Copper-Catalyzed Borylative Allyl-Allyl Coupling Reaction**

Kazuhiko Semba, Naoto Bessho, Tetsuaki Fujihara, Jun Terao, and Yasushi Tsuji*

Abstract

Borylative allyl-allyl coupling using allenes, bis(pinacolato)diboron, and allyl phosphates has been developed in the presence of a copper catalyst bearing an N-heterocyclic carbene ligand. The reaction affords boryl-substituted 1,5-diene derivatives in good to high yields with high regio- and (Z$)$-selectivity.

Allyl-allyl coupling ${ }^{[1]}$ between allyl nucleophiles and allyl electrophiles is a powerful tool providing direct access to 1,5 -dienes, which are abundant in naturally occurring terpenes ${ }^{[2]}$ and are versatile building blocks in organic synthesis. ${ }^{[3]}$ Stoichiometric amounts of allyl $\mathrm{Li},{ }^{[1 \mathrm{a}, \mathrm{b}]} \mathrm{Mg},{ }^{[1 \mathrm{c}-\mathrm{h}]} \mathrm{Sn},{ }^{[1 \mathrm{i}, \mathrm{j}]} \mathrm{B},{ }^{[1 \mathrm{k}-\mathrm{n}]} \mathrm{Si},{ }^{[10]}$ and $\mathrm{In}^{[1 \mathrm{p}]}$ nucleophiles were reacted with allyl electrophiles. However, with unsymmetrical allyl reagents, the coupling would occur between the α - or γ-position of the nucleophile (α_{N} or γ_{N}) and that of the electrophile (α_{E} or γ_{E}). Therefore, there are four possible regioisomers, and more isomers may appear if stereoisomers are also considered (Eq. 1). In fact, allylallyl couplings often suffer from low regio- and stereoselectivities,

even if transition-metal catalysts such as $\mathrm{Cu},{ }^{[1 \mathrm{e}-\mathrm{g}]} \mathrm{Ni},{ }^{[1 \mathrm{k}]}$ and $\mathrm{Pd}^{[1 \mathrm{k}, 1 \mathrm{p}]}$ are employed. Thus, achieving both regio- and stereoselective allylallyl coupling is a challenging task. Recently, Morken and co-workers successfully developed a selective ($\gamma_{\mathrm{N}}-\gamma_{\mathrm{E}}$) allyl-allyl coupling reaction between allyl boronates and allyl electrophiles in the presence of a chiral Pd-bisphosphane catalyst. ${ }^{[1 \mathrm{~m}]}$
[*] Prof. Dr. K. Semba, Naoto Bessho, Prof. Dr. T. Fujihara, Prof. Dr. J.
Terao, Prof. Dr. Y. Tsuji*
Department of Energy and Hydrocarbon Chemistry
Graduate School of Engineering, Kyoto University
Kyoto 615-8510 (Japan)
Fax: (+) 81-75-383-2415
E-mail: ytsuji@scl.kyoto-u.ac.jp
Homepage: http://twww.ehcc.kyoto-u.ac.jp/
Prof. Dr. K. Semba
Present Address: Department of Material chemistry
Graduate School of Engineering, Kyoto University
Kyoto 615-8510 (Japan)
[**] This work was supported by Grant-in-Aid for Scientific Research on Innovative Areas ("Organic synthesis based on reaction integration" and "Molecular activation directed toward straightforward synthesis") from MEXT, Japan. K. S. is grateful to a Research Fellowship of JSPS for Young Scientists.

Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author.

Herein, we report the first borylative allyl-allyl coupling reaction using allenes (1), ${ }^{[4]}$ bis(pinacolato)diboron $\left(\mathrm{B}_{2}(\text { pin })_{2}\right)$, and allyl phosphates (2) ${ }^{[1 \mathrm{e}, \mathrm{f}]}$ in the presence of a copper catalyst (Scheme 1). In the reaction, the allyl copper species bearing a boryl functionality at the β_{N} position is generated catalytically, ${ }^{[4,5]}$ and reacts with 2 . The reaction provides a variety of boryl-substituted 1,5 -dienes (3) with excellent stereo- and regio- $\left(\alpha_{\mathrm{N}}-\gamma \mathrm{E}\right)$ selectivities. ${ }^{[6]}$ The boryl functionality is very useful for further derivatization ${ }^{[7]}$ (vide infra).

