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Abstract

This paper considers the problem whereby, given two metabolic networks N1 and N2,
a set of source compounds, and a set of target compounds, we must find the minimum
set of reactions whose removal (knockout) ensures that the target compounds are not
producible in N1, but are producible in N2. Similar studies exist for the problem of
finding the minimum knockout with the smallest side-effect for a single network. However,
if technologies of external perturbations are advanced in near future, it may be important
to develop methods of computing the minimum knockout for multiple networks (MKMN).
Flux balance analysis (FBA) is efficient if a well-polished model is available. However, that
is not always the case. Therefore, in this paper, we study MKMN in Boolean models and
an elementary mode (EM)-based model. Integer linear programming (ILP)-based methods
are developed for these models, since MKMN is NP-complete for both the Boolean model
and the EM-based model. Computer experiments are conducted with metabolic networks
of clostridium perfringens SM101 and bifidobacterium longum DJO10A respectively known
as bad bacteria and good bacteria for human intestine. The results show that larger
networks are more likely to have MKMN solutions. However, solving for these larger
networks takes a very long time, and often the computation cannot be completed. This
is reasonable, because small networks do not have many alternative pathways, making it
difficult to satisfy the MKMN condition whereas in large networks the number of candidate
solutions explodes. Our developed software is available at “http://sunflower.kuicr.kyoto-
u.ac.jp/~rogi/minFvsKO/minFvsKO.html”.



1 Introduction

Metabolic networks represent relations between biochemical reactions and metabolites in
living cells. The removal (or knockout) of metabolism-related genes is often simulated in
metabolic networks, as the perturbation of genes frequently corresponds to the inhibition
of certain reactions in metabolic networks.

Many types of mathematical models have been developed for this purpose. For small
size networks, models using the ordinary differential equations (ODEs) are often used.
Although ODEs have a detailed explanatory power, their applicability is limited by the
difficulty of obtaining the necessary kinetic parameters, and their limited scalability. On
the other hand, less detailed approaches like Boolean models and constraint-based models
have been used in larger networks (Gonçalves et al., 2013).

Flux balance analysis (FBA) (Raman and Chandra, 2009; Varma and Palsson, 1994)
is a constraint-based mathematical model of metabolic networks in which the stoichiom-
etry and the biomass objective functions are used to predict cell growth rates (Kauffman
et al., 2003). Although the standard FBA simply maximizes the biomass objective func-
tion, the minimization of metabolic adjustment method (MOMA) (Segre et al., 2002)
seeks to minimize the difference between the wild and the knocked-out flows. Flux vari-
ability analysis (FVA) assesses the range of this difference (Shlomi et al., 2009), and the
optimal knockout strategies have been developed based on such flow models. Optknock
(Burgard et al., 2003) determines which reactions should be knocked-out to maximize the
biomass objective function. Using bilevel programming, the biomass objective function
is first maximized for each knockout(s), and then a reaction set is chosen from the re-
sulting candidates. In contrast, although RobustKnock (Tepper and Shlomi, 2010) is also
based on bilevel programming, it maximizes the minimized biomass objective functions
by selecting different reactions. Optorf (Kim and Reed, 2010) integrates transcriptional
regulatory networks and metabolic networks. The above-mentioned flow models need to
define the biomass objective function, which often involves a linear combination of more
than 100 metabolites (Raman and Chandra, 2009). Furthermore, it is difficult to define
the biomass objective function for higher organisms such as humans, and the essential
assumption concerning growth-optimal behavior is not always fulfilled (Schuster et al.,
2008).

Another flow model approach for metabolic networks is based on elementary mode
(EM) concept, which does not require a biomass objective function. EM is a minimal set
of reactions in a steady state, in which all irreversible reactions are used in the appropri-
ate direction (Schuster and Hilgetag, 1994; Schuster et al., 2000). Stelling et al. (2002)
estimated the effect of knockouts by the number of elementary modes (EMs) that include
the knocked-out reaction. Based on the idea of topological flux balance (TFB) (Smart
et al., 2008), the topological impact degree (TID) calculates the number of reactions that
have an EM in common with the knocked-out reactions (Jiang et al., 2009; Tamura et al.,
2011). The flux balance impact degree (FBID) is the number of reactions that are not
included in any EMs that do not include the knocked-out reactions (Zhao et al., 2013).
A minimal cut set (MCS) is the minimal set of reactions whose inactivation leads to a
failure of the specified reactions (Klamt and Gilles, 2004; Klamt, 2006). Acuña et al.
(2009) proved that computing the MCS is NP-hard. MCSs in a metabolic network are



EMs in a dual network (Ballerstein et al., 2012). EMs and MCSs can be calculated by
FluxAnalyzer (Klamt and Gilles, 2004) and CellNetAnalyzer (CNA) (Klamt et al., 2007),
MATLAB-based tools that can be applied to many network-based problems. Because
knockouts may induce side-effects that disables the desired functionality, the constrained
MCS allows additional constraints that preserve a set of desired modes (Hädicke and
Klamt, 2011). Based on an EM-based analysis and the idea of minimal metabolic func-
tionality, optimal knockout strategies were analyzed to maximize industrial production,
and the effect was confirmed by biological experiments (Trinh et al., 2006; Unrean et al.,
2010).

Another mathematical model of metabolic networks is the Boolean model. Although
not suitable for analyzing the mass flow of metabolic networks, the logical analysis of this
model is relatively solid as it needs less information than the flow-based models. The
synthetic accessibility is defined as the number of reactions required to transform a set of
source metabolites into a set of target metabolites (Wunderlich and Mirny, 2006). For a
given set of source nodes (called seeds), the scope is defined as the set of producible com-
pounds (Handorf et al., 2005). The damage is the number of reactions that are affected by
the knocked-out reactions (Lemke et al., 2004). To take side-effects into account, Sridhar
et al. (2008) developed a branch-and-bound-based algorithm, OPMET, which minimizes
damage to non-target nodes. Tamura et al. (2010) developed an integer linear program-
ming (ILP)-based method for the Boolean reaction cut (BRC) problem and analyzed
the computational complexity of BRC (Tamura and Akutsu, 2010), in which the number
of inhibited reactions is minimized to make target compounds non-producible (Tamura
et al., 2010). In the Boolean model of metabolic networks, reactions and compounds can
be represented by “AND” and “OR” nodes, respectively, and the network can then be
considered as a bipartite graph. Lu et al. considered the problem of adding a minimum
reaction set so that the target compound becomes producible in a Boolean metabolic
network (Lu et al., 2014). Although the above research focuses on metabolic networks,
the basic framework of the Boolean model can be extended to other types of biological
networks. For example, Flöttmann et al. formalized signal transduction networks us-
ing reaction contingency-based bipartite Boolean modeling (Flöttmann et al., 2013), and
Samaga et al. studied minimal intervention sets (MISs) for Boolean signaling networks
(Samaga et al., 2010).

Thus, in many cases, the effects of reaction inhibition are first estimated in each
metabolic network model, and then certain optimization problem is defined for each es-
timation model. Furthermore, in addition to maximizing the desired functions, some
problems minimize undesirable functions as side-effects in the same network.

As a reasonable extension of the above research, this paper considers the situation in
which different types of cells exist in the same place. For example, many types of bacteria
exist in our intestine. Some of them are good bacteria, others are bad bacteria, and they
have different metabolic networks. As another example, normal cells and cancer cells may
exist in the same organ. In such cases, it may be useful to compute the optimal knockout
strategies that would cause the bad cells to lose some essential functionality, but allow the
good cells to survive. Therefore, we consider the following minimal knockout for multiple
networks (MKMN) problem: given two different metabolic networks with source and
target compounds, obtain the minimum number of reactions whose inhibition induces the



target compounds to become non-producible in bad cells, but producible in good cells.
Although we focus in this paper on the case where two networks are given, it is

straightforward to extend the proposed methods to the case where more than two networks
are given.

We analyze this problem using the Boolean model (MKMN-B) and the EM-based
model (MKMN-EM). As both MKMN-B and MKMN-EM are NP-complete (as shown
in the “Theoretical results” section), we develop methods based on ILP (Schrijver, 1998;
Li et al., 2007) for MKMN-B and MKMN-EM. ILP is often used to formalize NP-complete
problems, and there is an efficient free ILP solver called CPLEX (IBM, 2010). In MKMN-
B, to properly account for the effect of cycles, we utilize the notion of the maximal valid
assignment (MaxVA) (Tamura et al., 2010) and the minimal valid assignment (MinVA)
(Lu et al., 2014). To obtain faster ILP-based methods by reducing the number of variables,
we develop IP-FVS1 and IP-FVS2, which utilize the idea based on feedback vertex
sets (FVS) (Tamura et al., 2010), MaxVA is strictly applied in IP-FVS1, but is not
applied to the nodes detected by FVS in IP-FVS2. We also develop faster algorithms IP-
FVS1-approx and IP-FVS2-approx by limiting the number of time steps, although
the optimality of the resulting solutions is not ensured. For MKMN-EM, we develop
IP-EM, in which CNA is used to obtain the EMs, and then formalize MKMN-EM using
ILP, since MKMN-EM is NP-complete, even when EMs are given.

We apply our developed methods to the metabolic networks data of clostridium per-
fringens SM101 (CPR) and bifidobacterium longum DJO10A (BLJ), as downloaded from
the KEGG database (Kanehisa and Goto, 2000). The CPR network is denoted by N1,
and the BLJ network is denoted by N2. Dataset 1 consists of only the central metabolism,
and N1 and N2 consist of 73 and 82 nodes, respectively. Dataset 2 consists of the car-
bon metabolism, fatty acid metabolism, and biosynthesis of amino acids, and N1 and N2

consist of 251 and 328 nodes, respectively. Dataset 3 consists of whole metabolic net-
works, and N1 and N2 consist of 1231 and 1881 nodes, respectively. We apply IP-FVS1,
IP-FVS2, and IP-EM to Datasets 1,2, and 3, where the target compounds are pyruvate,
acetyl-CoA, acetate, oxaloacetate, and phosphoenolpyruvate. For most cases in Dataset3,
IP-FVS1, IP-FVS2, and IP-EM could not complete the computation a provisional time
limit of 2 hours. Hence, we applied IP-FVS1-approx and IP-FVS2-approx to this dataset,
and limited the number of time steps to 10. For Dataset 1, IP-FVS1, IP-FVS2, and
IP-EM took at most 3 s for every target compound, but in most cases there are no solu-
tions. For Dataset 2, IP-FVS1, IP-FVS2, and IP-EM took at most 20 s for every target
compound, and solutions were obtained in about half of the cases. Finally, for Dataset 3,
IP-FVS1-approx(10) and IP-FVS2-approx(10) finished their calculations within 15 s for
every target compound. We examine the relations between the obtained solutions and
predecessors of the target compound in N1 and N2.

