<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>最古のニホンザル</td>
</tr>
<tr>
<td>作者</td>
<td>相見　満</td>
</tr>
<tr>
<td>引用</td>
<td>Asian paleoprimatology (2002), 2: 13-19</td>
</tr>
<tr>
<td>発行日</td>
<td>2002-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/199752</td>
</tr>
<tr>
<td>タイプ</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>出版者</td>
<td>publisher</td>
</tr>
<tr>
<td>お知らせ</td>
<td></td>
</tr>
<tr>
<td>付記事項</td>
<td></td>
</tr>
</tbody>
</table>
最古のニホンザル

相見 満
京都大学霊長類研究所

はじめに

ヒトをのぞく霊長類のうちで、ニホンザル（Macaca fuscata）はもっとも北にすむといわれている。南は屋久島から北は下北半島まで分布する。このようなニホンザルがいつ頃から日本に大規模に進出したかは、50万年前とされる。その後、日本列島と大陸との間をつなぐ陸橋の形成をめぐり新しい解釈がなされた。そこで、まず、日本産哺乳類化石による第四系の年代区分について、それらが見つかったか否かを確認する。さらに、陸橋の形成に関する近世の見解を紹介する。次いで、これまでニホンザルの化石が、どこで見つかっているのか、その年代は何か、それがどう解釈するのが妥当かを議論し、最後にニホンザルがいつ頃から日本にすむようになったかを議論したい。

哺乳類化石に基づく年代と本州・九州と大陸との間の陸橋

日本列島において、第四紀の哺乳類化石を産出する堆積物、海成・湖成・河成の堆積物と洞窟・裂が堆積物とに分けられる（河村ら、1989）。裂が堆積物とは、石灰岩の割れ目などにたまった堆積物のことである。これらの間には堆積物の性質や化石の産状に著しい違いが見られる。前者は、一般に化石の産出層の層序学的性質がはっきりしている場合が多く、化石産地の数も多い。しかし、個々の産地をみると化石の産出層が極端に少なく、種類数も極めて乏しい。一方、後者は個々の堆積物の層序や年代が不明確な場合が多いが、化石の産出量や種類数が豊富で、しかも化石の保存状態がよい。後者の堆積物の層序を確立し、年代を求め、前者と対比することができれば、それぞれの欠点が補われ、哺乳類化石の復元が可能となる。Kawamura（1988年）は、哺乳類化石を含む洞窟・裂が堆積物の中からものとして、これまで得られた年代に関するデータをまとめて、対比表を作成した。さらに、亀井ら（1988年）は、それらを海成・湖成・河成の堆積物と対比し、日本の第四系の哺乳類化石による分帯を提案し、中・上部更新世を次の5帯に分けた。QMは、Quaternary Mammalの略である。

QM7帯：後期更新世の後期
QM6帯：後期更新世の前期
QM5帯：中期更新世の後期
QM4帯：中期更新世の中期
QM3帯：中期更新世の前期

現在のところ、もっとも古い洞窟・裂が堆積物はQM4帯の前、すなわち、中期更新世中期のものである。したがって、それより古い年代の哺乳類化石はおそらく存在しないのが現状である。

