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Abstract The diversity, vegetative and reproductive characteristics, and phenology 10 

of litter decomposing macrofungi (LDM) were compared between humus forms 11 

and climatic regions. Fruiting bodies of LDM were examined for the forest floor of 12 

subtropical (ST), cool temperate (CT), and subalpine (SA) forests in Japan. Field 13 

surveys during one growing season yielded 35, 32, and 18 species in ST, CT, and 14 

SA, respectively. Species richness was generally higher in mull than in moder 15 

humus and in warmer than in cooler climate. A total of 10 fungal families were 16 

observed, and species in the Mycenaceae dominated in the LDM assemblages at 17 
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all study sites. A larger number of species fruited on deeper F layers of the forest 18 

floor in SA than in ST, where 74% of species fruited directly on leaf litter. This 19 

observation was consistent with the analysis of radiocarbon content in fruiting 20 

bodies, implying that LDM tended to utilize older carbon accumulated at deeper 21 

layers of the forest floor in cooler climates. Seasonal changes in the fruiting 22 

frequency over a growing season exhibited similar two-peak patterns for all the 23 

study sites, coinciding with the periods of rainfall and increasing and decreasing 24 

air temperatures in early summer and autumn, respectively, but the fruiting 25 

period extended longer in warmer than in cooler climate. 26 

 27 
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Introduction 31 

 32 

Litter-decomposing macrofungi (LDM) are major components of the diversity of 33 

soil organisms in terrestrial ecosystems and play central roles in the 34 
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decomposition of structural and soluble components in litter that often limit 35 

carbon and nutrient cycling in soil (Osono 2007; van der Wal et al. 2013). A suite of 36 

LDM with the ability to decompose lignin and other recalcitrant compounds are of 37 

particular importance because the colonization of litter materials by these fungi 38 

often stimulates the turnover of organic matter and nutrients in soil (Steffen et al. 39 

2007; Valášková et al. 2007; Osono et al. 2011a). Fruiting bodies of LDM provide 40 

reliable and useful information about their taxonomy, diversity, and reproduction 41 

and have been surveyed for their diversity (e.g. Schmit et al. 1999; Mueller et al. 42 

2007) and seasonal patterns (Murakami 1989; Yamashita and Hijii 2004) and for 43 

the effects on them of vegetation (Hansen and Tyler 1992; Lange 1993; Såstad 44 

1995), soil conditions (Tyler 1985; Rastin et al. 1990), and elevational gradient 45 

(Gómez-Hernández et al. 2012). Moreover, the observation of vegetative mycelia 46 

at the base of fruiting bodies can often yield insights into the substrate utilization 47 

and decomposing ability of LDM (Osono et al. 2011a). Currently, however, few 48 

studies have investigated the diversity, vegetative and reproductive 49 

characteristics, and phenology of LDM simultaneously and compared these 50 

between humus forms and climatic regions. It is hypothesized that the pattern of 51 
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diversity, substrate utilization, and phenology of fruiting bodies of LDM change 52 

along gradients of soil conditions and climate. 53 

 The purpose of the present study was to investigate fruiting bodies of 54 

LDM emerging from the forest floor of subtropical, cool temperate, and subalpine 55 

forests in Japan. Field sampling of fruiting bodies over growing seasons yielded 56 

information about the structure, diversity, and species composition of LDM 57 

assemblages and seasonal patterns of occurrence. Each LDM species was recorded 58 

for the soil layer from which its fruiting body emerged to examine the substrate 59 

its vegetative mycelia utilized. Radiocarbon (14C) contents of fruiting bodies were 60 

measured for major LDM species to estimate the age of carbon (i.e. time since 61 

death of plant litter) utilized by these species. The diameter of the pileus and the 62 

length of the stipe were measured for fruiting bodies found in the three forest soils, 63 

and possible roles of the size variation of fruiting bodies in the seasonal patterns 64 

of fruiting bodies were discussed. 65 

 66 

Materials and methods 67 

 68 
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Study site 69 

 70 

Samples were collected from three sites in Japan: a subtropical forest (ST), a cool 71 

temperate forest (CT), and a subalpine forest (SA). ST was located in Okinawa, 72 

southern Japan. CT was located in Kyoto, Japan. In CT, two study plots were 73 

established on the upper and lower parts of a northwest-facing slope 74 

(approximately 200 m long). SA was located on Mt. Ontake, Gifu, Japan. Details 75 

of the location, climatic conditions, and vegetation are given in Osono (submitted). 76 

