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Abstract: After a disaster, prompt distribution of information is critical for national or local governments to plan 9 

the disaster response and recovery measures. In the case of a tsunami, information about buildings destroyed by 10 

the waves is required. Here we present a method that identifies individual damaged buildings by using aerial 11 

images obtained pre- and post-tsunami. The method utilizes significant height changes in building regions to 12 

assess the damage. Stereo aerial images are used to generate a digital surface model (DSM) of the area. We 13 

assume two cases: if GIS (geographic information system) data (building region data) are available, we use them; 14 

if GIS data are unavailable, we instead use segmented results and a filtered DSM. In each case regions 15 

corresponding to buildings are identified in the pre-tsunami image. Damaged regions are then extracted by 16 

considering the height change within a building region between the pre- and post-disaster images. Horizontal 17 

shifts resulting from land deformation caused by the earthquake are automatically estimated by an existing 18 

algorithm such as scale-invariant feature transform (Lowe, D., 2004.  International Journal of Computer Vision, 19 

60(2), 91-110). Validation showed that the proposed method extracted damaged buildings with high accuracy 20 

(94% to 96% in number; 96% to 98% in area) when GIS data are available and with lower accuracy (69% to 79% 21 

in area) when GIS data are unavailable. In addition, we found that horizontal shifts between pre- and post-disaster 22 

should be considered to extract the damaged buildings. We conclude that our method can automatically generate 23 

effective maps of buildings damaged not only by tsunamis but also by other disasters. 24 

Keywords: remote sensing;mapping; extraction; change detection; damaged building; aerial image. 25 

 26 

1. Introduction 27 

Following the Great East Japan Earthquake of March 11, 2011, it has been estimated there is a likelihood of 28 

approximately 60% to 70% that an earthquake with a magnitude of 8 to 9 will occur in the Nankai Trough within 29 

30 years (Headquarters for Earthquake Research Promotion, 2013). A technique for rapidly mapping damaged 30 

areas and buildings is required to reduce the confusion after such disasters. Damage mapping supports local 31 

government decisions about evacuation and recovery. Following the Great East Japan Earthquake, many satellite 32 

and airborne images were analyzed in order to understand which areas were damaged by the resulting tsunami. 33 

The traditional approach for damage mapping is to manually delineate the damaged buildings or districts using 34 

remotely sensed images. Although this technique is still useful, it is extremely time consuming, especially for a 35 

large area.  36 
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To improve the efficiency of damage mapping after disasters, various approaches for automatically detecting 37 

damaged buildings or districts have been investigated. Studies have used (1) optical images for pre- and post-38 

disaster (Tsusui et al., 2007), (2) synthetic aperture radar (SAR) images for pre-and post-disaster (Dekker, 2011; 39 

Chen and Sato, 2013; Sato, 2012; Yamaguchi, 2012; Watanabe et al. 2012; Liu and Yamazaki, 2011; Liu et al., 40 

2012; Chini et al., 2012), (3) optical images for pre-disaster and SAR images for post-disaster (Wang and Jin, 41 

2012), (4) optical images and SAR images for post-disaster only (Chini et al., 2013), and (5) SAR images for post-42 

disaster (Li et al., 2012).  43 

Since the Hyogoken-Nanbu Earthquake in Japan in 1995, space-borne SAR has been widely used to analyze 44 

the damage by calculating the correlation between pre- and post-earthquake data (Yonezawa and Takeuchi, 2001) 45 

and by looking for intensity changes (Matsuoka and Yamazaki, 2004). Brunner has reported an approach that 46 

combines information from very high spatial resolution multispectral and SAR images. Backscattering from 47 

buildings obtained from SAR is compared with the results of simulations using parameters obtained from optical 48 

images (Brunner et al., 2010). Space-borne polarimetric SAR (PolSAR) has also shown potential for extracting 49 

damaged areas by using four scattering components calculated from the original fully polarimetric data (Chen and 50 

Sato, 2013; Sato, 2012; Yamaguchi, 2012; Watanabe et al. 2012) or polarization orientation angle (Chen and Sato, 51 

2013) to highlight the differences between the scattering before and after the disaster.  52 

In our work, we initially analyzed the pre- and post-disaster images used by Chen and Sato (2013), which were 53 

acquired by the Advanced Land Observing Satellite (ALOS) / Phased Array Type L-band SAR (PALSAR) sensor. 54 

We used Ishinomaki city, Miyagi prefecture, Japan, as one of the study areas. This area was severely damaged by 55 

the 2011 tsunami. We examined three sets of features: scattering intensity of the three components HH (H-56 

polarization receiving and H-polarization transmitting), VV (V-polarization receiving and V-polarization 57 

transmitting) and HV (H-polarization receiving and V-polarization transmitting) (double bounce scattering, 58 

surface scattering and volume scattering) analyzed by Yamaguchi et al. (2011) and variance of polarization 59 

orientation angle. However, none of these features derived from PolSAR data clearly delineates damaged areas 60 

when compared to pre- and post-disaster optical images. Thus, we turned our attention to multi-temporal optical 61 

images as a source of data for automatic damage mapping. 62 

It is customary in Japan to report the damage due to a disaster, such as an earthquake, tsunami or landslide, by 63 

referring to the number, rather than the area, of the buildings damaged. From this viewpoint, optical images, 64 

especially aerial images, are capable of meeting such requirements because they have a much higher spatial 65 

resolution than SAR images, often as high as 15 cm per pixel. High spatial resolution optical images can provide 66 

not only two-dimensional (2D) information but also three-dimensional (3D) information through a digital surface 67 

model (DSM), generated by a stereo matching approach. Height information can be effectively used to extract 68 

damaged buildings. Tong et al. (2012) used differences between the 3D coordinates of building corners pre- and 69 

post- earthquake to identify eight damaged buildings. Tian et al. (2013) detected building and forest changes by 70 

examining brightness and height changes derived from DSMs, generated from satellite imagery. Airborne light 71 

detection and ranging (LiDAR) can measure elevation and detect inundated or deformed areas (Persi, et al., 2013), 72 

and segmented point clouds can be classified and used to identify building damage (Khoshelham, et al., 2013). 73 

