- 1 Diversity, resource utilization, and phenology of fruiting bodies of
- 2 litter-decomposing macrofungi in subtropical, temperate, and subalpine forests

3

4 Takashi Osono

5

- 6 T. Osono
- 7 Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113 Japan
- 8 e-mail: tosono@ecology.kyoto-u.ac.jp

9

17

AbstractThe diversity, vegetative and reproductive characteristics, and phenology
of litter decomposing macrofungi (LDM) were compared between humus forms
and climatic regions. Fruiting bodies of LDM were examined for the forest floor of
subtropical (ST), cool temperate (CT), and subalpine (SA) forests in Japan. Field
surveys during one growing season yielded 35, 32, and 18 species in ST, CT, and
SA, respectively. Species richness was generally higher in mull than in moder
humus and in warmer than in cooler climate. A total of 10 fungal families were

observed, and species in the Mycenaceae dominated in the LDM assemblages at

all study sites. A larger number of species fruited on deeper F layers of the forest floor in SA than in ST, where 74% of species fruited directly on leaf litter. This observation was consistent with the analysis of radiocarbon content in fruiting bodies, implying that LDM tended to utilize older carbon accumulated at deeper layers of the forest floor in cooler climates. Seasonal changes in the fruiting frequency over a growing season exhibited similar two-peak patterns for all the study sites, coinciding with the periods of rainfall and increasing and decreasing air temperatures in early summer and autumn, respectively, but the fruiting period extended longer in warmer than in cooler climate.

Keywords Climate · Decomposition · Mycena · Radiocarbon ·

Seasonal changes

Introduction

Litter-decomposing macrofungi (LDM) are major components of the diversity of soil organisms in terrestrial ecosystems and play central roles in the

decomposition of structural and soluble components in litter that often limit carbon and nutrient cycling in soil (Osono 2007; van der Wal et al. 2013). A suite of LDM with the ability to decompose lignin and other recalcitrant compounds are of particular importance because the colonization of litter materials by these fungi often stimulates the turnover of organic matter and nutrients in soil (Steffen et al. 2007; Valášková et al. 2007; Osono et al. 2011a). Fruiting bodies of LDM provide reliable and useful information about their taxonomy, diversity, and reproduction and have been surveyed for their diversity (e.g. Schmit et al. 1999; Mueller et al. 2007) and seasonal patterns (Murakami 1989; Yamashita and Hijii 2004) and for the effects on them of vegetation (Hansen and Tyler 1992; Lange 1993; Såstad 1995), soil conditions (Tyler 1985; Rastin et al. 1990), and elevational gradient (Gómez-Hernández et al. 2012). Moreover, the observation of vegetative mycelia at the base of fruiting bodies can often yield insights into the substrate utilization and decomposing ability of LDM (Osono et al. 2011a). Currently, however, few studies investigated the diversity, have vegetative and reproductive characteristics, and phenology of LDM simultaneously and compared these between humus forms and climatic regions. It is hypothesized that the pattern of

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

diversity, substrate utilization, and phenology of fruiting bodies of LDM change along gradients of soil conditions and climate.

The purpose of the present study was to investigate fruiting bodies of LDM emerging from the forest floor of subtropical, cool temperate, and subalpine forests in Japan. Field sampling of fruiting bodies over growing seasons yielded information about the structure, diversity, and species composition of LDM assemblages and seasonal patterns of occurrence. Each LDM species was recorded for the soil layer from which its fruiting body emerged to examine the substrate its vegetative mycelia utilized. Radiocarbon (14C) contents of fruiting bodies were measured for major LDM species to estimate the age of carbon (i.e. time since death of plant litter) utilized by these species. The diameter of the pileus and the length of the stipe were measured for fruiting bodies found in the three forest soils, and possible roles of the size variation of fruiting bodies in the seasonal patterns of fruiting bodies were discussed.

66

67

65

52

53

54

55

56

57

58

59

60

61

62

63

64

Materials and methods

68

Study site

70

69

71 Samples were collected from three sites in Japan: a subtropical forest (ST), a cool 72temperate forest (CT), and a subalpine forest (SA). ST was located in Okinawa, 73 southern Japan. CT was located in Kyoto, Japan. In CT, two study plots were 74established on the upper and lower parts of a northwest-facing slope (approximately 200 m long). SA was located on Mt. Ontake, Gifu, Japan. Details 7576 of the location, climatic conditions, and vegetation are given in Osono (submitted). 77 In summary, the three sites differed in mean annual temperature (22°C, 9°C, and 2°C in ST, CT, and SA, respectively), seasonal patterns of change in air 78 79 temperature, and the duration of the growing season, but they received similar 80 amounts of precipitation annually. The study sites experience a rainy season from May to June in ST and from June to July in CT and SA. Snow covers the forest 81 82 floor of CT from December to April and that of SA from mid-November to early June. Table 1 shows properties of the forest floor of the study sites. The 83 84 accumulation of forest floor material, in terms of the depth and the mass, was in the order: ST, CT (lower) < CT (upper) < SA, whereas the order was generally 85

reversed for the leaf fall mass. Consequently, the turnover time of the forest floor was lower in SA and CT (lower) (less than two years) than in CT (upper) (10.4 years) and in SA (29.1 years).

Study plot and field survey

A study plot of 50×10 m (500 m²) was laid out in each of ST, CT (upper), CT (lower), and SA sites and was divided into 125 grids of 2×2 m. The study area of 500 m^2 was found to be large enough to describe species richness of macrofungi in CT sites, according to Okabe (1986).

Fruiting bodies of LDM were collected in the study plots, seven times at 1- to 2-month intervals from March 2007 to January 2008 in ST, nine times at 2- to 4-week intervals from May to November 2001 in CT, and five times at 1-month intervals from June to October 2008 in SA. On each sampling occasion, all fruiting bodies encountered on the surface of the forest floor were recorded, excepting obviously immature or rotting ones. Records were kept of taxa and of grid number and soil horizons (L layer, the border between L and F layers, F layer, or A layer)

from which the fruiting bodies emerged (see Table S1 in Electronic Supplementary Material). Fruiting bodies occurring on logs, twigs, or roots that were fallen or buried were not recorded. Ascomycetes were omitted, but the Xylariaceae on leaf litter were included because of their ligninolytic activity (Osono et al. 2011b). In October and November 2011, fruiting bodies were measured for the diameter of their pileus and length of their stipe at the three sites.