Abbreviations

Frequently used abbreviations in this paper are listed as follows:

-EM: Elementary Mode
-FBA: Flux Balance Analysis



-MKMN: Minimum Knockout for Multiple Reactions (Problem)
-MKMN-B: Minimum Knockout for Multiple Reactions in the Boolean model (Problem)
-MKMN-EM: Minimum Knockout for Multiple Reactions in the Elementary Mode model
(Problem)
-ILP: Integer Linear Programming
-FVS: Feedback Vertex Set
-MaxVA: Maximal Valid Assignment
-MinVA: Minimal Valid Assignment
-IP-FVS1-LP1, IP-FVS2-LP1, IP-FVS1-LP2, IP-FVS2-LP2: Integer Linear Programming-
based methods for solving MKMN-B (Method)
-IP-FVS1-approx(t), IP-FVS2-approx(t): approximation algorithms for solving MKMN-B
with a time limit t (Method)
-IP-EM: Integer Linear Programming-based methods for solving MKMN-EM (Method)
-CNA: CellNetAnalyzer
-BLJ: bifidobacterium longum DJO10A, known as good bacteria for human intestine
-CPR: clostridium perfringens SM101, known as bad bacteria for human intestine
-KEGG: Kyoto Encyclopedia of Genes and Genomes



2 Materials and Methods

2.1 Main problems

In this subsection, the main problem Minimal Knockout for Multiple Networks
(MKMN) is explained using examples. Mathematical definitions are given in the next
subsection. The MKMN for the Boolean model and the EM-based model are called
MKMN-B and MKMN-EM respectively.

(Figure 1)

Suppose we have two metabolic networks N1 and N2, as shown in Fig. 1 (A). Rectan-
gles and circles represent reactions and compounds, respectively. For example, reaction
r1 has the substrates (reactants) {c1, c2}, and products {c4, c5, c6} for both N1 and N2.
However, since the topologies of N1 and N2 are slightly different, N1 does not include
reaction r4. For N1, {c1, c3, c7} are called source nodes, and are assumed to be supplied
by the external environment, whereas {c1, c2, c3, c7} are source nodes for N2. The purpose
of MKMN is to find the minimum number of reactions whose inhibition (deletion) induces
the target compound to be non-producible in N1 but producible in N2. In Fig. 1 (A), c9

is the target compound. This should be non-producible in N1, but producible in N2 after
the minimum number of reaction deletions.

MKMN-B is defined as a problem to solve MKMN in a Boolean model. In MKMN-
B, if all substrates exist, the reaction occurs. For example, in Fig. 1 (A), r1 occurs if both
c1 and c2 exist. Note that the existence of c2 is not always the same in N1 and N2. In this
example, the solution of MKMN-B is to inhibit {r3}, as c2 becomes non-producible, r1

cannot take place, c4 becomes non-producible, r2 cannot take place, and then c9 becomes
non-producible in N1, but producible in N2 via r2 or r4. Note that directed cycles often
play important roles. On the other hand, the inhibition of {r1} is not a solution as this
makes c9 non-producible in both N1 and N2. Similarly, inhibiting {r2} is not a solution
either, since c9 would remain producible in both N1 and N2.

The problem setting of MKMN-B for N1 is the same as that for the Boolean Reaction
Cut in Tamura et al. (2010). To properly account for the effect of cycles, Tamura et al.
(2010) defined the maximal valid assignment (MaxVA). For example, although the op-
timal solution of MKMN-B for N1 and N2 as in Fig. 1 (A) is {r2}, if neither c2 nor c6

initially exists in N1, then neither r1 nor r3 can occur, and c9 becomes non-producible.
Therefore, “inhibiting no reactions” looks like the optimal solution of MKMN-B if c2 is
not supplied to N1 from the external environment. To avoid such ambiguity, MaxVA is
defined as the 0-1 assignment that satisfies the Boolean constraint for each node, and
the number of 1’s is maximal among such 0-1 assignments. In Tamura et al. (2010), it
was proved that MaxVA can be calculated by initially assigning a value of 1 to all nodes;
the effect of reaction inhibition gradually reaches other nodes, and finally converges to
some 0-1 assignment, which corresponds to the MaxVA. In MKMN-B, the assumption of
MaxVA is applied to N1.

(Figure 2)



However, the assumption of MaxVA is not appropriate for N2 in MKMN-B. For ex-
ample, suppose that N1 and N2 in Fig. 2 (A) are given. If the assumption of MaxVA is
applied to both N1 and N2, {r1} is obtained as the optimal solution of MKMN-B, since
(c1, c2, c3, c4, r1, r4, r5, r6) = (1, 1, 1, 1, 0, 1, 1, 1) is the MaxVA of N2 if {r1} is inhibited.
However, {r2, r3} seems to be a more appropriate solution of MKMN-B, as the inhibition
of {r1} disconnects the source node c1 and the target compound c3 in N2. To account
for the effect of cycles, and make the target compound producible, the MinVA notion
has been shown to be efficient (Lu et al., 2014). Similar to MaxVA, MinVA is a valid
assignment, in which the number of 1’s is minimal. In MKMN-B, MaxVA and MinVA
are applied to N1 and N2, respectively.

(Table 1, Figure 3)

MKMN-EM is defined as a problem to solve MKMN in the elementary mode (EM)-
based model. An EM describes a feasible and balanced (steady-state) flux distribution
through the network, which is minimal with respect to the utilized reactions (enzymes)
(Klamt and Gilles, 2004). Note that {r3} is not the solution of MKMN-EM in Fig. 1 (A),
since the target compound c9 becomes non-producible in both N1 and N2. In MKMN-
EM, we consider only the topology of each EM, and do not consider the magnitude of
each flow. Therefore, an EM can be represented by a 0-1 assignment of reaction and
compound nodes. For example, Table 1 shows the 0-1 assignments of the EMs for the
example network shown in Fig. 3, where {c1, c3, c7, c9} is a set of external compounds.
Suppose that the target compound c7 should become non-producible, where {c1, c3, c9} is
a set of source nodes. As EM1, EM2, EM3, and EM5 can produce c7, the set of reactions
to be inhibited must include at least one from each of these four EMs. For example,
inhibiting {r3, r5} makes c7 non-producible since r3 is included in EM2 and EM5, and r5

is included in EM1 and EM3.

2.2 Mathematical definitions of main problems

In this subsection, the main problems of this paper are mathematically defined. A
metabolic network is defined as a directed bipartite network N = (Vc, Vr, E), where Vc

is a set of compound nodes, and Vr is a set of reaction nodes. E is a set of edges con-
necting a compound node and a reaction node. Therefore, neighbors of compound nodes
are always reaction nodes, and neighbors of reaction nodes are always compound nodes.
In MKMN, two metabolic networks N1 = (Vc1 , Vr1 , E1) and N2 = (Vc2 , Vr2 , E2) are given,
where |Vc1 | = m1, |Vr1 | = n1, |Vc2 | = m2, |Vr2 | = n2, m = m1 + m2, and n = n1 + n2 hold.
For example, in Fig. 1 (A), Vr1 = {r1, r2, r3}, Vc1 = {c1, c2, . . . , c9} Vr2 = {r1, r2, r3, r4},
Vc2 = {c1, c2, . . . , c10}, m1 = 9, n1 = 3, m2 = 10, and n2 = 4 hold.

Vex is a set of external nodes, that are affected by the external environment not de-
scribed in N . Vs1 ⊂ Vc1 and Vs2 ⊂ Vc2 are sets of source nodes in N1 and N2, respectively.
Similarly, Vt1 ⊂ Vc1 and Vt2 ⊂ Vc2 are sets of target nodes in N1 and N2, respectively. It
holds that Vs1 , Vs2 , Vt1 , Vt2 ⊂ Vex. In Fig. 1 (A), Vs1 = {c1, c3, c7}, Vs2 = {c1, c2, c3, c7},
and Vt1 = Vt2 = {c9} hold. Note that some v ∈ Vex may not be included by either Vs

or Vt in the EM-based analysis. In this paper, we assume that source nodes do not have



incoming edges, but that target nodes are allowed to have out-going edges to take the
multiple target compounds into account.

In both the Boolean model and the EM-based model, values of either “0” or “1” are
assigned to each node as the magnitude of each flow is not taken into account in MKMN-
EM. Suppose that “1” is assigned to a node. In the Boolean model, this means that either
the reaction occurs or the compound exists. In the EM-based model, it means that the
corresponding node is included in some EM. If “0” is assigned to a node, then either the
reaction does not occur, or the compound does not exist in the Boolean model. In the
EM-based model, it means that the corresponding node is not included in the EM. Let
Va ⊆ Vr1 ∪ Vr2 be perturbed reactions. If v ∈ Vr is included in Va, v = 0 always holds
whatever values are assigned to other nodes.

Let AB be such an assignment. In the Boolean model, AB is called a valid assignment
(VA) if it satisfies each of the following:

• (i) For each v ∈ Vs, v = 1 holds,

• (ii) For each v ∈ Vc − Vs, v = 1 if and only if there is some u ∈ Vr such that
(u, v) ∈ E and u = 1 hold,

• (iii) For each v ∈ Vr, v = 1 holds if and only if v /∈ Va holds and u = 1 holds for all
(u, v) ∈ E.

Therefore, in the Boolean model, each reaction node corresponds to an “AND” node, and
each compound node corresponds to an “OR” node. A is the MaxVA for Va, if A is a
valid assignment for the given Va and the number of 1’s is the maximal. Similarly, A is
the MinVA for Va, if it is a valid assignment for the given Va and the number of 1’s is
minimal.

MKMN-B is mathematically defined as follows:

Problem: MKMN-B (Minimum Knockout for Multiple Networks in the Boolean model)

• Input: Metabolic networks N1 = (Vc1 , Vr1 , E1), N2 = (Vc2 , Vr2 , E2), source nodes
Vs1 ⊂ Vc1 Vs2 ⊂ Vc2 , and target nodes Vt1 ⊂ Vc1 , Vt2 ⊂ Vc2 .

• Output: The minimum cardinality set Va ⊆ Vr1 ∪ Vr2 such that MaxVA for N1

ensures every v ∈ Vt1 is 0, and MinVA for N2 ensures every v ∈ Vt2 is 1.

Note again that the MaxVA and the MinVA are applied to N1 and N2, respectively. (See
also the examples of Fig.s 1 and 2.)

On the other hand, an EM describes a feasible and balanced (steady-state) flux distri-
bution through the network, which is minimal with respect to utilized reactions (enzymes)
(Klamt and Gilles, 2004). An EM is said to be a relevant EM if v1 = v2 = 1 holds for
some v1 ∈ Vs and v2 ∈ Vt in its 0-1 assignment. Then, MKMN-EM is mathematically
defined as follows:

Problem: MKMN-EM (Minimum Knockout for Multiple Networks in the Elementary
Mode model)



• Input: Metabolic networks N1 = (Vc1 , Vr1 , E1), N2 = (Vc2 , Vr2 , E2), external nodes
Vex1 ⊂ Vc1 ∪Vr1 , Vex2 ⊂ Vc2 ∪Vr2 , target nodes Vt1 ⊂ Vc1 , Vt2 ⊂ Vc2 , and a stoichiom-
etry matrix S.

