
Author(s)
Tsukano, Chihiro; Muto, Nobusuke; Enkhtaivan, Iderbat; Takemoto, Yoshiji

Citation
Chemistry, an Asian journal (2014), 9(9): 2628-2634

Issue Date
2014-09

URL
http://hdl.handle.net/2433/199674

Type
Journal Article

Textversion
author

Kyoto University
Synthesis of Pyrrolophenanthridine Alkaloids based on C(sp³)-H and C(sp²)-H Functionalization Reactions

Chihiro Tsukano, Nobusuke Muto, Iderbat Enkhtaivan, and Yoshiji Takemoto*[a]

Abstract: Assoanine (1), pratosine (2), hippadine (3) and dehydroanhydrolycorine (4) belong to the pyrrolophenanthridine family of alkaloids, which are isolated from plants of the Amaryllidaceae species. Structurally, these alkaloids are characterized by a tetracyclic skeleton containing a biaryl moiety and an indole core, and compounds belonging to this class have received considerable interest from researchers in a number of fields because of their biological properties and the challenges associated with their synthesis. In this study, we have developed a strategy for the total synthesis of these alkaloids using C-H activation chemistry. The tetracyclic skeleton 5 was constructed in a stepwise manner by C(sp³)-H functionalization followed by a Catellani reaction including C(sp²)-H functionalization. A one-pot reaction involving both C(sp³)-H and C(sp²)-H functionalization was also attempted. Our newly developed strategy is suitable for the facile preparation of various analogues because it uses simple starting materials and does not require protecting groups.

Keywords: C-H functionalization • total synthesis • alkaloids • pyrrolophenanthridine • assoanine

Introduction

Pyrrolophenanthridine alkaloids, which can be biogenetically produced by the dehydration and aromatization of lycorine, belong to the Amaryllidaceae family of alkaloids (Figure 1), and assoanine (1), which was originally isolated from Narcissus pseudo-narcissus by Wildman et al. in 1956, is representative of this class alkaloids. More than ten congeners, including pratosine (2), hippadine (3), and dihydroanhydrolycorine (4), have been isolated from plants belonging to the Amaryllidaceae species. Pyrrolophenanthridine alkaloids have been reported to exhibit various biological properties, including acetylcholinesterase inhibitory activity, anticancer activity, and anti-tripansosmal activity, and have consequently received considerable attention from both chemists and biological scientists. A variety of total syntheses have been reported to date for the preparation of pyrrolophenanthridine alkaloids, and these strategies have generally focused on the use of an indole derivative as the starting material for the construction of the biaryl moiety of the alkaloid. For example, Snieckus and Siddiqui reported the Suzuki coupling reaction of 7-iodoindoline with 2-formylphenyl boronic acid in the presence of a palladium catalyst to give a pyrrolophenanthridine skeleton, which was subsequently converted to hippadine (3). Pd-catalyzed cross-coupling reactions have also been used to construct the biaryl moiety of pyrrolophenanthridine alkaloids. Diels-Alder, anion coupling, ring expansion, and radical cyclization reactions have also been used as key transformations for construction of the biaryl moiety or the phenanthridine skeleton of pyrrolophenanthridine alkaloids.

Figure 1. Lycorine and pyrrolophenanthridine alkaloids.

