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The reason why the elementary-particle theory must be Lorentz invariant is investigated
under the principle of quantum priority, which implies that the existence of any space-

time manifold such as the Minkowski space should not be assumed logically prior to
the formulation of quantum-theoretical framework. The consideration is based on the
canonical operator formalism of quantum Einstein gravity, which is formulated without
introducing any classical background spacetime nor any particular metric signature. The

Lorentz invariance of the elementary-particle theory is derived as a consequence of the
spontaneous breakdown of general linear invariance on the basis of quantum Einstein
gravity. The pseudo-Riemannian spacetime can appear not as a consequence of the pres-

ence of gravitation but as that of the spontaneous breakdown of translational invariance.
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1. Introduction

As is well known, in 1905, Einstein logically derived Lorentz invariance in any iner-

tial frame on the basis of the principle of light-speed invariance and that of special

relativity. Of course, his reasoning is completely classical ; nevertheless, it was suc-

cessfully applied to various quantum phenomena. Indeed, the brilliantly successful

theory of elementary particles, the Standard Theory, was formulated under the hy-

pothesis of Lorentz invariance. It has, however, never been seriously questioned why

it must be Lorentz invariant. The purpose of the present paper is to answer this

question.

It is natural to believe that the fundamental laws of Nature should be totally

described by the quantum theory. On this belief, the present author1 previously

proposed the following principle, called the “Principle of Quantum Priority”: In

the ultimate theory, any concept of classical physics must not appear logically prior

to its quantum-theoretical construction. From this principle, the existence of any

spacetime manifold such as the Minkowski space should not be assumed at the
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starting point of constructing the ultimate theory. That is, such a classical spacetime

structure must be derived a posteriori.

At the beginning, we consider the (ordered) set of four real numbers, namely,

R4 = {(x0, x1, x2, x3)|xµ ∈ R, (µ = 0, 1, 2, 3)}. We assume that the theory should

be invariant under the translations and the GL(4) transformations, that is, R4

is supposed to be a 4-dimensional affine space.a This affine space is called “ur-

spacetime”. We emphasize that the ur-spacetime has no metric structure; we do not

regard it as a manifold.b

For later use, we need to introduce the concept of “ur-time”. It is an arbitrary

linear function of xµ. That is, let cµ’s be any nontrivial four real constants and a be

any real constant; then the ur-time is cµx
µ + a. If the theory is affine invariant, it

is independent of the choice of cµ and a. Hence, for simplicity, we hereafter choose

c0 = 1, c1 = c2 = c3 = 0, a = 0, that is, x0 is the ur-time.

Our primary purpose is to derive the Lorentz invariance of the elementary-

particle theory logically. As a matter of course, nothing can be derived if nothing is

assumed. That is, we must assume some theoretical framework. We first state our

standpoint in the following.

The theory of elementary particlesc is usually formulated in the Minkowski

spacetime without including the gravity. But, of course, every elementary parti-

cle has gravitational interaction, and hence consistency requires the introduction of

quantum gravity.d Since gravitational interaction is known to have close relationship

with the spacetime structure, quantum gravity is more fundamental than the theory

of elementary particles. Therefore, in order to discuss the spacetime structure, we

should start with the quantum theory of gravitation.

Although various kinds of formulations have been proposed as the theories of

quantum gravity, the BRS-formulated canonical operator formalism of the gravita-

tional field2,3 is unique among them in the sense that the unitarity of its physical

S-matrix is guaranteed at the same level of rigor as that of the gauge theories. This

formalism is formulated manifestly GL(4)-covariant in the Heisenberg picture, that

is, it is affine invariant so that the xµ appearing in this theory can be regarded as

the ur-spacetime.