• Output: The minimum cardinality set Va ⊆ Vr1 ∪ Vr2 , which satisfies each of the
following:

– For all v ∈ Vt1 , v = 0 holds for any relevant EM on N1 = (Vc1 , Vr1 \ Va, E1).

– For all v ∈ Vt2 , v = 1 holds for some relevant EM on N2 = (Vc2 , Vr2 \ Va, E2).

2.3 Integer linear programming-based method for MKMN-B

Since MKMN-B is NP-hard as discussed in “Theoretical results”, we develop an integer
linear programming (ILP)-based method for its solution. In ILP, every Boolean constraint
must be represented by linear equations or inequalities. In this paper, we use two linear
representations of Boolean constraints:

LP1 (Tamura et al., 2010): Since the Boolean “AND” relation y = x1 ∧ x2 ∧ · · · ∧ xk can
be converted into (y ∨ x1 ∨ x2 ∨ · · · ∨ xk) ∧ (y ∨ x1) ∧ (y ∨ x2) ∧ · · · ∧ (y ∨ xk) = 1, it can
be represented by the following linear inequalities:

y + (1 − x1) + (1 − x2) + · · · + (1 − xk) ≥ 1,

(1 − y) + x1 ≥ 1,

(1 − y) + x2 ≥ 1,

· · ·
(1 − y) + xk ≥ 1,

where all variables are binary.
Similarly, as the Boolean “OR” relation y = x1 ∨ x2 ∨ · · · ∨ xk can be converted into

(y ∨ x1 ∨ x2 ∨ · · · ∨ xk) ∧ (y ∨ x1) ∧ (y ∨ x2) ∧ · · · ∧ (y ∨ xk) = 1, it can be represented by
the following linear inequalities:

(1 − y) + x1 + x2 + · · · + xk ≥ 1,

y + (1 − x1) ≥ 1,

y + (1 − x2) ≥ 1,

· · ·
y + (1 − xk) ≥ 1,

where all variables are binary.

LP2 (Akutsu et al., 2012) : Another type of linear function representation of Boolean
functions is as follows: The Boolean “AND” can be represented by the following linear
inequalities:

ky ≤ x1 + x2 + . . . + xk,

y ≥ x1 + . . . + xk − (k − 1),



where all variables are binary.
Similarly, the Boolean “OR” can be represented by the following linear inequalities:

ky ≥ x1 + x2 + . . . + xk,

y ≤ x1 + . . . + xk,

where all variables are binary.

As described in Tamura et al. (2010), we should introduce notion of time for calculating
the MaxVA. A naive method for calculating the MaxVA is as follows. Each node is initially
assigned 1, specified reactions are inhibited, effects of the inhibition affect neighbor nodes
in the next time step, and the finally converged 0-1 assignment is the MaxVA. Similarly,
as described in Lu et al. (2014), the MinVA can be calculated by initially assigning 0
to each node other than the source nodes. However, in this naive method, the number
of time steps should be the same as the total number of nodes to ensure that the 0-1
assignment converges. Thus, the number of variables needed for the ILP formalization is
O((m + n)2).

By utilizing an FVS, the number of time steps is reduced to f , and then the number
of variables in the ILP formalization becomes O(f(m + n)). (The FVS is a set of nodes
whose removal makes the graph acyclic, and f is the size of the FVS (Tamura et al.,
2010).) For example, r1 of N1 in Fig. 1 (A) can be decomposed into r1 and s1, as shown
in N ′

1 of Fig. 1 (B). Different from the naive method, the time step advances by one only
when the value of the “r” node is copied to the “s” node. Suppose that r3 is inhibited in
Fig. 1 (B). Because we consider the MaxVA for N1 (and N ′

1), all source nodes and “s”
nodes are assigned 1 at t = 0. If r3 is not inhibited, all nodes become 1 at t = 0 since
the time step advances only when the value of r1 is copied to s1. However, since r3 is
inhibited, (r3, c2, r1) = (0, 0, 0) holds at t = 0, whereas (s1, c6) = (1, 1) holds at t = 0.
Then, r1 = 0 at t = 0 is copied to s1 at t = 1. Thus, all nodes other than c1, c3, c7 become
0 when r3 is inhibited. Note that the necessary time steps for calculating this is 2 (t = 0
and t = 1). This is the size of FVS +1. In the naive method, the time step advances
whenever 0 affects its adjacent nodes. Therefore, the number of necessary time steps is
as large as the number of nodes to ensure that the 0-1 assignment converges.

Based on this idea, we formalize an ILP-based method to solve MKMK-B. In the
following, we explain our proposed methods using examples. It is straightforward to
extend the examples to a general case.

When N1 and N2 in Fig. 1 (A) are given. IP-FVS1-LP1 is formalized as follows:

Maximize
TE1(0) + TE2(0) + TE3(0) + TE4 N2(0) (1)

Subject to
TC9 N1(f1) = 0, (2)
TC9 N2(f2) = 1 (3)

/* Definitions of N1



for all t1 = 0,...,f1

/* Reactions
TR1 N1(t1) + FC1 N1(t1) + FC2 N1(t1) + FE1(t1) ≥ 1,
FR1 N1(t1) + TC1 N1(t1) ≥ 1, FR1 N1(t1) + TC2 N1(t1) ≥ 1,
FR1 N1(t1) + TE1(t1) ≥ 1 (4)

TR2 N1(t1) + FC3 N1(t1) + FC4 N1(t1) + FE2(t1) ≥ 1,
FR2 N1(t1) + TC3 N1(t1) ≥ 1, FR2 N1(t1) + TC4 N1(t1) ≥ 1,
FR2 N1(t1) + TE2(t1) ≥ 1 (5)

TR3 N1(t1) + FC6 N1(t1) + FC7 N1(t1) + FE3(t1) ≥ 1,
FR3 N1(t1) + TC6 N1(t1) ≥ 1, FR3 N1(t1) + TC7 N1(t1) ≥ 1,
FR3 N1(t1) + TE3(t1) ≥ 1 (6)

/* Compounds
TC2 N1(t1) = TR3 N1(t1) (7)

TC4 N1(t1) = TSR1 N1(t1) (8)

TC5 N1(t1) = TSR1 N1(t1) (9)

TC6 N1(t1) = TSR1 N1(t1) (10)

TC8 N1(t1) = TR2 N1(t1) (11)

FC9 N1(t1) + TR2 N1(t1) + TR3 N1(t1) ≥ 1,
TC9 N1(t1) + FR2 N1(t1) ≥ 1,
TC9 N1(t1) + FR3 N1(t1) ≥ 1 (12)

/* SR1
TSR1 N1(t1 + 1) = TR1 N1(t1) (13)

/* Es
TE1(t1 + 1) = TE1(t1) (14)
TE2(t1 + 1) = TE2(t1) (15)
TE3(t1 + 1) = TE3(t1) (16)

/* Source compounds
TC1 N1(t1) = 1 (17)
TC3 N1(t1) = 1 (18)
TC7 N1(t1) = 1 (19)

/* Definitions of N2

for all t2 = 0,...,f2

/* Reactions



TR1 N2(t2) + FC1 N2(t2) + FC2 N2(t2) + FE1(t2) ≥ 1,
FR1 N2(t2) + TC1 N2(t2) ≥ 1, FR1 N2(t2) + TC2 N2(t2) ≥ 1,
FR1 N2(t2) + TE1(t2) ≥ 1 (20)

TR2 N2(t2) + FC3 N2(t2) + FC4 N2(t2) + FE2(t2) ≥ 1,
FR2 N2(t2) + TC3 N2(t2) ≥ 1, FR2 N2(t2) + TC4 N2(t2) ≥ 1,
FR2 N2(t2) + TE2(t2) ≥ 1 (21)

TR3 N2(t2) + FC6 N2(t2) + FC7 N2(t2) + FE3(t2) ≥ 1,
FR3 N2(t2) + TC6 N2(t2) ≥ 1, FR3 N2(t2) + TC7 N2(t2) ≥ 1,
FR3 N2(t2) + TE3(t2) ≥ 1 (22)

TR4 N2(t2) + FC5 N2(t2) + FE4 N2(t2) ≥ 1,
FR4 N2(t2) + TC5 N2(t2) ≥ 1, FR4 N2(t2) + TE4 N2(t2) ≥ 1 (23)

/* Compounds
TC4 N2(t2) = TR1 N2(t2) (24)

TC5 N2(t2) = TR1 N2(t2) (25)

TC6 N2(t2) = TR1 N2(t2) (26)

TC8 N2(t2) = TR2 N2(t2) (27)

FC9 N2(t2) + TR2 N2(t2) + TR3 N2(t2) + TR4 N2(t2) ≥ 1,
TC9 N2(t2) + FR2 N2(t2) ≥ 1, TC9 N2(t2) + FR3 N2(t2) ≥ 1,
TC9 N2(t2) + FR4 N2(t2) ≥ 1 (28)

TC10 N2(t2) = TR3 N2(t2) (29)

/* Es
TE1(t2 + 1) = TE1(t2) (30)
TE2(t2 + 1) = TE2(t2) (31)
TE3(t2 + 1) = TE3(t2) (32)
TE4 N2(t2 + 1) = TE4 N2(t2) (33)

/* Source compounds
TC1 N2(t2) = 1 (34)
TC2 N2(t2) = 1 (35)
TC3 N2(t2) = 1 (36)
TC7 N2(t2) = 1 (37)

/* SR1
TSR1 N1(0) = 1 (38)



/* f1 = | F1 | + 1, where F1 is the FVS of N1

f1 = 2 (39)
/* f2 = | F2 | + 1, where F2 is the FVS of N2

f2 = 1 (40)

TX + FX = 1 for any X (41)

where every variable takes a value of either 0 or 1. “T” and “F” stand for true(1) and
false(0), respectively. “R”, “C” and “E” stand for reaction, compound, and enzyme,
respectively. For each reaction node, TRi(t) = 1 (resp., FRi(t) = 1) represents ri = 1
(resp., ri = 0). Therefore, TRi(t) + FRi(t) = 1 holds for any reaction node ri at time
step t. “t = 0” means the initial time step. For example, if TR2(1) = 0, which means r2

= 0 (the reaction node r2 does not occur) at t = 1, FR2(1) = 1 automatically holds at the
same time. The use of FRi(t) simplifies this illustration. In the implementation, FRi(t)
is replaced by 1-TRi(t) to reduce the number of variables. Similarly, each compound ci

is represented by TCi(t) and FCi(t), where TCi(t) + FCi(t) = 1. For example, TC3(1)
= 1 means that c3 = 1 (the compound c3 exists) at t = 1, and FC3(1) = 1 means that c3