Scheme 1. Borylative allyl-allyl coupling

As shown in Table 1, the reaction conditions were optimized with 1a, $(Z) \mathbf{- 2 a}$, and $\mathrm{B}_{2}(\mathrm{pin})_{2}$ as the substrates in the presence of a catalytic amount of CuCl and a ligand in THF at $25^{\circ} \mathrm{C}$. As the ligand, ICy (see Figure 1 for structures of the carbene ligands) was found to be the most effective, affording (Z)-3a in 84% yield with 95% isomeric purity (standard reaction conditions, entry 1). Without the ligand, (Z) 3a was afforded in 2% yield. From the reaction mixture in entry 1 , (Z)-3a was isolated in 77% yield with 98% isomeric purity. The (Z)configuration of the product was determined by X-ray crystal structure analysis. ${ }^{[8]}$ Furthermore, the present procedure is easily amenable to a gram-scale reaction: by employing 1.0 g of $1 \mathbf{1 a}(8.2$ $\mathrm{mmol}), 1.4 \mathrm{~g}$ (75% yield with 98% isomeric purity) of (Z)-3a was obtained. Upon reducing the amount of $\mathrm{KO} t \mathrm{Bu}$ to 0.30 equiv, the yield of (Z) - $\mathbf{3 a}$ decreased to 17%. Other carbene ligands such as SIMes, IMes, and ${ }^{\text {Me}}$ IMes (Figure 1) also afforded the products in high yields, but the selectivity was somewhat decreased (entries 2-4). Bulky IPr as the ligand reduced the yield considerably to 8% (entry 5). As for the phosphane ligands, ${ }^{[9]} \mathrm{PCy}_{3}$ and dppb were efficient, affording (Z)-3a in good yields with $>90 \%$ selectivities (entries 6 and 7). On the other hand, phosphanes such as dppp, dppe, dppbz, Xantphos, and PPh_{3} provided the product in much lower yields and with lower selectivities (Table S1). ${ }^{[8]}$ Even employing (E)-2a instead of (Z) - $\mathbf{2 a}$ as the allyl phosphate, the same (Z) - $\mathbf{3 a}$ was obtained as the product in 58% yield with 91% isomeric purity (entry 8). With respect to the leaving group of the allyl electrophile, the corresponding allyl bromide ($(Z)-\mathbf{2 a} \alpha)$ instead of the phosphate afforded (Z) - $\mathbf{3 a}$ in 16% yield (entry 9). Only a trace amount of $(Z)-\mathbf{3 a}$, if any, was provided from the corresponding allyl carbonate $((Z)-\mathbf{2} \mathbf{a} \boldsymbol{\beta})$ and acetate $((Z)$ 2ay) (entries 10 and 11).

Table 1: Reaction optimization. ${ }^{\text {[a] }}$

Entry	Changes from the standard conditions	(Z)-3a	
		$\begin{aligned} & \text { Yield } \\ & {[\%]^{[b]}} \end{aligned}$	Isomeric Purity [\%] ${ }^{[\mathrm{c}]}$
1	none	84	95
		$(77)^{[d]}$	$(98)^{[\mathrm{c}]}$
2	SIMes $\cdot \mathrm{HBF}_{4}$ instead of ICy $\cdot \mathrm{HBF}_{4}$	90	94
3	IMes $\cdot \mathrm{HCl}$ instead of $\mathrm{ICy} \cdot \mathrm{HBF}_{4}$	88	91
4	${ }^{\text {Me }}$ IMes $\cdot \mathrm{HCl}$ instead of ICy $\cdot \mathrm{HBF}_{4}$	85	94
5	$\mathrm{IPr} \cdot \mathrm{HCl}$ instead of ICy $\cdot \mathrm{HBF}_{4}$	8	78
6	PCy_{3} instead of $\mathrm{ICy} \cdot \mathrm{HBF}_{4}$	84	91
7	dppb instead of ICy. HBF_{4}	71	90
8	(E)-2a instead of (Z)-2a	58	91
9	LG $=\mathrm{Br}:(Z)-\mathbf{2 a} \alpha$	16	97
10	$\mathrm{LG}=\mathrm{OC}(\mathrm{O}) \mathrm{OMe}{ }^{(Z)} \mathbf{(Z) \mathbf { 2 a } \boldsymbol { \beta }}$	1	-
11	LG $=$ OAc: $(Z)-\mathbf{2 a} \gamma$	0	-