In summary, the three sites differed in mean annual temperature (22°C, 9°C, and 77 

2°C in ST, CT, and SA, respectively), seasonal patterns of change in air 78 

temperature, and the duration of the growing season, but they received similar 79 

amounts of precipitation annually. The study sites experience a rainy season from 80 

May to June in ST and from June to July in CT and SA. Snow covers the forest 81 

floor of CT from December to April and that of SA from mid-November to early 82 

June. Table 1 shows properties of the forest floor of the study sites. The 83 

accumulation of forest floor material, in terms of the depth and the mass, was in 84 

the order: ST, CT (lower) < CT (upper) < SA, whereas the order was generally 85 
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reversed for the leaf fall mass. Consequently, the turnover time of the forest floor 86 

was lower in SA and CT (lower) (less than two years) than in CT (upper) (10.4 87 

years) and in SA (29.1 years). 88 

 89 

Study plot and field survey 90 

 91 

A study plot of 50 × 10 m (500 m2) was laid out in each of ST, CT (upper), CT 92 

(lower), and SA sites and was divided into 125 grids of 2 × 2 m. The study area of 93 

500 m2 was found to be large enough to describe species richness of macrofungi in 94 

CT sites, according to Okabe (1986). 95 

Fruiting bodies of LDM were collected in the study plots, seven times at 96 

1- to 2-month intervals from March 2007 to January 2008 in ST, nine times at 2- 97 

to 4-week intervals from May to November 2001 in CT, and five times at 1-month 98 

intervals from June to October 2008 in SA. On each sampling occasion, all fruiting 99 

bodies encountered on the surface of the forest floor were recorded, excepting 100 

obviously immature or rotting ones. Records were kept of taxa and of grid number 101 

and soil horizons (L layer, the border between L and F layers, F layer, or A layer) 102 
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from which the fruiting bodies emerged (see Table S1 in Electronic 103 

Supplementary Material). Fruiting bodies occurring on logs, twigs, or roots that 104 

were fallen or buried were not recorded. Ascomycetes were omitted, but the 105 

Xylariaceae on leaf litter were included because of their ligninolytic activity 106 

(Osono et al. 2011b). In October and November 2011, fruiting bodies were 107 

measured for the diameter of their pileus and length of their stipe at the three 108 

sites.  109 

Identification was primarily made macroscopically after Imazeki et al. 110 

(1988), Imazeki and Hongo (1987, 1989), and Hongo (1994). Small fruiting bodies 111 

of Mycena and Marasmius that were difficult to distinguish and identify at the 112 

species level in the field were classified at the genus or section level, which was 113 

referred to as species in the present study for the sake of simplicity (but see 114 

Discussion). Tissues of some fruiting bodies were further analyzed for the DNA 115 

sequence of amplicons of rDNA ITS region obtained using primers ITS5 and ITS4 116 

(White et al. 1990) and of the 28S rRNA gene D1/D2 region using primers D1 117 

(Peterson 2000) and NL4 (O'Donnell 1993), according to the method of Hirose and 118 

Osono (2006). The sequences determined were compared with the available rDNA 119 
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sequences in the GenBank database by means of BLAST+ (Camacho et al. 2009) 120 

and assigned taxonomically. The data of molecular analyses will be given in a 121 

future paper. 122 

The frequency of occurrence of LDM was calculated as a percentage of 123 

incidences based on the number of grids in which the fruiting body was 124 

encountered relative to the total number of grids (125) at each study site. Relative 125 

frequency of an individual species was calculated as the percentage of its 126 

frequency of occurrence with respect to the grand sum of the frequency of 127 

occurrence of all species at each study site. Data of fruiting bodies of mycorrhizal 128 

fungi were excluded from the following analyses. 129 

 130 

Radiocarbon analysis 131 

 132 

Samples of fruiting bodies were ground in a laboratory mill to make particles that 133 

would pass through a 0.5-mm screen and sent to the Institute of Accelerator 134 

Analysis Ltd, Kanagawa, Japan, for accelerator mass spectrometry 135 

measurements of radiocarbon. The methods are described in Hyodo et al. (2006). 136 
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Radiocarbon values were reported as ∆14C (‰), which is the part per-thousand 137 

deviation from the activity of nineteenth century wood, and corrected for the 138 

fractionation using stable carbon (C) isotope ratios of the samples. 139 

 The method to estimate the carbon age of fruiting bodies of LDM followed 140 

Hyodo et al. (2006). The carbon age of fruiting bodies of fungi was defined as the 141 