= 0 (the compound c3 does not exist) at t = 1.
The maximal number of time steps f1 and f2 can be calculated by f1 = |F1| + 1 and
f2 = |F2| + 1, where |F1| and |F2| are the sizes of the FVS for N1 and N2, respectively.
Note that “+1” is necessary because at least 1 time step is necessary even if there is no
FVS. Furthermore, since the number of time steps of N1 and N2 may be different, the
ILP formalization is defined for each network. In the above example for IP-FVS1-LP1,
(2), (4)-(19), (38), and (39) give the ILP formalization of N1, whereas (3), (20)-(37), and
(40) give the ILP formalization of N2. To distinguish each node, “ N1” (resp., “ N2”)
is appended to each variable name to denote which network the node belongs to. For
example, TR1 N1(1) = 1 means that r1 = 1 (the reaction node r1 occurs) in N1 at t = 1,
and FR1 N2(3) = 1 means that r1 = 0 (the reaction r1 does not occur) in N2 at t = 3.
“ N1” and “ N2” are not appended to the variables of nodes that are common to both
N1 and N2.
In IP-FVS1-LP1, the Boolean “AND” relation of a reaction node is converted into LP1
type linear inequalities as shown in (5). The relation in (5) represents the constraints
between the reaction node r2 and each incoming compound node (c3 and c4) in N1. Two
additional variables TE2(t1) and FE2(t1) are also included in (5), since we add a virtual
predecessor node ei to each reaction node ri in both networks. TEi(t) and FEi(t) denote
whether ri is inhibited. Since ri is represented by an “AND” node, ei = 0 can ensure
that ri remains inactive, even if all other predecessors of ri are 1. Furthermore, the same
TEi(t) and FEi(t) are used for each common reaction node ri between N1 and N2. In the
above example for IP-FVS1-LP1, the common reaction nodes r2 of the two networks
are connected by e2 (TE2 and FE2 in (5) and (21)).

The Boolean “OR” relation of a compound node is converted into LP1-type linear
inequalities, as shown in (12), when the indegree of the compound node is more than 1.
If the indegree of the compound is 1, we need only copy the value from the variable of
the predecessor reaction node as shown in (7).

For N1, the values of each source node and each node newly created by si at t = 0 are



set to 1 to realize the MaxVA as shown in (17)-(19) and (38). The value of the target
node is set to 0 at t = f1 to ensure that the target node eventually cannot be produced
in N1.

For N2, only the source nodes and target node values at t = f1 are set to 1, as shown
in (3) and (34)-(37), to realize MinVA.

The MKMN result can be calculated by maximizing TEi(t), as shown in (1), since ei

represents whether the reaction node is inhibited. As mentioned above, FEi(t) is replaced
by 1-TEi(t). Relation (1) implies that the minimal number of reaction knockouts is
calculated by maximizing the number of reaction nodes that are not knocked out. In
addition, (2) indicates that the target compound c9 should eventually not be produced in
N1, whereas (3) suggests that the target compound c9 should eventually be produced in
N2.

Relations (4)-(19) are the node constraints for N1. {r1} is chosen as the FVS F1.
The maximal time step f1 of N1 is 2, where f1 = |F1| + 1 = 1 + 1 = 2. Relations
(4)-(6) represent the constraints on reactions r1-r3, respectively, and (7)-(12) represent
the constraints on compounds c2, c4, c5, c6, c8, and c9, respectively. In (8)-(10), the
predecessor reaction node r1 of compounds c4-c6 is replaced by s1, where TSR1 N1(t1) =
1 represents s1 = 1 (s1 is active) at t1 in N1, and TSR1 N1(t1) = 0 represents s1 = 0 (s1

is inactive) at t1 in N1. Relation (13) increases the time step by 1 when the value of r1

is copied to s1. Relations (14)-(16) ensure that the state of each reaction (inhibited or
uninhibited) does not change during the time transition, and (17)-(19) define c1, c3, and
c7 as the source nodes of N1.
Relations (20)-(37) are the node constraints for N2. Since the FVS F2 = {}, the maximal
time step f2 of N2 is 1, where f2 = |F2| + 1 = 0 + 1 = 1. Relations (20)-(23) represent
the constraints on reactions r1-r4, respectively, and (24)-(29) give the constraints on
compounds c4, c5, c6, c8, c9, and c10, respectively. Relations (30)-(33) ensure that the state
of each reaction (inhibited or uninhibited) does not change during the time transition.
Reaction nodes r1, r2 and r3 are common to both N1 and N2, whereas r4 exists only in
N2. Relations (34)-(37) define c1, c2, c3 and c7 as the source nodes of N2.

Relations (38) states that the initial value of s1 is set to 1 (s1 = 1 at t1 = 0) for the
MaxVA in N1, and (39)-(40) give the maximal time steps of N1 and N2, respectively.
Relation (41) denotes that “T...” represents “true (1)” and “F...” represents “false (0).”

Since MinVA is calculated for N2, IP-FVS1-LP2 for MKMN-B shown in Fig. 2 is as
follows:

Maximize
TE1(0) + TE2 N1(0) + TE3 N1(0) + TE4 N2(0) + TE5 N2(0) + TE6 N2(0)(42)

Subject to
TC3 N1(f1) = 0, (43)
TC3 N2(f2) = 1 (44)

/* Definitions of N1



for all t1 = 0,...,f1

/* Reactions
2 TR1 N1(t1) - TC1 N1(t1) - TE1(t1) ≤ 0,
TR1 N1(t1) - TC1 N1(t1) - TE1(t1) ≥ -1 (45)

2 TR2 N1(t1) - TC2 N1(t1) - TE2 N1(t1) ≤ 0,
TR2 N1(t1) - TC2 N1(t1) - TE2 N1(t1) ≥ -1 (46)

2 TR3 N1(t1) - TC2 N1(t1) - TE3 N1(t1) ≤ 0,
TR3 N1(t1) - TC2 N1(t1) - TE3 N1(t1) ≥ -1 (47)

/* Compounds
TC2 N1(t1) = TR1 N1(t1) (48)

2 TC3 N1(t1) - TR2 N1(t1) - TR3 N1(t1) ≥ 0,
TC3 N1(t1) - TR2 N1(t1) - TR3 N1(t1) ≤ 0 (49)

/* Es
TE1(t1 + 1) = TE1(t1) (50)
TE2 N1(t1 + 1) = TE2 N1(t1) (51)
TE3 N1(t1 + 1) = TE3 N1(t1) (52)

/* Source compounds
TC1 N1(t1) = 1 (53)

/* Definitions of N2

for all t2 = 0,...,f2

/* Reactions
2 TR1 N2(t2) - TC1 N2(t2) - TE1(t2) ≤ 0,
TR1 N2(t2) - TC1 N2(t2) - TE1(t2) ≥ -1 (54)

2 TR4 N2(t2) - TC2 N2(t2) - TE4 N2(t2) ≤ 0,
TR4 N2(t2) - TC2 N2(t2) - TE4 N2(t2) ≥ -1 (55)

2 TR5 N2(t2) - TC4 N2(t2) - TE5 N2(t2) ≤ 0,
TR5 N2(t2) - TC4 N2(t2) - TE5 N2(t2) ≥ -1 (56)

2 TR6 N2(t2) - TC4 N2(t2) - TE6 N2(t2) ≤ 0,
TR6 N2(t2) - TC4 N2(t2) - TE6 N2(t2) ≤ -1 (57)

/* Compounds
2 TC2 N2(t2) - TR1 N2(t2) - TR5 N2(t2) ≥ 0,
TC2 N2(t2) - TR1 N2(t2) - TR5 N2(t2) ≤ 0 (58)

TC3 N2(t2) = TR6 N2(t2) (59)



TC4 N2(t2) = TSR4 N2(t2) (60)

/* SR4
TSR4 N2(t2 + 1) = TR4 N2(t2) (61)

/* Es
TE1(t2 + 1) = TE1(t2) (62)
TE4 N2(t2 + 1) = TE4 N2(t2) (63)
TE5 N2(t2 + 1) = TE5 N2(t2) (64)
TE6 N2(t2 + 1) = TE6 N2(t2) (65)

/* Source compounds
TC1 N2(t2) = 1 (66)

/* SR4
TSR4 N2(0) = 0 (67)

/* f1 = |F1| + 1, where F1 is the FVS size of N1

f1 = 1 (68)
/* f2 = |F2| + 1, where F2 is the FVS size of N2

f2 = 2 (69)

where each variable takes a value of either 0 or 1. The Boolean relations of the reaction
nodes and compound nodes are converted into LP2 type linear inequalities here. As (42)
maximizes the number of reactions that are not inhibited, it corresponds to minimizing the
number of inhibited reactions. Relation (43) ensures that the target compound c3 finally
becomes non-producible in N1, whereas (44) guarantees that c3 remains producible in
N2. Relations (45)-(47) and (54)-(57) represent the Boolean relations of reactions in N1

and N2, respectively. Similarly, (48)-(49) and (58)-(60) represent the Boolean relations of
compounds in N1 and N2, respectively. Relations (50)-(52) and (62)-(65) ensure that the
state of each reaction (inhibited or uninhibited) does not change in that time transition.
Relations (53) and (66) mean that c1 is the source compound in both N1 and N2, whereas
(68)-(69) give the numbers of time steps for N1 and N2, which are calculated from the
sizes of the FVS. Here, {r4} is chosen as the FVS. In (60), the predecessor reaction node
r4 of the compound c4 is replaced by s4. Relation (67) states that the initial value of s4 is
set to 0 (s4 = 0 at t = 0) as MinVA is applied to N2. All variables represented by “F...”
are replaced with ”T...” variables in the implementation.

Although the above ILP-formalizations do not include cycles in both N1 and N2, in
the general case, MaxVA and MinVA are applied to N1 and N2, respectively.

2.4 Exception of the maximal valid assignment

(Figure 4)

MKMN-B can be solved by IP-FVS1. However, the problem setting of MKMN-B, in



which MaxVA and MinVA are applied to N1 and N2 respectively, may be inappropriate
for some cases. For example, suppose that N1 and N2 are as in Fig. 4 (A). Originally,
p2 and q2 are from one reversible reaction (r2), which is decomposed into two irreversible
reactions. Both p2 and q2 can be inhibited by the inhibition for r2. If MaxVA is assumed
in N1, neither p2 nor q2 becomes 0 unless r2 is inhibited. Thus, there is a case where an
original reversible reaction works as if it were a source node in N1.

To handle such reversible reactions more appropriately, we define a variant of MaxVA
by modifying the FVS-based method as follows: if the cycle detected by the FVS-based
method does not include an original irreversible reaction, 0 is assigned to the newly created
node at t = 0.