[a] Standard conditions: $\mathbf{1 a}\left(0.38 \mathrm{mmol}, 1.5\right.$ equiv), $\mathrm{B}_{2}(\mathrm{pin})_{2}(0.40 \mathrm{mmol}, 1.6$ equiv), (Z)-2a (LG=OP(O)(OEt) $2,0.25 \mathrm{mmol}), \mathrm{CuCl}(0.025 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, ICy. $\mathrm{HBF}_{4}(0.030 \mathrm{mmol}, 12 \mathrm{~mol} \%), \mathrm{KO} t \mathrm{Bu}(0.38 \mathrm{mmol}, 1.5$ equiv), THF (2.0 $\mathrm{mL}), 25^{\circ} \mathrm{C}, 24 \mathrm{~h}$. [b] GC yield of (Z)-3a. [c] A ratio of (Z)-3a/other isomers. [d] Isolated yield of (Z)-3a. [e] Purity of the isolated product.

ICy

IMes: $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{Me}$
Me.IMes: $R^{1}=R^{2}=R^{3}=$ Me
IPr: $R^{1}=H, R^{2}=i \operatorname{Pr}, R^{3}=H$
Figure 1. Structure of Ligands.

Other allenes ($\mathbf{1 b}-\mathbf{h}$) and allyl phosphates $(\mathbf{2 a}-\mathbf{d})$ were reacted under the standard reaction conditions (Table 2). Various 1-monosubstituted allenes $(\mathbf{1 b}-\mathbf{h})$ reacted with $(Z) \mathbf{- 2 a}$ to provide the corresponding products $((Z)-\mathbf{3 b}-\mathbf{h})$ in high isolated yields regio- and stereoselectively (isomeric purities $>95 \%$) (entries 1-7). Silyl ether ${ }^{[9]}$ (entry 4), olefin (entry 5), ester (entry 6), and bromo (entry 7) functionalities were tolerated under these reaction conditions. In contrast, 1-phenylallene, 1,1-di-, and 1,3-di-substituted allenes did not give the desired products selectively. The γ-cyclohexylsubstituted allyl phosphate (2b) and 1a afforded the corresponding adduct $((Z)-3 i)$ in 62% yield, with a slightly lower isomeric purity of 92% (entry 8). In the case of β-methyl (2c) and β-cyclohexyl (2d) substituted allyl phosphates, the corresponding products, $(Z)-\mathbf{3 j}$ and $(Z)-\mathbf{3 k}$, were obtained in good yields with high selectivity (entries 9 and 10). The Z configurations of $(Z)-\mathbf{3 b},(Z)-\mathbf{3 c}$, and $(Z)-\mathbf{3 h}$ were determined through NOESY measurements of these products. The Z -

Table 2: Borylative allyl-allyl coupling. ${ }^{[a]}$

$$
\mathrm{CuCl}(10 \mathrm{~mol} \%)
$$

$\xrightarrow[\substack{\mathrm{KOtBu}(1.5 \text { equiv }) \\ \mathrm{THF}, 25^{\circ} \mathrm{C}, 24 \mathrm{~h}}]{\substack{\mathrm{R}^{1} \\ \mathrm{~B}_{2}(\mathrm{pin})_{2}(1.6 \text { equiv })}}$
(Zner
[a] Allene ($0.75 \mathrm{mmol}, 1.5$ equiv), $\mathrm{B}_{2}(\mathrm{pin})_{2}(0.80 \mathrm{mmol}, 1.6$ equiv), allyl phosphate (0.50 mmol), $\mathrm{CuCl}(0.050 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{ICy} \cdot \mathrm{HBF}_{4}(0.060$ $\mathrm{mmol}, 12 \mathrm{~mol} \%), \mathrm{KO} t \mathrm{Bu}\left(0.75 \mathrm{mmol}, 1.5\right.$ equiv), THF (4.0 mL), $25^{\circ} \mathrm{C}, 24 \mathrm{~h}$. [b] Yield of the isolated product: isomeric purity $>95 \%$. [c] $\mathrm{CuCl}(0.10 \mathrm{mmol}$, $20 \mathrm{~mol} \%), \mathrm{ICy}^{2} \cdot \mathrm{HBF}_{4}(0.12 \mathrm{mmol}, 24 \mathrm{~mol} \%), \mathrm{KO} t \mathrm{Bu}(1.0 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{B}_{2}(\mathrm{pin})_{2}(1.1 \mathrm{mmol}, 2.1$ equiv). [d] Isomeric purity, 92%.
geometries of all the other products were confirmed similarly after derivatization of (Z) - 3 through a Suzuki-Miyaura coupling reaction with 4-bromotoluene (vide infra, Scheme 3c and Supporting Information).