Carbon-hydrogen bond (C-H) functionalization chemistry has received considerable attention as an innovative method in organic chemistry during the last decade, because it has the potential to simplify synthesis by allowing for the use of ubiquitous C-H
bonds. The popularity of C-H functionalization reactions has grown considerably in recent years, with various groups reporting the concise total syntheses of natural products based on transition metal-catalyzed C-H functionalization strategies. As part of their spirooxindoles, 2-aryl indoles and benzocarbazoles, using a C(sp3)-H functionalization reaction for the construction of the biaryl moiety in these compounds, although a stoichiometric amount of Pd(OAc)2 was required (Scheme 1 (a), A). Ten years later, Miki et al. reported a Pd(0)/Pd(II)-catalyzed C(sp2)-H functionalization reaction, which started with the oxidative addition of Pd(0) to an aryl halide, and several groups went on to adopt this method in their own work (Scheme 1 (a), B). In 2012, Bisai et al. developed a transition-metal-free C(sp3)-H functionalization reaction for the construction of biaryl compounds, which was applied to total synthesis of several pyrrolophenanthridine alkaloids. There have, however, been no reports in the literature concerning the total synthesis of alkaloids belonging to this class using a C(sp3)-H functionalization reaction. We recently developed a series of synthetic methods for the construction of several heterocyclic systems, including oxindoles, spirooxindoles, 2-aryl indoles and benzocarbazoles, using a C(sp3)-H functionalization reaction (Scheme 1 (b)). To evaluate the scope and generality of our newly developed C(sp3)-H functionalization method for the construction of oxindoles, we investigated its application to total synthesis of Amaryllidaceae alkaloids. Herein, we report a concise synthesis of assoanine (1), pratose (2), hippadine (3) and dihydroanhydrolycorin (4) from simple commercially available starting materials based on the C(sp3)-H functionalization, which could be also be used to prepare various analogues of these compounds.

Synthetic Plan

Retrosynthetically, it was envisioned that compound 5 could be used as a common intermediate for the synthesis of pyrrolophenanthridine alkaloids, and that this compound could be synthesized using C(sp3)-H and C(sp2)-H functionalization reactions (Scheme 2). For example, the oxindole and phenanthridine rings could be constructed by the C(sp3)-H and C(sp2)-H functionalization reactions of the methyl and phenyl groups, respectively. Because both of these reaction require similar conditions in terms of their Pd(0)/Pd(II) catalytic cycles, the tetracyclic skeleton of 5 could be constructed from carbamoyl chloride 6 according to a one-pot reaction (path A). In contrast, we could use a stepwise strategy for the construction of the lactam ring and the dihydrophenanthrine skeleton from iodo toluene 10 and benzylamine 11 using C(sp2)-H and C(sp3)-H functionalization reactions. In this case, the lactam ring would have to be constructed during the later stages of the process because the C(sp3)-H functionalization reaction requires higher temperatures than the C(sp2)-H reaction.

Results and Discussion

We focused our initial efforts on investigating route A, which would provide a concise short-step synthesis involving the challenging double cyclization of carbamoyl chloride 15 or 21. o-Toluidine (12) was coupled with 6-bromoveratraldehyde (13) according to McDonald’s reductive amination procedure (Scheme 3). The resulting amine 14 was treated with triphosgene and pyridine to give carbamoyl chloride 15. The other carbamoyl chloride 21 was also prepared by the same two-step sequence from 18 and 19. The double cyclization reaction involving the C(sp)-H and C(sp2)-H functionalization reactions was attempted by the treatment of 15 with Pd(OAc)2 (5 mol%), Ad2PnP (10 mol%), C6H6 (1.1 equiv.) and PivNHOH (0.3 equiv.) in mesitylene (0.2 M) at 120 °C under an atmosphere of carbon monoxide. Unfortunately, however, this reaction gave lactam 17 in 49% yield instead of the desired product 16. The by-product 17 was most likely derived from amine 14, which would have been produced by the oxidative addition of carbamoyl chloride 15 followed by the elimination of CO. Indeed, treatment of amine 14 under the same conditions gave compound 17 quantitatively via the oxidative addition of the aryl bromide followed by insertion of CO (Scheme 4). It was assumed that the oxidative addition of the aryl bromide would be favorable and that the resulting palladium intermediate would assist in the elimination of CO from the carbamoyl chloride. This sequence would allow for the formation of the isoxxinolone 17 following sequential CO insertion and cyclization reactions.
C(sp³)-H functionalization reaction was probably hampered by the dihydrophenathridine carbamoyl chloride. Phenanthridine was readily oxidized under the purification conditions, was formed via the elimination of CO, together with small amounts of CO₂. Based on this result, it was concluded that it would be difficult to suppress the undesired reaction, because the oxidative addition reactions of the carbamoyl chloride and aryl bromide were competitive, and the activation of the C(sp³)-H bond would require a higher temperature than those required of the side reactions.