For example, suppose that N1 and N2 are as in Fig. 4 (A). Since the cycle consisting
of {r1, c6, r3, c2} includes an original irreversible reaction, after decomposing r1 of N1 into
r1 and s1 (see Fig. 4 (B)), s1(0) is assigned a value of 1. Furthermore, cycles consisting
of {c3, p2, c8, q2}, {c3, p2, c9, q2}, {c4, p2, c8, q2}, and {c4, p2, c9, q2} are also decomposed.
Suppose that p2 is decomposed as shown in N1 and N2 in Fig. 4 (B). In this case, as the
cycle does not include an original irreversible reaction, s2(0) is assigned a value of 0 for
both N1 and N2 (see also Table 2). Note that if s2(0) = 1, the values of c9 in N1 are fixed
to 1; and r2 must be inhibited to make c9 = 0, as it operates as if a reversible reaction
was a kind of source node.

(Table 2)

2.5 Fast approximation algorithm for MKMN-B with large net-
works

Although IP-FVS1 and IP-FVS2 successfully reduce the number of variables in the ILP
formalization from O((m + n)2) to O(f(m + n)), O(f(m + n)) may be still too large if
the network is very big. One reasonable strategy for handling this problem is to limit the
number of time steps to some small constant. IP-FVS1 and IP-FVS2 need f time steps to
ensure that the MaxVA and MinVA are always calculated, and hence the optimal solution
of MKMN-B is always obtained. However, as the number of time steps necessary to obtain
the optimal solution of MKMN-B depends on the topology of the network obtained after
removing the FVS, we generally require fewer than f time steps. Although the proposed
method does not ensure that the solution is optimal (as f time steps are necessary for the
worst case), it is possible to confirm that MaxVA and MinVA in the obtained solution
satisfy the condition of MKMN-B; that is, the target compound is not producible in N1,
but is producible in N2. Note that this validation process can be conducted in polynomial
time, since MKMN-B is NP-complete (see “Theoretical results” section). Let IP-FVS1-
approx(t) and IP-FVS2-approx(t) be the IP-FVS1 and IP-FVS2 algorithms in which
the number of time steps is limited to t. If t is not large, the numbers of variables used
in IP-FVS1-approx(t) and IP-FVS2-approx(t) are O(m + n).



2.6 Elementary mode-based method for MKMN-EM

To solve MKMN-EM, we utilize CNA to calculate the EMs. Since MKMN-EM is NP-
complete even if the EMs are given (see “Theoretical results” section), we develop an
ILP-based method IP-EM to solve MKMN-EM for given EMs. For example, suppose
that N1 and N2 have four and three relevant EMs, respectively as shown in Table 3.

(Table 3)

Then, IP-EM can be formulated as follows:

maximize r1 + r2 + r3 + r4 + r5 + r6 + r7

such that

r1 ∧ r2 ∧ r4 = 0, (70)

r1 ∧ r3 ∧ r6 = 0, (71)

r2 ∧ r4 ∧ r5 = 0, (72)

r5 ∧ r7 = 0, (73)

(r1 ∧ r2 ∧ r7) ∨ (r2 ∧ r3 ∧ r4) ∨ (r4 ∧ r5) = 1. (74)

where all variables are binary, and Boolean relations should be converted into linear
inequalities. Constraints (70)-(73) are converted into

r1 + r2 + r4 ≤ 2, (75)

r1 + r3 + r6 ≤ 2, (76)

r2 + r4 + r5 ≤ 2, (77)

r5 + r7 ≤ 1. (78)

For example, since (70) requires that at least one of {r1, r2, r4} must be 0, it can be
represented by (75). Furthermore, the constraint (74) is converted into

A = r1 ∧ r2 ∧ r7,

B = r2 ∧ r3 ∧ r4,

C = r4 ∧ r5,

A ∨ B ∨ C = 1,



and then converted into

A ≤ 1

3
(r1 + r2 + r7),

A ≥ (r1 + r2 + r7) − 2,

B ≤ 1

3
(r2 + r3 + r4),

B ≥ (r2 + r3 + r4) − 2,

C ≤ 1

2
(r4 + r5),

C ≥ (r4 + r5) − 1,

A + B + C ≥ 1,

using LP2 where all variables are binary. In this example, inhibiting {r1, r5} is an optimal
solution, since either r1 or r5 is included in each of EM1, EM2, EM3, and EM4, and neither
r1 nor r5 is included in EM6.

3 Computational Experiments

We conducted computational experiments on an Intel(R) Xeon(R) CPU E5-2690 0, 2.90GHz
with cache size 20.48 MB, operating system on SUSE Linux Enterprise Server 11 SP3 (x86
64). CPLEX version 12.4.0.0 was used as the ILP solver to obtain the global optimality
(IBM, 2010).

Metabolic networks of clostridium perfringens SM101 (CPR) and bifidobacterium longum
DJO10A (BLJ) were represented by N1 and N2, respectively, in the MKMN. KGML
(KEGG Markup Language) of BLJ and CPR were downloaded from the KEGG PATH-
WAY database (Kanehisa and Goto, 2000). Datasets 1, 2, and 3 were extracted and
used as small, medium, and large networks, respectively. Details of Datasets 1, 2, and
3 are given in Tables 4, 5, and 6, respectively. We considered the target compounds to
be C00022(pyruvate), C00024(acetyl-CoA), C00033(acetate), C00036(oxaloacetate), and
C00074(phosphoenolpyruvate). In addition, “5 compounds” indicates the problem where
none of the above five compounds are producible in N1, but all are producible in N2.

(Tables 4,5,6)

3.1 Datasets

In Dataset 1, N1 and N2 correspond to the central metabolism of BLJ and CPR respec-
tively. N1 includes 36 compounds and 37 reactions (26 reversible reactions), and consists
of glycolysis, gluconeogenesis, and pentose phosphate pathway. N2 includes 43 compounds
and 39 reactions (31 reversible), and consists of glycolysis, gluconeogenesis, citrate (TCA)
cycle, and pentose phosphate pathway. Thus, there are a total of 155 nodes for Dataset 1;
increasing to 212 nodes after decomposing each reversible reactions into two irreversible
reactions.



In Dataset 2, N1 and N2 correspond to the carbon metabolism, fatty acid metabolism,
and biosynthesis of amino acids of BLJ and CPR respectively. N1 includes 132 compounds
and 119 reactions (33 reversible), whereas N2 includes 157 compounds and 171 reactions
(38 reversible). Thus, there are a total of 579 nodes for Dataset 2, rising to 650 nodes
after decomposing each reversible reaction into two irreversible reactions.

In Dataset 3, N1 and N2 correspond to the whole pathways of BLJ and CPR, re-
spectively. N1 includes 622 compounds and 609 reactions (209 reversible), whereas N2

includes 1189 compounds and 1151 reactions (414 reversible). Thus, there are a total
of 2340 nodes for Dataset 3, increasing to 2714 nodes after decomposing each reversible
reaction into two irreversible reactions.

3.2 Results for Dataset 1

(Tables 7,8)

Tables 7 and 8 show the computation time and size of the solutions obtained for each
target compound by each MKMN method for Dataset 1. As Dataset 1 has small networks,
the computation time is less than 2 s for every case, and there is generally no MKMN
solution.

(Table 9)

However, when the target compound is C00022 (pyruvate), {R01541, R04779} and
{R04779, R05605} are solutions for IP-FVS2 and IP-EM, respectively as shown in Table
9, where RXXXXX (X ∈ [0 − 9]) are the IDs in KEGG. R04779 is a reaction from beta-
D-Fructose 6-phosphate to beta-D-Fructose 1,6-bisphosphate located seven steps before
pyruvate in the pathway of glycolysis. R01541 is a reaction from 2-Dehydro-3-deoxy-D-
gluconate to 2-Dehydro-3-deoxy-6-phospho-D-gluconate locating two steps before pyru-
vate in the pentose phosphate pathway, and R05605 is a reaction between 2-Dehydro-3-
deoxy-6-phospho-D-gluconate and pyruvate in the pentose phosphate pathway.

When the target compound is C00074 (phosphoenolpyruvate), {R04779, R01541} and
{R04779} are solutions for IP-FVS2 and IP-EM respectively. When all five compounds
are targeted, only MKMN-EM has a solution {R04779, R05605}.

Tables S1-S3 in supplemental data show the relation among the target compound,
predecessors of the target compound in N1 and N2, and solutions given by each MKMN
method for each target compound. For example, Table S1 shows that R00200 and R00703
are predecessors of the target compound C00022 for both N1 and N2. R05605 is a prede-
cessor of C00022 in N1, but not in N2. R04779 (or R01541) is not a predecessor of C00022
in either N1 or N2. In the tables of supporting information, “ko” indicates reactions in-
cluded in the solution by each MKMN method. We can see that solutions for MKMN are
not trivial, as they do not consist of only predecessors of the target compound.



3.3 Results for Dataset 2

(Tables 10,11)

Tables 10 and 11 show the computation time and size of the solutions obtained for
each target compound by each MKMN method for Dataset 2. As the networks are not
very large, the computation time is generally less than 20 s. MKMN-B-FVS1 only has
solutions when the target compound is C00022 or C00024, and MKMN-B-FVS2 only has
solutions for C00022, C00024, or C00033; in contrast MKMN-EM has solutions for all
cases.

(Table 12, Figure 5)

When the target compound is C00022(pyruvate), the solutions obtained for IP-FVS1,
IP-FVS2, and IP-EM are {R00200, R00214, R00216, R00586, R00945, R01196, R05605},
{R00200, R00214, R00216, R01196, R05605}, and {R00214, R00216, R01512, R05605},
respectively listed in Table 12. As shown in Fig. 5, among the above reactions, {R00200,
R00220} are predecessors of C00022 in both N1 and N2, whereas {R00214, R00216,
R001196, R05605} are predecessors of C00022 in N1, but not in N2 (see Table S4 in
supplemental data). However, {R00586, R00945, R01512} are not predecessors of C00022
in either N1 or N2. R00586 is a reaction between L-Serine and O-Acetyl-L-serine in
the pathway of cysteine and methionine metabolism. R00945 is a reaction between L-
Serine and glycine in the pathway of glycine, serine, and threonine metabolism. R01512
is a reaction between 3-Phospho-D-glyceroyl phosphate and 3-Phospho-D-glycerate in
the pathway of Glycolysis. The relations among the reactions included in the obtained
solutions and predecessors of N1 and N2 are described in Table S4.

When the target compound is C00024(Acetyl-CoA), the solutions for IP-FVS1, IP-
FVS2, and IP-EM are {R00230, R00238, R01196}, {R01196}, and {R01196}, respectively
(see Table 12). R00230 is a predecessor of C00024 in both N1 and N2, whereas R00238
and R01196 are predecessor of C00024 in N1, but not in N2 (see Table S5 in supplemental
data).