However, the opportunities to obtain LiDAR data soon after the 2011 disaster were much fewer than the 74 

opportunities to obtain optical images, so we focus on the optical images as a 3D data source.  75 
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The extraction of damaged buildings is more difficult than simple land cover change detection because the land 76 

surface may be deformed by disasters. Vertical and horizontal shifts may take place but we focus on horizontal 77 

shifts for simplicity. Even though each post-disaster image is co-registered to a pre-disaster image using ground 78 

control points (GCPs), a relative horizontal shift may remain because the shift is not constant throughout the study 79 

area. Accurate extraction of damaged buildings, therefore, depends on information about such horizontal shifts. 80 

High spatial resolution optical images can provide this horizontal shift information as long as tie points between 81 

two images registered to the world coordinate system (WGS 84) can be found. 82 

In this paper, we propose a novel method for extracting individual buildings damaged by a disaster using stereo 83 

aerial images. Relative horizontal shifts between pre- and post-disaster configurations are automatically estimated 84 

by finding tie points between two images. Height changes, estimated by comparison of pre- and post-disaster 85 

DSMs generated from stereo aerial images, are used to assess the damage done to a building. In the identification 86 

of building regions we consider two cases: either geographic information system (GIS) data are available, or they 87 

are not. If building region data are available, we can estimate the number and area of damaged buildings. However, 88 

the generation of building region data is costly and thus we cannot expect that such data will be provided for all 89 

the coastal regions in Japan. Even when building region data are unavailable, object-based classification can 90 

identify regions corresponding to buildings (Tuia et al., 2009; Novack et al., 2011), and we have developed a 91 

building segmentation algorithm that is robust to shadow (Susaki, 2012a). Filtering of the DSM can contribute to 92 

the selection of building regions from among the segmented regions. When building region data are unavailable, 93 

we can estimate the area, but not the number, of damaged buildings.  94 

The remainder of this paper is organized as follows. After the study area is introduced in Section 2, the 95 

proposed method and experimental results are reported in Section 3. They are discussed in Section 4, and finally, 96 

some conclusions are given in Section 5. 97 

 98 

2. Study Area and Data Used 99 

We selected two study areas severely damaged by the 2011 tsunami: Yuriage district, Natori city (Study Area 100 

1) and Ishinomaki city (Study Area 2), Miyagi prefecture, Japan. Aerial stereo pre- and post-tsunami images of 101 

the study areas were available. Each study area has three data sets: pre-tsunami (t1), one day post-tsunami (t2), and 102 

approximately two months post-tsunami (t3). For Study Area 1 t1, t2 and t3 were May 15, 2009, March 12, 2011, 103 

and May 26, 2011, respectively. For Study Area 2 t1, t2 and t3 were May 18, 2009, March 12, 2011, and May 18, 104 

2011, respectively. The images are shown in Figure 1. 105 

 106 

3. Method and Results 107 

3.1. Outline 108 

In the present paper, we focus on the extraction of buildings damaged by disasters from the data observed 109 

from the sky or space. The technique is effective to extract the buildings that show a significant height change 110 

between pre- and post-disaster. It is true that some buildings damaged by disasters such as earthquakes and 111 

tsunamis have no or very little height change, but we define a damaged building as a building whose height 112 
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change exceeds a designated value. We therefore exclude buildings damaged by disaster but whose heights are 113 

unchanged. The proposed method combines 2D data of a building area with height data from DSM generation to 114 

create a 3D model of objects. Horizontal shifts between pre- and post-disaster configurations are automatically 115 

estimated. We assume that the DSM is generated from stereo aerial images, and that the horizontal and vertical 116 

accuracies may not be high. Comparison of pre- and post-disaster heights of a specific pixel of images may 117 

falsely extract pixels as damaged areas because of the inaccurate DSM. Instead, by comparing pre- and post-118 

disaster heights in regions, damaged buildings can be identified more robustly. When GIS data of building 119 

regions are available, they are used for 2D data. When they are unavailable, segmentation of a 2D image and 120 

filtering of the DSM are implemented. The segmented regions are masked using the results of DSM filtering, and 121 

they then are used for 2D data. 122 

Figure 2 shows a flowchart of the proposed method. Our method has four main sub-processes: (1) automatic 123 

estimation of horizontal shifts; (2) automatic generation of DSMs from stereo aerial images acquired pre- and 124 

post-disaster; (3) identification of likely building areas through segmentation of the pre-disaster aerial images, 125 

filtering of the pre-disaster DSM and masking both results; and (4) comparison of the calculated heights in 126 

building regions pre- and post the disaster to identify likely areas of damage. When GIS data of building regions 127 

are available, Step 3 is skipped. 128 

3.2. DSM Generation 129 

Stereo aerial images can generate DSMs through photogrammetric processing. Tie points are used to determine 130 

the relative positions and orientations of cameras (relative orientation). After a point existing in more than one 131 

image is obtained, the world coordinates of the point can be restored by using external orientation parameters. 132 

