
 

 1 

Structural modification by adding Li cations into Mg/Cs-TFSA molten salt facilitating Mg 
electrodeposition   
 

Koji Ohara,a,* Yasuhiro Umebayashi,b Tetsu Ichitsubo,c Kazuhiko Matsumoto,d Rika Hagiwara,d 
Hajime Arai,a Masahiro Mori,a Yuki Orikasa,e Shinya Okamoto,c Masatsugu Oishi,f Yuka Aiso,d 
Toshiyuki Nohira,d Yoshiharu Uchimoto,e Zempachi Ogumi,a and Eiichiro Matsubarac 
 

a Office of Society-Academia Collaboration for Innovation, Kyoto University, Gokasho, Uji, Kyoto 611-0011, 
Japan. 
b Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata City 
950-2181, Japan. 
c Department of Materials Science and Engineering, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-
8501, Japan. 
d Graduate School of Energy Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan. 
e Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, 
Kyoto 606-8501, Japan. 
f Graduate School of Engineering, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan. 
 
*E-mail: k-ohara@saci.kyoto-u.ac.jp Phone: +85-774-38-4969 
 

 Liquid structures of Li/Mg/Cs-TFSA (TFSA: bis(trifluoromethylsulfonyl)amide, 

N(SO2CF3)2
-) molten-salt systems have been investigated by Raman spectroscopy and high-energy 

X-ray diffraction. The Raman spectroscopic measurements indicate that the cis-conformer of the 

TFSA anion is more favorable than the trans-conformer in the molten salts containing Li+ and/or 

Mg2+, whereas the latter is dominant for a pure Cs[TFSA] molten salt. The present reverse Monte 

Carlo (RMC) structural modelling suggests that the coordination number of the anion around Mg, 

NMg-anion, decreased in Li0.1Mg0.1Cs0.8[TFSA]1.1 molten salt compared to that in Mg0.1Cs0.9[TFSA]1.1. 

The Mg-anion distance under the coexistence of Li+ is found to be about 10-15 % longer than that 

without Li+ at around NMg-anion ~ 1.5, which means the increase of free volume around Mg cations in 

the Li-contained molten salt. Thus, the electrodeposition of Mg in alkali-TFSA molten salts would 

be facilitated under the coexistence of Li cations. 
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Grapical Abstract Text and Figure. 

Free volume around Mg ions in  Li/Mg/Cs-TFSA by adding Li cations has been studied by Raman 

spectroscopy and high-energy X-ray diffraction, which would facilitate the Mg electrodeposition, 

which has been studied by Raman spectroscopy,  high-energy X-ray diffraction, and reverse Monte 

Carlo structural refinement using molecular mechanics. 
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Introduction 

 Molten salts consisting of alkali cations and halide anions are excellent candidates as safe 

electrolytes owing to their prominent properties, such as, low flammability, negligible vapour 

pressure, good thermal and electrochemical stability, and high ionic conductivity.1 For the 

realisation of commercial products, room-temperature molten salts have been applied to lithium ion 

batteries.2-6 Molten salts consisting of alkali cations and bis(trifluoromethylsulfonyl)amide (TFSA) 

anions have attracted attention6-8 because of their high conductivity, and can be used as electrolytes 

at the intermediate temperature range  (373 to 473 K).9, 10 Such moderate temperatures enable the 

application of the molten salts to battery electrolytes and are favorable for the durability of battery 

components, such as the current collector and case material, compared with those of high-

temperature molten salts. To clarify the origin of the low melting point and the chemical stability, 

the structure and dynamics of the TFSA molten salts have been explored well.11-14 Theoretical 

approaches to elucidate these characteristics are also reported.15-21 Recently, the successful Mg 

electrodeposition by adding Li+ in the TFSA molten salt is reported as well as the high safety and 

the outstanding electrochemical characteristics of Mg ion batteries. 22, 23 A plausible structure model 

is required to examine the structural modification by adding Li+ in alkali-TFSA molten salts, due to 

the lack of information on the coordination environment of Mg2+. 

