51 5.12 6.19 9.78 8.35 

Brachy mean 87.4 41.2 69.7 88.0 38.2 75.9 47.2 61.2 31.4 35.4 40.7 45.2 

s.d. 2.46 2.11 2.65 3.71 1.79 3.86 1.79 3.27 3.64 3.43 4.39 5.74 

Lago th. 口1ean 82.8 33.3 63.4 78.9 35.6 6 8.3 45.9 56.9 26.0 29.2 29.6 30.0 

s.d. 3.60 2.00 3.13 3.14 1.33 2.45 1.05 1.97 5.10 6.30 6.91 5.12 

Alouat. mean 79.5 45.7 71.9 108. 33.2 78.6 41.l 57.2 19.2 19.4 20.6 23.3 

s.d. 7.25 4.11 4.90 8.79 1.42 5.48 2.09 4.19 3.29 4.44 5.10 6.32 

Pithec. mean 59.7 27.0 47.7 57.0 24.7 53.0 33.7 34.0 18.0 17 .0 16.7 18.0 

s.d. .577 1.00 1.53 3.00 1.16 3.00 1.16 000 9.85 9.54 9.71 11.8 

Chirop. mean 66.1 29.1 51.2 59.4 30.5 58.4 39.8 39.6 7.30 6.30 5.90 13.0 

s.d. 2.73 2.23 1.87 3.27 1.18 2.01 1.32 1.78 6.93 6.08 5.57 6.62 

Cacajao mean 71.6 31.8 53.0 63.9 34.0 63.3 40.3 42.4 14.2 17.1 20.3 25.1 

s.d. 1.81 2.28 3.32 5.40 1.23 5.66 2.24 2.65 10.6 10.2 12.1 14.3 

Callie 立1ean 48.9 17.4 39.5 43.6 18.5 38.4 28.3 30.3 24.4 22.8 23.2 22.1 

s.d. 1.24 1.24 1.45 1.78 .905 1.51 .452 1.06 1.62 2.33 3.04 3.50 

Aotus 日1ean 50.3 20.0 39.0 42.7 21.0 38.7 31.9 37 6 31.0 26.1 26.1 24.6 

s.d. 2.93 1.29 1.92 1.70 1.63 1.80 1 46 1.40 2.89 4.91 2.34 2.76 



Table 4. Eigenvalues and coefficients of出e1st and 2nd canonical 
variates 

Canonical variates first second 

Eigenvalues 66.7510 29.3870 

Canonical coefficients 
1. N-i -0.1944 -0.3078 
2. N-p 0.0064 -0.1386 
3. N-b 0.0791 -0.2654 
4. B-p 0.1598 0.4469 
5. B-i 0.3251 -0.0518 
6. Bzb 0.0775 0.0035 
7. Pob 0.2165 -0.3515 
8. Fmt 0.0275 0.1294 
9. Mfb 0.0344 0.0992 
10. Csb -0.0963 0.0280 
11. Brb 0.0773 -0.0504 
12. Mpb 0.0499 -0.0163 

of relative elongation of splanchnocranium to neurocranium or, more simply speaking, the 

degree of prognathism, since the largest positive coefficient is 0.4469 for basion-prostion length 

(or facial lenght, no. 4) and the second largest negative coefficient is -0.3078 for nasion-inion 

length (or maximum cranial length measured from nasion, no. 1) surpassed a little by -0.3515 

for postorbital breadth (no. 7). The signs of coefficients for last five measurement items (nos. 

8-12), though the absolute values are low, coincide with this interpretation; in prognathous 

crania temporal lines generally converge posteriorly, so the signs are positive for anterior 

measurement items (nos. 8-10) and negative for posterior items (nos. 11 and 12). While this 

interpretation of the second CV is applied safely to comparisons of about same sized genera, 

e.g. Saimiri vs. Callicebus or Aotus and Brachyteles vs. Alouatta, it is hardly possible from the 

scores of the second CV alone to say that the crania of Cebuella is more prognathous than those 

of Ateles or Brachyteles. To avoid this kind of erroneous or excessive interpretation, it is 

appropriate here to show longitudinal cranio・facialindices ( [no. 4] x 100/ [no. 1] for in di-

vidual genera; 90.4 for Cebus, 71.6 for ぬimiri,79.1 for Cebuella, 84.0 for Leontopithecus, 

81.0 for Callimico, 87.4 for Ateles, 100.6 for Brachyteles, 95.3 for Lagothrix, 135.4 for 

Alouatta, 95.5 for Pithecia, 89.9 for Chiropotes, 89.3 for Cacajao, 89.1 for Callicebus and 84.9 

for Aotus. 