Software that automatically obtains such points and generates DSMs is now available. In this research, we assume 133 

that the DSM is automatically generated from stereo aerial images by using existing software. 134 

Match-AT 5.4 (Inpho, 2013a) and Match-T 5.4 (Inpho, 2013b) were used to generate DSMs. To automatically 135 

find tie points, it uses two matching algorithms: feature-based matching (FBM) and least squares matching (LSM). 136 

FBM does not need accurate initial approximations and finds rough matches quickly. After the rough matches 137 

have been found LSM, which needs accurate initial approximations, is implemented to find accurate matches 138 

using a 21 × 21 pixel window. The input data for the software are digital images and camera calibration reports.  139 

Figure 3 shows DSMs of the study areas. Orthogonally projected images were generated by using a 50-m mesh 140 

digital elevation model (DEM) published by the Geospatial Information Authority of Japan (GIA of Japan, 2013c). 141 

The DEM was generated from 1:25,000 topographic maps. As a result, three grid-based DSMs at t1, t2 and t3 were 142 

available. The resolution of the DSM generated in this research was 50 cm. It was difficult to evaluate the 143 

accuracy of the generated DSMs because no reference data were available. However, in another study, we 144 

evaluated the DSMs generated by using the same software with airborne LiDAR data from another study area 145 

(Kyoto, Japan) by using 18 points where road width was not less than 5.0 m. The standard deviation of the height 146 

change between the LiDAR data and the DSM was 0.71 m (Susaki et al., 2013). Note that because ground survey 147 

using GPS equipment was difficult at t2, absolute orientation was not applied to the images taken at t2. 148 

3.3. Horizontal Shift Detection 149 
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We examined horizontal shifts caused both by the disaster and by the lack of absolute orientation. We 150 

manually took samples from pre- and post-tsunami images, and recorded the horizontal shift coordinates. Figures 151 

4(a) and 4(b) show the horizontal shifts in Study Areas 1 and 2, respectively. The horizontal shift vectors between 152 

t1 and t3 were (1.10 m, -1.97 m) and (4.87 m, -1.27 m) for Study Areas 1 and 2, respectively. Both aerial images 153 

observed at t1 and t3 were registered through absolute orientation. The results agree well with the actual horizontal 154 

shifts obtained by GPS measurements at the nearest base stations to Study Areas 1 and 2, which were 3.08 m and 155 

4.25 m in the east-southeast direction, respectively (GIA of Japan, 2013a; GIA of Japan, 2013b). On the other 156 

hand, the geolocational accuracies of aerial images taken at t2 are not high because of the lack of absolute 157 

orientation. The horizontal shifts between t1 and t2 can be a mix of actual horizontal shifts and registration errors. 158 

Regardless of whether the absolute orientation is available, tie points between pre- and post-disaster images need 159 

to be found. 160 

Automatic extraction of tie points has been very popular, and scale-invariant feature transform (SIFT), 161 

developed by (Lowe, 2004), is still one of the most useful algorithms for automatically extracting tie points. In the 162 

proposed method, SIFT is used to detect horizontal shifts between pre- and post-disaster images. The keypoints 163 

from the whole of the study area were sorted in ascending order of feature distance. Finally, keypoints were 164 

selected as long as newly selected keypoints were at least 5.0 m away from already selected keypoints. The 165 

maximum number of keypoints selected was 30. The relative shifts between keypoints were used as horizontal 166 

shifts caused by the earthquake. Because local horizontal shifts are fluctuating, the average should be used to 167 

represent the horizontal shift in the study area. The average horizontal shifts obtained by automatic and manual 168 

detections for Study Areas 1 and 2 are shown in Tables 1 and 2, respectively.  169 

3.4. Building Region Data 170 

Building region data are necessary to achieve highly accurate extraction of damaged buildings. Gamba et al. 171 

(2007) used GIS data for selecting training data sets and damage mapping. In addition, as mentioned in the 172 

introduction, damage to buildings caused by disasters is often reported by giving the number of damaged 173 

buildings. Without GIS data, it will be quite difficult to estimate this number. Therefore, GIS-based building 174 

region data should be provided with any rapid mapping system that is put into use. However, it is time-consuming 175 

to generate GIS data by delineating building boundaries on analogue maps and digitizing them. So we propose to 176 

generate building region data by mixing segmentation and filtering techniques 177 

Many segmentation algorithms and software applications are now available. The ideal for disaster damage 178 

assessment would be that the segmentation units correspond to buildings. But in actuality, regions corresponding 179 

to buildings, roofs or parts of roofs may be segmented. It may, therefore, be necessary to develop better methods 180 

of segmentation. However, in this research, we do not develop a new segmentation method; instead we utilize 181 

existing segmentation algorithms or software. As a consequence, we assess disaster damage not in terms of the 182 

number of damaged buildings, but in terms of the area of damaged buildings, when building region data are 183 

generated using segmentation techniques. 184 

In this research, we used two example methods for segmentation. In one method, we use ENVI EX (Version 185 