aNote that the 4-dimensional affine tranformation is uniquely characterized as the bi-analytic

mapping from R4 to R4.
bThe reason why we do not want to regard it as a manifold is as follows: A manifold is a geometric
object and xµ is introduced as a secondary quantity describing local coordinates. On the contrary,
we want to regard xµ as a primary quantity independent of a geometrical object. Partial differen-

tiations with respect to xµ should be understood as formal operations in the ur-spacetime; this is
because we encounter products of quantum fields (operator-valued distributions) whose arguments
are the same xµ.
cFor convenience of description, the graviton is not treated as a kind of elementary particles.
dSome people wish to deny quantizing gravity and regard general relativity as an effective theory.
But nobody has succeeded in constructing a consistent theory realizing such a standpoint. Since

gravity is known to have quantum action on the particle, it is natural that its reaction is also of
quantum nature.
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Unfortunately, there prevails the following opinion: “Since the covairant theory

of quantum gravity is not renormalizable, it cannot be regarded as a physically

sensible theory.” This assertion is, however, wrong4 because nonrenormalizability

is based on perturbation theory, which is wrong in quantum gravity. Indeed, in

order to apply perturbation theory to quantum gravity, one must assume that the

0-th order approximation of the quantum gravitational field is a classical spacetime

metric tensor, but the correct 0-th order approximation is not a c-number but a

q-number.

In §2, we very briefly review the BRS-formulated canonical operator formalism

of quantum Einstein gravity with making slight reformulation so as to be more

appropriate to the discussion of the present paper. In §3, we show that the the-

ory of elementary particles becomes Lorentz invariant as a result of the inevitable

spontaneous breakdown of the GL(4) invariance under the assumption that the

translational invariance is not spontaneously broken. In §4, the case of sponta-

neously broken translational invariance is briefly discussed. In the final section, we

summarize our reasoning and make some remarks.

2. Quantum Einstein gravity

As is well known, the classical Einstein gravity, namely, the theory of general rela-

tivity, is formulated on the basis of the equivalence principle and of the principle of

general relativity. The theory is manifestly covariant under the general-coordinate

transformations and the gravitational field gµν(x) is identified with the spacetime

metric tensor. It is important, however, to notice that the Einstein equation is inde-

pendent of metric signature; the Lorentzian signature of the Riemannian manifold

is introduced as a boundary condition afterwards.

When quantizing Einstein gravity, it is not an adequate idea to still identify

gµν(x) with the metric tensor, because we do not know its a priori metric signa-

ture.e What should be quantized is, of course, the gravitational field; the metric

tensor is purely of a classical concept, and it should be given by the vacuum expec-

tation value of the quantum gravitational field gµν(x) afterwards. Furthermore, it

is also not an adequate idea to suppose that the quantum gravitational field con-

sists of the classical metric tensor and of the quantum fluctuation around it; the a

priori existence of the classical metric tensor evidently contradicts the principle of

quantum priority.

Although the Einstein equation is independent of metric signature, in order

to write down the action integral, it is necessary to introduce the square root of

detgµν(x). Since we do not know the metric signature a priori, it is impossible to

define it without contradicting the hermiticity of the action integral.f The only way-

eNote that the sum over manifolds, that is encountered in the path-integral formulation of quantum
gravity, has the trouble in how to specify the metric signature.
f It is impossible to define a positive-definite operator in the framework of indefinite-metric quantum
field theory.
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out of this difficulty is to introduce the “vierbein” field h a
µ (x) (a = 0, 1, 2, 3), with

banning its geometrical interpretation, through

gµν(x) = ξabh
a
µ (x)h

b
ν (x), (2.1)

where the matrix formed by ξab is symmetric (because gµν(x) is symmetric) and

nonsingular (because det gµν(x) ̸= 0). According to Sylvester’s theorem, we can

assume without loss of generality that it is a diagonal matrix whose each diagonal

element is either +1 or −1. While gµν(x) has 10 independent components, h a
µ (x)

has 16 independent components. The extra 6 degrees of freedom imply the existence

of a 6-dimensional gauge symmetry, which we call the “internal symmetry”. They

must be made totally unphysical; this condition will be seen to be satisfied in the

construction of the quantum Einstein gravity. By using h(x) ≡ deth a
µ (x), it is now

possible to have a hermitian “invariant” volume element h(x)d4x.