The reaction of α-substituted allyl phosphates ($\mathbf{2 e - g}$) may afford more stereo isomers ($5 E$ and $5 Z$). Gratifyingly, with ICy as the ligand under the standard conditions (entry 1, Table 1), 2e, 2f, and $\mathbf{2 g}$ gave $5 E$ products $(1 Z, 5 E)-\mathbf{3 1}-\mathbf{n}$ in good isolated yields with good (84%) to excellent (98%) $5 E$ selectivities (Scheme 2 a). Here, yields of the byproducts other than $(1 Z, 5 E)-3$ and $(1 Z, 5 Z)-3$ were $<5 \%$. Remarkably, with SIMes as the ligand, the stereoselectivity was switched from $5 E$ to $5 Z$. Thus, $(1 Z, 5 Z)-\mathbf{3 1}$ and $(1 Z, 5 Z)-\mathbf{3 m}$ were isolated in good yields with high (96% and 91%, respectively) $5 Z$ selectivity (Scheme 2 b). Furthermore, the α, γ-di-substituted allyl phosphates $((Z)-\mathbf{2 h})$ reacted with 1a to afford ($1 Z, 5 E$)-30 with 98% isomeric purity (Scheme 2c).

Scheme 2. Reactions with. α-substituted allyl phosphates (2e-h).

The boryl moieties of the adducts were removed easily through the proto-deborylation reaction. ${ }^{[10]}$ Thus, $(Z)-\mathbf{3 e}$ and (Z) - $\mathbf{3 k}$ provided high yields of the corresponding (Z)-1,5-dienes $([(Z)-3 e]-H$ and $[(Z)$ $\mathbf{3 k}]-\mathbf{H}$) (Scheme 3a, b), which were not easily prepared by the conventional allyl-allyl coupling reaction. ${ }^{[1 f]}$ Suzuki-Miyaura coupling ${ }^{[7]}$ of (Z)- $\mathbf{3 g}$ with 4-bromotoluene proceeded smoothly to afford $[(Z) \mathbf{- 3 g}]-A r$ in 99% yield (Scheme 3c). Similar coupling of (Z) $\mathbf{3 d}-\mathbf{f},(Z)-\mathbf{3 i}-\mathbf{k},(1 Z, 5 E)-\mathbf{3 1}-\mathbf{o}$, and $(1 Z, 5 Z)-31-\mathbf{m}$ with 4-bromotoluene afforded the corresponding $[(Z)-\mathbf{3 d} \mathbf{- f}]-\mathbf{A r},[(Z)-\mathbf{3 i}-\mathbf{k}]-\mathbf{A r},[(1 Z, 5 E)-$ $\mathbf{3 1}-\mathbf{o}]-\mathbf{A r}$ and $[(1 Z, 5 Z)-\mathbf{3 l - m}]-A r$ in good to quantitative yields (Table S2).$^{[8]}$ The coupling reaction with vinyl bromide also provided the corresponding triene, $[(Z)-3 \mathbf{k}]-\mathbf{V}$, quantitatively (Scheme 3d)

A possible catalytic cycle is shown in Scheme 4. t-Butoxy copper species $(\mathbf{A})^{[11]}$ is generated from CuCl , the carbene ligand (L), and $\mathrm{KO} t \mathrm{Bu}$ (step a). Then, \mathbf{A} reacts with $\mathrm{B}_{2}(\mathrm{pin})_{2}$ to afford the borylcopper species ${ }^{[5 a, 12]}(\mathbf{B})$ (step b). The allene (1) reacts with \mathbf{B} to generate the β-boryl (Z) - σ-allyl copper intermediate $(\mathbf{C})^{[4,5]}$ regioand stereoselectively (step c). Addition of \mathbf{C} to the $\mathrm{C}=\mathrm{C}$ bond of $\mathbf{2}$ occurs, ${ }^{[13]}$ giving \mathbf{D} (step d). Subsequently, stereoselective β elimination ${ }^{[13]}$ releasing the copper phosphate (\mathbf{E}) provides 3 as the product (step e). Finally, the reaction of \mathbf{E} with $\mathrm{KO} t \mathrm{Bu}$ regenerates \mathbf{A} and the catalytic cycle is closed (step f).