4.8) (ENVI EX, 2009) which segments regions using a gradient map and watershed algorithm (Jin, 2009). The 186 

other method is an algorithm proposed by Susaki (2012a). The algorithm is designed to segment regions having a 187 
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rough texture or that are overcast by shadow, both of which are difficult to segment using other algorithms and 188 

software. Quantization using several interval widths is applied during segmentation, and for each quantization, 189 

areas with homogeneous values are labeled in an image. Edges determined from the homogeneous areas obtained 190 

at each quantization are then merged, and frequently observed edges are extracted. By using a “rectangular index”, 191 

regions whose shapes are close to being rectangular are selected as buildings. The same thresholds that were used 192 

by Susaki (2012a) were used in this research, except for the minimum rectangular index. This parameter has a 193 

range from 0 to 1, where a higher index means the region’s shape is closer to a rectangle. Susaki (2012a) used 194 

0.45, but it was set to 0.1 in this research to extract even regions whose shapes are far from rectangular, because 195 

such buildings were found in the study area. The “feature extraction” function in the ENVI EX software requires 196 

the setting of two parameters, “Scale Level” and “Merge Level”. Both have the range from 0.0 to 100.0, and are 197 

related to determine the number of segments. Higher values of the parameters generate fewer segments. From an 198 

empirical examination, these parameters were set to 50 and 80, respectively.  199 

Segmentation results may include objects other than buildings. Filtering of the DSM can help in excluding the 200 

ground points from original point clouds. There are many filtering algorithms (Sithole and Vosselman, 2005; 201 

Mongus and Žalik, 2012; Susaki, 2012b) and in the proposed procedure, we use the filtering algorithm of Susaki 202 

(2012b). This slope-based algorithm utilizes planar surface features and connectivity with locally lowest points to 203 

improve the extraction of ground points. A slope parameter used in the proposed algorithm is updated after an 204 

initial estimation of the DSM, and thus local terrain information can be included. As a result, the proposed 205 

algorithm can extract ground points from areas where different degrees of slope variation are interspersed.  206 

3.5. Vegetation and Waterbody Exclusion 207 

Because extraction of damaged buildings is on the focus of the present research, vegetation and waterbodies 208 

should be excluded. Vegetation regions can be removed when examining regions to determine whether they are 209 

damaged buildings, as described in Subsection 3.5. It is widely reported that a combination of red and near-210 

infrared band reflectance is effective for extracting vegetation. Because aerial images usually have no near-211 

infrared band, such an approach cannot be used. However, the brightness of RGB bands may be used instead to 212 

extract vegetation. Vegetation regions were empirically excluded as follows: pixels having (1) a red DN higher 213 

than 100, (2) a blue DN higher than 100, and (3) a ratio of green to blue DNs higher than 1.0 were labeled as 214 

vegetation pixels. Regions that contained more than 50% vegetation pixels were labeled as vegetation regions and 215 

excluded from results.  216 

On the other hand, automatic generation of a waterbody mask image is challenging because the brightness of 217 

the water is not homogeneous. Waterbodies can be manually delineated, and then they are masked after extracting 218 

damaged regions. Waterbodies were manually delineated, and then masked after extracting damaged regions. It 219 

took approximately 5 min to delineate one study area. 220 

3.6. Extraction of Damaged Regions 221 

The necessity for mapping damaged buildings soon after a disaster is quite high. However, ground surveys 222 

using GPS equipment are, in general, difficult soon after a disaster, and thus the accuracy of 3D coordinates in the 223 
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DSM may not be high. Therefore, we have to develop a method that is robust to 3D coordinate errors. In order to 224 

find an effective indicator to differentiate damaged regions from undamaged regions, we examined the height 225 

changes between pre- and post-tsunami configurations by using DSMs. Figures 5(a) and 5(b) show the differences 226 

in heights of damaged and undamaged buildings in Study Area 2, respectively. Study Area 2 was selected for this 227 

purpose because samples of undamaged buildings in Study Area 1 that remained after the tsunami were quite 228 

limited. In order to reduce the effect of geolocational errors, we used the images at t1 and t3, to which absolute 229 

orientation was applied, and obtained the samples after adjusting the image at t3 to take into account the horizontal 230 

shift. 231 

All of the samples except “Dmg1” in Figure 5(a) show a clear trend in height change for damaged buildings. 232 

The heights of the samples post-tsunami were almost zero because the buildings were completely lost. On the 233 

other hand, samples in Figure 5(b) do not show such a clear trend. However, we have to pay attention to the 234 

samples “Dmg1” in Figure 5(a). The samples were from a large building with approximately 28 m × 45 m of flat 235 

roof. The scattergram of the samples “Dmg1” shows that less than half of them do not follow the trend. This may 236 

be caused by errors in restoring 3D coordinates of points included in the area where the damaged building used to 237 

exist. Points in flat areas where no object exists may have inaccurate 3D coordinates because false tie points may 238 

be selected due to lack of texture.  239 

Considering these findings, the proposed method takes a following approach. We set three thresholds: (1) a 240 

window size to locate the new position of the same pixel (T1), (2) height change (T2) and (3) minimum percentage 241 

of damaged pixels per region (T3). As mentioned in Subsection 3.2, horizontal shifts between pre- and post-242 

disaster images are automatically obtained. To locate damaged buildings, our method examines each pixel in the 243 

pre-disaster image. Then all pixels in a window surrounding the pixel position in the post-disaster image are 244 

examined. The pixel position may differ from the position in the pre-disaster image due to the horizontal shifts. 245 

The method locates the pixel whose height is closest to the height of the pre-disaster pixel. Therefore, we set a 246 

threshold window size (T1) for the examination. After examining each pixel in the pre-disaster image, the method 247 

assesses the damaged regions. If the height change between this pre-disaster pixel and the post-disaster pixel was 248 

larger than a threshold value (T2), the pre-disaster pixel is labeled as potentially damaged. After pixel-based 249 

processing, the method examines each region. Regions where the ratio of labeled pixels to the total number of 250 

pixels was higher than another threshold value (T3) were extracted as being damaged.  251 