time elapsed since C in their substrates was fixed from atmospheric CO2 by 142 

primary producers. ∆14C values of samples were compared with those of 143 

atmospheric CO2 recorded at Schauinsland, Germany, for 1976-97 (Levin and 144 

Kromer 1997). I estimated the ∆14C values of atmospheric CO2 after 1997 by 145 

extrapolation of the exponential function: ∆14C(t) = 417 × exp(-t/16.0), where t is 146 

the year after 1974 (Levin and Kromer 1997). This method yielded two estimates 147 

of the year of C fixation for the measured ∆14C values of fruiting bodies, one before 148 

and another after the peak of bomb-∆14CO2 in mid-1960s, and hence two carbon 149 

ages (Hyodo et al. 2006). I adopted the carbon ages estimated from the year of C 150 

fixation after the peak bomb-∆14C, because these estimated carbon ages were 151 

compatible with the turnover rates of the forest floor (1.5 to 29.1 years in the 152 

study sites, Table 1). 153 
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 154 

Statistical analysis 155 

 156 

The observed number of LDM species at each study site was denoted as Sobs. It 157 

was possible that Sobs be underestimated when the abundance of fruiting bodies of 158 

LDM encountered (i.e., the sampling effort) was low at any study site, compared 159 

to other sites. To avoid this, I used an individual-based Coleman rarefaction curve 160 

(Colwell and Coddington 1994) to depict the cumulative number of species versus 161 

the observation of fruiting bodies (Fig. S2 in Electronic Supplementary Material). 162 

In the present study, the number of observation of fruiting bodies was variable 163 

among the study sites, ranging from 77 at CT (upper) to 620 observations at ST. 164 

Thus, the study sites were compared for the estimated numbers of LDM species at 165 

77 observations (denoted as Sest). Calculations were performed with R version 166 

3.0.2 for Mac (R Development Core Team 2009) and its vegan package (Oksanen 167 

2013). 168 

 Simpson's diversity index (D) and equitability (E) were calculated in the 169 

following equations (Osono et al. 2002): D = 1 / Σ Pi2, E = D / Sobs, where Pi was a 170 
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proportion of the frequency of occurrence of ith species to the sum of frequency of 171 

all species. 172 

Generalized linear models (GLMs) were used with a Gaussian 173 

distribution to compare the size of fruiting bodies of LDM between the study sites. 174 

The GLMs were performed with the glm function and with the glht function of the 175 

R multcomp package for multiple comparisons with Tukey's test. 176 

 177 

Results 178 

 179 

Species richness and taxonomic composition 180 

 181 

A total of 35, 32, and 18 species of LDM were observed (Sobs) in ST, CT, and SA, 182 

respectively; and in CT, 25 and 11 species were observed at lower and upper slopes, 183 

respectively (see ESM; summarized in Table 2). The number of singleton species 184 

(i.e. species encountered in only one grid) accounted for 17% to 49% of the total 185 

number of species, in the order: ST > CT (lower) > CT (upper) > SA (Table 2). 186 

Simpson's diversity index was in the order: ST > SA > CT (lower) > CT (upper), 187 
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and equitability was in the order: CT (upper) > SA > ST > CT (lower) (Table 2). 188 

Rarefaction analysis showed that the estimated number of LDM species (Sest) 189 

were higher in mull [ST and CT (lower)] than in moder humus [CT (upper) and 190 

SA] (Table 2). 191 

 A total of 10 fungal families were observed: five, seven, five, and five 192 

families in ST, CT (lower), CT (upper), and SB, respectively (Table 2). Mycena 193 

species in the Mycenaceae dominated in the LDM assemblages at each study site 194 

in terms of the number of species (27% to 50% of the total number of species; Table 195 

2) and the relative frequency (Fig. 1). The frequencies of occurrence of two major 196 

Mycena species reached more than 90% (i.e. the fruiting bodies of these species 197 

occurred in more than 90% of the 125 grids) in ST and between 13.6% to 60.8% in 198 

CT and SB (see ESM). These major Mycena species were followed by species in 199 

Marasmiaceae in ST and CT (upper), by species in Agaricaceae in CT (lower), and 200 

by species in Hymenogasteraceae in SA (Table 2; Fig. 1).  201 

 202 

Soil layer from which macrofungi fruited 203 

 204 
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Soil layer from which LDM fruited differed among the study sites: more number of 205 

LDM species that fruited from deeper layers of the forest floor at cooler climate. 206 