Before proceeding to the discussion, discriminations attained in Figure 1 are offered a 

passing mention. The discrimination of Alouatta is very excellent. Using convex polygons made 

by connecting outlying points of individual generaラ thediscriminations of other genera than 

Alouatta are also good except for Cebus，σziropotes and Cacajao whose polygons are 
overlapping each other. Reanalysis on crania of these three genera attained good discrimination. 

The hiatus between Cebuella and Leontopithecus would be fulfilled or much reduced if the 

crania of Saguinus and Callithrix were included in the analysis. 

DISCUSSION 

The pattern of adult intergeneric cranial variation of ceboids depicted in Figure 1 shows a 

marked deviation of Alouatta from other genera. Apart from Alouatta, ceboid genera roughly 

make a line from upper left-side Cebuella to lower right-side atelins. This apparent correlation 

between the first and the second CV among non-Alouatta ceboids, contra the theoretical 

constraint that the two CVs should be independent of each other, is probably brought about, at 
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Figure 1. Scattergram of the first two canonical variates. The point for Callimico goeldii (G) 
is incorporated after the canonical discriminant analysis is finished, using the same equations. 

least partly, by too heavy sampling of Alouatta crania. However, the disproportionally heavy 

sampling alone does not suffice to explain the seeming correlation of these two CVs among 

ceboid crania except those of Alouatta and Alouatta's derived positions, because the points of 

heavily sampled Cebus are flush on the above-mentioned line, and intermingled with those of 

Cacajao and Chiropotes. Therefore, the pattern depicted in Figure 1 is assured to reflect some 

important aspects of the real variation in ceboid cranial morphologies, that is, the crania of 

Alouatta are aberrant as those of ceboids and the other ceboid crania vary mainly according to 

the animals' sizes 

The above-mentioned non-Alouatta line in Figure 1 is a composite of two parallel Imes; an 

upper line of non-Alouatta atelids and a lower line of cebids. These two parallel lines fall on 

each other only at the largest cebid, Cebus, and middle-sized atelids, Cacajao and Chiropotes, 

largely because of upward deviation of Cebus from cebid line. This indicates that cebids 

excluding Cebus have shorter face than atelids. Once recognizing these two lines, the seemingly 

complicated configuration of Figure 1 is easily understood. The cebid line can be divided into 

two portions, respectively, representing subfamilies Cebinae and Callitrichinae at a gap between 

Saimiri and αllimico. The atelid line too can be divided into Atelinae and Pitheciinae portions 
at the gap between Lagothrix and Cacajao. Moreover, in these two lines, each ceboid tribe is 

contiguous, excepting tribe Pitheciini, the two subtribes of which are separated by tribe Aotina. 

And Cebinae portion of cebid line and Pitheciinae portion of atelid line go side by side, 

representing that the larger cebid subfamily and the smaller atelid subfamily have very similar 

size ranges. This regular arrangement of ceboid higher taxa means very slow size-range deploy-



ment by ceboid lineages in the long run, or very rare large-scaled body size shifts in ceboid 

phylogeny, at least in lineages leading to living genera. This conservatism in body size of 

ceboids, in turn, suggests body size importance in ceboid evolution. Before proceeding to some 

special problems on a few genera, it should be noted that the two contrasting dichotomies of 

ceboids or platyrrhines are“orthogonal" to each other in Figure 1. ROSENBERGER’s (1979) 

is parallel with and between the two lines, and the traditional one is perpendicular to the lines 

and crossing them at a point around Callimico. 
Unique positions of Alouatta crania in Figure 1 are representing their marked degree of 

prognathism or airorrhynchie. This, in turn, is explained by the specialized enlargement of 

sub basal vocal apparatus (BIEGERT, 1963). Ontogenetically, the prognathism of Alouatta is 

brought about by the far delayed obliteration of spheno-occipital and midsphenoidal syn-

chondroses relative to the obliteration of the main sutures on cranial vault. Compared with the 

situations in other ceboids, for example in Cebus, Alouatta's sutural fusions are earlier and 

fusions of basicranial synchondroses occur much later. Craniofacial morphologies of non-human 

pr出1atesor general mammals are usually explained by masticatory adaptations, but in the case 

of Alouatta it is difficult to explain its marked prognathism by dietary adaptation alone 

because the temporal muscle development is not strong (CACHEL, 1979, 1984) and the 

mandibular angle, though very deep in lateral view, is occasionally paper-thin. Biomechanical 

scaling analyses of Old and New World monkeys' mandibles by BOUVIER (1986a, b) showed 

that the long mandible of Alouatta could not be explained by folivory alone because the 

condylar specialization of the Old World folivorous monkeys, that is, colobines, is not observed 

in Alouatta mandible. Therefore, the marked prognathism of Alouatta is explained mostly by 

its howling specializationラ thougha small portion of it may be explained by folivory since 

exclusively folivorous, at least seasonally, Brachyteles (NISHIMURA, 1979) also shows a slight 

degree of prognathism. 