Identification was primarily made macroscopically after Imazeki et al. (1988), Imazeki and Hongo (1987, 1989), and Hongo (1994). Small fruiting bodies of *Mycena* and *Marasmius* that were difficult to distinguish and identify at the species level in the field were classified at the genus or section level, which was referred to as species in the present study for the sake of simplicity (but see Discussion). Tissues of some fruiting bodies were further analyzed for the DNA sequence of amplicons of rDNA ITS region obtained using primers ITS5 and ITS4 (White et al. 1990) and of the 28S rRNA gene D1/D2 region using primers D1 (Peterson 2000) and NL4 (O'Donnell 1993), according to the method of Hirose and Osono (2006). The sequences determined were compared with the available rDNA

sequences in the GenBank database by means of BLAST+ (Camacho et al. 2009) and assigned taxonomically. The data of molecular analyses will be given in a future paper.

The frequency of occurrence of LDM was calculated as a percentage of incidences based on the number of grids in which the fruiting body was encountered relative to the total number of grids (125) at each study site. Relative frequency of an individual species was calculated as the percentage of its frequency of occurrence with respect to the grand sum of the frequency of occurrence of all species at each study site. Data of fruiting bodies of mycorrhizal fungi were excluded from the following analyses.

Radiocarbon analysis

Samples of fruiting bodies were ground in a laboratory mill to make particles that would pass through a 0.5-mm screen and sent to the Institute of Accelerator Analysis Ltd, Kanagawa, Japan, for accelerator mass spectrometry measurements of radiocarbon. The methods are described in Hyodo et al. (2006).

Radiocarbon values were reported as Δ^{14} C (‰), which is the part per-thousand deviation from the activity of nineteenth century wood, and corrected for the fractionation using stable carbon (C) isotope ratios of the samples.

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

The method to estimate the carbon age of fruiting bodies of LDM followed Hyodo et al. (2006). The carbon age of fruiting bodies of fungi was defined as the time elapsed since C in their substrates was fixed from atmospheric CO₂ by primary producers. Δ^{14} C values of samples were compared with those of atmospheric CO₂ recorded at Schauinsland, Germany, for 1976-97 (Levin and Kromer 1997). I estimated the Δ^{14} C values of atmospheric CO₂ after 1997 by extrapolation of the exponential function: $\Delta^{14}C(t) = 417 \times \exp(-t/16.0)$, where t is the year after 1974 (Levin and Kromer 1997). This method yielded two estimates of the year of C fixation for the measured Δ^{14} C values of fruiting bodies, one before and another after the peak of bomb- $\Delta^{14}CO_2$ in mid-1960s, and hence two carbon ages (Hyodo et al. 2006). I adopted the carbon ages estimated from the year of C fixation after the peak bomb- Δ^{14} C, because these estimated carbon ages were compatible with the turnover rates of the forest floor (1.5 to 29.1 years in the study sites, Table 1).

154

Statistical analysis

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

155

The observed number of LDM species at each study site was denoted as S_{obs}. It was possible that S_{obs} be underestimated when the abundance of fruiting bodies of LDM encountered (i.e., the sampling effort) was low at any study site, compared to other sites. To avoid this, I used an individual-based Coleman rarefaction curve (Colwell and Coddington 1994) to depict the cumulative number of species versus the observation of fruiting bodies (Fig. S2 in Electronic Supplementary Material). In the present study, the number of observation of fruiting bodies was variable among the study sites, ranging from 77 at CT (upper) to 620 observations at ST. Thus, the study sites were compared for the estimated numbers of LDM species at 77 observations (denoted as Sest). Calculations were performed with R version 3.0.2 for Mac (R Development Core Team 2009) and its vegan package (Oksanen 2013).

Simpson's diversity index (D) and equitability (E) were calculated in the following equations (Osono et al. 2002): $D = 1 / \Sigma P_i^2$, $E = D / S_{obs}$, where P_i was a

proportion of the frequency of occurrence of *i*th species to the sum of frequency of all species.

Generalized linear models (GLMs) were used with a Gaussian distribution to compare the size of fruiting bodies of LDM between the study sites. The GLMs were performed with the *glm* function and with the *glht* function of the R multcomp package for multiple comparisons with Tukey's test.

Results

Species richness and taxonomic composition

A total of 35, 32, and 18 species of LDM were observed (S_{obs}) in ST, CT, and SA, respectively; and in CT, 25 and 11 species were observed at lower and upper slopes, respectively (see ESM; summarized in Table 2). The number of singleton species (i.e. species encountered in only one grid) accounted for 17% to 49% of the total number of species, in the order: ST > CT (lower) > CT (upper) > SA (Table 2). Simpson's diversity index was in the order: ST > SA > CT (lower) > CT (upper),

and equitability was in the order: CT (upper) > SA > ST > CT (lower) (Table 2). Rarefaction analysis showed that the estimated number of LDM species (S_{est}) were higher in mull [ST and CT (lower)] than in moder humus [CT (upper) and SA] (Table 2).

A total of 10 fungal families were observed: five, seven, five, and five families in ST, CT (lower), CT (upper), and SB, respectively (Table 2). *Mycena* species in the Mycenaceae dominated in the LDM assemblages at each study site in terms of the number of species (27% to 50% of the total number of species; Table 2) and the relative frequency (Fig. 1). The frequencies of occurrence of two major *Mycena* species reached more than 90% (i.e. the fruiting bodies of these species occurred in more than 90% of the 125 grids) in ST and between 13.6% to 60.8% in CT and SB (see ESM). These major *Mycena* species were followed by species in Marasmiaceae in ST and CT (upper), by species in Agaricaceae in CT (lower), and by species in Hymenogasteraceae in SA (Table 2; Fig. 1).

Soil layer from which macrofungi fruited

Soil layer from which LDM fruited differed among the study sites: more number of LDM species that fruited from deeper layers of the forest floor at cooler climate. That is, 74% (26/35) of species in ST fruited on the surface L layer (i.e. emerging directly on leaf litter), whereas 73% to 92% from the border between L and F layers in CT, and 78% from the F layer in SA (Table 2) did so. Those that fruited on L layer were 'component-restricted' sensu Osono (2007) in that individual mycelia were limited in extent by the physical boundaries of the litter component they occupied. Conversely, those that fruited on the L-F border and F layer were 'component-non-restricted' in that the entire forest floor, rather than an individual litter component, provided a habitat for the fungi.