When the target compound is C00033(acetate), IP-FVS1 does not obtain a solution,
but IP-FVS2 and IP-EM both gives the solution {R00196}. As described in Table S6 in
supplemental data, R00196 is not the predecessor of either N1 or N2. Next, when the
target compound is C00036(oxaloacetate), only MKMN-EM has a solution, {R00345}.
R00345 is a predecessor of C00036 in both N1 and N2 as shown in Table S7 of supplemental
data. When the target compound is C00074(phosphoenolpyruvate), only MKMN-EM has
a solution {R00199, R00206, R01015, R01829, R04533}. As described in Table S8 of
supplemental data, R00199 and R00206 are predecessors of C00074 in N1, but not in N2.
However, none of R01015, R01829, or R04533 are predecessors of C00074 in either N1 or
N2.

Finally, when all five compounds are targeted, MKMN-B does not have the solution,
but MKMN-EM has the solution {R00214, R00216, R01512, R05605}. As described in
Table S9 of supplemental data, R00214, R00216 and R05605 are predecessors of at least



one of the five target compounds in N1, but not in N2. R01512 is not the predeces-
sor of any of the five target compounds in either N1 or N2, and is a reaction between
3-Phospho-D-glyceroyl phosphate and 3-Phospho-D-glycerate locating two steps before
C00074 (phosphoenolpyruvate) in the glycolysis pathway.

3.4 Results for Dataset 3

(Tables 13,14)

Tables 13 and 14 show the computation time and size of the solutions obtained for
each target compound by each MKMN method for Dataset 3. For IP-FVS1, although
the calculation was completed for every target compound, no solutions were found when
the target compound was either C00033(acetate), C00074(phosphoenolpyruvate) or “5
compounds.” For IP-FVS2, the calculation only completed when the target compound
was C00074(phosphoenolpyruvate) or “5 compounds.” CNA could not calculate the EMs
for the EM-based method, as the networks are too large.

As listed in Table 13, IP-FVS1 can compute solutions with either LP1 or LP2 within
70 min for each target compound. However, IP-FVS2 requires a computation time of over
2 h, and frequently cannot obtain a solution.

(Tables 15,16,17)

As the computation time is large and solutions are not always obtained, we applied
IP-FVS1-approx(10) and IP-FVS2-approx(10) to Dataset 3. Tables 15 and 16 show
the computation time and size of the solutions given by IP-FVS1-approx(10) and IP-
FVS2-approx(10) for each target compound for MKMN-B for Dataset 3. As can be seen
in Table 15, the computation time of IP-FVS1-approx(10) and IP-FVS2-approx(10) is at
most 15 s, and computation is always completed although there is no solution for some
cases. The relations among solutions of IP-FVS1, IP-FVS1-approx(10), IP-FVS2, and
IP-FVS2-approx(10) are summarized in Table 17.

When the target compound is C00022 (pyruvate), the solution obtained by IP-FVS1 is
{R00200, R00212, R00214, R00220, R00470, R00703, R00704, R00782, R00896, R02320,
R05605, R05636}; the solution given by IP-FVS1-approx(10) is almost the same, but
R00896 is replaced by R03105. Although IP-FVS2 cannot obtain a solution, IP-FVS2-
approx(10) obtains the solution {R00200, R00470, R01220}. The relations among solution
obtained by each method and the predecessors of the target compound in N1 and N2 are
described in Table S10 of supplemental data.

When the target compound is C00024(acetyl-CoA), IP-FVS1 and IP-FVS1-approx(10)
obtain the same solution {R00212, R00228, R00230, R00238, R01177, R04386, R05351}.
Although IP-FVS2 cannot obtain a solution, IP-FVS2-approx(10) gives {R00212, R03026,
R05351}. The relations among the selected reactions and predecessors of the target
compound are described in Table S11 of supplemental data.

Next, when the target compound is C00033(acetate), FVS-type1 has no solution and
IP-FVS2 cannot complete the calculation within 2 h, whereas IP-FVS2-approx(10) ob-



tains the solution {R00212, R00238, R05351} (See also Table S12 in supplemental data).
When the target compound is C00036(oxaloacetate), the solutions given by IP-FVS1
and IP-FVS1-approx(10) are {R00345, R00355, R00483} and {R00345, R00355, R00357}
respectively. Although IP-FVS2 cannot complete the calculation, IP-FVS2-approx(10)
obtains the solution {R00345, R00485}. The relation is summarized in Table S13 of
supplemental data.

Finally, when the target compound is C00074(phosphoenolpyruvate) or“5 compounds,”
neither FVS-type1 nor FVS-type2 has solutions.



4 Theoretical Results

Solving ILP is NP-complete. However, it does not mean that a problem that can be
formalized as ILP is NP-complete. Therefore, in this section, we prove that MKMN-B
and MKMN-EM are NP-complete, and show the appropriateness of formalizing MKMN-B
and MKMN-EM as ILP.

Theorem 1 MKMN-B is NP-complete even if the maximum degree is limited to 2, and
the substrates and products of a reaction in N1 are the same as those in N2.

Proof: The proof of the NP-hardness is similar to that of Theorem 1 in Tamura and
Akutsu (2010). The NP-completeness of the decision version of MKMN-B is shown by the
polynomial time reduction from the decision version of the Hitting Set Problem (HSP).
The former aims to determine whether there exists |Va| ≤ z, whose MaxVA satisfies
that v1 = 0 for all v1 ∈ Vt1 and v2 = 1 for all v2 ∈ Vt2 hold. Given a set of elements
X = {x1, . . . , xn}, a set of subsets S = {S1, . . . , Sm}, and an integer z, the HSP determines
whether Y (Y ⊂ X) exists such that Si∩Y ̸= ϕ for any i = 1, . . . , m and |Y | ≤ z (Ausiello,
1999).

When an instance of HSP with X, S and z is given, N1 and N2 of MKMN-B are
constructed as follows.

Vc1 = {cx1 , . . . , cxn , c0, ct}, Vs1 = {c0}, Vt1 = {ct},
Vr1 = {rx1 , . . . , rxn} ∪ {rs1 . . . , rsm}
E1 = {(c0, rx1), . . . , (c0, rxn)} ∪ {(rx1 , cx1), . . . , (rxn , cxn)}

∪{(rs1 , ct), . . . , (rsm , ct)} ∪ {(cxi
, rsj

)|xi ∈ Sj},
Vc2 = {c1, ct}, Vs2 = {c1}, Vt2 = {ct},
Vr2 = {r1},
E2 = {(c1, r1), (r1, ct)}.

For example, if an instance of the HSP is given as X = {1, 2, 3, 4} and S = {{1, 2}, {1, 3}, {2, 3},
{1, 4}, {3, 4}}, then N1 and N2 of MKMN-B are constructed as shown in Fig. 6 (A). This
conversion can be conducted in polynomial time.

In the following, we show that HSP has a solution with |Y | = z if and only if MKMN-B
has a solution with |Va| = z. Suppose that HSP has a solution Y = {xi|xi ∈ Y }. Then,
Va = {rxi

|xi ∈ Y } is a solution of MKMN-B since |Y | = |Va| holds. Next, suppose that
MKMN-B has a solution Va. If rsi

∈ Va holds, then V ′
a, where V ′

a is obtained by replacing
rsi

with rxj
satisfying (cxj

, rsi
) ∈ E1 is also a solution. Therefore, we can assume, without

generality that Va does not include rsi
. Then, Y = {xj|rxj

∈ Va} is a solution of the HSP.
Since the decision version of MKMN-B is clearly in NP, it belongs to NP-complete.

Each node with degree greater than 2 can be converted into nodes with degree at most
2 by the methods shown in Fig. 6 (B) and (C). Since reactions in N1 and N2 created by
this reduction do not intersect, MKMN-B is NP-hard, even when reactions common to
both N1 and N2 have the same substrates and the same products.
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Theorem 2 MKMN-EM is NP-hard even if the maximum degree is limited to 2, and the
substrates and products of a reaction in N1 are the same as those in N2.

Proof: In N1 of the proof of Theorem 1 with c0 ∈ Vex1, there are m EMs {AEM1 , . . . , AEMm}
with ct = 1 where rsi = 1 holds only for AEM i

. If the HSP has a solution Y = {xi|xi ∈ Y },
then N1 = {Vc1 , Vr1 \Va, E1} for Va = {rxi

|xi ∈ Y } does not have any EM with ct = 1. On
the other hand, suppose that N1 = {Vc1 , Vr1 \ Va, E1} does not have any EM with ct = 1.
If Va includes some rsi

, then rsi
can be replaced with some rxj

satisfying (cxj
, rsi

) ∈ E1

since N1 = {Vc1 , Vr1 \ {Va \ {rsi
}} \ {rxj

}, E1} does not have any EM with ct = 1 either.
Therefore we can assume without generality that Va does not include any rsi

. Then,
Y = {xi|rxi

∈ Va} is the solution of HSP. The other parts of the proof are as in those in
Theorem 1 other than c1 ∈ Vex2 is assumed.

2

Theorem 3 MKMN-EM is NP-complete even if EMs of N1 and N2 are given.

Proof: If the sets of reactions of N1 and N2 have no intersections, then the problem
can clearly be reduced to the HSP for EMs of N1. Note that the completeness holds for
the number of EMs, but not for the number of nodes since the number of EMs may be
exponential to the number of nodes.

2



5 Discussion

In this paper, we have studied the MKMN problem to determine the minimum set of re-
actions whose inhibition induces that the target compounds are not producible in N1, but
are producible in N2. MKMN-B and MKMN-EM are the Boolean version and elementary
mode (EM)-based version of MKMN respectively.

For MKMN-B, we developed an integer linear programming (ILP)-based methods IP-
FVS1 and IP-FVS2 utilizing the idea of feedback vertex sets (FVS) to reduce the number
of variables present in the ILP formalizations. In IP-FVS1, MaxVA and MinVA are
strictly applied to N1 and N2 respectively to appropriately take the effect of cycles into
account. However, since each node in FVS works as if it were a source node in the MaxVA,
the solution obtained by IP-FVS1 is not always realistic. To avoid this problem, IP-FVS2
does not apply MaxVA to cycles consisting only of original reversible reactions in N1. To
solve MKMN-B for large networks, we developed IP-FVS1-approx and IP-FVS2-approx.
These algorithms are fast since the number of time steps is limited to a small constant,
but the optimality of their solutions is not ensured. We also developed IP-EM, an ILP-
based method for MKMN-EM in which every EM including a source node and a target
compound is inhibited in N1, but at least one such EM remains in N2.