河村（1998年）は、第四紀における日本列島への哺乳類の移動を本州・四国・九州と北海道、琉
球列島という3つの生物地理区分に分け、以下のように考察した。これら3地域のうちで本州・四国・九州は化石の記録がもっとも豊富である。この地域から産出する哺乳類化石のうち、第四紀のほとんどすべての時期の堆積物から産出するのは長鼻類に限られる。長鼻類以外の哺乳類は、中期更新世以前になると化石が極端に少なくなる。最近になり、近畿・東海地方では長鼻類各種の産出範囲と分帯が整理され、次の3種のゾウが最初に出現した時期が推定された（桝野・龟井、1993）。それによるとシガゾウ（Mammuthus shigensis）は100万年前頃、トウヨウゾウ（Stegodon orientalis）は50万年前頃、ナウマンゾウ（Palaeoloxodon naumannii）は30万年前に出現したという。これらのゾウの出現は、それらが近隣の大陸地域から移入してきたことを示し、またそのような移入を可能にする陸橋の形成を示唆すると考えられる。ナウマンゾウの移入期以降、本州・四国・九州地域は大陸や北海道からずっと隔離されてきたと推測される。北海道では後期更新世の哺乳類は、ナウマンゾウ、ブリミゲニウスゾウ（Mammuthus primigenius）、ヤベオオツノジカ（Sinomegaceros yabei）といった3種の大型草食類で代表される。そのうち、ナウマンゾウとヤベオオツノジカは、本州・四国・九州地域から30万年前頃に移入したと思われる。ブリミゲニウスゾウは後期更新世後半にシベリアからサハリン経由で移入したと推測される。琉球列島では、更新世の化石記録は大部分が後期更新世のものである。琉球列島北部の後期更新世の動物相は固有の要素が卓越しているが、それは更新世以前にすでにこの地域に移入していたと推測される。琉球列島南部の後期更新世の動物相は、中期あるいは後期更新世に移入した種類と、より早い時期に移入した種類から成り立っている。

<table>
<thead>
<tr>
<th>化石産地</th>
<th>ニホンザル</th>
<th>ナウマンゾウ</th>
<th>分帯</th>
</tr>
</thead>
<tbody>
<tr>
<td>帝京観音寺洞窟</td>
<td>+</td>
<td>-</td>
<td>QM7</td>
</tr>
<tr>
<td>敷水採石場</td>
<td>+</td>
<td>-</td>
<td>QM7</td>
</tr>
<tr>
<td>鰐石洞</td>
<td>+</td>
<td>+</td>
<td>QM7</td>
</tr>
<tr>
<td>谷下採石場</td>
<td>+</td>
<td>-</td>
<td>QM7</td>
</tr>
<tr>
<td>嵩山採石場</td>
<td>+</td>
<td>-</td>
<td>QM7</td>
</tr>
<tr>
<td>松尾鯨山</td>
<td>+</td>
<td>+</td>
<td>QM6</td>
</tr>
<tr>
<td>上部葛生層（宮田・築地採石場）</td>
<td>+</td>
<td>+</td>
<td>QM6</td>
</tr>
<tr>
<td>杉穴</td>
<td>+</td>
<td>-</td>
<td>QM5</td>
</tr>
<tr>
<td>牛川鯨山</td>
<td>+</td>
<td>-</td>
<td>QM5</td>
</tr>
<tr>
<td>白岩鯨山</td>
<td>+</td>
<td>+</td>
<td>QM5</td>
</tr>
<tr>
<td>藤沢市天岳院</td>
<td>+</td>
<td>+</td>
<td>QM5</td>
</tr>
<tr>
<td>階段</td>
<td>+</td>
<td>+</td>
<td>QM5</td>
</tr>
<tr>
<td>水野採石場第三地点</td>
<td>+</td>
<td>-</td>
<td>QM5</td>
</tr>
<tr>
<td>恒見洞窟（松ヶ枝、北九州）</td>
<td>+</td>
<td>+</td>
<td>QM5</td>
</tr>
<tr>
<td>安藤採石場</td>
<td>+</td>
<td>+</td>
<td>QM4</td>
</tr>
</tbody>
</table>

小西・吉川（1999）は、最近明らかになった火山灰層面に基づき長鼻類化石の産出層序を精密に整理し、大阪地域の第四系などで明らかになっている深海底堆積土の酸素同位体比層序（Shackleton, 1995）と関連づけた。これらのデータに加え、深海底の酸素同位体比変化曲線から導かれる気候変化および日本海のボーリングコアから読みとれる海浜の変化から、長鼻類が日本列島へ移入した時期と陸橋形成時期を議論した。北海道と琉球列島を除く日本列島の第四系からは4種の長鼻類化石が産出される。下位からアケボノゾウ、シガゾウ、トウヨウゾウおよびナウマンゾウである。アケボノゾウは日本列島で独自に分化した種とみなされているので（三
最古のニホンザル