Phyletically, Alouatta 's marked prognathism or airorrhynchie seems to have evolved after 

Middle Miocene. Though no nearly complete cranium of Stirtonia has yet been discovered, the 

mandibular corpus of Stirtonia tatacoensis (UCMP, no. 38989) exhibits some cues; the 

mandible is a little smaller than that of female Alouatta，“lateral aspect of right horizontal 
ramus inferentially little expanded distally’＇， Sp旬、 curveor“upward curvature of back teeth" 
is weak, and “m3 (is) evidently smaller than m1 ”（HERSHKOVITZ, 1970). These cues 
collectively suggest that the size of Alouatta was mostly attained by Middle Miocene, but that 

the unique prognathism perhaps evolved mostly after Middle Miocene. Upper jaws of a little 

larger Stirtonia victoriae (KAY et al., 1987) concur this suggestion. 
The uniquely nocturnal anthropoid, Aotus, on the other hand, does not show any deviation 

from above-mentioned line. This means that the large orbits of Aotus are compactly incor-

porated in a skull constructed on general ceboid or atelid cranial plan, as is suggested by low 

suborbital maxillary height, narrow interorbital breadth and nearly exclusive contribution of 

zygomatic bone to flaring lateral wall of orbit. This suggests that the nocturnality of Aotus is 

not primary but secondary one, as CARTMILL (1980) ascertained, and corroborates the 

hypothesized rapid (and early) evolution of large orbits in Aotus lineage (SETOGUCHI and 

ROSENBERGER, 1987). 

The positions of Cebus and Saimiri in Figure 1 show notable contrast to each other; points 

for Saimiri are lower than those for same sized atelids, while points for Cebus are intermingled 

with those for same sized atelids. This situation is perhaps brought about by occipital pro-

trusion of Saimiri and recent masticatory adaptation of tufted Cebus to hard dietary materials. 

The separation of Saimiri and Cebus lineages is considered to be very old, older than Late 

Oligocene (ROSENBERGER, 1979), because the interorbital fenestra of Dolichocebus 

synapomorphic with Saimiri negatively implies a contemporaneous but separate lineage leading 

to Cebus. But the contrast between Saimiri and Cebus in Figure 1 seems to have been attained 
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after Late Oligocene, because the cranium of Dolichocebus, though seriously deformed, 1s more 

prognathous than that of Saimiri and does not show the pronounced occipital protrusion of 

Saimiri (DELSON and ROSENBERGER, 1984). And it is also probable that the relative 

prognathism of Cebus ape/la, as a cebid, is a relatively new feature specific to the species or the 

tufted group of the genus, though there is no fossil evidence. 

Lastly, near isometry of splanchnocranium on neurocranium among ceboids except Alouatta 

(and Saimiri), suggested by both Figure 1 and longitudial cranio・facialindices, will be discussed. 

Positive allometries of facial skeletons on neurocrania are common place occurrences among 

primates or mammals generally, e.g. among African apes (SHEA, 1985) and among cer-

copithecoids (BOUVIER, l 986a). If a positive allometry of facial skeleton on braincase is a rule 

in interspecific adult scaling (GOULD, 1975), some special reasons for the near isometry among 

non-Alouatta ceboids may be postulated; phyletic dwarfism of“marmoset”（FORD, 1980b) 
coupled with conservative dental size reduction in spite of M3 loss, characteristic ectotympanic 

morphology of ceboids which is supposed to be inefficient in protection of tympanic mem-

brane from heavy masticatory disturbance and in that way limiting animals' size range low 

enough to be free from metabolic scaling, ceboid pterionic configuration not favoring basifacial 

elongation, etc. On the other hand, dental or masticatory muscles’isometries on body size (or 

weight) are also suggested (e.g. GINGERICH and SMITH, 1985; CACHEL, 1984), though even 

if these isometries are ascertained, it remains to be explained why general negative allometries 

of brain on body size (GOULD, 1975) are not observed in non-Alouatta ceboids. This subject 

will be considered in another place 
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