That is, 74% (26/35) of species in ST fruited on the surface L layer (i.e. emerging 207 

directly on leaf litter), whereas 73% to 92% from the border between L and F 208 

layers in CT, and 78% from the F layer in SA (Table 2) did so. Those that fruited 209 

on L layer were 'component-restricted' sensu Osono (2007) in that individual 210 

mycelia were limited in extent by the physical boundaries of the litter component 211 

they occupied. Conversely, those that fruited on the L-F border and F layer were 212 

'component-non-restricted' in that the entire forest floor, rather than an 213 

individual litter component, provided a habitat for the fungi. 214 

 215 

Radiocarbon content 216 

 217 

The mean ∆14C values of fruiting bodies ranged between 48.2‰ and 139.7‰ (Table 218 

3), indicative of the fungal uptake of bomb-∆14C that was primarily derived from 219 

the litter that these LDM utilized (Hyodo et al. 2006). The carbon age of fruiting 220 

bodies from ST ranged from 2.8 to 9.0 years. These values suggested that these 221 
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LDM utilized leaves that died at least 1.8 to 8.0 years previously, because tree 222 

leaves in ST were mostly evergreen and had leaf longevity of more than one year. 223 

In contrast, the carbon age of fruiting bodies from CT ranged from 3.6 to 11.4 224 

years, suggestive of the utilization of deciduous leaves that died as long as 11.4 225 

years before. The carbon age of fruiting bodies from SA reached as old as 20.3 226 

years, suggestive of the utilization of evergreen leaves (maximum ages of 6 to 11 227 

years, Mori and Takeda 2004) that had died at least 10 years before. These results, 228 

together with the results of direct observation of fruiting bodies, suggested that 229 

LDM tended to utilize older carbon accumulated at deeper layers of the forest 230 

floor in cooler climates. 231 

 232 

Size and phenology of fruiting bodies 233 

 234 

The mean size of the fruiting bodies, measured as the diameter of pileus and 235 

length of stipe, was significantly different among the study sites (ANOVA, p<0.05), 236 

in the order: CT > SA > ST (Table 4). This was accounted for by the difference in 237 

size of the major Mycena species in these study sites (Table 4). 238 
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The frequency of occurrence of fruiting bodies was generally higher in ST 239 

than in CT or SA (Fig. 2). Seasonal changes in the frequency over a growing 240 

season exhibited similar two-peak patterns for all the study sites: a peak during 241 

the rainy season in early summer and another in autumn (Fig. 2). That is, the 242 

peaks were found in June and in September to January at ST, in June and in 243 

September to November at CT, and in July and in September-October at SA. The 244 

number of LDM species followed similar seasonal patterns as the frequency of 245 

occurrence of fruiting bodies, except that there was a rapid increase in the 246 

number of species in June in ST. 247 

 The major LDM species differed in the seasonal patterns of their 248 

frequency of occurrence over a growing season (Fig. 3). In ST, fruiting bodies of 249 

some major species, such as Mycena sp.ST1 and Marasmius sp.ST1, occurred 250 

relatively constantly over the growing season, whereas Mycena sp.ST2, Xylaria 251 

sp.ST1, and Crinipellis sp.ST1 displayed fruiting peaks in June and/or in 252 

September to January. In CT and SA, the frequencies of major species increased 253 

once in autumn (My. polygramma in CT and My. epipterygia, G. atkinsoniana, 254 

and Mycena sp.SA1 in SA) or twice (in early summer and in autumn) (My. filopes 255 
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in CT and My. aurantiidisca in SA) over the growing season. 256 

 257 

Discussion 258 

 259 

The numbers of species of LDM observed in CT and SA (Table 2) were within the 260 

range reported previously in temperate and boreal forests (Tyler 1985; Hintikka 261 

1988; Villeneuve et al. 1989; Brunner et al. 1992; Miyamoto et al. 2000; 262 

Outerbridge 2002; Richard et al. 2004; Gates et al. 2011; O'Hanlon and 263 

Harrington 2012), despite the short survey period (one growing season) at each 264 

study site. The dominance of Mycena in terms of the number of species and the 265 

frequency of occurrence is consistent with these previous reports. López-Quintero 266 

et al. (2012) also observed the occurrence of Mycena and Marasmius species in 267 