表2。安藤採石場から出土した化石と現生ニホンザルの下顎第3大臼歯の大きさの比較（近藤，1987）。

<table>
<thead>
<tr>
<th>安藤採石場の化石</th>
<th>オス</th>
<th>メス</th>
</tr>
</thead>
<tbody>
<tr>
<td>近遠心径</td>
<td></td>
<td></td>
</tr>
<tr>
<td>標本数</td>
<td>1</td>
<td>63</td>
</tr>
<tr>
<td>平均値±標準偏差(mm)</td>
<td>11.60±0.608</td>
<td>11.02±0.601</td>
</tr>
<tr>
<td>レンジ(mm)</td>
<td>12.1</td>
<td>13.25-10.30</td>
</tr>
<tr>
<td>前顎径</td>
<td></td>
<td></td>
</tr>
<tr>
<td>標本数</td>
<td>1</td>
<td>69</td>
</tr>
<tr>
<td>平均値±標準偏差(mm)</td>
<td>7.67±0.345</td>
<td>7.21±0.474</td>
</tr>
<tr>
<td>レンジ(mm)</td>
<td>7.0</td>
<td>8.60-7.60</td>
</tr>
</tbody>
</table>

性差は1%レベルで有意（近藤，1987）。

枝，1990)，陸橋形成に関する議論から除外する。シガソウ化石の下限と上限の年代は115万年前と65～63万年前，トウヨウソウ化石の下限と上限は62万年前と57万年前，ナウマンソウ化石の下限の年代は15万年前と34～34万年前となる。トウヨウソウ産出の下限は酸素同位体ステージ15.5の62万年前である。トウヨウソウ産出の下限は特に寒冷な氷期で日本海が孤立したステージ15.5に極めて近く，ステージ16の63万年前前に対馬海峡が陸化し大陸との陸橋が形成され，トウヨウソウが中国南部から移動してきたと推測される。一方，ナウマンソウの産出の下限はステージ10の36～34万年前である。ナウマンソウの移入時期は，その産出の下限がステージ10のなかにであることから，ステージ10より，その1つ前の水期ステージ12の可能性が高。ナウマンソウが中国南部から陸橋をわたって移動してきたのは，ステージ12の43万年前頃と思われる。日本海では，低海水準期を示す厚い暗色層が比較的長期にわたり連続的に堆積する。トウヨウソウはナウマンソウが移入したステージ16とステージ12，および最終水期のステージ2である。これらの時期は日本海が孤立したのがとくに長期にわたったと考えられる。陸橋のかかっていた時間が長く，大陸からの移動した可能性が高かったと推測される。このように，トウヨウソウが移動してきたのはステージ16の63万年前で，ナウマンソウはステージ12の43万年前と推定される。なお，シガソウの移入時期は，この時期の日本海堆積物の詳細な報告がないので今のところ議論できないという。

このようにして，現在，トウヨウソウが入植した約63万年前とナウマンソウが入植した約43万年前に朝鮮半島と本州・九州をつなぐ陸橋があり，哺乳類が大陸からわたってきたと考えられるようになった。そして，兎井ら（1988）のいうQM4帯とQM5帯の始まりが，それぞれ約63万年前と約43万年前だと思われる。その後，陸橋の形成は無かったと思われる（多田・入野，1994）。本州・九州と大陸は海で隔てられたままであった。