We determined the optimal values of three parameters required in the proposed method. A traditional 252 

validation approach is that half of the reference data are used for the parameter selection, and the remaining half of 253 

the reference data are used for the assessment. However, if we take samples of damaged and undamaged buildings 254 

from Study Area 1, the number of undamaged buildings is very small. Study Area 2 is partly flat and partly hilly, 255 

and almost all damaged buildings were in the flat area. In this case also, the number of undamaged buildings in 256 

the flat area is small. Therefore, it is impossible to reserve enough undamaged buildings to assess the parameters 257 

obtained by using the samples. Therefore, we took the following approach: the parameters were given specific 258 

values and the results were compared with the reference data. The optimal parameters were determined based on 259 

the statistical indices. 260 

Four indices were used for pixel-by-pixel validation: precision (TP/(TP + FP)), recall (TP/(TP + FN)), F-value 261 

(2 × precision × recall/(precision + recall)), and overall accuracy ((TP + TN)/(TP + FP + FN + TN)) where TP, FP, 262 
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FN and TN denote true positive, false positive, false negative and true negative, respectively. Overall accuracy can 263 

be a good statistical index. However, reference maps show that the ratios of areas of damaged building to the 264 

entire area were not high: 23.2% for Study Area 1 and 13.0% for Study Area 2. Therefore, we used F-value to 265 

determine the optimal combination of the three thresholds. 266 

We tried various values for the three parameters as follows: 1 pixel × 1 pixel, 3 × 3, 5 × 5, 7 × 7 and 9 × 9 for 267 

T1; 1.0 m, 1.5 m, 2.0 m and 2.5 m for T2; and 25%, 50% and 75% for T3. We found that the combination of 2.0 m 268 

for T2 and 50% for T3 was the best for all of window sizes. With 2.0 m for T2, and 50% for T3, the optimal window 269 

size (T1) for determining number and area of damaged buildings when GIS data were available was 1 pixel × 1 270 

pixel (0.5 m × 0.5 m: no search). When GIS data were unavailable, the optimal size depended on the data set: 5 271 

pixel × 5 pixel (2.5 m × 2.5 m) for comparison of the images at t1 and t2 in Study Area 1, 7 pixel × 7 pixel (3.5 m 272 

× 3.5 m) for comparison of the images at t1 and t3 in Study Area 1, and 9 pixel × 9 pixel (4.5 m × 4.5 m) for 273 

comparisons of the images at t1 and t2 and at t1 and t3 in Study Area 2. Figure 6 shows the accuracies obtained by 274 

changing the values of T1 for fixed values of T2 and T3 (2.0 m and 50%). 275 

3.7. Validation 276 

The performance for extracting damaged buildings was evaluated for various horizontal shift estimates: (1) 277 

average of automatically detected shifts, (2) manually detected local shifts, (3) average of manually detected shifts, 278 

and (4) no shift. As shown in Figures 1(b) and 1(c), some 200 m × 200 m grids had no manually detected local 279 

shift because of the lack of surviving buildings. In this case, the average of manually detected shifts was assigned. 280 

The results for the extraction of damaged buildings using GIS data are shown in Figures 7 and 8 for Study Areas 1 281 

and 2, respectively. Figures 7(b)(d)(f) and 8(b)(d)(f) show the validation results. Figures 7(a) and 8(a), Figures 282 

7(c) and 8(c), and Figures 7(e) and 8(e) are results obtained using the average of automatically detected shifts, the 283 

manually detected local shifts, and no shift, respectively. They were generated using 1 pixel × 1 pixel for T1. 284 

Figure 9 includes the results generated by masking the segmentation results (Susaki, 2012a) with the filtering 285 

results (Susaki, 2012b). From these results, damaged buildings were extracted without GIS data (Figures 10 and 286 

11). Figures 10(a) and 11(a), Figures 10(c) and 11(c), and Figures 10(e) and 11(e) are results obtained using the 287 

average of automatically detected shifts, the manually detected local shift, and no shift, respectively. They were 288 

generated using 7 pixels × 7 pixels for T1. 289 

The proposed method was compared with an existing method for extracting damaged buildings. The method 290 

proposed by Tian et al. (2013) was selected because the concept is similar to that of the proposed method: it uses 291 

two DSMs generated from stereo satellite imagery and compares the height change in segmented regions. 292 

However, it evaluates change detection by combining both the height change and the brightness change in regions, 293 

while the proposed method considers only the height change. In the experiment, the threshold for the change 294 

probability map was set to 2.0 by referring to the validation results of both study areas. For reference, Tian et al. 295 

(2013) used 0.5 for industrial areas and 0.9 for forest areas. The results obtained by using the method of Tian et al. 296 

(2013) are shown in Figure 12. Figures 13 and 14 show the effects of horizontal shifts. Figure 13 shows the 297 

accuracies obtained by using GIS data. Figure 14 shows the accuracies obtained by using segmentation results. 298 

Two segmentation algorithms, Susaki (Susaki, 2012a) and ENVI EX 4.8, were compared.  299 

 300 
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4. Discussion 301 

4.1. Effects of Horizontal Shift 302 

Absolute orientation could not be applied to the images at t2 which were acquired one day after the disaster. 303 