Based on these limitations, we decided to focus our attention of route B, which would avoid possible complications arising from the unfavorable decomposition of the carbamoyl moiety. This particular synthesis started from the reductive amination of 6-bromoveratraldehyde (22), followed by hydrolysis of the resulting carbamate to give benzylamine (23) in 83% yield over two steps (Scheme 5). Compound 23 was then coupled with 2-iodotoluene (1 mol%), Pd(OAc)₂ (5 mol%), Ad₃PPh (10 mol%), Cs₂CO₃ (1.1 equiv.), and PivNHOH (0.3 equiv.) in mesitylene (0.2 M) under an atmosphere of CO at 100 °C gave the desired tetracyclic compound 16 (30%) together with a significant amount of the compound 24 (60%), which was presumably derived from the elimination of CO and aerial-oxidation. Although an extensive period of reaction screening (i.e., palladium sources, ligands, bases and additives) did not lead to an improvement in the yield of the product, compound 24 could be recycled following its separation from the product by silica gel column chromatography. Because the carbamoyl moiety was fixed by the rigid tricyclic skeleton, the C-H bond of the methyl group became distant from the palladium center compared with the corresponding derivatives of phenyl carbamoyl chloride, and the elimination of CO consequently became competitive.

With the common intermediate 16 in hand, we investigated the formation to the natural products by adjustment of oxidation level. The reduction of 16 with DIBAL-H gave dehydroassoanine (27) in 57% yield, which was oxidized with BaMnO₄ to give pratosine (2) in 72% yield. In contrast, assoanine (1) was synthesized in 40% yield by the reduction of 27 with NaCNBH₄ in AcOH. The spectroscopic data for these compounds, including the high-resolution mass spectra of synthetic pratosine and assoanine, were found to be in agreement with the previously reported data for these compounds.

We then turned our attention to the cyclization of carbamoyl chloride 26 using the C(sp³)-H functionalization reaction. Treatment of 26 with Pd(OAc)₂ (5 mol%), Ad₃PPh (10 mol%), Cs₂CO₃ (1.1 equiv.), and PivNHOH (0.3 equiv.) in mesitylene (0.2 M) under an atmosphere of CO at 100 °C gave the desired tetracyclic compound 16 (30%) together with a significant amount of the compound 24 (60%), which was presumably derived from the elimination of CO and aerial-oxidation. Although an extensive period of reaction screening (i.e., palladium sources, ligands, bases and additives) did not lead to an improvement in the yield of the product, compound 24 could be recycled following its separation from the product by silica gel column chromatography. Because the carbamoyl moiety was fixed by the rigid tricyclic skeleton, the C-H bond of the methyl group became distant from the palladium center compared with the corresponding derivatives of phenyl carbamoyl chloride, and the elimination of CO consequently became competitive.

With the common intermediate 16 in hand, we investigated the formation to the natural products by adjustment of oxidation level. The reduction of 16 with DIBAL-H gave dehydroassoanine (27) in 57% yield, which was oxidized with BaMnO₄ to give pratosine (2) in 72% yield. In contrast, assoanine (1) was synthesized in 40% yield by the reduction of 27 with NaCNBH₄ in AcOH. The spectroscopic data for these compounds, including the high-resolution mass spectra of synthetic pratosine and assoanine, were found to be in agreement with the previously reported data for these compounds.

The established synthetic route was applied to the synthesis of hippadine (3) and dehydroanhydrolycorine (4). Commercially available 6-bromopiperonal 28 was converted to benzyl amine 29 in

The carbon-bromide bond was moved from one aryl ring to the other in an attempt to avoid the decomposition of the carbamoyl moiety. However, treatment of carbamoyl chloride 21 under the same conditions gave aniline 20 as the major product (31%), which was formed via the elimination of CO together with small amounts of several unidentified by-products (Scheme 3). Although compound 21 did not give rise to a four-membered lactam ring, the C(sp³)-H functionalization reaction was probably hampered by the oxidative addition of the aryl bromide followed by the elimination of CO. Based on this result, it was concluded that it would be difficult to suppress the undesired reaction, because the oxidative addition reactions of the carbamoyl chloride and aryl bromide were competitive, and the activation of the C(sp³)-H bond would require a higher temperature than those required of the side reactions.