Radiocarbon content

The mean Δ^{14} C values of fruiting bodies ranged between 48.2% and 139.7% (Table 3), indicative of the fungal uptake of bomb- Δ^{14} C that was primarily derived from the litter that these LDM utilized (Hyodo et al. 2006). The carbon age of fruiting bodies from ST ranged from 2.8 to 9.0 years. These values suggested that these

LDM utilized leaves that died at least 1.8 to 8.0 years previously, because tree leaves in ST were mostly evergreen and had leaf longevity of more than one year. In contrast, the carbon age of fruiting bodies from CT ranged from 3.6 to 11.4 years, suggestive of the utilization of deciduous leaves that died as long as 11.4 years before. The carbon age of fruiting bodies from SA reached as old as 20.3 years, suggestive of the utilization of evergreen leaves (maximum ages of 6 to 11 years, Mori and Takeda 2004) that had died at least 10 years before. These results, together with the results of direct observation of fruiting bodies, suggested that LDM tended to utilize older carbon accumulated at deeper layers of the forest floor in cooler climates.

Size and phenology of fruiting bodies

The mean size of the fruiting bodies, measured as the diameter of pileus and length of stipe, was significantly different among the study sites (ANOVA, p<0.05), in the order: CT > SA > ST (Table 4). This was accounted for by the difference in size of the major *Mycena* species in these study sites (Table 4).

The frequency of occurrence of fruiting bodies was generally higher in ST than in CT or SA (Fig. 2). Seasonal changes in the frequency over a growing season exhibited similar two-peak patterns for all the study sites: a peak during the rainy season in early summer and another in autumn (Fig. 2). That is, the peaks were found in June and in September to January at ST, in June and in September to November at CT, and in July and in September-October at SA. The number of LDM species followed similar seasonal patterns as the frequency of occurrence of fruiting bodies, except that there was a rapid increase in the number of species in June in ST.

The major LDM species differed in the seasonal patterns of their frequency of occurrence over a growing season (Fig. 3). In ST, fruiting bodies of some major species, such as *Mycena* sp.ST1 and *Marasmius* sp.ST1, occurred relatively constantly over the growing season, whereas *Mycena* sp.ST2, *Xylaria* sp.ST1, and *Crinipellis* sp.ST1 displayed fruiting peaks in June and/or in September to January. In CT and SA, the frequencies of major species increased once in autumn (*My. polygramma* in CT and *My. epipterygia*, *G. atkinsoniana*, and *Mycena* sp.SA1 in SA) or twice (in early summer and in autumn) (*My. filopes*

in CT and My. aurantiidisca in SA) over the growing season.

Discussion

The numbers of species of LDM observed in CT and SA (Table 2) were within the range reported previously in temperate and boreal forests (Tyler 1985; Hintikka 1988; Villeneuve et al. 1989; Brunner et al. 1992; Miyamoto et al. 2000; Outerbridge 2002; Richard et al. 2004; Gates et al. 2011; O'Hanlon and Harrington 2012), despite the short survey period (one growing season) at each study site. The dominance of *Mycena* in terms of the number of species and the frequency of occurrence is consistent with these previous reports. López-Quintero et al. (2012) also observed the occurrence of *Mycena* and *Marasmius* species in Amazon tropical rainforests, but comparative studies on the diversity of LDM in tropical and subtropical forests have been relatively scarce, especially in Asian tropical regions (Mueller et al. 2007).

The number of observed and estimated species and Simpson's diversity index of LDM were generally higher in mull than in moder humus (Table 2). This

was evident in CT, where the richness of LDM was higher at the lower (mull) than the upper (moder) slope. The two most frequent species were common to the two sites, so that infrequent species accounted for the low similarity of species composition (Table 2, Fig. 1). Rastin et al. (1990) also compared LDM between the lower and upper slope of a spruce forest in Germany and reported that the species composition was generally similar between those parts, in contrast to the results of the present study. This discrepancy may be partly due to the slope length [30 m in Rastin et al. (1990) versus 200 m in the present study]. The causal factors for the higher LDM richness in mull of CT remain unclear, but the relatively favorable moisture condition at the lower slope could possibly favor the fruiting and co-occurrence of more LDM species on the forest floor.

The LDM diversity was generally higher in warmer than in cooler climates, suggesting a climatic gradient of diversity. Similar climatic gradients of fungi have been found for litter decomposing microfungi (Osono 2011) and foliar endophytic fungi (Arnold and Lutzoni 2007; Ikeda et al. 2014). At least two explanations are possible for the putative higher diversity of fruiting bodies of LDM in warmer locations. First, the warmer condition throughout the year and

lack of snow cover period in winter of ST can favor the fruiting (and possibly, the co-existence) of multiple LDM. This is illustrated in the fruiting phenology of major LDM species (Fig. 3): fruiting bodies occurred throughout the year or with multiple peaks in ST, whereas in CT and SA they peaked once or twice over the growing season. Such differences may be partly due to suitability of the climatic conditions for establishment, growth, and fruiting of more LDM species in ST.

Secondly, differences in the quality of resources can also affect the diversity of LDM. I found that LDM from a cooler climate produced fruiting bodies that originated from deeper soil layers than those from a warmer climate (Table 2). In accordance with this, LDM from a cooler climate appeared to utilize more aged dead carbon than those from a warmer climate (Table 3). Given that more decomposed materials in deeper layers contain less readily available organic carbon sources, such as non-lignified holocellulose and soluble carbohydrates (Berg 1986; Osono et al. 2003), the utilization of resources at deeper layers in a cooler climate may be unfavorable for the growth and fruiting of LDM. Osono (2011) demonstrated that non-ligninolytic microfungi are major components of fungal assemblages on recently fallen litter in a cooler climate, suggesting that

ligninolytic LDM are less competitive for readily available resources in the surface litter in a cooler climate (Osono 2007). The dominance in SA of conifers, whose needles are rich in secondary compounds that inhibit the growth of LDM (Bağci and Diğrak 1996), can also affect the colonization of the L layer by LDM.

Two peaks were found for the occurrence of fruiting bodies over a growing season at all three climates, but the fruiting period extended longer at warmer than at cooler climates (Fig. 2). The two peaks coincided with the period of rainfall and with the increasing and decreasing air temperatures in early summer and autumn, respectively, at the three forest sites. Similar one- or two-peak patterns of fruiting of LDM have commonly been found in temperate forests (Okabe 1983; Straatsma et al. 2001; Yamashita and Hijii 2004; Gates et al. 2011).

