<table>
<thead>
<tr>
<th>Title</th>
<th>A preliminary report on some fossil mammals (Equidae, Perissodactyla and Hyracoidea) from the Pliocene Udunga fauna, Transbaikalia, Russia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nakaya, Hideo; Takai, Masanaru; Akira Fukuchi; Ogino, Shintaro</td>
</tr>
<tr>
<td>Citation</td>
<td>Asian paleoprimatology (2009), 5: 99-104</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2009</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/199774</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
A preliminary report on some fossil mammals
(Equidae, Perissodactyla and Hyracoidea)
from the Pliocene Udunga fauna, Transbaikalia, Russia

Hideo Nakaya1*, Masanaru Takai2, Akira Fukuchi3, Shintaro Ogino2

1Graduate School of Science and Engineering, Kagoshima University, Kagoshima 890-0065, Japan
2Primate Research Institute, Kyoto University, Inuyama 484-8506, Japan
3Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
*Corresponding author. e-mail: nakaya@sci.kagoshima-u.ac.jp

Abstract

The paleoenvironment of the middle Pliocene Udunga fauna has been estimated by many workers to date based on the composition of the mammalian fauna. In this short article we tried the paleoenvironmental analysis of the Udunga fauna using the mesowear method to equiids (Hipparion) cheek teeth. The result indicate the openland environment for the middle Pliocene Udunga. On the other hand, Postschizotherium of Udunga is likely differs from P. chardini, discovered from the late Pliocene to the early Pleistocene of Nihewan, Shanxi Province, China, suggesting the possibility of the new species for this specimen.

Introduction

The paleoenvironment of the middle Pliocene Udunga fauna has been estimated by many workers data (e.g. Devyatkin and Zazhigin, 1974; Zazhigin, 1989; Kalmykov, 1992; Erbajeva et al., 2003; Vislobokova et al., 1995; Kalmykov et al., 2005). The conclusion of these workers is that the paleoenvironment of the Udunga fauna is the mixture of the openland elements and forest dwellers. Here we tried the paleoenvironmental anlaysis of the fauna using the mesowear method, which was developed by Fortelius and his colleagues (e.g. Fortelius and Solounias, 2000). The specimens used in this study are of the cheek teeth of two large size ungulates, Hipparion sp. (Equidae, Perissodactyla) and Postschizotherium cf. chardini (Pliohyrachidae, Hyracoidea) discovered from Udunga.

There are three types of Hipparion recognized in the Udunga fauna, such as H. houfenense, H. cf. houfenense, and H. tchicoicum, but H. cf. houfenense, is not established well but may be a intraspecific variation of H. houfenense.
On the other hand, *Postschizotherium* was originally included in the Chalicotheriidae (Perissodactyla) based on the first specimen discovered from the early Pleisocene Nihowan site, northern China (Teilhard de Chardin and Piveteau, 1930; Koenigswald; 1932). Later Teilhard de Chardin (1939) moved this animal to Hyracoidea, and now most workers support his classification (e.g. Rasmussen, 1989; McKenna and Bell, 1997). In this paper, we adopt this classification.

Mesowear of *Hipparion* cheek teeth

The dental specimens used in this analysis is listed in Table 1 and 2. Most of the specimens are isolated premolars or molars but right mandible with P2-M1 and left with P2-M3 (Figure 3 and 4). The series of the isolated upper teeth probably belong to the same individual (Figure 2).

The tooth mesowear method to equids is a new approach of reconstructing ungulate diets and its paleoenvironments (Fortelius and Solounias, 2000, and so on). We analyzed mesowear of *Hipparion* upper and lower cheek teeth (P4-M3) from the middle Pliocene Udunga Fauna, Transbaikalia, Russia. One taxon of fossil Primates, *Parapresbytis eohanuman*, was found from the middle Pliocene sediments of Udunga (Kalmykov and Maschenko, 1992, 1995) We analyzed the paleoenvironments of the Udunga Fauna by using the mesowear method to *Hipparion* cheek teeth. The occlusal relief of teeth is scored "high" or "low", the cusp shape is classified as "sharp", "round" and "blunt".

In the occlusal relief of *Hipparion* teeth, 57% of lower cheek teeth from Udunga were scored "high", 43% lower cheek teeth were scored "low". In the cusp shape, 70% of the lower cheek teeth from the Udunga Formation were classified as "round". 30% of lower cheek teeth were classified as "blunt". However, the occlusal relief and cusp shape of *Hipparion* teeth according to the difference between double knot type 2 and 4 of lower cheek teeth were divided into two types. 85% of type 2 lower cheek teeth were scored "high" and 88% type 4 lower cheek teeth were scored "low". 100% of type 2 lower cheek teeth were classified as "round" and 75% type 4 lower cheek teeth were classified as...
Equids and hyracoids of Udunga

"blunt". Mesowear score (Croft & Weinstein 2008) of double knot type 2 of lower tooth (p4-m3) is 1.18, and type 4 of lower tooth (p4-m3) is 2.75. This result indicates that the paleoenvironments of the Udunga fana may be openland environments (Hasumi 2009 MS).

Hyracoidea teeth

Order Hyracoidea
Family Pliohyracidae
Subfamily Pliohyracinae
Genus Postschizotherium

Postschizotherium sp.

Materials: left and right 1st incisor, 4th premolar to 2nd molar, and worn out right 4th milk molar.

Description: Cheek teeth are high crowned tooth. Ectoloph of cheek teeth curved buccally. Molar teeth have isolated protocone.