Amazon tropical rainforests, but comparative studies on the diversity of LDM in 268 

tropical and subtropical forests have been relatively scarce, especially in Asian 269 

tropical regions (Mueller et al. 2007). 270 

 The number of observed and estimated species and Simpson's diversity 271 

index of LDM were generally higher in mull than in moder humus (Table 2). This 272 
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was evident in CT, where the richness of LDM was higher at the lower (mull) than 273 

the upper (moder) slope. The two most frequent species were common to the two 274 

sites, so that infrequent species accounted for the low similarity of species 275 

composition (Table 2, Fig. 1). Rastin et al. (1990) also compared LDM between the 276 

lower and upper slope of a spruce forest in Germany and reported that the species 277 

composition was generally similar between those parts, in contrast to the results 278 

of the present study. This discrepancy may be partly due to the slope length [30 m 279 

in Rastin et al. (1990) versus 200 m in the present study]. The causal factors for 280 

the higher LDM richness in mull of CT remain unclear, but the relatively 281 

favorable moisture condition at the lower slope could possibly favor the fruiting 282 

and co-occurrence of more LDM species on the forest floor. 283 

The LDM diversity was generally higher in warmer than in cooler 284 

climates, suggesting a climatic gradient of diversity. Similar climatic gradients of 285 

fungi have been found for litter decomposing microfungi (Osono 2011) and foliar 286 

endophytic fungi (Arnold and Lutzoni 2007; Ikeda et al. 2014). At least two 287 

explanations are possible for the putative higher diversity of fruiting bodies of 288 

LDM in warmer locations. First, the warmer condition throughout the year and 289 



 

 18 

lack of snow cover period in winter of ST can favor the fruiting (and possibly, the 290 

co-existence) of multiple LDM. This is illustrated in the fruiting phenology of 291 

major LDM species (Fig. 3): fruiting bodies occurred throughout the year or with 292 

multiple peaks in ST, whereas in CT and SA they peaked once or twice over the 293 

growing season. Such differences may be partly due to suitability of the climatic 294 

conditions for establishment, growth, and fruiting of more LDM species in ST. 295 

Secondly, differences in the quality of resources can also affect the 296 

diversity of LDM. I found that LDM from a cooler climate produced fruiting bodies 297 

that originated from deeper soil layers than those from a warmer climate (Table 2). 298 

In accordance with this, LDM from a cooler climate appeared to utilize more aged 299 

dead carbon than those from a warmer climate (Table 3). Given that more 300 

decomposed materials in deeper layers contain less readily available organic 301 

carbon sources, such as non-lignified holocellulose and soluble carbohydrates 302 

(Berg 1986; Osono et al. 2003), the utilization of resources at deeper layers in a 303 

cooler climate may be unfavorable for the growth and fruiting of LDM. Osono 304 

(2011) demonstrated that non-ligninolytic microfungi are major components of 305 

fungal assemblages on recently fallen litter in a cooler climate, suggesting that 306 
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ligninolytic LDM are less competitive for readily available resources in the 307 

surface litter in a cooler climate (Osono 2007). The dominance in SA of conifers, 308 

whose needles are rich in secondary compounds that inhibit the growth of LDM 309 

(Bağci and Diğrak 1996), can also affect the colonization of the L layer by LDM. 310 

Two peaks were found for the occurrence of fruiting bodies over a growing 311 

season at all three climates, but the fruiting period extended longer at warmer 312 

than at cooler climates (Fig. 2). The two peaks coincided with the period of rainfall 313 

and with the increasing and decreasing air temperatures in early summer and 314 

autumn, respectively, at the three forest sites. Similar one- or two-peak patterns 315 

of fruiting of LDM have commonly been found in temperate forests (Okabe 1983; 316 

Straatsma et al. 2001; Yamashita and Hijii 2004; Gates et al. 2011).  317 

The fruiting phenology of major Mycena species may also be associated 318 

with the size of fruiting bodies. For example, Mycena species with smaller fruiting 319 

bodies fruited more frequently over a growing season than those with larger ones; 320 

M. filopes in CT and M. aurantiidisca in SA with smaller fruiting bodies showed 321 

two peaks, whereas M. polygramma in CT and M. epipterygia in SA with larger 322 

fruiting bodies showed only one peak in autumn (Fig. 3, Table 4), and even 323 
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smaller Mycena sp. ST1 and ST2 in ST fruited throughout the growing season. 324 

Because the production of larger fruiting bodies should require more resources to 325 

be utilized, the size of fruiting bodies can set a limit on the reproduction. This 326 

discussion is obviously speculative, however, as few data have been available 327 

regarding the population structure and reproductive biology of individual LDM 328 

species. More studies are needed to examine the life history strategy of LDM, 329 

especially in tropical and subtropical regions. 330 
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Osono Table 1 
 