Based on these limitations, we decided to focus our attention of route B, which would avoid possible complications arising from the unfavorable decomposition of the carbamoyl moiety. This particular synthesis started from the reductive amination of 6-bromoveratraldehyde (22), followed by hydrolysis of the resulting carbamate to give benzylamine (23) in 83% yield over two steps (Scheme 5). Compound 23 was then coupled with 2-iodotoluene (1 mol%), Pd(OAc)₂ (5 mol%), Ad₃PPh (10 mol%), Cs₂CO₃ (1.1 equiv.), and PivNHOH (0.3 equiv.) in mesitylene (0.2 M) under an atmosphere of CO at 100 °C gave the desired tetracyclic compound 16 (30%) together with a significant amount of the compound 24 (60%), which was presumably derived from the elimination of CO and aerial-oxidation. Although an extensive period of reaction screening (i.e., palladium sources, ligands, bases and additives) did not lead to an improvement in the yield of the product, compound 24 could be recycled following its separation from the product by silica gel column chromatography. Because the carbamoyl moiety was fixed by the rigid tricyclic skeleton, the C-H bond of the methyl group became distant from the palladium center compared with the corresponding derivatives of phenyl carbamoyl chloride, and the elimination of CO consequently became competitive.

With the common intermediate 16 in hand, we investigated the formation to the natural products by adjustment of oxidation level. The reduction of 16 with DIBAL-H gave dehydroassoanine (27) in 57% yield, which was oxidized with BaMnO₄ to give pratosine (2) in 72% yield. In contrast, assoanine (1) was synthesized in 40% yield by the reduction of 27 with NaCNBH₄ in AcOH. The spectroscopic data for these compounds, including the high-resolution mass spectra of synthetic pratosine and assoanine, were found to be in agreement with the previously reported data for these compounds.
84% yield over two steps (Scheme 6). Compound 29 was then coupled to 2-iodotoluene 12 using a Catellani reaction followed by an oxidation reaction to give phenanthridine 30 in 51% yield. Because dihydrophenanthridine 30 was not readily oxidized in the presence of air in the same way as 25, it was necessary to expose this compound to an oxygen atmosphere to affect the one-pot procedure. Reduction with NaCNBH 3 followed by the treatment of the resulting amine with triphosgene gave carbamoyl chloride 32 in 82% yield over two steps. In a similar manner to the synthesis of assoanine, the cyclization of carbamoyl chloride 32 proceeded smoothly following the activation of the C(sp 3)-H bond to give the desired tetracyclic compound 33 and phenanthridine 30, which is recyclable, in 32 and 34% yields, respectively. The tetracyclic compound 33 was converted to hippadine (3) by reduction with DIBAL-H followed by the oxidation of dehydroanhydrolycorine (4). The spectroscopic data for the synthetic materials 3 and 4 were in good agreement with the previously reported data for these compounds.4,5,9c The established synthetic route, which is short and concise because it does not require the use of protecting groups, could be used to provide facile access to various analogues from simple starting material.

Experimental Section

General. All non-aqueous reactions were carried out under a positive atmosphere of argon in oven-dried glassware. Analytical thin-layer chromatography (TLC) was performed with Silica gel 60 TLC plates (Merck). Silica gel column chromatography was performed with Kanto silica gel 60 (particle size, 63-210 μm) and Fusi silica Chromatex BW-300. Proton nuclear magnetic resonance (1H NMR) spectra were recorded on a JEOL JNM-ECA 500 spectrometer at 500 MHz or a JEOL JNM-AL 400 at 400 MHz. Chemical shifts have been reported relative to MeSi (δ 0.00 ppm) in CDCl3, and CDCl3 (δ 7.32 ppm) in CD2Cl2. The multiplicities of the signals have been indicated by one or more of the following: s (singlet); d (doublet); t (triplet); q (quartet); m (multiplet); br (broad). Carbon nuclear magnetic resonance (13C NMR) spectra were recorded on a JEOL JNM-ECA 500 or a JEOL JNM-AL 400 at 100 MHz. The chemical shifts have been reported relative to residual CDCl3 and CD2Cl2 (δ 77.0 and 53.8 ppm), respectively. Infrared spectra were recorded on a FTIR-4100 Fourier-transform infrared ATR attenuated total reflectance spectrometer (JASCO). Low and High resolution mass spectra were recorded on a JEOL MS700 mass spectrometer.