The fruiting phenology of major *Mycena* species may also be associated with the size of fruiting bodies. For example, *Mycena* species with smaller fruiting bodies fruited more frequently over a growing season than those with larger ones; *M. filopes* in CT and *M. aurantiidisca* in SA with smaller fruiting bodies showed two peaks, whereas *M. polygramma* in CT and *M. epipterygia* in SA with larger fruiting bodies showed only one peak in autumn (Fig. 3, Table 4), and even

smaller *Mycena* sp. ST1 and ST2 in ST fruited throughout the growing season. Because the production of larger fruiting bodies should require more resources to be utilized, the size of fruiting bodies can set a limit on the reproduction. This discussion is obviously speculative, however, as few data have been available regarding the population structure and reproductive biology of individual LDM species. More studies are needed to examine the life history strategy of LDM, especially in tropical and subtropical regions.

Acknowledgments I thank Dr. D. Hirose and Dr. T. Miyamoto for help with the identification of macrofungi; Dr. F. Hyodo for useful discussion of radiocarbon analysis; Dr. A. Takashima and staff at the Yona Experimental Forest, University of the Ryukyus for help with fieldwork at ST; Dr. Y. Fukasawa and staff at Ashiu Experimental Forest, Kyoto University for help with fieldwork at CT; and Dr. Elizabeth Nakajima for critical reading of the manuscript. This study received partial financial support from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (MEXT) (No. 19780114), The Sumitomo Foundation, Nissan Global Foundation, Nippon Life Inst. Foundation, and the Grants for

341	Excellent Graduate Schools, MEXT, Japan (12-01) to Kyoto University.
342	
343	References
344	
345	Arnold AE, Lutzoni F (2007) Diversity and host range of foliar endophytes: are
346	tropical leaves biodiversity hotspots? Ecology 88:541-549
347	Bağci E, Diğrak M (1996) Antimicrobial activity of essential oils of some Abies
348	(Fir) species from Turkey. Flavour Fragr J 11:251-256
349	Berg B (1986) Nutrient release from litter and humus in coniferous forest soils - a
350	mini review. Scand J For Res 1:359-369
351	Brunner I, Brunner F, Laursen GA (1992) Characterization and comparison of
352	macrofungal communities in an Alnus tenuifolia and an Alnus crispa
353	forest in Alaska. Can J Bot 70:1247-1258
354	Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden
355	TL (2009) BLAST+: architecture and applications. BMC Bioinformatics
356	10:421

Cowell RK, Coddington JA (1994) Estimating terrestrial biodiversity through

358	extrapolation. Phil Trans R Soc B 345:101-118
359	Fukasawa Y, Katsumata S, Mori AS, Osono T, Takeda H (2014) Accumulation and
360	decay dynamics of coarse woody debris in a Japanese old-growth
361	subalpine coniferous forest. Ecol Res 29:257-269
362	Gates GM, Mohammed C, Wardlaw T, Davidson NJ, Ratkowsky DA (2011)
363	Diversity and phenology of the macrofungal assemblages supported by
364	litter in a tall, wet <i>Eucalyptus obliqua</i> forest in southern Tasmania,
365	Australia. Fungal Ecol 4:68-75
366	Gómez-Hernández M, Williams-Linera G, Guevara R, Lodge DJ (2012) Patterns of
367	macromycete community assemblage along an elevation gradient:
368	options for fungal gradient and metacommunity analyses. Biodivers
369	Conserv 21:2247-2268
370	Hansen PA, Tyler G (1992) Statistical evaluation of tree species affinity and soil
371	preference of the macrofungal flora in south Swedish beech, oak and
372	hornbeam forest. Crypt Bot 2:355-361
373	Hintikka V (1988) On the macromycete flora in oligotrophic pine forests of
374	different ages in south Finland. Acta Bot Fennica 136:89-94

375	Hirose D, Osono T (2006) Development and seasonal variations of <i>Lophodermium</i>
376	populations on <i>Pinus thunbergii</i> needle litter. Mycoscience 47:242-247
377	Hongo T (1994) Fungi. Yama to Keikoku Sha, Tokyo, Japan (in Japanese)
378	Hyodo F, Tayasu I, Wada E (2006) Estimation of the longevity of C in terrestrial
379	detrital food webs using radiocarbon (14C): how old are diets in termites?
380	Functional Ecol 20:385-393
381	Ikeda A, Matsuoka S, Masuya H, Mori AS, Hirose D, Osono T (2014) Comparison
382	of the diversity, composition, and host recurrence of xylariaceous
383	endophytes in subtropical, cool temperate, and subboreal regions in
384	Japan. Popul Ecol in press
385	Imazeki R, Hongo T (1987) Colored Illustration of Mushrroms of Japan. Vol. I.
386	Hoikusha, Tokyo, Japan (in Japanese)
387	Imazeki R, Hongo T (1989) Colored Illustration of Mushrooms of Japan. Vol. II.
388	Hoikusha, Tokyo, Japan (in Japanese)
389	Imazeki R, Otani Y, Hongo T (1988) Fungi of Japan. Yama to Keikoku Sha, Tokyo,
390	Japan (in Japanese)
391	Lange M (1993) Maromycetes under twelve tree species in ten plantations on

392	various soil types in Denmark. Opera Bot 120:1-53					
393	Levin I, Kromer B (1997) Twenty years of atmospheric ¹⁴ CO ₂ observations at					
394	Schauinsland station, Germany. Radiocarbon 39:205-218					
395	López-Quintero CA, Straatsma G, Franco-Molano AE, Boekhout T (2012)					
396	Macrofungal diversity in Colombian Amazon forests varies with regions					
397	and regimes of disturbance. Biodivers Conserv 21:2221-2243					
398	Miyamoto T, Igarashi T, Takahashi K (2000) Lignin-degrading ability of					
399	litter-decomposing basidiomycetes from Picea forests of Hokkaido.					
400	Mycoscience 41:105-110					
401	Mori A, Takeda H (2004) Functional relationships between crown morphology and					
402	within-crown characteristics of understory saplings of three codominant					
403	conifers in a subalpine forest in central Japan. Tree Physiol 24:661-670					
404	Mueller GM, Schmit JP, Leacock PR, Buyck B, Cifuentes J, Desjardin DE, Halling					
405	RE, Hjortstam K, Iturriaga T, Larsson KH, Lodge DJ, May TW, Minter D,					
406	Rajchenberg M, Redhead SA, Ryvarden L, Trappe JM, Watling R, Wu Q					
407	(2007) Global diversity and distribution of macrofungi. Biodivers Conserv					
408	16:37-48					