ニホンザルの化石

これまでニホンザルの化石が日本各地の第四系から報告されてきた（表1，図1）。そのうち比較的古いとされるものを取り上げ，その年代を検討する。

1）福生で発見された上顎骨

１. 二ホンザルの化石産地。

ソウである。
岩本・長谷川（1991）は、この化石が地蔵堂層から出土したものとみなし、その年代について次のように述べている。「これまで発見、報告されているサル化石の年代に注目してみると、今回ここに報告した槍水（鏃水の誤り）上腕骨が最古のものといえる。この化石は、第２間氷期にあたる時期に、関東地方にサルが生息していたことを物語っている。したがってサルは、大陸との間が陸地化していたそれ以前の第２氷期（ミンデン氷期）には既に日本に渡来していたということになる。強いいて実年代でいえば、すでに今から40万年前までは、日本にサルが生息していたことになるろう」しかし、この化石の産出した層序は上泉～清川層ともいわれ確定していない。
最古のニホンザル

伴出したナウマンゾウからみて、この化石の年代は古くても36-34万年前ものと思われる。また、亀井ら（1988）のいう分帯ではQM5帯に対比される（表1）。

2) 安藤採石場から出土した左下第3大臼歯

山口県美祢市の安藤採石場で発見された1本の遊離歯、左下第3大臼歯で、近遠心径が12.1mm、頬舌径が7.0mmという（Iwamoto & Hasegawa, 1972）。このサイズは、現生ニホンザルの変異の範囲に収まる（表2）。トウヨウゾウとナウマンゾウが伴出したという（Iwamoto & Hasegawa, 1972）、亀井ら（1988）は安藤採石場の堆積物をQM4帯のものとしている。トウヨウゾウとナウマンゾウが同時代に生息していたとは思わない（橋野・亀井、1993、小西・吉川、1999）。安藤採石場の堆積物は裂か堆積物である。石灰岩の割れ目上から落ち込んで堆積したものである。いろいろな年代のものが堆積したと思われる。したがって、この堆積物のすべてをQM4帯のものと見なすことはできない。QM5帯の堆積物も含まれるし、もっと新しい堆積物が含まれているかもしれない。

3) 尻尾崎から出土した右下顎犬歯

青森県下北半島の尻尾崎で1954年に発見され、大きさから見てメスのものと思われる（Iwamoto & Hasegawa, 1972）。ナウマンゾウが伴出した。石灰岩の採石場から掘り出された裂か堆積物で、QM6帯とされている（亀井ら、1988）。

4) その他のニホンザル化石

北九州市の恵見洞窟や宇部興産採石場第三地点などからニホンザルの化石が出土しているが、すべてQM5帯よりあらたらしいと思われる（表1）。

ニホンザルがいつ頃日本にやってきたか

これまでに発見されたニホンザル化石でもっとも古い化石は、安藤採石場から出土した下顎第3大臼歯といわれてきた（相見・高畑、1994）。安藤採石場の堆積物は裂か堆積物で、トウヨウゾウとナウマンゾウの両方の化石が出土している。したがって、この堆積物のすべてがQM4帯の堆積物とは限らず、QM5帯の堆積物も含む。もっと新しい堆積物を含んでいる可能性もある。ここから出土したニホンザルの化石がQM4帯からのものであれば、ニホンザルでもっとも古い化石ということになる。ニホンザルの祖先は、トウヨウゾウとともに今から約63万年前に日本列島にやってきたと思われる。しかし、この化石の年代はもっと新しい可能性も十分ある。

縄文砂利採取場から出土した上腕骨の化石は、その層準が地蔵堂層とも上泉～清川層ともいわ

れ確定しない。しかし、この堆積物は裂か堆積物ではないので、いずれかの年代のものが含まれるわけではない。ナウマンゾウが伴出したので、ニホンザルの祖先はおそらくともナウマンゾウとともに日本列島にやってきたと思われる。そうだとすると、ニホンザルの祖先は今から約43万年前には日本列島にやってきたと思われる。

これらのことを考慮すると、ニホンザルの祖先が日本列島にやってきたのは、早ければ約63万年前ということになる。おそらく约43万年前ということになる。朝鮮半島を経由してきたと思われる（河村、1998）。