We implemented IP-FVS1, IP-FVS2, IP-FVS1-approx, IP-FVS2-approx, and IP-EM
in computational experiments, using metabolic networks of bifidobacterium longum DJO10A
(BLJ) and clostridium perfringens SM101 (CPR) for N1 and N2, respectively. The
Datasets 1, 2 and 3 include 155, 650 and 2340 nodes in total respectively. From Tables 8,
11, 14 and 16, it is seen that MKMN tends to have no solution for smaller networks, but
has solutions for larger networks. However, Tables 13 and 14 show that solving MKMN
for large networks is computationally very expensive. In particular, IP-FVS2 and the
IP-EM could not finish the computation within 2 hours for most cases. Tables 15 and
16 show that IP-FVS1-approx and IP-FVS2-approx can solve MKMN-B very efficiently
even for large networks. Although optimality is not ensured by IP-FVS1-approx and IP-
FVS2-approx, the solutions they produced are optimal for most cases in the Dataset 3
experiment as shown in Table 17. Furthermore, since MKMN-B belongs to NP, it is not
difficult to confirm that the obtained solutions by IP-FVS1-approx and IP-FVS2-approx
satisfy that the target compound is not producible in N1 but producible in N2 even for
non-restricted time steps. It remains as a future work to develop a method of finding
the smallest number of the time steps to ensure the optimality of IP-FVS1-approx and
IP-FVS2-approx. It is to be noted that some bilevel programming-based method seems
to be necessary to define MKMN in an FBA model since FBA needs another objective
function in addition to minimizing the number of reactions. Applying Petri-net-based
methods (Jin et al., 2011) is also interesting since they may extract the good points of
both Boolean-based methods and FBA-based methods.

We also analyzed the obtained solutions by checking the relation among the predeces-
sors of N1 and N2, and the selected reactions. From Tables S5, S10 and S11, it may be
thought that the solutions given by IP-FVS1 and IP-FVS1-approx are trivial when the
predecessors of N2 are not a subset of those of N1 since choosing all predecessors of N1

clearly satisfies the condition of MKMN-B. However, Tables S3 and S7 show that this
method cannot always obtain the correct solution. On the other hand, when the prede-



cessors of N2 are a subset of those of N1, the obtained solution is complex as shown in
Table S4. It seems that the solutions given by IP-FVS2, IP-FVS2-approx, and IP-EM are
somewhat involved, and it is difficult to infer solutions from these tables. Since a smaller
set of inhibited reactions is preferable, solutions of IP-FVS2 and IP-EM are considered to
be better than those from IP-FVS1. Moreover, for large networks, since IP-FVS2 and IP-
EM are generally unable to complete the calculation, IP-FVS2-approx is considered to be
the best method, although the optimality of its solution is not ensured in the worst-case
scenario.

As theoretical results, we proved that MKMN-B is NP-complete for the number of
nodes, MKMN-EM is NP-hard for the number of nodes, and MKMN-EM is NP-complete
for the number of EMs. The software developed in this study and reported here is available
at “http://sunflower.kuicr.kyoto-u.ac.jp/~rogi/minFvsKO/minFvsKO.html”.
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Table 1: The 0-1 assignments corresponding to the EMs of the example network of Fig.
3, where {c1, c3, c7, c9} is a set of external compounds.

p1 q1 p2 q2 r3 r4 r5 r6 r7 r8 c1 c2 c3 c4 c5 c6 c7 c8 c9

EM1 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0
EM2 0 1 0 0 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0
EM3 0 1 0 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1
EM4 1 0 1 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0
EM5 0 0 1 0 1 1 0 0 1 0 0 1 1 1 0 1 1 0 0



Table 2: Initial values of nodes included by the FVS.

IP-FVS1 IP-FVS2
s2(0) of N1 1 0
s2(0) of N2 0 0

In IP-FVS1, N1 and N2 are based on MaxVA and MinVA, respectively. However, in
IP-FVS2, in addition to the above assumption, nodes included by the FVS consisting of
only reversible reactions are assigned an initial value of 0.



Table 3: Example for MKMN-EM.

N1 N2

EM1 r1, r2, r4 EM5 r1, r2, r7

EM2 r1, r3, r6 EM6 r2, r3, r4

EM3 r2, r4, r5 EM7 r4, r5

EM4 r5, r7

After obtaining the EMs that produce the target compound using CellNetAnalyzer,
MKMN-EM can be formalized by ILP.



Table 4: Details of the networks of Dataset 1.

N1 N2 total (N1+N2)
#compound 36 43 79
#irreversible reaction 11 8 19
#reversible reaction 26 31 57
#node 73 82 155

N1 and N2 are the central metabolism of bifidobacterium longum DJO10A (BLJ)
and clostridium perfringens SM101 (CPR) respectively. N1 consists of {cpr00010.xml
cpr00030.xml}, and N2 consists of {blj00010.xml,blj00020.xml,blj00030.xml} in the
KEGG database.



Table 5: Details of the networks of Dataset 2.

N1 N2 total (N1+N2)
#compound 132 157 289
#irreversible reaction 86 133 219
#reversible reaction 33 38 71
#node 251 328 579

N1 and N2 consist of carbon metabolism, fatty acid metabolism, and biosynthesis of amino
acids of BLJ and CPR, respectively. N1 is {cpr01200.xml, cpr01212.xml cpr01230.xml},
and N2 is {blj01200.xml,blj01212.xml,blj01230.xml} in the KEGG database.



Table 6: Details of the networks of Dataset 3.

N1 N2 total (N1+N2)
#compound 622 567 1189
#irreversible reaction 400 337 737
#reversible reaction 209 205 414
#node 1231 1881 2340

N1 and N2 consist of whole metabolic networks of BLJ and CPR, respectively, downloaded
from KGML in the KEGG database.



Table 7: The computation time of IP-FVS1, IP-FVS2 and IP-EM for each target com-
pound with Dataset 1.

\ type IP-FVS1 IP-FVS1 IP-FVS2 IP-EM
target compound (with LP1) (with LP2) (with LP2)
C00022(Pyruvate) 2.07 sec 1.45 sec 0.65 sec 0.47 sec
C00024(Acetyl-CoA) <0.01sec <0.01sec <0.01sec <0.01sec
C00033(Acetate) 0.21 sec 0.18 sec 0.19 sec 0.27 sec
C00036(Oxaloacetate) <0.01sec <0.01sec <0.01sec <0.01sec
C00074(Phosphoenolpyruvate) 0.18 sec 0.18 sec 0.57 sec 0.49 sec
All the above 5 compounds 0.18 sec 0.18 sec 0.18 sec 0.49 sec



Table 8: Size of the solutions given by IP-FVS1, IP-FVS2, and IP-EM for each target
compound with Dataset 1.

target compound \ type IP-FVS1 IP-FVS2 IP-EM
C00022(Pyruvate) no solution 2 2
C00024(Acetyl-CoA) no solution no solution no solution
C00033(Acetate) no solution no solution no solution
C00036(Oxaloacetate) no solution no solution no solution
C00074(Phosphoenolpyruvate) no solution 2 1
All the above 5 compounds no solution no solution 2



Table 9: Solutions given by IP-FVS1, IP-FVS2 and IP-EM for each target compound
with Dataset 1.

target compound type the obtained solution
C00022 IP-FVS1 no solution

IP-FVS2 R01541(N1), R04779(N1)
IP-EM R04779(N1), R05605(N1)

C00074 IP-FVS1 no solution
IP-FVS2 R04779(N1), R01541(N1)
IP-EM R04779(N1)

5 compounds IP-FVS1 no solution
IP-FVS2 no solution
IP-EM R04779(N1), R05605(N1)

“(N1)” indicates that the reaction appears in N1, but not in N2.



Table 10: Computation time of IP-FVS1, IP-FVS2 and IP-EM for each target compound
with Dataset 2.

\ type IP-FVS1 IP-FVS1 IP-FVS2 IP-EM
target compound (with LP1) (with LP2) (with LP2)
C00022(Pyruvate) 8.95 sec 11.19 sec 10.5 sec 14.59 sec
C00024(Acetyl-CoA) 8.57 sec 11.31 sec 11.91 sec 4.62 sec
C00033(Acetate) 0.74 sec 0.74 sec 9.82 sec 17.48 sec
C00036(Oxaloacetate) 8.17 sec 7.05 sec 5.32 sec 10.92 sec
C00074(Phosphoenolpyruvate) 0.72 sec 0.74 sec 0.72 sec 13.36 sec
All the above 5 compounds 0.74 sec 0.76 sec 0.74 sec 4.64 sec



Table 11: Size of the solutions given by IP-FVS1, IP-FVS2, and IP-EM for each target
compound with Dataset 2.

target compound \ type IP-FVS1 IP-FVS2 IP-EM
C00022(Pyruvate) 7 5 4
C00024(Acetyl-CoA) 3 1 1
C00033(Acetate) no solution 1 1
C00036(Oxaloacetate) no solution no solution 1
C00074(Phosphoenolpyruvate) no solution no solution 5
All the above 5 compounds no solution no solution 4



Table 12: Solutions given by IP-FVS1, IP-FVS2 and IP-EM for each target compound
with Dataset 2.

target compound type the obtained solution
C00022 IP-FVS1 R00200, R00214(N1), R00216(N1), R00586(N1)

R00945, R01196(N1), R05605(N1)
IP-FVS2 R00200, R00214(N1), R00216(N1), R01196(N1),

R05605(N1)
IP-EM R00214(N1), R00216(N1), R01512, R05605(N1)

C00024 IP-FVS1 R00230, R00238(N1), R01196(N1)
IP-FVS2 R01196(N1)
IP-EM R01196(N1)

C00033 IP-FVS1 no solution
IP-FVS2 R01196(N1)
IP-EM R01196(N1)

C00036 IP-FVS1 no solution
IP-FVS2 no solution
IP-EM R00345

C00074 IP-FVS1 no solution
IP-FVS2 no solution
IP-EM R00199(N1), R00206(N1), R01015(N1), R01829(N1),

R04533(N1)
5 compounds IP-FVS1 no solution

IP-FVS2 no solution
IP-EM R00214(N1), R00216(N1), R01512, R05605(N1)

“(N1)” indicates that the reaction appears in N1, but not in N2.



Table 13: The computation time by IP-FVS1, IP-FVS2 and IP-EM for each target com-
pound with Dataset 3.

\ type IP-FVS1 IP-FVS1 LP-type2 IP-EM
target compound (with LP1) (with LP2) IP-FVS2
C00022(Pyruvate) 26min37sec 54min56sec > 2 hours NA
C00024(Acetyl-CoA) 32min6sec 56min19sec > 2 hours NA
C00033(Acetate) 16min17sec 12min14sec > 2 hours NA
C00036(Oxaloacetate) 32min38sec 1hr8min35sec > 2 hours NA
C00074(Phosphoenolpyruvate) 21min1sec 12min34sec 5min29sec NA
All the above 5 compounds 21min44sec 12min15sec 7min2sec NA



Table 14: Size of the solutions given by IP-FVS1, IP-FVS2 and IP-EM for each target
compound with Dataset 3.

target compound \ type IP-FVS1 IP-FVS2 IP-EM
C00022(Pyruvate) 12 NA NA
C00024(Acetyl-CoA) 7 NA NA
C00033(Acetate) no solution NA NA
C00036(Oxaloacetate) 3 NA NA
C00074(Phosphoenolpyruvate) no solution no solution NA
All the above 5 compounds no solution no solution NA



Table 15: Computation time of IP-FVS1-approx(10) and IP-FVS2-approx(10) for each
target compound with Dataset 3.