409	Murakami Y (1989) Spatial changes of species composition and seasonal fruiting
410	of the Agaricales in <i>Castanopsis cuspidata</i> forest. Trans Mycol Soc Japan
411	30:89-103
412	O'Donnell K (1993) Fusarium and its near relatives. In: Reynolds DR, Taylor JW
413	(eds) The fungal holomorph: mitotic, meiotic and pleomorphic speciation
414	in fungal systematics. CAB International, Wallingford, UK, pp 225-233
415	O'Hanlon R, Harrington TJ (2012) Macrofungal diversity and ecology in four Irish
416	forest type. Fungal Ecol 5;499-508
417	Okabe H (1983) Mycosociological research of Agaricales in natural forests (II)
418	Seasonal changes on each stand and life form. Bull Kyoto Univ Forest
419	53:20-32 (in Japanese with English abstract)
420	Okabe H (1986) Ecological study of distribution of fungi within forests. PhD thesis
421	Kyoto University, Kyoto (in Japanese)
422	Oksanen J (2013) Multivariate analysis of ecological communities in R: vegan
423	tutorial. http://cc.oulu.fi/~jarioksa/opetus/metodi/vegantutor.pdf
424	(accessed 14.5.14)
125	Osono T (2007) Ecology of ligninolytic fungi associated with leaf litter

426	decomposition. Ecol Res 22:955-974
427	Osono T (2011) Diversity and functioning of fungi associated with leaf litter
428	decomposition in Asian forests of different climatic regions. Fungal Ecol
429	4:375-385
430	Osono T. Mycelial biomass in the forest floor and soil of subtropical, temperate,
431	and subalpine forests. J For Res:submitted
432	Osono T, Hobara S, Fujiwara S, Koba K, Kameda K (2002) Abundance, diversity,
433	and species composition of fungal communities in a temperate forest
434	affected by excreta of the Great Cormorant <i>Phalacrocorax carbo</i> . Soil Biol
435	Biochem 34:1537-1547
436	Osono T, Ono Y, Takeda H (2003) Fungal ingrowth on forest floor and
437	decomposing needle litter of Chamaecyparis obtusa in relation to
438	resource availability and moisture condition. Soil Biol Biochem
439	35:1423-1431
440	Osono T, Hobara S, Hishinuma T, Azuma JI (2011a) Selective lignin
441	decomposition and nitrogen mineralization in forest litter colonized by
442	Clitocybe sp. Eur J Soil Biol 47:114-121

443	Osono T, To-Anun C, Hagiwara Y, Hirose D (2011b) Decomposition of wood, petiole
444	and leaf litter by Xylaria species from northern Thailand. Fun Ecol
445	4:210-218
446	Outerbridge RAM (2002) Macrofungus ecology and diversity under different
447	conifer monocultures on southern Vancouver Island. PhD thesis,
448	University of Victoria
449	Peterson SW (2000) Phylogenetic analysis of <i>Penicillium</i> species based on ITS and
450	lsu-rDNA nucleotide sequences. In: Samson RA, Pitt JI (eds) Integration
451	of modern taxonomic methods for <i>Penicillium</i> and <i>Aspergillus</i>
452	classification. Harwood, Amsterdam, the Netherland, pp 163-178
453	Rastin N, Schlechte G, Hüttermann A (1990) Soil macrofungi and some soil
454	biological, biochemical and chemical investigationson the upper and
455	lower slope of a spruce forest. Soil Biol Biochem 22:1039-1047
456	R Development Core Team (2009) R: a language and environment for statistical
457	computing. http://www.r-project.org/ (accessed 14.5.14)
458	Richard F, Moreau PA, Selosse MA, Gardes M (2004) Diversity and fruiting
459	patterns of ectomycorrhizal and saprobic fungi in an old-growth

160	Mediterranean forest dominated by <i>Quercus ilex</i> L. Can J Bot
161	82:1711-1729
162	Såstad SM (1995) Fungi - vegetation relationships in a <i>Pinus sylvestris</i> forest in
163	central Norway. Can J Bot 73:807-816
164	Schmit JP, Murphy JF, Mueller GM (1999) Macrofungal diversity of a temperate
165	oak forest: a test of species richness estimators. Can J Bot 77:1014-1027
166	Steffen KT, Cajthaml T, Šnajdr J, Baldrian P (2007) Differential degradation of
167	oak (Quercus petraea) leaf litter by litter-decomposing basidiomycetes.
168	Res Microbiol 158:447-455
169	Straatsma G, Ayer F, Egli S (2001) Species richness, abundance, and phenology of
170	fungal fruit bodies over 21 years in a Swiss forest plot. Mycol Res
171	105:515-523
172	Takeda H, Kaneko N (1988) Patterns of soil humus accumulation in forests. I.
17 3	Mull and moder types humus in a broad-leaved forest. Bull Kyoto Univ
174	Forest 60:33-45 (in Japanese with English abstract)
175	Tian X, Takeda H, Ando T (1997) Application of a rapid thin section method for
176	observations on decomposing litter in mor humus form in a subalpine

477	coniferous forest. Ecol Res 12:289-300
478	Tsukamoto J (1996) Soil macro-invertebrates and litter disappearance in a
479	Japanese mixed deciduous forest and comparison with European
480	deciduous forests and tropical rainforests. Ecol Res 11:35-50
481	Tyler G (1985) Macrofungal flora of Swedish beech forest related to soil organic
482	matter and acidity characteristics. For Ecol Manag 10:13-29
483	Valášková V, Šnajdr J, Bittner B, Cajthaml T, Merhautová V, Hofrichter M,
484	Baldrian P (2007) Production of lignocellulose-degrading enzymes and
485	degradation of leaf litter by saprotrophic basidiomycetes isolated from a
486	Quercus petraea forest. Soil Biol Biochem 39:2651-2660
487	Van der Wal A, Geydan TD, Kuyper TW, de Boer W (2013) A thready affair:
488	linking fungal diversity and community dynamics to terrestrial
489	decomposition processes. FEMS Microbiol Rev 37:477-494
490	Villeneuve N, Grandtner MM, Fortin JA (1989) Frequency and diversity of
491	ectomycorrhizal and saprophytic macrofungi in the Laurentide
492	Mountains of Quebec. Can J Bot 67:2616-2629
493	White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing

494	of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand
495	DH, Sninsky JJ, White TJ (eds) PCR Protocols: a Guide to Methods and
496	Applications. Academic Press, New York, USA, pp 315-322
497	Xu X, Tokashiki Y, Enoki T, Hirata E (1998a) Characteristics of nutrient
498	accumulation in forest floor under evergreen broadleaved forests in
499	Okinawa Island. Sci Bull Fac Agr Univ Ryukyus 45:185-193
500	Xu X, Enoki T, Tokashiki Y, Hirata E (1998b) Litterfall and the nutrient returns in
501	evergreen broadleaved forests in Northern Okinawa Island. Sci Bull Fac
502	Agr Univ Ryukyus 45:195-208
503	Yamashita S, Hijii N (2004) Relationships between seasonal appearance and
504	longevity of fruitbodies of Agaricales and meteorological factors in a
505	Japanese red pine forest. J For Res 9:165-171

Table 1. Forest floor and field survey of fruiting bodies in the study sites.