Diffraction experiments are powerful methods of analyzing the structure of not only 

crystalline materials but also disordered materials such as glass, liquids, and amorphous solids. X-

ray and neutron diffractions have been widely used to determine coordination numbers and bond 

lengths. These can be obtained by Fourier transformation for a total structure factor to the real-space 

pair distribution function. A structural analysis for Li[TFSA] comprising a combination of high-

energy X-ray diffraction and MD simulation was reported.17 The results suggest long-range anion–

anion correlations caused by the formation of TFSA anion clusters around Li+ ions. The complexity 

of the molecular structure of the TFSA anion makes such diffraction analysis difficult. Furthermore, 

it is well known that two kinds of conformers exist for the TFSA anion in alkylimidazolium 
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TFSA,24 1-butyl-3-methylimidazolium TFSA,25 and 1-ethyl-3-methylimidazolium TFSA.26 Raman 

spectroscopy is utilized as a complementary technique for structural analysis of the TFSA anion.   

Reverse Monte Carlo (RMC) simulation is a convenient tool for modeling liquid structures 

obtained by diffraction techniques and makes it possible to generate a three-dimensional structural 

model for glass, liquids, and amorphous materials from diffraction data without using interatomic 

potentials.27-30 However, a technical problem in RMC is how to constrain the intra-molecular 

configuration in complicated systems such as ionic liquids. Recently, new codes for RMC have 

been developed to solve this problem, wherein the dihedral potential can be treated restrictively,31 

and to deal with the intra-molecular flexibility by molecular mechanics (RMC-MM).32 In the RMC-

MM simulation, the intra-molecular structure is constrained by the MM, whereas the inter-

molecular structure is modeled by the usual RMC simulation using the experimental diffraction data. 

Although an interaction has been suggested by structural models based on the molecular orbital 

calculation in many cases,16, 17, 33, 34 this method enables the structural refinement between ions of 

complicated molten salts on the basis of experimental diffractions on a much larger scale than in 

that in theoretical orbital calculation.  

The final goal of our study is to understand the relationship between structural properties 

and physicochemical characteristics by revealing the interactions between ions, in order to 

contribute to the development of high-performance batteries. In this study, structural models with 

two kinds of conformers in the TFSA anion are demonstrated by RMC-MM simulation with the aid 

of Raman spectroscopy, which are more plausible structures than those obtained by X-ray 

diffraction only. We target Mg[TFSA]2 - M[TFSA] (M = Cs, Li) molten salts in which the 

electrodeposition of Mg by adding Li+ 22, 23 has been found, which is very important in 

understanding the relationship between liquid structure and electrodeposition of Mg. The structural 

modification in alkali molten salts containing Li+ and/or Mg2+ is evaluated from the structural 

model, reproducing the experimental results of Raman spectroscopy and high-energy X-ray 

diffraction well.  
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Results and discussion 

To quantitatively reproduce cis- and trans-conformers of the TFSA anion, the Raman spectra 

of the alkali TFSA molten salts in the frequency range of 360 – 480 cm-1 were obtained, as shown in 

Fig. 1. On the basis of the Raman spectra in 1-ethyl-3-methylimidazolium [EMI][TFSA], we 

assigned Raman bands at approximately 400 cm-1 to cis- and trans-conformers for the TFSA 

anion.34 The ratios of the cis- and trans-conformers were estimated and summarized in Table 1. It is 

quite obvious that the cis-conformers increase relatively to the trans-conformers in the alkali TFSA 

molten salts containing Li+ and/or Mg2+ ions, which is consistent with the results of Raman 

spectroscopy for 1-butyl-3-methylimidazolium TFSA ([C4mIm]+[TFSA]-).25, 35 This increase of cis-

conformers occurs with the reduction in the ionic radii of alkali metal ions in the salt. It is suggested 

that the cis-TFSA anion is favored in the first solvation sphere of the Li ion with a relatively small 

ionic radius.35 Fujii et al. also reported that the dipole moment of the cis-conformer is significantly 

larger than that of the trans-one, implying that the cis geometry is preferred around the small 

cation.36 Since Li+ and Mg2+ possess similar ionic radii, the surrounding TFSA anions take the cis-

conformation as a result of the increase in Li[(cis-)TFSA] and Mg[(cis-)TFSA]2 in this ternary 

system.  