 
Table 1. Forest floor and field survey of fruiting bodies in the study sites. 
Site ST CT SA 
Humus type Mull Mull (lower),  

Moder (upper)a 
Moderb 

Depth of L layer (cm)c 1.1 ± 0.1 1.2 ± 0.1 2.7 ± 0.3 
Depth of FH layer (cm) c 1.0 ± 0.2 4.0 ± 0.4 13.4 ± 1.2 
Forest floor mass (Mg/ha) 12.0d 7.7 (lower) 

33.3 (upper)e 
104.6f 

Leaf fall mass (Mg/ha/yr) 7.95d 4.10 (lower) 
3.20 (upper)e 

3.59f 

Turnover time (yr)g 1.5 1.9 (lower) 
10.4 (upper) 

29.1 

aTakeda and Kaneko (1988). bTian et al. (1997). cValues are means ± standard 
errors (n=20). Measurement was carried out in the three study sites in October 
2012. Values of CT were from the lower slope. dXu et al. (1998a, 1998b). 
eTsukamoto (1996). fFukasawa et al. (2014). gTurnover time = forest floor mass / 
annual leaf fall mass.
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Osono Table 2 
 
 
Table 2. Assemblage structure and family composition of macrofungi and the soil 
layer from which fruiting bodies occurred. Numbers of macrofungal species are 
indicated for fungal families and the litter layers. Numbers in parentheses 
indicate the proportion relative to the observed number of species. Values of Sest 
indicate means ± standard deviations. See text for Sest. 
 ST CT (lower) CT (upper) SA 
Diversity    
Observed number of 
species (Sobs) 

35 25 11 18 

Singleton species 17 (49) 11 (44) 4 (36) 3 (17) 
Simpson's D 7.68 4.47 3.40 4.86 
Equitability 0.22 0.18 0.31 0.27 
Estimated number 
of species (Sest) 

14.2±2.1 17.2±2.0 11.0±0.0 11.9±1.7 

Family composition    
Mycenaceae 13 (37) 10 (40) 3 (27) 9 (50) 
Marasmiaceae 12 (34) 3 (12) 3 (27) 2 (11) 
Agaricaceae 3 (9) 6 (24) 2 (18) 1 (6) 
Tricholomataceae 5 (14) 2 (8) 0 (0) 3 (17) 
Strophariaceae 0 (0) 1 (4) 2 (18) 0 (0) 
Psathyrellaceae 0 (0) 2 (8) 0 (0) 0 (0) 
Pluteaceae 0 (0) 1 (4) 0 (0) 0 (0) 
Hygrophoraceae 0 (0) 0 (0) 1 (9) 0 (0) 
Hymenogasteraceae 0 (0) 0 (0) 0 (0) 1 (6) 
Xylariaceae 1 (3) 0 (0) 0 (0) 0 (0) 
Unidentified 1 (3) 0 (0) 0 (0) 2 (11) 
Soil layer     
L layer 26 (74) 0 (0) 0 (0) 0 (0) 
L-F border 9 (26) 23 (92) 8 (73) 3 (17) 
F layer 0 (0) 0 (0) 1 (9) 14 (78) 
A layer 0 (0) 2 (8) 2 (18) 1 (6) 
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Osono Table 3 
 
 
Table 3. Radiocarbon content in fruiting bodies of macrofungi. Samples from CT were from the lower slope. 

 Species Soil layer Collection date Laboratory code δ13C ∆14C Carbon age (yr) 

ST Mycena sp. ST1 L layer Apr 11 IAAA-111556 -27.3 ± 0.5 48.2 ± 2.8 2.8  

 Gymnopus sp. ST1 L layer Oct 11 IAAA-111557 -30.4 ± 0.5 52.0 ± 3.0 4.5  

  Marasmius sp. ST4 L-F border Oct 11 IAAA-111558 -22.9 ± 0.4 68.6 ± 2.7 9.0  

CT Mycena polygramma L-F border Oct 01 IAAA-81685 -25.5 ± 0.3 132.6 ± 3.7 9.5  

 Mycena amygdalina L-F border Nov 11 IAAA-111554 -20.2 ± 0.4 79.6 ± 2.8 11.4  

 Gymnopus peronatus L-F border Nov 01 IAAA-111555 -24.3 ± 0.4 91.0 ± 2.7 3.6  

SA Mycena aurantiidisca L-F border Oct 08 IAAA-81687 -24.9 ± 0.4 96.0 ± 3.8 11.3  

 Mycena epipterygia  L-F border Oct 11 IAAA-111552 -23.0 ± 0.4 139.7 ± 2.8 20.3  

 Galerina atkinsoniana L-F border Oct 11 IAAA-111553 -28.9 ± 0.4 56.7 ± 2.7 5.9  
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Osono Table 4 
 
 
Table 4. Size of fruiting bodies of macrofungi. DP, diameter of pileus; LS, length of stipe. Values are means ± standard errors in 
cm. Numbers in parentheses indicate the number of samples. The same letters indicate that the values are not significantly 
different at 5% level by Tukey's HSD test. Data from CT are from the lower slope. 