Site	ST	CT	SA
Humus type	Mull	Mull (lower),	$oxed{ ext{Moder}^{ ext{b}}}$
		Moder (upper)a	
Depth of L layer (cm) ^c	1.1 ± 0.1	1.2 ± 0.1	2.7 ± 0.3
Depth of FH layer (cm) c	1.0 ± 0.2	4.0 ± 0.4	13.4 ± 1.2
Forest floor mass (Mg/ha)	12.0^{d}	7.7 (lower)	104.6^{f}
		33.3 (upper) $^{\rm e}$	
Leaf fall mass (Mg/ha/yr)	$7.95^{ m d}$	4.10 (lower)	3.59^{f}
		3.20 (upper) $^{\rm e}$	
Turnover time (yr)g	1.5	1.9 (lower)	29.1
		10.4 (upper)	

^eTakeda and Kaneko (1988). ^eTian et al. (1997). ^eValues are means ± standard errors (n=20). Measurement was carried out in the three study sites in October 2012. Values of CT were from the lower slope. ^eXu et al. (1998a, 1998b). ^eTsukamoto (1996). ^eFukasawa et al. (2014). ^eTurnover time = forest floor mass / annual leaf fall mass.

Table 2. Assemblage structure and family composition of macrofungi and the soil layer from which fruiting bodies occurred. Numbers of macrofungal species are indicated for fungal families and the litter layers. Numbers in parentheses indicate the proportion relative to the observed number of species. Values of $S_{\rm est}$ indicate means \pm standard deviations. See text for $S_{\rm est}$.

	ST	CT (lower)	CT (upper)	SA
Diversity				
Observed number of	35	25	11	18
${ m species}~({ m S}_{ m obs})$				
Singleton species	17 (49)	11 (44)	4 (36)	3 (17)
Simpson's D	7.68	4.47	3.40	4.86
Equitability	0.22	0.18	0.31	0.27
Estimated number	14.2 ± 2.1	17.2 ± 2.0	11.0±0.0	11.9±1.7
of species (S _{est})				
Family composition				
Mycenaceae	13 (37)	10 (40)	3 (27)	9 (50)
Marasmiaceae	12 (34)	3 (12)	3 (27)	2 (11)
Agaricaceae	3 (9)	6 (24)	2 (18)	1 (6)
Tricholomataceae	5 (14)	2 (8)	0 (0)	3 (17)
Strophariaceae	0 (0)	1 (4)	2 (18)	0 (0)
Psathyrellaceae	0 (0)	2 (8)	0 (0)	0 (0)
Pluteaceae	0 (0)	1 (4)	0 (0)	0 (0)
Hygrophoraceae	0 (0)	0 (0)	1 (9)	0 (0)
Hymenogasteraceae	0 (0)	0 (0)	0 (0)	1 (6)
Xylariaceae	1 (3)	0 (0)	0 (0)	0 (0)
Unidentified	1 (3)	0 (0)	0 (0)	2 (11)
Soil layer				
L layer	26 (74)	0 (0)	0 (0)	0 (0)
L-F border	9 (26)	23 (92)	8 (73)	3 (17)
F layer	0 (0)	0 (0)	1 (9)	14 (78)
Alayer	0 (0)	2 (8)	2 (18)	1 (6)

Table 3. Radiocarbon content in fruiting bodies of macrofungi. Samples from CT were from the lower slope.

	Species	Soil layer	Collection date	Laboratory code	$\delta^{13}{ m C}$	$\Delta^{14}\mathrm{C}$	Carbon age (yr)
ST	Mycena sp. ST1	L layer	Apr 11	IAAA-111556	-27.3 ± 0.5	48.2 ± 2.8	2.8
	Gymnopus sp. ST1	L layer	Oct 11	IAAA-111557	-30.4 ± 0.5	52.0 ± 3.0	4.5
	Marasmius sp. ST4	L-F border	Oct 11	IAAA-111558	-22.9 ± 0.4	$68.6~\pm~2.7$	9.0
CT	Mycena polygramma	L-F border	Oct 01	IAAA-81685	-25.5 ± 0.3	132.6 ± 3.7	9.5
	Mycena amygdalina	L-F border	Nov 11	IAAA-111554	-20.2 ± 0.4	$79.6~\pm~2.8$	11.4
	Gymnopus peronatus	L-F border	Nov 01	IAAA-111555	-24.3 ± 0.4	$91.0~\pm~2.7$	3.6
SA	Mycena aurantiidisca	L-F border	Oct 08	IAAA-81687	-24.9 ± 0.4	96.0 ± 3.8	11.3
	Mycena epipterygia	L-F border	Oct 11	IAAA-111552	-23.0 ± 0.4	139.7 ± 2.8	20.3
	Galerina atkinsoniana	L-F border	Oct 11	IAAA-111553	-28.9 ± 0.4	$56.7~\pm~2.7$	5.9

Table 4. Size of fruiting bodies of macrofungi. DP, diameter of pileus; LS, length of stipe. Values are means \pm standard errors in cm. Numbers in parentheses indicate the number of samples. The same letters indicate that the values are not significantly different at 5% level by Tukey's HSD test. Data from CT are from the lower slope.