Oxindole 16: Carbamoyl chloride 26 (59.4 mg, 0.19 mmol) was mixed with Pd(OAc)2 (2.3 mg, 0.010 mmol), AqPdBu (6.7 mg, 0.019 mmol), CuCl2 (67.1 mg, 0.21 mmol) and PinNOH (66.6 mg, 0.056 mmol), and the resulting mixture was purged under an atmosphere of CO. Mesitylene (1 mL) was then added to the reaction, and the resulting mixture was stirred at 100 °C for 11 hours. The mixture was then filtered through a pad of celite and the filtrate was concentrated under reduced pressure to give a residue, which was purified by silica gel column chromatography (hexane/CH2Cl2 = 8/2 – v/v). The chemical shifts have been reported relative to residual CDCl3 and CD2Cl2 (δ 77.0 and 53.8 ppm), respectively. Infrared spectra were recorded on a FTIR-4100 Fourier-transform infrared ATR attenuated total reflectance spectrometer (JASCO). Low and High resolution mass spectra were recorded on a JEOL MS700 mass spectrometer.

Compound 27: Oxindole 16 (86.4 mg, 0.307 mmol) was dissolved in CH2Cl2 (3.6 mL) under an atmosphere of argon, and the resulting solution was cooled to 0 °C before being treated with a 1 M solution of DIBAL in toluene (1.95 mL, 1.95 mmol). The reaction mixture was stirred at 0 °C for 2 hours, and then quenched by the addition of 2 M aqueous NaOH. The resulting mixture was extracted with CH2Cl2, and the combined organic phases were washed with brine and dried over Na2SO4 before being filtered and concentrated under reduced pressure to give a residue, which was purified by silica gel column chromatography (hexane/CH2Cl2 = 1/1) to give 27 (46.1 mg, 57%) as a yellow solid: 1H NMR (400 MHz, CDCl3) δ 7.48 (1H, d, J = 7.6 Hz), 7.24 (1H, s), 7.08 (1H, d, J = 7.6 Hz), 7.01 (1H, t, J = 7.0 Hz), 6.63 (1H, s), 5.01 (2H, s), 3.97 (3H, s), 3.91 (3H, s), 3.54 (2H, s); 13C NMR (101 MHz, CDCl3) δ 174.7, 149.9, 149.3, 140.2, 123.7, 123.5, 122.6, 122.0, 119.6, 119.5, 117.3, 110.8, 105.9, 56.3, 56.2, 43.2, 36.6; IR (ATR) 3021, 2986, 2836, 1696, 1627, 1521, 1495, 1482, 1467, 1433, 1359, 1242, 1212 cm–1; HRMS (FAB) m/z calcd for C10H16NO2: 168.1080; found: 168.1135.

Pratosine: To a solution of compound 27 (21.6 mg, 0.0814 mmol) in CH2Cl2 (1.9 mL) was added Ba(OAc)2 (209 mg, 0.814 mmol) under an atmosphere of argon, and the resulting mixture was stirred at room temperature for 2.5 hours. The mixture was then filtered through a pad of celite and the filtrate was collected and concentrated under reduced pressure to give a residue, which was purified by silica gel column chromatography (hexane/CH2Cl2 = 20/1) to give 28 (46.1 mg, 72%) as a white solid: 1H NMR (400 MHz, CDCl3) δ 7.25 (1H, d, J = 7.6 Hz), 7.14 (1H, d, J = 3.6 Hz), 7.06 (1H, t, J = 7.6 Hz), 6.65 (1H, s), 6.53 (1H, d, J = 2.8 Hz), 5.52 (2H, s), 3.99 (3H, s), 3.92 (3H, s); 13C NMR (101 MHz, CDCl3) δ 149.8, 148.7, 133.6, 125.9, 127.5, 122.5, 122.0, 119.9, 118.6, 112.6, 109.8, 108.5, 105.2, 102.4, 56.0, 47.6 (br (ATR) 2933, 2854, 1673, 1683, 1596, 1525, 1392, 1237, 1254, 1212 cm–1; HRMS (FAB) m/z calcd for C19H20NO4: 326.1161; found: 326.1161.