本州最北端の尻尾崎からニホンザルの化石が報告されている（Iwamoto & Hasegawa, 1972）。裂か堆積物でQM6帯とされ、12万年前の堆積物だという（亀井ら、1988）。その頃には、ニホンザルがすでに本州の北端にまで分布を広げていたと思われる。

まとめ

日本列島の各地から出土したニホンザル化石の年代を整理し、日本列島と大陸との間に形成さ
相見　満

れた陸橋の年代を考慮し、いつ頃、日本にニホンザルの祖先が移入したのかを検討した。
1. 日本列島と大陸との間に陸橋が形成された時期は、第四紀に少なくとも2回存在した。古
いほうは、酸素同位体比層序のステージ16の63万年前頃で、トウショウザルが大陸から日本列島
に移入した。つぎに、ステージ12の43万年前頃で、ナウマンザルが移入した。その後、陸橋は
形成されなかったという。
2. ニホンザルの化石でもっとも古いとされるものは、山口県美祢市安藤採石場から出土した
大臼歯で、伴出したトウショウザル化石と同一の年代だとするとQM4帯から出土したことになる。
そうすると、ニホンザルの祖先が日本列島にやってきたのは、今から約63万年前ということ
になる。しかし、安藤採石場の堆積物は炭化堆積物で、いろいろな年代の化石が混入している。
現にナウマンザル化石も伴出した。したがって、ここで発見されたサル化石の年代はもっと
新しくなるかもしれない。
3. 千葉県袖ヶ浦市頭水砂利採取場で上顎骨の化石が見つかっている。ナウマンザルが伴出し
ているので、おそらくニホンザルが大陸から日本列島に移入したのが今から43万年前という
ことになる。
4. 現在の資料をもとにすると、ニホンザルの祖先が日本列島にやってきたのは、古ければ約
63万年前で、新しさければ約43万年前ということになる。

本研究は、科学研究費補助金（基盤研究(B)1課題番号11440249、研究代表者：茂原信生）、
ならびにCOE形成基盤研究費（課題番号10CE2005、研究代表者：竹中修）の援助を受けて行っ
た。

文献

長谷川嘉和 (1965) 日本の第四紀小型哺乳類動物化石について。化石, 11:31-40.
岩本光雄・長谷川嘉和 (1991) 藤沢市大岳田下および木更津市鷲取水で発見されたサル化石について。霊
長類研究, 7:96-102.
Iwamoto M, Hasegawa Y (1972) Two macaque fossil teeth from the Japanese Pleistocene. Primates
13: 77-81.
Iwamoto M. (1975) On a skull of a fossil macaque from the Shikimizu limestone quarry in the
Shikoku district, Japan. Primates 16: 83-94.
藤本信穗 (1979) 「東京の自然史」 増補第二版。紀伊国屋書店、東京。
亀井節夫・河村善也・職野博幸 (1988) 日本の第四系の哺乳類動物化石による分布。地質学論集, 30: 181-
204.
Kawamura Y, Tanino H. (2000) Immigration of mammals into Japan during the Quaternary, with
comments on land or ice bridge formation enabled human immigration. Act Anthrop Sinica
19 (Suppl.): 264-269.
小西哲司・吉川周作 (1999) トウショウザル・ナウマンザルの日本列島への移入時期と陸橋形成。地球科学,
53:125-134.
Denton DH, Partridge TC, Burckle LH (eds) Paleoclimate and Evolution with Emphasis on Hu-
最古のニホンザル

柳野博幸・亀井伸夫（1993）近畿地方の鮮新・更新統の脊椎動物化石。市原実編著、大阪府産、216-231.創元社。

徳橋秀一・遠藤秀典（1984）姫崎地域の地質。地域地質研究報告（5万分の1地質図帳）。地質調査所、136p。

植田信夫（1969）房総半島北部の地質。堆積研究（その2）。

東洋大学地学部教養課程編（自然科学）、12:25-120.