Now, we present a brief summary of the manifestly-covariant canonical operator

formalism of the quantum Einstein gravity based on the BRS invariance.2,3 Here,

the BRS invariance is the quantum version of the local-translation (i.e., general-

coordinate transformation) invariance; since the arbitrary transformation function

in the classical Einstein gravity is replaced by the local-translation FP ghost, any

local-translationally invariant (in the classical sense) quantity is invariant under the

BRS transformation of the quantum Einstein gravity.

The fundamental fields are the vierbein field h a
µ (x), the local-translation B-field

bρ(x), the local-translation FP ghost cσ(x) and anti-ghost cτ (x), together with the

internal-symmetry B-field, the internal-symmetry FP ghost and anti-ghost, and var-

ious fields of elementary particles. We consider elementary particles generically, that

is, we do not work with any concrete model of elementary particles. The fundamen-

tal action S is the integral of the Lagrangian density L(x) over R4. It consists of

the Einstein-Hilbert action, the local-translation gauge-fixing term (given by the

de Donder-condition formula multiplied by bρ(x)) plus FP-ghost one, the internal-

symmetry gauge-fixingg plus FP-ghost one and the action, denoted by SM , of the

fields of elementary particles. Of course, each term of S is invariant under (global)

translations, GL(4) transformations, two kinds (local translation and internal gauge

symmetry) of the BRS transformations.h

The field equations are derived from the variational principle δS = 0 as usual.i In

order to define the operator properties of quantum fields, the canonical quantization

procedure is performed with respect to the ur-time x0. The canonical fields are

all fields presented above except for bρ(x) (together with some possible multiplier

fields). The canonical conjugate to each canonical field is defined as usual and the

gThis gauge-fixing term must be local-translationally invariant.
hBut, actually, S has a very large symmetry, called “16-dimensional Poincaré-like superalgebra”,
which is denoted by IOSp(8, 8), containing 144 independent generators,5 together with the internal
symmetry containing 29 independent generators.
iThe infinitesimal variation of each quantum field is a c-number function.
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canonical commutation or anti-commutation relations are set up at the equal ur-

times. The choice of commutation or anti-commutation must be consistent with the

BRS invariance of S, and to choose anti-commutation is admitted only if S remains

invariant under the simultaneous sign change of both relevant quantities. The usual

spin-statistics relation is outside of our consideration, because all fields of elementary

particles are scalar fields with respect to the ur-spacetime.j The Dirac or Weyl field

is a spinor and the gauge field is a vector with respect to the internal symmetry.k

Hereafter, for simplicity, we omit stating the prefix “anti” for anti-commutation

explicitly.

The equal ur-time commutation relations concerning the canoninal fields and

their first-order ur-time derivatives can be explicitly calculated from the canonical

commutation relations; especially, it is quite remarkable that all equal ur-time com-

mutation relations concerning h a
µ (x), bρ(x), etc. and their first-order derivatives are

obtained in closed form.7

In general, the method for solving quantum field theory in the Heisenberg pic-

ture8 is, in principle, as follows. First, taking the 4-dimensional commutators be-

tween the left-hand side of each field equation and each field, we rewrite all field

equations into the equations for these 4-dimensional commutators. Then, regarding

the equal-time commutation relations as initial conditions, we set up a q-number

Cauchy problem for the set of the 4-dimensional commutators. If we can solve it,

we obtain the operator algebra of the fields (a kind of an infinite-dimensional Lie

algebra); all multiple commutators are calculable at least in principle.

A representation of this operator algebra is constructed, so as to be consistent

with all the above multiple commutators, in terms of a set of Wightman functions

⟨0|Φ1(x1) · · ·Φn(xn)|0⟩, where Φk(xk) is a field operator and |0⟩ denotes the vac-

uum state. It is generally impossible to require the norm positivity of state vectors,

that is, the representation space is usually an indefinite-metric Hilbert-like space.