Assoanine: (4): To a solution of compound 27 (20.7 mg, 0.078 mmol) in THF (1.0 mL) was added AqOH (0.3 mL) and NaCNBH3 (0.72 mmol), and the resulting mixture was stirred at room temperature for 6 hours. The reaction mixture was then neutralized with 1 M aqueous NaOH and extracted with AqOH. The combined organic phases were washed with brine and dried over Na2SO4 before being filtered and concentrated under reduced pressure to give a residue, which was purified by silica gel column chromatography (hexane/AcOEt = 5/1) to give assoanine 4 (8.4 mg, 40%) as a yellow solid: 1H NMR (400 MHz, CDCl3) δ 7.33 (1H, d, J = 8.0 Hz), 7.19 (1H (s)), 7.01 (1H, d, J = 6.8 Hz), 6.77 (1H, t, J = 7.6 Hz), 6.66 (1H, s), 4.12 (2H, s), 3.95 (3H, s), 3.90 (3H, s), 3.35 (2H, t, J = 8.2 Hz), 3.03 (2H, t, J = 7.8 Hz); 13C NMR (101 MHz, CDCl3) δ

Conclusion

We have accomplished the total synthesis of assoanine (1), pratosine (2), hippadine (3) and dehydroanhydrolycorine (4) using C-H activation chemistry. The tetracyclic skeleton 5 was constructed in a stepwise manner using a C(sp 3)-H functionalization reaction for the oxindole skeleton and Catellani reaction including a C(sp 3)-H functionalization reaction to complete the system. Our newly developed route is suitable for the facile preparation of related analogues because it uses simple starting materials and does not require the use of protecting groups. Our synthesis, which is comparable in many ways to those previously reported in this area because it allows for the rapid preparation of analogues related to the target compounds, and represents a new area of C(sp 3)-H functionalization chemistry.

Scheme 6. Total synthesis of hippadine (3) and dehydroanhydrolycorine (4).

Table 1: The spectroscopic data for the final compounds are summarized in Table 1. The chemical shifts have been reported relative to residual CDCl3 and CD2Cl2 (δ 77.0 and 53.8 ppm), respectively. Infrared spectra were recorded on a FTIR-4100 Fourier-transform infrared ATR attenuated total reflectance spectrometer (JASCO). Low and High resolution mass spectra were recorded on a JEOL MS700 mass spectrometer.
by the addition of 2 M aqueous NaOH. The residue was extracted with CHCl₃ and the filtrate was collected and concentrated under reduced pressure to give a residue, which was purified by silica gel column chromatography (hexane/AcOEt = 3/1) and then CHCl₃/AcOEt = 9/1) to give oxindole 33 (49.9 mg, 32%) as a yellow solid, and phenanthridine 30 (53.8 mg, 34%): 'H NMR (500 MHz, CDCl₃) δ 7.4 (d, J = 7.0 Hz), 7.67 (t, J = 7.4 Hz), 7.06 (d, J = 7.7 Hz), 6.64 (d, J = 5.5 Hz), 6.95 (s, 1H), 5.5 (s, 2H), 4.92 (2H), 3.47 (2H); ¹³C NMR (126 MHz, CDCl₃) δ 174.6, 148.3, 148.3, 140.2, 132.7, 132.6, 123.4, 122.7, 120.1, 117.3, 107.9, 102.8, 102.1, 43.7, 36.6; IR (ATR) 3042, 2922, 1632, 1510, 1474, 1351, 1255, 1231, 1209 cm⁻¹; HRMS (FAB) m/z calculated for C₁₉H₁₄N₂O₂: 326.0881; found: 326.0881.