Even when the absolute orientation was implemented, horizontal shifts caused by the earthquake remained 304 

(Figures 4(a) and 4(b)). Figures 13 and 14 show that the accuracies were independent of horizontal shifts for 305 

Study Area 1, but they were dependent for Study Area 2. This may depend on the mixture of damaged and 306 

undamaged buildings. Study Area 1, which is a flat area, lost almost all of buildings. On the other hand, Study 307 

Area 2, which is partly flat and partly hilly, lost almost all of buildings in the flat area, but lost no building in the 308 

hilly area. Figure 8(f) shows that if no horizontal shift is considered, more commission errors were found in the 309 

hilly area. This is because height changes were examined for falsely matched buildings, and so they were falsely 310 

classified as “damaged” buildings. Therefore, horizontal shift should be considered in damage examination so that 311 

the method can be applied to any damaged areas. 312 

Automatic detection of horizontal shifts using SIFT performed as well as manual detection (Figures 13 and 14). 313 

It was found that manually detected local shifts did not give the best accuracy. In the experiments, we assigned 314 

local shifts to 200 m x 200 m grids. But, this grid size may not be optimal. On the other hand, the average of the 315 

local shifts loses local features but generates a more stable estimation. According to the results shown in Figures 316 

13 and 14, using the average of the local shifts obtained by SIFT is acceptable for extracting damaged buildings. 317 

The horizontal shifts caused by earthquake and a lack of absolute orientation may not be constant through an 318 

image. To adjust for this fact, our method uses a search window to find a locally optimal point in the post-disaster 319 

image corresponding to a pre-disaster pixel. Figure 6 shows that with GIS data, a 1 × 1 search window (no search) 320 

generated the best accuracies for both number and area. It also shows that without GIS data, there is no significant 321 

relation between a searching window size and accuracy for Study Area 1, but that there is a significant relation for 322 

Study Area 2. This fact provides an interesting insight: when building boundaries are accurate, there is no need to 323 

search for the optimal point; when they are not accurate, because they are from segmentation and filtering results, 324 

searching within a certain size of window helps to improve the accuracy. In conclusion, the selection of the 325 

optimal search window size depends on the availability of GIS data. 326 

4.2. DSM Accuracy and Parameter Selection 327 

Figure 6 shows that for Study Area 2, all the accuracies of the results from DSMs at t1 and t3 are better than 328 

those from DSMs at t1 and t2. Theoretically, this is consistent with the inclusion of absolute orientation. For Study 329 

Area 1, there is no significant difference between the accuracies of the results from DSMs at t1 and t2 and the 330 

accuracies of the results from DSMs at t1 and t3. Again, this fact can be explained from the damage in Study Area 331 

1. Because Study Area 1 lost almost all its buildings over the entirety of the area, the effect of the absolute 332 

orientation was not clearly found in the results. 333 

As mentioned in Subsection 3.2, the DSM generated by using the same software in another study area had a 334 

0.71 m standard deviation of the height change between LiDAR data and the DSM (Susaki et al., 2013). The 335 

method proposed in this paper uses the height change (T2) and a ratio parameter (T3). This ratio parameter 336 
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contributed to eliminating the effects of DSM errors because the two parameters may be relatively more stable 337 

than the window size (T1). F-values of Figure 6 show that the two study areas have different optimal values. We 338 

recognize that the optimal parameter values may depend on the accuracy of generated DSM. However, if our 339 

method is applied to another study area, the values used in the present study can be applied as defaults. 340 

4.3. Comparison with Existing Methodologies 341 

Figures 11 to 14 show that the performance of the method of Tian et al. (2013) was significantly worse than 342 

that of the proposed method, especially for Study Area 2. While Study Area 1 lost almost all its buildings, Study 343 

Area 2 retains almost all buildings in the hilly areas (north-western area in Figures 1(c) and 1(e)). Because the 344 

method of Tian et al. (2013) combines both brightness and height changes into the function of change vector 345 

analysis, the results of extracting damaged buildings are sensitive to brightness change. As shown in Figures 12(f) 346 

and 12(h), undamaged buildings were falsely classified as damaged mainly due to brightness changes even though 347 

the heights showed almost no change. The results for Study Area 1 were similar to those obtained by the proposed 348 

method. The main reason may be that almost all buildings were damaged, and the errors caused by brightness-349 

based evaluation were less than those in Study Area 2. These results clearly show that the proposed method, based 350 

on height change only, outperformed the method of Tian et al. (2013). 351 

In terms of segmentation performance, Figure 14 shows that there is no significant difference in accuracies 352 

between the algorithm of Susaki (2012a) and ENVI EX for both study areas. Susaki (2012a) reported that the 353 

segmentation algorithm outperformed ENVI EX when they were both applied to dense urban areas where there 354 

are unclear boundaries between buildings and the shadows cast by neighboring buildings are found on the image. 355 

Because the two study areas in the present research are not dense urban areas, this may have led to the 356 

performances of the two segmentation algorithms being similar. 357 

 358 

5. Conclusions  359 

In this paper, we presented a method for extracting individual damaged buildings by using aerial images observed 360 

pre- and post-disaster. Using DSMs generated from pre- and post-disaster images, the method finds significant 361 

height changes in building regions, which are provided from GIS data or the results of segmentation of pre-362 

tsunami disaster images and the filtering of pre-disaster DSMs. Horizontal shifts due to land deformation caused 363 

by earthquakes and to orientation error are automatically estimated by SIFT. To allow for the errors in the 364 

generated DSMs, the proposed method uses three parameters: (1) a window size to locate the new position of the 365 

same pixel (T1); (2) height change (T2); and (3) minimum percentage of damaged pixels per region (T3). It was 366 

found that while the values of T2 and T3 are stable, T1 is dependent on the data set. Validation with data from 367 

before and after the 2011 tsunami showed that the proposed method extracted damaged buildings with high 368 

accuracy (94% to 96% in number and 96% to 98% in area) when GIS data are available and with lower accuracy 369 