As a property of the vacuum state, we require the following energy-positivity con-

dition:8 Any n-point truncatedl Wightman function be a distribution defined as a

boundary value of an analytic function of x 0
1 − x 0

2 , · · · , x 0
n−1 − x 0

n holomorphic

(and asymptotically vanishing) in the lower-half planes.m

If the theory under consideration is BRS invariant, we must introduce the cor-

responding Kugo-Ojima subsidiary condition QB |phys⟩ = 0,n where QB is the BRS

charge and |phys⟩ denotes a physical state. If the physical subspace, defined by

jIt should be noted that there is no spinor representation of GL(4).
kFor a gauge field Aµ(x), we adopt Aa(x) = hµ

a(x)Aµ(x) as the canonical field.6
lThe word “truncated” means to subtract the contributions from vacuum intermediate states.
mThe background of the energy-positivity condition is the fact that the Fourier representation
of the truncated Wightman function with respect to those n − 1 variables contains the factor

exp(−i)[E1(x 0
1 −x 0

2 )+· · ·+En−1(x 0
n−1 −x 0

n )] in the integrand, where Ek denotes the integration
variable corresponding to the intermediate-state energy. If the Fourier transform vanishes unless
Ek > 0 for k = 1, · · · , n− 1, the truncated Wightman function has the properties stated here.
nIn terms of Wightman functions, this is defined by ⟨0|Φ1(x1) · · ·Φn(xn)QB |phys⟩ = 0 for any set
of Φ1(x1), · · · ,Φn(xn).
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the totality of the physical states, has a positive-semidefinite norm, the physical

S-matrix is shown to be unitary.

The above procedure works well for some simple models. For more realistic the-

ories, we need to expand everything in powers of a parameter involved in it; for the

BRS-invariant theory, this expansion is different from the conventional perturbation

theory, because the BRS invariance is kept in each order in our approach.8

We can apply the above procedure to the quantum Einstein gravity by regarding

xµ as ur-spacetime. Expanding it in powers of the Einstein gravitational constant

κ, we can explicitly calculate the 0-th order solution. We find that

[g (0)
µν (x), g

(0)
λρ (y)] = 0 (2.2)

but [g
(0)

µν (x), b
(0)
ρ (y)] ̸= 0 and [g

(0)
µν (x), g

(1)
λρ (y)] ̸= 0, where a superscript (k)

stands for the k-th order approximation. Thus, indeed, g
(0)

µν (x) is a q-number.

3. Lorentz invariance of the elementary-particle theory

In this section, we show how the Lorentz invariance of the elementary-particle theory

is derived from the canonical operator formalism of the quantum Einstein gravity.

According to Noether’s theorem, there are the (ur-spacetime) translation gen-

erators Pµ, the (ur-spacetime) GL(4) generators M̂µ
ν , and the (global) internal-

symmetry generatorsMab(= −M ba). We write an elementary-particle field as φA(x)

generically. Then we have the following commutation relations:o

i[Pµ, h
c
λ (x)] = ∂µh

c
λ (x),

i[Pµ, φA(x)] = ∂µφA(x);
(3.1)

i[M̂µ
ν , h

c
λ (x)] = xµ∂νh

c
λ (x) + δµλh

c
ν (x),

i[M̂µ
ν , φA(x)] = xµ∂νφA(x);

i[Mab, h c
λ (x)] = ξach b

λ (x)− ξbch a
λ (x),

i[Mab, φA(x)] = (σ B
A )abφB(x),

(3.2)

where ξab = ξab and (σ B
A )ab represents the transformation matrix of φA(x) under

global internal-symmetry transformations．Of course, all these commutation rela-

tions are the expected ones, but it should be noted that they can be confirmed by

explicit calculations.9 Likewise, the commutators between generators are also the

expected ones; especially, both Pµ and M̂µ
ν are commutative with Mab.

We assume that the translational invariance is not spontaneously broken, that

is, Pµ|0⟩ = 0. Then, the vacuum expectation value of the commutator between Pµ

and any local quantity is independent of xµ. Indeed, from (3.1), we have

⟨0|∂µh c
λ (x)|0⟩ = 0,

⟨0|∂µφA(x)|0⟩ = 0.
(3.3)

oLikewise for the ghost fields bρ(x), etc.
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From (3.2) and (3.3), the vacuum expectation values of the commutators involving

the vierbein field are

i⟨0|[M̂µ
ν , h

c
λ (x)]|0⟩ = δµλu

c
ν ,

i⟨0|[Mab, h c
λ (x)]|0⟩ = ξacu b

λ − ξbcu a
λ ,

(3.4)

where u a
µ ≡ ⟨0|h a

µ (x)|0⟩ is a constant matrix. In writing the action S, we have,

of course, assumed the existence of the inverse matrix of the vierbein field; hence

the vacuum expectation value of the vierbein field is invertible at least at κ = 0.