These catalytic steps in Scheme 4 were confirmed by stoichiometric reactions ${ }^{[8]}$ employing ${ }^{\text {Me }}$ IMes as the ligand, which is an efficient ligand in the catalytic reaction (entry 4 in Table 1). As a model reaction for step a, the stoichiometric reaction of (${ }^{\mathrm{Me}} \mathrm{IMes}$) CuCl with $\mathrm{NaO} t \mathrm{Bu}$ afforded $\left({ }^{\mathrm{Me}} \mathrm{IMes}\right) \mathrm{Cu}(\mathrm{O} t \mathrm{Bu})\left(\mathbf{A}^{\prime}\right)$ in 72% yield after recrystallization. As in step b, \mathbf{A}^{\prime} reacted with B_{2} (pin) $)_{2}$ to give (${ }^{\mathrm{Me} \text { IMes) } \mathrm{Cu}-\mathrm{B}(\text { pin })\left(\mathbf{B}^{\prime}\right) \text { (Scheme 5a). }{ }^{[5 \mathrm{a}, 12]} \text { Moreover, }}$

Scheme 3. Derivatization of the products.

Scheme 4. A possible catalytic cycle.
reaction of \mathbf{B}^{\prime} with 1a provided the β-boryl (Z) - σ-allyl copper $\left(\mathbf{C}^{\prime}\right)^{[14]}$ (Scheme 5b, cf. step c). Finally, \mathbf{C}^{\prime} reacted with (Z)-2a to afford (Z)3a in 60% yield (Scheme 5b, cf. steps d and e). ${ }^{[15]}$ On the other hand, there might be some possibility that allenes (1) and $\mathrm{B}_{2}(\mathrm{pin})_{2}$ react first to give diboration adducts, ${ }^{[16]}$ after which the adducts react with allyl phosphates (2) to afford 3. Hence, the corresponding diboration adduct (4a) was prepared by a literature method. ${ }^{[17]}$ However, the reaction between $\mathbf{4 a}$ and $(Z) \mathbf{- 2 a}$ was very sluggish ${ }^{[18]}$ and the desired product (Z)-3a was afforded in only low yield (Scheme 5c). Therefore, these observations in Scheme 5 indicate that the catalytic reaction proceeds via the β-boryl (Z) - σ-allyl copper species (\mathbf{C}) as shown in Scheme 4, rather than via the diboration of the allenes. As for the $5 E / 5 Z$ switch with ICy and SIMes (Scheme 2), both the ligands might afford the same intermediate such as $\mathbf{D}^{[[19]}$ (Scheme 6) in step d (Scheme 4). From D', (5E)-3 could be obtained with ICy by the β elimination (step e) via anti-periplanar conformation ${ }^{[13]}$ (\mathbf{D}^{\prime} anti, Scheme 6). On the other hand, less electron-donating ${ }^{[20]}$ SIMes might facilitate coordination of the phosphate moiety to the copper and the resulting syn-periplanar conformation ${ }^{[13 a]}\left(\mathbf{D}^{\prime}\right.$ syn $)$ could afford (5Z)-3.

Scheme 5. Reactions relevant to the reaction mechanism.

Scheme 6. Stereochemistry of step e in Scheme 4

In conclusion, a highly stereo- and regioselective coppercatalyzed borylative allyl-allyl coupling has been developed. The reaction affords a wide variety of boryl substituted 1,5 -dienes in good to high yields. The reaction proceeds via the β-boryl $(Z)-\sigma$-allyl copper species as a key catalytic species. Further studies on the reaction using optically active substrates and the reaction mechanism are now in progress.