\ type IP-FVS1-approx(10) IP-FVS1-approx(10) IP-FVS2-approx(10)
target compound (with LP1) (with LP2) (with LP2)
C00022(Pyruvate) 9.43sec 6.92sec 12.05sec
C00024(Acetyl-CoA) 9.18sec 6.71sec 14.95sec
C00033(Acetate) 4.46sec 1.22sec 14.01sec
C00036(Oxaloacetate) 8.78sec 7.81sec 10.66sec
C00074(Phosphoenolpyruvate) 2.81sec 0.97sec 1.32sec
All the above 5 compounds 2.72sec 0.96sec 1.37sec



Table 16: The size of the obtained solutions by IP-FVS1-approx(10), IP-FVS2-approx(10)
for each target compound with Dataset 3.

target compound \ type IP-FVS1-approx(10) IP-FVS2-approx(10) IP-EM
C00022(Pyruvate) 12 3 NA
C00024(Acetyl-CoA) 7 3 NA
C00033(Acetate) no solution 3 NA
C00036(Oxaloacetate) 3 2 NA
C00074(Phosphoenolpyruvate) no solution no solution NA
All the above 5 compounds no solution no solution NA



Table 17: Solutions given by IP-FVS1, IP-FVS1-approx(10), IP-FVS2, IP-FVS2-
approx(10) and IP-EM for each target compound with Dataset 3.

target compound type the obtained solution
C00022 IP-FVS1 R00200, R00212, R00214(N1), R00220, R00470(N1),

R00703, R00704(N1), R00782, R00896, R02320,
R05605(N1), R05636

IP-FVS1-approx(10) R03105 is chosen instead of R00896.
IP-FVS2 NA
IP-FVS2-approx(10) R00200, R00470(N1), R01220
IP-EM NA

C00024 IP-FVS1 R00212, R00228, R00230, R00238(N1), R01177(N1),
R04386(N1), R05351

IP-FVS1-approx(10) the same as the above
IP-FVS2 NA
IP-FVS2-approx(10) R00212, R03026(N1), R05351
IP-EM NA

C00033 IP-FVS1 no solution
IP-FVS2 NA
IP-FVS2-approx(10) R00212, R00238(N1), R05351
IP-EM NA

C00036 IP-FVS1 R00345, R00355, R00483(N1)
IP-FVS1-approx(10) R00345, R00355, R00357
IP-FVS2 NA
IP-FVS2-approx(10) R00345, R00485(N1)
IP-EM NA

“(N1)” indicates that the reaction appears in N1, but not in N2.



Figure legends

Figure 1: An example of Minimum Knockout for Multiple Networks (MKMN)
problem. MKMN is a problem to find the minimum number of reactions whose inhibition
makes the target compound non-producible in N1 but producible in N2. (A)The MKMN
solution for this example is {r3}, whose inhibition prevents production of vc9 in N1 but
not in N2. (B) r1 of N1 in Fig. 1 is decomposed into r1 and s1.

Figure 2: The minimal valid assignment (MinVA) is applied to N2. The FVS-
based operation for N2 is different from that of N1. (A){r2, r3} is the optimal solution of
MKMN-B for N1 and N2. (B)However, if s4 is initially assigned a value of 1 in N ′

2, {r1}
is obtained as the solution.

Figure 3: The 0-1 assignments of elementary modes (EMs) of this network are
listed in Table 1.

Figure 4: A reversible reaction r2 decomposed into p2 and q2. r1 is decomposed in
N1, and p2 is decomposed in N1 and N2 so that there is no directed cycle in the resulting
networks. s1(0) = 1 since the detected cycle in (A) includes an irreversible reaction.
However, s2(0) = 0 since the detected cycle in (A) does not include an irreversible reaction.

Figure 5: Solutions for Dataset 2 with the target compound C00022(Pyruvate).
When the target compound is C00022(Pyruvate), solutions of IP-FVS1, IP-FVS2, and IP-
EM for Dataset 2 are represented by red, blue, and green lines, respectively.

Figure 6: Example of the polynomial time reduction from the HSP. (A)N1 and
N2 of MKMN-B are constructed from an instance of the HSP with X = {1, 2, 3, 4}
and S = {{1, 2}, {1, 3}, {2, 3}, {1, 4}, {3, 4}}. (B)Compound nodes with outdegree greater
than 2 can be converted to nodes with outdegree at most 2. (C)Reaction nodes with
indegree greater than 2 can be converted to nodes with indegree at most 2.
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Supplemental data

S1: Relationship between inhibited reactions and predecessors of C00022 in N1 and N2 in Dataset 1.
Node Predecessors IP-FVS1 IP-FVS2 IP-EM
R00200 N1 N2 - - -
R00703 N1 N2 - - -
R05605 N1 - - - ko
R04779 - - - ko ko
R01541 - - - ko -
size 3 2 no solution 2 2

S2: Relationship between inhibited reactions and predecessors of C00074 in N1 and N2 in Dataset 1.
Node Predecessors IP-FVS1 IP-FVS2 IP-EM
R00658 N1 N2 - - -
R04779 - - - ko ko
R01541 - - - ko -
size 1 1 no solution 2 1

S3: Relationship between knocked-out nodes and predecessors of all the above 5 compounds are targets
in Data1
Node Predecessors IP-FVS1 IP-FVS2 IP-EM
R00200 N1 N2 - - -
R00658 N1 N2 - - -
R00703 N1 N2 - - -
R00710 N1 N2 - - -
R05605 N1 - - - ko
R00351 - N2 - - -
R04779 - - - - ko
size 5 5 no solution no solution 2
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S4: Relationship among inhibited reactions and predecessors of C00022 in Dataset 2
Node Predecessors IP-FVS1 IP-FVS2 IP-EM
R00200 N1 N2 ko ko -
R00220 N1 N2 - - -
R00214 N1 - ko ko ko
R00216 N1 - ko ko ko
R01196 N1 - ko ko -
R05605 N1 - ko ko ko
R00586 - - ko - -
R00945 - - ko - -
R01512 - - - - ko
size 6 2 7 5 4

S5: Relationship among inhibited reactions and predecessors of C00024 in Dataset 2
Node Predecessors IP-FVS1 IP-FVS2 IP-EM
R00230 N1 N2 ko - -
R00238 N1 - ko - -
R01196 N1 - ko ko ko
R00209 - N2 - - -
R00351 - N2 - - -
R00352 - N2 - - -
size 3 4 3 1 1

S6: Relationship among inhibited reactions and predecessors of C00033 in Dataset 2
Node Predecessors IP-FVS1 IP-FVS2 IP-EM
R00315 N1 N2 - - -
R01196 - - - ko ko
size 1 1 no solution 1 1

S7: Relationship among inhibited reactions and predecessors of C00036 in Dataset 2
Node Predecessors IP-FVS1 IP-FVS2 IP-EM
R00345 N1 N2 - - ko
R00355 N1 - - - -
R00351 - N2 - - -
R00352 - N2 - - -
size 2 3 no solution no solution 1
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S8: Relationship among inhibited reactions and predecessors of C00074 in Dataset 2
Node Predecessors IP-FVS1 IP-FVS2 IP-EM
R00658 N1 N2 - - -
R00199 N1 - - - ko
R00206 N1 - - - ko
R01015 - - - - ko
R01829 - - - - ko
R04533 - - - - ko
size 3 1 no solution no solution 5
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S9: Relationship among inhibited reactions and predecessors of all the above 5 compounds are targets
in Dataset 2
Node Predecessors IP-FVS1 IP-FVS2 IP-EM
R00200 N1 N2 - - -
R00220 N1 N2 - - -
R00230 N1 N2 - - -
R00315 N1 N2 - - -
R00345 N1 N2 - - -
R00658 N1 N2 - - -
R00199 N1 - - - -
R00206 N1 - - - -
R00214 N1 - - - ko
R00216 N1 - - - ko
R00238 N1 - - - -
R00355 N1 - - - -
R01196 N1 - - - -
R05605 N1 - - - ko
R00209 - N2 - - -
R00351 - N2 - - -
R00352 - N2 - - -
R01512 - - - - ko
size 14 9 no solution no solution 4

S10: Relationship among inhibited reactions and predecessors of C00022 in Dataset 3
Node Predecessors IP-FVS1 IP-FVS1-approx(10) IP-FVS2 IP-FVS2-approx(10)
R00200 N1 N2 ko ko - ko
R00212 N1 N2 ko ko - -
R00220 N1 N2 ko ko - -
R00703 N1 N2 ko ko - -
R00782 N1 N2 ko ko - -
R02320 N1 N2 ko ko - -
R05636 N1 N2 ko ko - -
R00214 N1 - ko ko - -
R00470 N1 - ko ko - ko
R00704 N1 - ko ko - -
R03105 N1 - - ko - -
R05605 N1 - ko ko - -
R00258 - N2 - - - -
R00896 - - ko - - -
R01220 - - - - - ko
size 12 8 12 12 NA 3
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S11: Relationship among inhibited reactions and predecessors of C00024 in Dataset 3
Node Predecessors IP-FVS1 IP-FVS1-approx(10) IP-FVS2 IP-FVS2-approx(10)
R00212 N1 N2 ko ko - ko
R00228 N1 N2 ko ko - -
R00230 N1 N2 ko ko - -
R05351 N1 N2 ko ko - ko
R00238 N1 - ko ko - -
R01177 N1 - ko ko - -
R04386 N1 - ko ko - -
R00351 - N2 - - - -
R03026 - - - - - ko
size 7 5 7 7 NA 3

S12: Relationship among inhibited reactions and predecessors of C00033 in Dataset 3
Node Predecessors IP-FVS1 IP-FVS-1-approx(10) IP-FVS2 IP-FVS2-approx(10)
R00315 N1 N2 - - - -
R00317 N1 N2 - - - -
R00710 N1 N2 - - - -
R00212 - - - - - ko
R00238 - - - - - ko
R05351 - - - - - ko
size 3 3 no solution no solution NA 3

S13: Relationship among inhibited reactions and predecessors of C00036 in Dataset 3
Node Predecessors IP-FVS1 IP-FVS1-approx(10) IP-FVS2 IP-FVS2-approx(10)
R00345 N1 N2 ko ko - ko
R00355 N1 N2 ko ko - -
R00357 N1 N2 - ko - -
R00351 - N2 - - - -
R00483 - - ko - - -
R00485 - - - - - ko
size 3 4 3 3 NA 2