It is natural, therefore, to suppose that it is so also for κ ̸= 0, that is, we assume

that detu a
µ ̸= 0. Then, from (3.4), all components of M̂µ

ν and all independent

components of Mab are seen to be spontaneously broken. The Nambu-Goldstone

boson of the symmetric part of the former is nothing but the graviton, and therefore

the exact masslessness of the graviton is predicted.p10

Hereafter, we employ α, β, · · · for the scripts (= 0, 1, 2, 3) of any quantity

independent of xµ. Let the transposed inverse matrix of u α
γ be vγβ (namely,

u α
γ vγβ = δαβ). We consider the quantity

M̃αβ ≡ (ξβγu α
δ vεγ − ξαγu β

δ vεγ)M̂
δ
ε +Mαβ . (3.5)

Then (3.4) yields

⟨0|[M̃αβ , h c
λ (x)]|0⟩ = 0. (3.6)

As for the vacuum expectation value of the commutator between M̃αβ and an

elementary-particle field, (3.2) and (3.3) yield

⟨0|[M̃αβ , φA(x)]|0⟩ = −i(σ B
A )αβ⟨0|φB(x)|0⟩. (3.7)

Except for the case σ B
A = 0, it is natural to assume ⟨0|φB(x)|0⟩ = 0 because it is

outside of our consideration the possibility that the spontaneous breakdown of the

internal symmetry is caused by an elementary-particle field. Thus M̃αβ ’s are the

generators of spontaneously unbroken symmetry. We set x̃α ≡ u α
µ xµ, and therefore

∂̃α ≡ ξαβvµβ∂µ; then from (3.5) and (3.2), we have

i[M̃αβ , φ̃A(x̃)] = (x̃α∂̃β − x̃β ∂̃α)φ̃A(x̃) + (σ B
A )αβφ̃B(x̃), (3.8)

where φ̃A(x̃) ≡ φA(x).

In the above consideration, it has not yet been determined how many diagonal

elements of ξab are −1. In what follows, we show that ξab must be equal to the

Minkowski metric ηab. Here we note that diag(ηab) = ±(1,−1,−1,−1), that is, the

overall sign is nothing more than the convention; what is physically important is

the fact that the time direction is one-dimensional.

pNote that this prediction cannot be made by any other theory of quantum gravity. The obser-

vational fact that the gravitational force is of extremely long range should be regarded as the
manifestation of the spontaneous breakdown of the GL(4) invariance at the fundamental level.
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The invariant distance under the symmetry defined by M̃αβ is

s ≡ ξαβ(x̃
α − ỹα)(x̃β − ỹβ). (3.9)

If ξαβ ̸= ηαβ, then there exists at least one extra dimension having the same metric

signature as that of the ur-time (defined by the metric signature of x0 = v0αx̃
α). It is,

therefore, possible to bring an arbitray spacetime point x̃α− ỹα onto the hyperplane

x0 − y0 = 0 by a linear transformation (rotation) which leaves s invariant.

For two arbitrary canonical fields Φ(x) and Φ′(x), which need not be distinct,

the canonical commutation relation between them at the equal ur-time is

[Φ(x), Φ′(y)]∓ = 0 for x0 − y0 = 0. (3.10)

Since the symmetry which leaves s invariant is not spontaneously broken, the vac-

uum expectation value of the left-hand side of (3.10) is invariant under the trans-

formations of this symmetry. Rewriting it in terms of the tilde quantities, therefore,

we have

⟨0|[Φ̃(x̃), Φ̃′(ỹ)]∓|0⟩ = 0 (3.11)

for any value of x̃α − ỹα.