Remarks: Originally, genus Postschizotherium was named as the member of the family Chalicotheriidae by von Koenigswald (1932) without any detailed description. P. chardini, the type species of the genus, was discovered from the early Pleistocene Nihowan sediments. The first description of this material was made by Teilhard de Chardin and Piveteau (1930), and Teilhard de Chardin (1939) indicated the possibility that this material belongs to the Hyracoidea by suggestion from G.G. Simpson. Postschizotherium is now
classified in the subfamily Pliohyracinae, family Pliohyracidae, order Hyracoidea by most workers (Rasmussen, 1989; McKenna and Bell, 1997).

To date four species have been erected for *Postschizotherium*, such as *P. licenti*, *P. intermedium*, *P. chardini*, and *P. tibetense*. *P. licenti* and *P. intermedium* were established by Koenigswald (1966), but the former is now regarded conspecific with *P. chardini* (Qiu et al., 2002). *P. intermedium* is smaller with lower crowned cheek teeth than *P. chardini*. *P. tibetense* was erected by Zong (1996) based on the maxilla preserving the upper cheek teeth discovered from the early Pleistocene sediments of Dege, higher terrace of the Jinsha River, Yunnan Province, China (Zong, 1996). Qiu et al. (2002) regard *P. tibetense* as a primitive species of *Postschizotherium*. Furthermore, *P. tibetense* was revised genus name to *Hengduanshanhyrax* by Chen (2003) on the smaller size and some characters of teeth.

Postschizotherium differs from *Pliohyrax* from China (Tung and Huang, 1974) and Europe, on the character of hypsodont cheek teeth with cement and strongly reduced premolars relative to molars (Qiu et al., 2002). Udunga hyracoids cheek teeth have same
Equids and hyracoids of Udunga

Table 3. Dental measurements (mm) of *Postschizotherium cf. chardini*, Hyracoidea, fossil from Udunga. R, right; L, left; H, height; L, length; W, width.

<table>
<thead>
<tr>
<th>Udg- side</th>
<th>part</th>
<th>H</th>
<th>L</th>
<th>W</th>
<th>remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>191-H</td>
<td>R</td>
<td>P1</td>
<td>12.9</td>
<td>14.5</td>
<td>12.1</td>
</tr>
<tr>
<td>191-G</td>
<td>L</td>
<td>P1</td>
<td>10</td>
<td>14.7</td>
<td>12.6</td>
</tr>
<tr>
<td>191-F</td>
<td>R</td>
<td>P1</td>
<td>20.2</td>
<td>17.3</td>
<td>15.5</td>
</tr>
<tr>
<td>191-E</td>
<td>L</td>
<td>P1</td>
<td>21</td>
<td>16.9</td>
<td>15</td>
</tr>
<tr>
<td>191-H</td>
<td>R</td>
<td>P1</td>
<td>13.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>191-L</td>
<td>R</td>
<td>P1</td>
<td>4.3</td>
<td>16.2</td>
<td>16.3</td>
</tr>
<tr>
<td>191-C</td>
<td>L</td>
<td>P1</td>
<td>27.8</td>
<td>24.8</td>
<td>24.5</td>
</tr>
<tr>
<td>191-J</td>
<td>R</td>
<td>I1</td>
<td>12.6</td>
<td>52.3</td>
<td>12.1</td>
</tr>
<tr>
<td>191-I</td>
<td>L</td>
<td>I1</td>
<td>11.3</td>
<td>59.3</td>
<td>11.6</td>
</tr>
<tr>
<td>191-K</td>
<td>R</td>
<td>M1</td>
<td>21.71+</td>
<td>22.96+</td>
<td>23.27+</td>
</tr>
<tr>
<td>191-D</td>
<td>L</td>
<td>M1</td>
<td>30.5</td>
<td>17.1</td>
<td>17.6</td>
</tr>
<tr>
<td>191-B</td>
<td>R</td>
<td>M1</td>
<td>44.9</td>
<td>29.3</td>
<td>23.6</td>
</tr>
<tr>
<td>191-A</td>
<td>L</td>
<td>M1</td>
<td>38.94+</td>
<td>30.8</td>
<td>24.8</td>
</tr>
</tbody>
</table>

Figure 5. Upper dentition of *Postschizotherium cf. chardini* (Udg-0191). Isolated left I1 and P2-M2 and right P3, dP4 and M1-2. Scale bar, 1 cm.

characters of *Postschizotherium*. Compared with the type specimen of *P. chardini*, in P4 (Udg-191-C, H) and M1 (Udg-191-D, K) of the Udunga specimen the parastyle and mesostyle protrude more buccally, forming the "wing" (Figure 5). The occlusal outline of P2 or P3 also seems different between *P. chardini* and the Udunga specimen. The Udunga *Postschizotherium* may be different species of the genus.

Acknowledgements

We are deeply grateful to Dr. N.P. Kalmykov and Dr. E.N. Maschenko for providing us with useful fossil specimens of the Udunga fauna and suggesting pertinent literature. This research was supported by JSPS (Japan Society for the Promotion of Science) and RFBR (Russian Foundation for Basic Research) under the Japan-Russia Research Cooperative Project (to M.T., Grant 840064200002 and to E.N.M. Grant 060491469).

References

Hasumi, E. (2009 MS) Mesowear analysis for Late Miocene Hipparion from Maragheh, Iran. Master thesis for Graduate School of Science and Engineering, Kagoshima University; 30pp.