(69% to 79% in area) when GIS data are unavailable. We conclude that our method can automatically generate 370 

maps of buildings damaged not only by a tsunami but also by other disasters. 371 

 372 
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Figure captions: 464 

 465 

Figure 1. Aerial images. (a), (b) and (c) Aerial images of Study Area 1 taken on May 15, 2009 (t1), March 12, 466 

2011 (t2), and May 26, 2011 (t3), respectively. Images (a), (b) and (c) were taken using a UCX camera. (d), (e) and 467 

(f) Aerial images of Study Area 2 taken on May 18, 2009 (t1), March 12, 2011 (t2), and May 25, 2011 (t3), 468 

respectively. Images (d), (e) and (f) were taken using UCX, UCD and RC-30 cameras, respectively. 469 

 470 

Figure 2. Flowchart of the proposed method. 471 

 472 

Figure 3. Height data. (a), (b) and (c) DSMs of Study Area 1 t at May 15, 2009 (t1), March 12, 2011 (t2), and May 473 

26, 2011 (t3), respectively. (d), (e) and (f) DSMs of Study Area 2 at May 18, 2009 (t1), March 12, 2011 (t2), and 474 

May 25, 2011 (t3), respectively. 475 

 476 

Figure 4. Horizontal shifts post-tsunami. Shifts of samples for Study Areas (a) 1 and (b) 2. Average shifts between 477 

t1 and t2 and between t1 and t3 for (a) were (0.60 m, -0.27 m) and (1.10 m, -1.97 m), respectively. Those for (b) 478 

were (2.57 m, -1.17 m) and (4.87 m, -1.27 m), respectively. The origin of the coordinate system is at bottom left 479 

of the images. 480 

 481 

Figure 5. Height changes post-tsunami. Height difference between t1 and t3 against height at t1 (a) for damaged 482 

buildings, and (b) for undamaged buildings. 483 

 484 

Figure 6. Verification of results for the extraction of damaged buildings for various sizes of searching window. h 485 

and  were set to 2.0 m and 0.5, respectively. (a) Number of damaged buildings with GIS data, (b) area of 486 

damaged buildings with GIS data, and (c) area of damaged buildings with segmentation results obtained by using 487 

the method of Susaki (2012a). 488 

 489 

Figure 7. Damaged buildings extracted for Study Area 1 by using DSMs at t1 and t2 with GIS data. (a), (c) and (e) 490 

Damaged buildings extracted using (a) the average horizontal shift from SIFT, (c) manual local horizontal shift, 491 

and (e) no shift. (b), (d) and (e) Validation results for (a), (c) and (e), respectively. Red denotes true positive, 492 

yellow denotes false positive, green denotes false negative and blue denotes true negative. 493 

 494 

Figure 8. Damaged buildings extracted for Study Area 2 by using DSMs at t1 and t2 with GIS data. See the caption 495 

of Figure 7 for explanations of the sub-figures. 496 

 497 

Figure 9. Building regions generated by segmentation and filtering. (a) and (b) Aerial images of Study Area 1 498 

taken on May 15, 2009, and Study Area 2 taken on May 18, 2009. (c) and (d) Segmentation results obtained by 499 

using the method of Susaki (2012a). (e) and (f) Regions generated by masking the segmentation results with 500 

filtered DSM results. 501 

 502 
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Figure 10. Damaged buildings extracted for Study Area 1 by using DSMs at t1 and t2 with segmentation results. 503 

Damaged buildings extracted using (a) the average horizontal shift from SIFT, (c) manual local horizontal shift, 504 

and (e) no shift. (b), (d) and (e) Validation results for (a), (c) and (e), respectively. See the caption of Figure 7 for 505 

an explanation of the colors. 506 

 507 

Figure 11. Damaged buildings extracted for Study Area 2 by using DSMs at t1 and t2 with segmentation results. 508 

Damaged buildings extracted using (a) the average horizontal shift from SIFT, (c) manual local horizontal shift, 509 

and (e) no shift. (b)(d)(e) Validation results for (a), (c) and (e), respectively. See the caption of Figure 7 for an 510 

explanation of the colors.  511 

 512 

Figure 12. Damaged buildings extracted by using DSMs at t1 and t2 and the method of Tian et al. (2013). 513 

Damaged buildings were extracted using the average horizontal shift from SIFT. (a)(c) Damaged buildings 514 

extracted for Study Area 1 using (a) GIS data and (c) segmentation using the method of Susaki (2012a). (b) and 515 

(d) Validation results for (a) and (c), respectively. (e)(g) Damaged buildings extracted for Study Area 2 using (e) 516 

GIS data and (g) segmentation using the method of Susaki (2012a). (f) and (h) Validation results for (e) and (g), 517 

respectively. See the caption of Figure 7 for an explanation of the colors. 518 

 519 

Figure 13. Verification of results for the extraction of damaged buildings using GIS data. For the proposed method, 520 

a 1 × 1 window was used for searching pixels, and h and  were set to 2.0 m and 0.5, respectively. F-value is 521 

defined as 2 × precision × recall/(precision + recall) where precision = TP/(TP + FP) and recall = TP/(TP + FN). 522 