 Total   Major species 1  Major species 2  Major species 3 

 DP LS  DP LS  DP LS  DP LS 

ST 3.7 ± 1.3 b 13.9 ± 2.3 c  1.6 ± 0.3 11.3 ± 1.1  4.6 ± 0.7 12.0 ± 0.8  22.5 46.0 
 (16)   Mycena sp. ST1 and ST2 (10)  Gymnopus sp. ST1 (4)  Marasmius sp. ST4 (1) 
CT 12.0 ± 1.2 a 63.8 ± 5.7 a  3.8 30.0  14.0 116.5  15.8 ± 2.3 73.5 ± 7.0 
 (23)   Mycena filopes (2)  Mycena polygramma (2)  Mycena crocata (6) 
SA 5.8 ± 0.5 b 35.1 ± 2.1 b  4.1 ± 0.3 30.9 ± 2.3  6.9 ± 0.5 46.9 ± 5.6  4.6 ± 0.7 25.5 ± 3.3 
 (38)   Mycena aurantiidisca (15)  Mycena epipterygia (6)  Galerina atkinsoniana (8) 
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Figure legends 1 

 2 

Fig. 1. Rank-relative frequency distribution of macrofungal assemblages in 3 

subtropical (ST), cool temperate (CT), and subalpine forests (SA). Open, 4 

Mycenaceae; filled, Marasmiaceae; coarse oblique mesh, Agaricaceae; fine oblique 5 

mesh, Tricholomataceae; horizontal mesh, others (Hygrophoraceae, 6 

Hymenogasteraceae, Pluteaceae, Psathyrellaceae, Strophariaceae, Xylariaceae, 7 

and unidentified). The survey in CT was performed at lower and upper parts of a 8 

forest slope. 9 

 10 

Fig. 2. Seasonal changes in the frequency of occurrence (upper) and the number of 11 

species (lower) of fruiting bodies of macrofungi. , subtropical forest (ST); , 12 

lower part of a slope in cool temperate forest, [CT (lower)]; , upper part of a slope 13 

in cool temperate forest [CT (upper)]; , subalpine forest (SA). 14 

 15 

Fig. 3. Seasonal changes in the frequency of occurrence of major macrofungal 16 

species in subtropical forest (ST), cool temperate forest (CT), and subalpine forest 17 

(SA). For CT, blank and shaded bars indicate lower and upper slopes, respectively. 18 

19 
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Osono Fig. 11 
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Osono Fig. 2 1 
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Osono Fig. 3  1 
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Table S1: Frequency of occurrence of fruiting bodies of macrofungi and the soil layer 

from which the fruiting bodies occurred. Ag, Agaricaceae; Hg, Hygrophoraceae; Hm, 

Hymenogasteraceae; Mr, Marasmiaceae; My, Mycenaceae; Tr, Tricholomataceae; Pl, 

Pluteaceae; Ps, Psathyrellaceae; St, Strophariaceae; Xy, Xylariaceae; and Un, 

unidentified. L/F, L-F border.  

Taxa Family Soil layer Frequency (%) 

Subtropical forest     

Mycena section Basipedes 'sp. ST1' My L 96.8  

Mycena section Roridae 'sp. ST2' My L 90.4  

Xylaria spp. ST1 Xy L 64.8  

Marasmius spp. ST1 Mr L 63.2  

Crinipellis sp. ST1 Mr L 60.8  

Mycena sp. ST3 My L 46.4  

Gymnopus sp. ST1 Mr L 12.8  

Tricholomataceae sp. ST1 Tr A 8.8  

Gymnopus sp. ST2 Mr L 7.2  

Marasmiellus sp. ST1 Mr L 7.2  

Mycena sp. ST4 My L 5.6  

Tricholomataceae sp. ST2 Tr A 4.0  

Mycena sp. ST5 My L 4.0  

Crinipellis sp. ST2 Mr L 2.4  

Gymnopus sp. ST3 Mr L 2.4  

cf. Calyptella sp. ST1 Mr L 2.4  
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Marasmius sp. ST2 Mr L 1.6  