According to the energy-positivity condition, (3.11) implies that an analytic

function holomorphic (and vanishing asymptotically) in the lower-half plane and

the one holomorphic (and vanishing asymptotically) in the upper-half plane have a

common boundary value on the real axis. Hence Liouville’s theorem on the entire

function implies

⟨0|Φ̃(x̃)Φ̃′(ỹ)|0⟩ = 0. (3.12)

Thus all 2-point truncated Wightman functions for canonical fields vanish identi-

cally, that is, we have a trivial theory.q In order to have a nontrivial theory, therefore,

we must set ξαβ = ηαβ .

We call the set {x̃0, x̃1, x̃2, x̃3} the “physical spacetime”; this is, of course, the

same thing as the ur-spacetime, though now it acquires not only metric structure but

also the usual properties as a manifold. Then, as is seen from (3.8) with ξαβ = ηαβ ,

M̃αβ’s are the generators of the Lorentz transformations in the physical spacetime;

they, of course, satisfy the commutation relations of the Lorentz algebra, as is easily

confirmed from (3.5) by using the commutation relations for M̂µ
ν and those for Mab

together with their commutativity. The ten generators Pµ and M̃αβ consititute the

Poincaré algebra. In this way, the Lorentz invariance is derived as a consequence of

qFor the Dirac or Weyl theory, in which the Lagrangian density is linear with respect to the ur-time

derivative of the field, we must consider also the canonical commutation relation [Π(x), Φ(y)] =
−i

∏3
k=1 δ(x

k−yk) for x0 = y0, where Π(x) denotes the canoninal conjugate of Φ(x). By the same
reasoning as presented here, we have ⟨0|Π̃(x̃)Φ̃(ỹ)|0⟩ = 0 except for the origin of x̃α − ỹα. But it
is impossible to construct the corresponding 2-point truncated Wightman function such that it is

a boundary value of an analytic function and invariant under the transformations which leave s
invariant.
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the spontaneous breakdown of the GL(4) invariance. Thus, it is important to note

that the Lorentz invariance is not a primary symmetry but a secondary one.r

Finally, we remark that the results obtained above is not fully equivalent to the

proposition that the action integral constituted by the elementary-particle fields

only is Lorentz invariant. In order to obtain this proposition, it is further necessary

that the relation ⟨0|hµ
a(x)|0⟩ = vµa holds. If it does, then replacing the veirbein field

by its vacuum expectation value in SM , we obtain the manifestly Lorentz-covariant

action for the theory of elementary particles. Thus, in general, the manifestly co-

variant action is an approximation in which the gravitational effect on elementary

particles is neglected.

4. Spontaneous breakdown of translational invariance

The translational invariance is, in a sense, a necessary condition for a physical law to

be a physical law. Nevertheless, it is interesting to consider the possible consequences

of the spontaneous breakdown of translational invariance. In this case, ⟨0|gµν(x)|0⟩
is no longer independent of xλ. Hence it can be regarded as the metric tensor of

the a posteriori background spacetime. We may suppose that in a sufficiently small

region the translational invariance is approximately unbroken and the argument

made in §3 remains valid.

If we consider the κ = 0 case, we can show that the 4-dimensional commutator

between the veirbein fields vanish, and therefore (2.2) holds. Then for an arbitray

function f , we have8

⟨0|f(g (0)
µν (x))|0⟩ = f(⟨0|g (0)

µν (x)|0⟩) (4.1)

by extending the reasoning presented in deriving (3.11). Therefore, the background

spacetime metric tensor, ⟨0|g (0)
µν (x)|0⟩, satisfies the classical vacuum Einstein equa-

tion (The contributions from the ghost fields, b
(0)
ρ (x), etc., also vanish.). Thus,

general relativity without the energy-momentum tensor Tµν may be regarded as a

consequence of the spontaneous breakdown of the translational invariance.

For κ ̸= 0, of course, such a simple reproduction of the classical Einstein equation

becomes impossible. Indeed, the covariant, mixed and contravariant components of

the quantum Einstein equation may have a different vacuum expectation value.