(a) Number of damaged buildings, and (b) area of damaged buildings. The method of Tian et al. (2013) was used 523 

for comparison. 524 

 525 

Figure 14. Verification of results for the extraction of damaged buildings using segmentation results. Two 526 

segmentation algorithms were used, a 7 × 7 window was used for searching pixels, and h and  were set to 2.0 m 527 

and 0.5, respectively. (a) and (b) Areas of damaged buildings for t1-t2 and t1-t3, respectively. The method of Tian 528 

et al. (2013) was used for comparison. 529 

 530 

531 
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Table captions: 532 

 533 

Table 1. Average horizontal shifts between pre tsunami (t1) and post tsunami (t2 or t3) for Study Area 1. 534 

 535 

Table 2. Average horizontal shifts between pre tsunami (t1) and post tsunami (t2 or t3) for Study Area 2. 536 

 537 

 538 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. 

  

(a) (d) 

(b) (e) 

(c) (f) 

0    125   250         500 (m) 



 

 

 

 

 

Figure 2. 

 

 

  

Segmentation

Regions

DSM

Pre-disaster

Stereo images
DSM 
generation

DSM

Stereo images

Examination of 
height difference
in region

Damaged
building map

DSM

Pre-disaster

Stereo images
DSM 
generation

DSM

Stereo images

Examination of 
height difference 
in region

Damaged
building map

Post-disaster

(a) GIS data are available

(b) GIS data are not available

Horizontal shift

Horizontal shift

Filtering

Masking

Non-ground
points

Building
regions

Building regions
(GIS data)

Post-disaster



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 

  

(a) (d) 

(b) (e) 

(c) (f) 

0    125   250         500 (m) 0                    51 (m) 



 

 

(a)                                           (b) 

Figure 4. 

 

 

(a)                                           (b) 

Figure 5.   



 
(a) 

 

(b) 

 

(c) 

 

Figure 6. 

  

80

85

90

95

100

1x1 3x3 5x5 7x7 9x9 1x1 3x3 5x5 7x7 9x9

F-value (%) With GIS data (number)
t1-t2
t1-t3

Study Area 1 Study Area 2

80

85

90

95

100

1x1 3x3 5x5 7x7 9x9 1x1 3x3 5x5 7x7 9x9

F-value (%)
With GIS data (area) t1-t2

t1-t3Study Area 1 Study Area 2

60

65

70

75

80

85

1x1 3x3 5x5 7x7 9x9 1x1 3x3 5x5 7x7 9x9

F-value (%) With segmentation results (area)
t1-t2
t1-t3Study Area 1 Study Area 2



  

(a)                                          (b) 

  

(c)                                          (d) 

  

(e)                                          (f) 

 

Figure 7.   



  

(a)                                          (b) 

  

(c)                                          (d) 

  

(e)                                          (f) 

 

Figure 8.   



  

(a)                                          (b) 

  

(c)                                          (d) 

  

(e)                                          (f) 

 

Figure 9.   



  

(a)                                          (b) 

  

(c)                                          (d) 

  

(e)                                          (f) 

 

Figure 10.   



  

(a)                                          (b) 

  

(c)                                          (d) 

  

(e)                                          (f) 

 

Figure 11. 

  



(a)  (b) 

(c)  (d) 

(e)  (f) 

(g)  (h) 

 

Figure 12.   



 

 
(a) 

 

(b) 

Figure 13. 

 

  

60

70

80

90

100

Auto/avg Man/local Man/avg No shift Auto/avg Man/local Man/avg No shift

F-value (%)
With GIS data (number)

Proposed: t1-t2 Proposed: t1-t3 Tian (2013): t1-t2 Tian (2013): t1-t3

Study Area 1 Study Area 2

60

70

80

90

100

Auto/avg Man/local Man/avg No shift Auto/avg Man/local Man/avg No shift

F-value (%) With GIS data (area)

Proposed: t1-t2 Proposed: t1-t3 Tian (2013): t1-t2 Tian (2013): t1-t3

Study Area 1 Study Area 2



 

 

(a) 

 

(b) 

Figure 14. 

 

40

50

60

70

80

90

Auto/avg Man/local Man/avg No shift Auto/avg Man/local Man/avg No shift

F-value (%) With segmentation results (area): t1 - t2

Susaki+Proposed ENVI EX+Proposed Susaki+Tian (2013)

Study Area 1 Study Area 2

40

50

60

70

80

90

Auto/avg Man/local Man/avg No shift Auto/avg Man/local Man/avg No shift

F-value (%) With segmentation results (area): t1 - t3

Susaki+Proposed ENVI EX+Proposed Susaki+Tian (2013)

Study Area 1 Study Area 2



 

Table 1. 

 
May 15, 2009 (t1) and  

March 12, 2011 (t2) 

May 15, 2009 (t1) and  

May 26, 2011 (t3) 

Automatic detection (1.35 m, 0.35 m) (2.55 m, -1.90 m) 

Manual detection (0.60 m, -0.27 m) (1.10 m, -1.97 m) 

 

 

Table 2. 

 
May 18, 2009 (t1) and  

March 12, 2011 (t2) 

May 15, 2009 (t1) and  

May 18, 2011 (t3) 

Automatic detection (3.65 m, -1.02 m) (5.91 m, -1.45 m) 

Manual detection (2.57 m, -1.17 m) (4.87 m, -1.27 m) 
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