Mycena sp. ST6 My L 1.6  

Agaricaceae sp. ST1 Ag A 0.8  

Agaricaceae sp. ST2 Ag A 0.8  

Gymnopus sp. ST4 Mr L 0.8  

Mycena sp. ST7 My L 0.8  

Leucocorpinus sp. ST1 Ag A 0.8  

Marasmiellus sp. ST2 Mr A 0.8  

Marasmiellus sp. ST3 Mr L 0.8  

Mycena sp. ST8 My L 0.8  

Mycena sp. ST9 My L 0.8  

Mycena sp. ST10 My L 0.8  

Unidentified ST1 Un L 0.8  

Mycena sp. ST11 My A 0.8  

Mycena sp. ST12 My L 0.8  

Tricholomataceae sp. ST3 Tr A 0.8  

Tricholomataceae sp. ST4 Tr A 0.8  

Tricholomataceae sp. ST5 Tr L 0.8  

Xeromphalina sp. ST1 My L 0.8  

Cool temperate forest   Upper Lower 

Mycena amygdalina My L/F 29.6 60 

Mycena polygramma My L/F 13.6 15.2 

Gymnopus peronatus Mr L/F 4.0 0.8 

Gymnopus sp. CT1 Mr L/F 4.0 0.0 

Mycena sp. CT2 My L/F 4.0 0.0 

Stropharia aeruginosa St L/F 1.6 0.8 

Hygrocybe cantharellus Hy L/F 1.6 0.0 

Agaricaceae sp. CT1 Ag L/F 0.8 0.0 

Lepiota fusciceps Ag F 0.8 0.0 

Marasmius sp. CT2 Mr A 0.8 0.0 

Naematoloma sublateritium St A 0.8 0.0 

Lycoperdon perlatum Ag A 0.0 12.8 
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Mycena pura My L/F 0.0 10.4 

Mycena sp. CT1 My L/F 0.0 8.0 

Mycena amicta My L/F 0.0 4.0 

Psathyrella candolleana Ps L/F 0.0 4.0 

Agariaceae sp.CT2 Ag L/F 0.0 2.4 

Mycena crocata My L/F 0.0 2.4 

Mycena luteopallens My L/F 0.0 2.4 

Mycena sp. CT3 My L/F 0.0 2.4 

Agaricus praeclaresquamosus Ag L/F 0.0 1.6 

Clitocybe sp. CT1 Mr L/F 0.0 1.6 

Pseudoclitocybe cyathiformis Tr L/F 0.0 1.6 

Lepiota cf. pseudogranulosa Ag L/F 0.0 0.8 

Lepiota cygnea Ag L/F 0.0 0.8 

Lepiota sp. CT1 Ag A 0.0 0.8 

Marasmius pulcheriipes Mr L/F 0.0 0.8 

Marasmius sp. CT1 Mr L/F 0.0 0.8 

Mycena cf. osmundicola My L/F 0.0 0.8 

Mycena sp. CT4 My L/F 0.0 0.8 

Psathyrella piluliformis Ps L/F 0.0 0.8 

Volvariella speciosa var. gloiocephala Pl L/F 0.0 0.8 

Subalpine forest     

Mycena aurantiidisca My F 75.2  

Mycena epipterygia  My F 60.8  

Galerina atkinsoniana Hm F 32.8  

Mycena cf. filopes My L/F 24.8  

Clitocybe sp. SA1 Mr F 8.8  

Mycena sp. SA2 My L/F 8.0  

Marasmius androsaceus Mr L/F 3.2  

Tricholomataceae sp. SA1 Tr F 3.2  

Mycena cf. stipata My F 3.2  

Mycena sp. SA3 My F 2.4  

Mycena cf. pura My F 2.4  
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Collybia cookei Tr F 1.6  

Tricholomataceae sp. SA2 Tr F 1.6  

Unidentified SA1 Un F 1.6  

Unidentified SA2 Un F 1.6  

Mycena sp. SA5 My F 0.8  

Mycena sp. SA4 My F 0.8  

Lycoperdon perlatum Ag A 0.8  

 

 

 

 

 

Fig. S2. Rarefaction curves for litter-decomposing macrofungal (LDM) assemblages. , 

subtropical forest (ST); , lower part of a slope in cool temperate forest, [CT (lower)]; 

, upper part of a slope in cool temperate forest [CT (upper)]; , subalpine forest (SA). 
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