5. Summary and remarks

In the present paper, we have shown how the Lorentz invariance of the elementary-

particle theory is derived on the basis of quantum gravity without assuming any

concepts of classical physics a priori. It should be emphasized that the Lorentz

invariance holds even if quantum gravitational interaction is present, as long as the

translational invariance is not spontaneously broken.

rThis fact implies that the SUSY (supersymmetric extension of Poincaré invariance) cannot be a
Lagrangian symmetry.
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At the operator level, we start with the ur-spacetime, which is an affine space

having no metric structure. Our reasoning is heavily based on the BRS-formulated

canonical operator formalism of the quantum Einstein gravity. In contrast with

the classical Einstein gravity, it is independent of the pseudo-Riemannian struc-

ture; the general covariance is replaced by a quantum symmetry called the local-

translation BRS invariance. Furthermore, the local Lorentz invariance is replaced

by the internal-symmetry BRS invariance. The internal-space metric ξab is unknown

a priori ; the concept of the tangent space must be forgotten because the base space

has no structure as a manifold. The use of canonical formalism implies the assump-

tion that the ur-time is one-dimensional.s

At the representation level, the arrow of the ur-time is represented by the energy-

positivity condition for the Wightman functions. At the same time, the ur-spacetime

is transmuted into the physical spacetime. The translational invariance is assumed

not to be spontaneously broken; then both general linear invariance in the ur-

spacetime and ξab-rotational invariance in the internal space are spontaneously

broken, but there remains an unbroken symmetry, that is nothing but the Lorentz

invariance in the physical spacetime. Therefore, the Lorentz invariance cannot be a

primary symmetry. Note that this situation is quite analogous to the spontaneous

breakdown in the electroweak theory: Both SU(2)L and U(1)Y are spontaneously

broken, but there remains an unbroken symmetry U(1)em; therefore, the electro-

magnetic gauge invariance cannot be a primary symmetry.

If the translational invariance is spontaneously broken, we no longer have the

Lorentz invariance. When κ = 0, the vacuum expectation value of the quantum

gravitational field satisfies the classical vacuum Einstein equation. Thus the pseudo-

Riemannian geometry of general relativity can be regarded as a consequence of the

spontaneous breakdown of translational invariance.

Finally, we note that if we imagine that the existence of the beginning of the

Universe is a consequence of the spontaneous breakdown of the translational invari-

ance of the x0 direction only, then the spontaneously unbroken spatial 3-dimensions

constitute a Euclidean space, that is, we have a flat, homogeneous and isotropic

space without encountering the problem of event horizon. Thus it may be possible

to avoid introducing the artificial hypothesis of inflation.

Note added: As discussed above, in the framework of quantum Einstein grav-

ity, the “equal-time” commutation relations are set up with respect to the ur-time

but not with respect to the physical time. Then there may arise the following ques-

tion: “How can we see the local commutativity of field operators in the conventional

quantum field theory on the Minkowski spacetime?” In the elementary-particle the-

ory, the locality (or microcausality) is regarded as a fundamental postulate; indeed,

sThere might arise the misunderstanding that we are taking account of the possibilities of zero-

dimensional and multi-dimensional temporal spaces by confusing the internal space with the tan-
gent space of the spacetime. This is not the case.
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in the axiomatic quantum field theory, it is adopted as one of the axioms. In the

conventional canonical quantization, the local commutativity automatically follows

if we assume that the Lorentz invariance holds at the operator level. The latter

proposition is not, however, a logical consequence of Einstein’s special relativity, as

emphasized in the Introduction.

In the framework of quantum Einstein gravity, the locality at the operator level is

not manifest. Although we can show the vanishing of the vacuum expectation values

of the commutators for the spacelike separation by using the reasoning analogous

to the one developed from (3.9) to (3.11), it is not possible to establish the local

commutativity in the complete sense. In order to obtain the manifestly Lorentz-

covariant action integral for the elementary-particle fields, we must have the relation

⟨0|hµ
a(x)|0⟩ = vµa, as stated in the last paragraph of §3. This condition is satisfied

if we neglect the gravitational interaction. Thus, we see that the locality in the

elementary-particle theory holds in the approximation in which gravity is assumed

to be decoupled.
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