Dehydroxyalcoholine (4): Oxindole 33 (43.8 mg, 0.165 mmol) was dissolved in CH₂Cl₂ (2 mL) under an atmosphere of argon, and the resulting solution was cooled to 0 °C before being treated with 1 M solution of DBU in toluene (0.09 mL, 0.99 mmol). The reaction mixture was then stirred at 0 °C for 3 hours before being quenched by the addition of 2 M aqueous NaOH. The residue was extracted with CHCl₃, and the combined organic layers were washed with brine and dried over Na₂SO₄ before being filtered and concentration under reduced pressure to give a residue, which was purified by silica gel column chromatography (hexane/CH₂Cl₂ = 1/1) to give dehydroxyalcoholine 4 (19.9 mg, 48%) as a red solid: 'H NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 8.0 Hz), 7.37 (s, 1H), 7.32 (d, J = 7.6 Hz), 7.12 (d, J = 3.2 Hz), 7.05 (t, J = 7.4 Hz), 6.65 (dH, J = 13.5), 6.52 (dH, J = 3.2 Hz), 6.00 (dH, J = 5.5 Hz), 5.50 (s, 2H), 4.90 (2H), 3.47 (2H); ¹³C NMR (101 MHz, CDCl₃) δ 147.6, 147.5, 130.3, 125.9, 125.7, 124.3, 123.8, 120.4, 120.0, 118.6, 112.9, 107.1, 102.9, 102.5, 102.1, 48.1; IR (ATR) 3029, 2790, 1657, 1502, 1485, 1461, 1339, 1242 cm⁻¹; HRMS (FAB) m/z calculated for C₂₁H₁₄N₂O₂: 350.0858; found: 350.0855.

Hippodamine (3): To a solution of oxindole 13 (12.3 mg, 0.0493 mmol) in CH₂Cl₂ (1.4 mL) was added Ba(OH)₂ (126 mg, 0.493 mmol) under an atmosphere of argon, and the resulting mixture was stirred at room temperature for 2.5 hours. The reaction mixture was then filtered through a pad of celite and the filtrate was collected and concentrated under reduced pressure to give a residue, which was purified by silica gel column chromatography (hexane/CH₂Cl₂ = 2/1) to give hippodamine 3 (10.6 mg, 77%) as a white solid: 'H NMR (400 MHz, CDCl₃) δ 8.05 (8H, d, J = 3.6 Hz), 7.99 (1H, s), 7.93 (1H, d, J = 7.6 Hz), 7.76 (1H, d, J = 8.0 Hz), 7.67 (s, 1H), 7.48 (s, 1H), 7.48 (1H, s, J = 7.8 Hz), 6.90 (d, J = 3.2 Hz), 6.17 (2H); ¹³C NMR (101 MHz, CDCl₃) δ 158.2, 152.6, 148.5, 131.6, 130.9, 128.4, 124.8, 123.5, 122.6, 122.5, 118.4, 116.7, 110.8, 102.8, 102.3, 101.7; IR (ATR) 3152, 2922, 1670, 1618, 1526, 1477, 1437, 1392, 1366, 1347, 1310, 1286, 1244 cm⁻¹; HRMS (FAB) m/z calculated for C₂₃H₂₆N₂O₂: 364.0661; found: 364.0647.

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas “Molecular Activation Directed toward Straightforward Synthesis” and Platform for Drug Discovery, Informatics, and Structural Life Science from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.
Assoanine (1), pratosine (2), hippadine (3) and dehydroanhydrolycorine (4) belong to the pyrrolophenanthridine family of alkaloids, which are isolated from plants of Amaryllidaceae species. These alkaloids have been successfully synthesized using C-H activation chemistry. Their tetracyclic skeletons were constructed in a stepwise manner by C(sp^3)-H functionalization and a Catellani reaction involving C(sp^3)-H functionalization.