Keywords: Allenes • Allylic compounds • C-C Coupling •Boron •

 Copper[1] a) Y. Yamamoto, K. Maruyama, J. Am. Chem. Soc. 1978, 100, 62826284; b) Y. Yamamoto, H. Yatagai, K. Maruyama, J. Am. Chem. Soc. 1981, 103, 1969-1975; c) A. Goliaszewski, J. Schwartz, J. Am. Chem. Soc. 1984, 106, 5028-5030; d) A. Goliazewski, J. Schwartz, Tetrahedron, 1985, 41, 5779-5789; e) A. Yanagisawa, N. Nomura, H. Yamamoto, Synlett, 1993, 689-690; f) A. Yanagisawa, N. Nomura, H. Yamamoto, Tetrahedron 1994, 50, 6017-6028; g) A. S. E. Karlström, J.-E. Bäckvall, Chem. Eur. J. 2001, 7, 1981-1989; h) V. Hornillos, M. Pérez, M. Fañanás-Mastral, B. L. Feringa, J. Am. Chem. Soc. 2013, 135, 2140-2143; i) B. M. Trost, E. Keinan, Tetrahedron Lett. 1980, 21, 2595-2598; j) J. Godschalx, J. K. Stille, Tetrahedron Lett. 1980, 21, 2599-2602; k) E. F. Flegeau, U. Schneider, S. Kobayashi, Chem. Eur. J. 2009, 15, 12247-12254; 1) A. Jiménez-Aquino, E. F. Flegeau, U. Schneider, S. Kobayashi, Chem. Commun. 2011, 47, 9456-9458; m) P. Zhang, L. A. Brozek, J. P. Morken, J. Am. Chem. Soc. 2010, 132, 10686-10688; n) L. A. Brozek, M. J. Ardolino, J. P. Morken, J. Am. Chem. Soc. 2011, 133, 16778-16781; o) M. Murakami, T. Kato, T. Mukaiyama, Chem. Lett. 1987, 1167-1170; p) P. H. Lee, S.-Y. Sung, K. Lee, S. Chang, Synlett 2002, 146-148.
[2] a) Terpenes-Flavors, Fragrances, Pharmaca, Pheromones, ed. E. Breitmaier, Wiley-VXH, Weinheim, 2006; b) K. C. Nicolaou and T. Montagnon, in Molecules that Changed the World, Wiley-VCH, Weinheim, 2008.
[3] Selected examples for the use of 1,5-dienes in organic synthesis: a) R J. Felix, D.Weber, O. Gutierrez, D. J. Tantillo, M. R. Gagné, Nat. Chem.