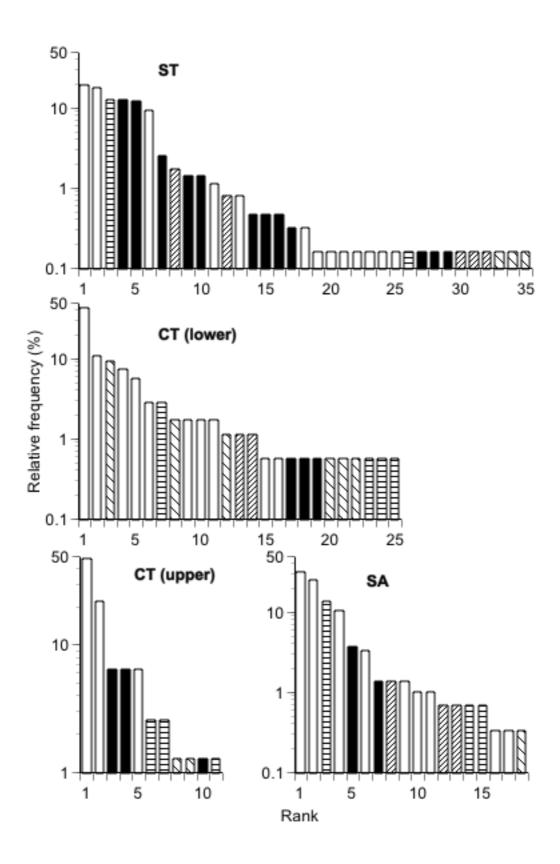
	Total		Major species 1		Major species 2		Major species 3	
	DP	LS	DP	LS	DP	LS	DP	LS
ST	$3.7 \pm 1.3 \text{ b}$	$13.9 \pm 2.3 \text{ c}$	1.6 ± 0.3	11.3 ± 1.1	4.6 ± 0.7	12.0 ± 0.8	22.5	46.0
	(16)		<i>Mycena</i> sp. S7	Γ1 and ST2 (10)	Gymnopus	sp. ST1 (4)	Marasmius	s sp. ST4 (1)
CT	$12.0 \pm 1.2 \text{ a}$	$63.8 \pm 5.7 \text{ a}$	3.8	30.0	14.0	116.5	15.8 ± 2.3	73.5 ± 7.0
	(23)		Mycena filopes (2)		Mycena polygramma (2)		Mycena crocata (6)	
SA	$5.8 \pm 0.5~\mathrm{b}$	$35.1\pm2.1~\mathrm{b}$	4.1 ± 0.3	30.9 ± 2.3	6.9 ± 0.5	46.9 ± 5.6	4.6 ± 0.7	25.5 ± 3.3
	(38)		Mycena aurantiidisca (15)		Mycena epipterygia (6)		Galerina atkinsoniana (8)	

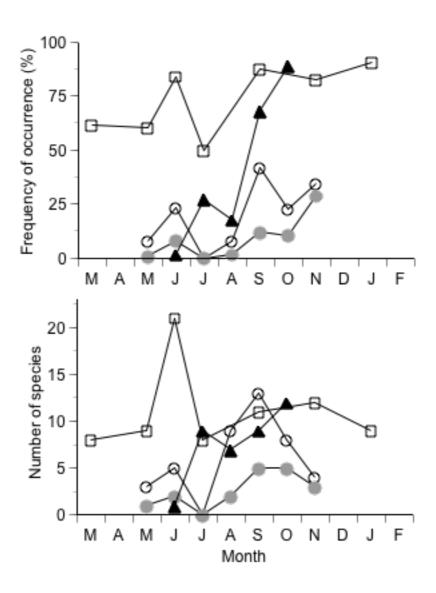
1 Figure legends

2

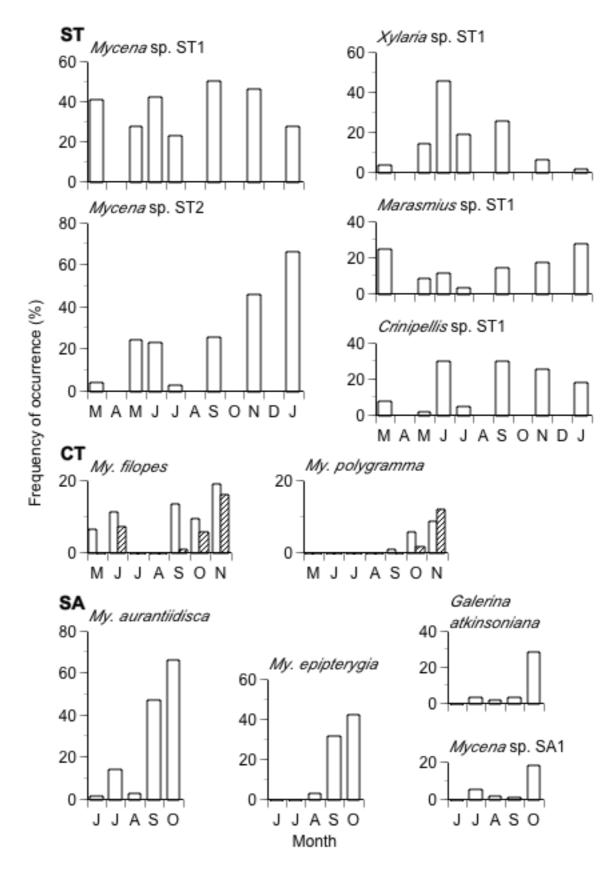
- 3 Fig. 1. Rank-relative frequency distribution of macrofungal assemblages in
- 4 subtropical (ST), cool temperate (CT), and subalpine forests (SA). Open,
- 5 Mycenaceae; filled, Marasmiaceae; coarse oblique mesh, Agaricaceae; fine oblique
- 6 mesh, Tricholomataceae; horizontal mesh, others (Hygrophoraceae,
- 7 Hymenogasteraceae, Pluteaceae, Psathyrellaceae, Strophariaceae, Xylariaceae,
- 8 and unidentified). The survey in CT was performed at lower and upper parts of a
- 9 forest slope.

10


- 11 Fig. 2. Seasonal changes in the frequency of occurrence (upper) and the number of
- 12 species (lower) of fruiting bodies of macrofungi. □, subtropical forest (ST); ○,
- lower part of a slope in cool temperate forest, [CT (lower)]; ●, upper part of a slope
- in cool temperate forest [CT (upper)]; ▲, subalpine forest (SA).


15

- 16 Fig. 3. Seasonal changes in the frequency of occurrence of major macrofungal
- 17 species in subtropical forest (ST), cool temperate forest (CT), and subalpine forest
- 18 (SA). For CT, blank and shaded bars indicate lower and upper slopes, respectively.


19

1 Osono Fig. 1

1 Osono Fig. 3

Electronic Supplementary Material

Patterns in diversity, resource utilization, and phenology of fruiting bodies of litter-decomposing macrofungi in subtropical, temperate, and subalpine forests

Takashi Osono

Table S1: Frequency of occurrence of fruiting bodies of macrofungi and the soil layer from which the fruiting bodies occurred. Ag, Agaricaceae; Hg, Hygrophoraceae; Hm, Hymenogasteraceae; Mr, Marasmiaceae; My, Mycenaceae; Tr, Tricholomataceae; Pl, Pluteaceae; Ps, Psathyrellaceae; St, Strophariaceae; Xy, Xylariaceae; and Un, unidentified. L/F, L-F border.

Taxa	Family	Soil layer	Frequency (%)
Subtropical forest			
Mycena section Basipedes 'sp. ST1'	My	L	96.8
Mycena section Roridae 'sp. ST2'	My	L	90.4
Xylaria spp. ST1	Xy	L	64.8
Marasmius spp. ST1	Mr	L	63.2
Crinipellis sp. ST1	Mr	L	60.8
Mycena sp. ST3	My	L	46.4
Gymnopus sp. ST1	Mr	L	12.8
Tricholomataceae sp. ST1	Tr	A	8.8
Gymnopus sp. ST2	Mr	L	7.2
Marasmiellus sp. ST1	Mr	L	7.2
Mycena sp. ST4	My	L	5.6
Tricholomataceae sp. ST2	Tr	A	4.0
Mycena sp. ST5	My	L	4.0
Crinipellis sp. ST2	Mr	L	2.4
Gymnopus sp. ST3	Mr	L	2.4
cf. Calyptella sp. ST1	Mr	L	2.4

Marasmius sp. ST2	Mr	L	1.6	
Mycena sp. ST6	My	L	1.6	
Agaricaceae sp. ST1	Ag	A	0.8	
Agaricaceae sp. ST2	Ag	A	0.8	
Gymnopus sp. ST4	Mr	L	0.8	
Mycena sp. ST7	My	L	0.8	
Leucocorpinus sp. ST1	Ag	A	0.8	
Marasmiellus sp. ST2	Mr	A	0.8	
Marasmiellus sp. ST3	Mr	L	0.8	
Mycena sp. ST8	My	L	0.8	
Mycena sp. ST9	My	L	0.8	
Mycena sp. ST10	My	L	0.8	
Unidentified ST1	Un	L	0.8	
Mycena sp. ST11	My	A	0.8	
Mycena sp. ST12	My	L	0.8	
Tricholomataceae sp. ST3	Tr	A	0.8	
Tricholomataceae sp. ST4	Tr	A	0.8	
Tricholomataceae sp. ST5	Tr	L	0.8	
Xeromphalina sp. ST1	My	L	0.8	
Cool temperate forest			Upper	Lower
Mycena amygdalina	My	L/F	29.6	60
Mycena polygramma	My	L/F	13.6	15.2
Gymnopus peronatus	Mr	L/F	4.0	0.8
Gymnopus sp. CT1	Mr	L/F	4.0	0.0
Mycena sp. CT2	My	L/F	4.0	0.0
Stropharia aeruginosa	St	L/F	1.6	0.8
Hygrocybe cantharellus	Ну	L/F	1.6	0.0
Agaricaceae sp. CT1	Ag	L/F	0.8	0.0
Lepiota fusciceps	Ag	F	0.8	0.0
Marasmius sp. CT2	Mr	A	0.8	0.0
Naematoloma sublateritium	St	A	0.8	0.0
Lycoperdon perlatum	Ag	A	0.0	12.8

Mycena pura	My	L/F	0.0	10.4
Mycena sp. CT1	My	L/F	0.0	8.0
Mycena amicta	My	L/F	0.0	4.0
Psathyrella candolleana	Ps	L/F	0.0	4.0
Agariaceae sp.CT2	Ag	L/F	0.0	2.4
Mycena crocata	My	L/F	0.0	2.4
Mycena luteopallens	My	L/F	0.0	2.4
Mycena sp. CT3	My	L/F	0.0	2.4
Agaricus praeclaresquamosus	Ag	L/F	0.0	1.6
Clitocybe sp. CT1	Mr	L/F	0.0	1.6
Pseudoclitocybe cyathiformis	Tr	L/F	0.0	1.6
Lepiota cf. pseudogranulosa	Ag	L/F	0.0	0.8
Lepiota cygnea	Ag	L/F	0.0	0.8
Lepiota sp. CT1	Ag	A	0.0	0.8
Marasmius pulcheriipes	Mr	L/F	0.0	0.8
Marasmius sp. CT1	Mr	L/F	0.0	0.8
Mycena cf. osmundicola	My	L/F	0.0	0.8
Mycena sp. CT4	My	L/F	0.0	0.8
Psathyrella piluliformis	Ps	L/F	0.0	0.8
Volvariella speciosa var. gloiocephala	Pl	L/F	0.0	0.8
Subalpine forest				
Mycena aurantiidisca	My	F	75.2	
Mycena epipterygia	My	F	60.8	
Galerina atkinsoniana	Hm	F	32.8	
Mycena cf. filopes	My	L/F	24.8	
Clitocybe sp. SA1	Mr	F	8.8	
Mycena sp. SA2	My	L/F	8.0	
Marasmius androsaceus	Mr	L/F	3.2	
Tricholomataceae sp. SA1	Tr	F	3.2	
Mycena cf. stipata	My	F	3.2	
Mycena sp. SA3	My	F	2.4	
Mycena cf. pura	My	F	2.4	

Collybia cookei	Tr	F	1.6
Tricholomataceae sp. SA2	Tr	F	1.6
Unidentified SA1	Un	F	1.6
Unidentified SA2	Un	F	1.6
Mycena sp. SA5	My	F	0.8
Mycena sp. SA4	My	F	0.8
Lycoperdon perlatum	Ag	A	0.8

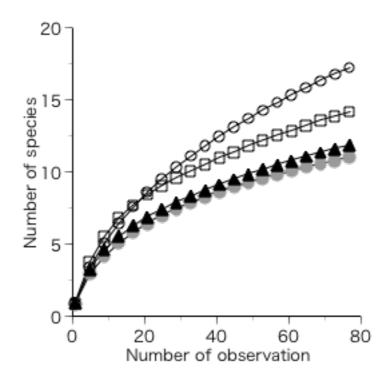


Fig. S2. Rarefaction curves for litter-decomposing macrofungal (LDM) assemblages. \Box , subtropical forest (ST); \bigcirc , lower part of a slope in cool temperate forest, [CT (lower)]; \blacksquare , subalpine forest (SA).