2012, 4, 405-409; b) J. A. Feducia, M. R. Gagné, J. Am. Chem. Soc. 2008, 130, 592-599; c) Y.-J. Zhao, S.-S. Chng, T.-P. Loh, J. Am. Chem. Soc. 2007, 129, 492-493; d) T. J. Donohoe, S. Butterworth, Angew. Chem. 2003, 115, 978-981: Angew. Chem. Int. Ed. 2003, 42, 948-951; e) R. C. D. Brown, J. F. Keily, Angew. Chem. 2001, 113, 4628-4630: Angew. Chem. Int. Ed. 2001, 40, 4496-4498; f) L. E. Overman, F. M. Knoll, J. Am. Chem. Soc. 1980, 102, 865-867.
[4] For Copper-catalyzed borylative transformation of allenes, see: a) F. Meng, F. Jung, A. H. Hoveyda, Org. Lett. 2013, 15, 1414-1417; b) B. Jung, A. H. Hoveyda, J. Am. Chem. Soc. 2012, 134, 1490-1493; c) W. Yuan, S. Ma, Adv. Synth. Catal. 2012, 354, 1867-1872; d) W. Yuan, X. Zhang, Y. Yu, S. Ma, Chem. Eur. J. 2013, 19, 7193-7202; e) F. Meng, H. Jang, B. Jung, A. H. Hoveyda, Angew. Chem. 2013, 125, 5150-5155: Angew. Chem. Int. Ed. 2013, 52, 5046-5051.
[5] a) K. Semba, M. Shinomiya, T. Fujihara, J. Terao, Y. Tsuji, Chem. Eur. J. 2013, 19, 7125-7132.; b) K. Semba, T. Fujihara, J. Terao, Y. Tsuji, Angew. Chem. 2013, 125, 12626-12629: Angew. Chem. Int. Ed. 2013, 52, 12400-12403.
[6] For copper-catalyzed carboborations, see: a) P. Liu, Y. Fukui, P. Tian, Z.-T. He, C.-Y. Sun, N.-Y Wu, G.-Q. Lin, J. Am. Chem. Soc. 2013, 135, 11700-11703; b) K. Kubota, E. Yamamoto, H. Ito, J. Am. Chem. Soc. 2013, 135, 2635-2640; c) H. Yoshida, I. Kageyuki, K. Takaki, Org. Lett. 2013, 15, 952-955; d) R. Alfaro, A. Parra, J. Alemán, J. L. G. Ruano, M. Tortosa, J. Am. Chem. Soc. 2012, 134, 15165-15168; e) L. Zhang, J. Cheng, B. Carry, Z. Hou, J. Am. Chem. Soc. 2012, 134, 14314-14317.
[7] a) N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457-2483; b) A. Suzuki, H. C. Brown, Organic Syntheses Via Boranes, Vol. 3, Suzuki Coupling, Aldrich, Milwaukee, 2003.
[8] See Supporting Information for detail.
[9] Abbreviations: PCy_{3}, tricyclohexylphosphine; dppb, 1,4bis(diphenylphosphino)butane; dppp, 1,3bis(diphenylphosphino)propane; dppe, 1,2bis(diphenylphosphino)ethane; dppbz, 1,2-diphenylphosphinobenzene; Xantphos, 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene; TBS, tert-butyldimethylsilyl.
$[10] ~ a) ~ T . ~ G . ~ E l f o r d, ~ S . ~ N a v e, ~ R . ~ P . ~ S o n a w a n e, ~ V . ~ K . ~ A g g a r w a l, ~ J . ~ A m . ~ C h e m . ~$ Soc. 2011, 133, 16798-16801; b) H. C. Brown, G. A. Molander, J. Org. Chem. 1986, 51, 4512-4514; c) H. C. Brown, K. J. Murray Tetrahedron 1986, 42, 5497-5500.
[11] N. P. Mankad, D. S. Laitar, J. P. Sadighi Organometallics, 2004, 23, 3369-3371.
[12] D. S. Laitar, J. P. Müller, J. P. Sadighi, J. Am. Chem. Soc. 2005, 127, 17196-17197.
[13] The addition of alkyl copper species to the $\mathrm{C}=\mathrm{C}$ bond of allyl phosphates and the β-elimination releasing copper phosphates have been proposed: a) K. Nagao, U. Yokobori, Y. Makida, H. Ohmiya, M. Sawamura, J. Am. Chem. Soc. 2012, 134, 8982-8987; b) H. Ohimiya, U. Yokobori, Y. Makida, M. Sawamura, J. Am. Chem. Soc. 2010, 132, 2895-2897.
[14] We have isolated the first β-boryl σ-allyl copper species, ${ }^{[5 a]}$ which were postulated in several catalytic reactions, ${ }^{[4]}$ and fully characterized by Xray crystal structure analysis.
[15] δ-Silyl σ-allyl copper species react with allyl phosphate to afford 1,5dienes with low selectivity. See: V. Liepins, J.-E. Bäckvall, Eur. J. Org. Chem. 2002, 3527-3535.
[16] For copper-catalyzed diborylation of alkynes and arynes using $\mathrm{B}_{2}(\mathrm{pin})_{2}$, see: H. Yoshida, S. Kawashima, Y. Takemoto, K. Okada, J. Ohshita, K. Takaki, Angew. Chem. 2012, 124, 239-242: Angew. Chem., Int. Ed. 2012, 51, 235-238.
[17] F.-Y. Yang, C.-H. Cheng, J. Am. Chem. Soc. 2001, 123, 761-762.
[18] Even at $150{ }^{\circ} \mathrm{C}$, reactions of $\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right)_{3} \mathrm{~B}$ with allenes are slow. See: B. M. Mikhailov, Pure Appl. Chem. 1974, 39, 505-523 and references therein.
[19] In the addition of alkyl copper species to allyl phosphates, ${ }^{[13]}$ similar adducts bearing the same configuration as \mathbf{D}^{\prime} have been proposed.
[20] For electron-donating ability of NHC ligands, see: T. Dröge, F. Glorius, Angew. Chem. 2010, 122, 7094-7107: Angew. Chem. Int. Ed. 2010, 49, 6940-6952