 Figure 2 shows the structure factors, S(Q), for the alkali TFSA molten salts up to Q = 20 Å-1. 

The oscillations remain to the high-Q region in all molten salts. Since the oscillations of the high-Q 

region are expressed for the correlation of the short distance, the structure contains many covalent 

bonds. This is often the case when ions such as TFSA anions exist in the system. The profile 

similarity in this region suggests that the intra-molecular structure of the molten salts is unchanged, 

as shown in an earlier study.34 Furthermore, the oscillations of the low-Q region expressing the 

long-range correlations are also unchanged. The pre-peak at around Q = 0.6 Å-1 already present in 

the pure Cs[TFSA], which suggests the correlation between same ionic species ions (i.e. between 

Cs ions) appear at a longer distance. The total pair distribution function, g(r), for the alkali TFSA 
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molten salts derived by the Fourier transformation of the experimental S(Q), as shown in Fig. S1. 

Here, we carried out the RMC-MM structural modeling for the observed S(Q), fixing the ratios of 

cis- and trans-conformers on the basis of Raman spectroscopy measurements to reproduce the 

plausible liquid structure.  

The total structure factors S(Q) of the alkali TFSA molten salts derived from the RMC-MM 

model are shown in Fig. 2 as lines. It was confirmed that the RMC-MM models are consistent with 

the experimental data. The partial pair distribution functions (PDFs), gij(r), for the alkali TFSA 

molten salts were calculated from the RMC-MM models. Figure S2 shows the intra-molecular gij(r) 

of the TFSA anion, which consists of the first neighbor covalent bond (see the schematic in Fig. 

S2(f)). The restraint for cis- and trans-conformers is functioning well, as shown by the RMC-MM 

simulation. The slight difference is observed in Li0.1Mg0.1Cs0.8[TFSA]1.1. However, as mentioned 

above, the oscillations in the high-Q region remaining on the structure factors at all compositions 

indicate the contribution of the intra-molecular atom-atom correlations is not affected by the ratio of 

cations.  

The three-dimensional structural model for the alkali TFSA molten salts is obtained by 

RMC-MM modeling. To evaluate this model in detail, we calculated PDFs for A-N (A; Li, Mg, Cs) 

as the general form of g(r) and show the results in Fig. 3. We assume the N to representative anion 

here. The g(r) for the Mg-N correlation, gMg-N(r), has a short correlation distance of 3.3 Å 

compared with those of gLi-N(r) and gCs-N(r) (Figs. 3(a), (b), and (c)). This means Mg2+ attracts the 

TFSA anion strongly compared with Cs+. The gMg-O(r) also shows this feature, whereas gMg-F(r) 

does not have the strong correlation (Figs. S4(d) and (g)). Furthermore, the length of gCs-N(r) 

became short by adding Li+ or/and Mg2+, as shown in Fig. 3(c). This is consistent with the 

composition dependence of cis- and trans-conformers in the TFSA anion. Strangely, there was no 

characteristic peak in gLi-N(r), as shown in Fig. 3(b), although we expected a strong correlation. 

Regarding gMg-N(r) shown in Fig. 3(a), it was confirmed that correlations become weak on 

introducing Li+. To understand the coordination environment of Mg in detail, we calculated the 
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bond distance to the coordination number of the anion around Mg, NMg-N, as shown in Fig. 4(a). The 

maximum coordination number of 2.0 was determined from the valence of Mg. Intriguingly, the 

Mg-N distance in Li0.1Mg0.1Cs0.8[TFSA]1.1 is found to be approximately 10-15 % longer than that in 

Mg0.1Cs0.9[TFSA]1.1 at around NMg-N ~ 1.5., which suggests that the free volume around Mg ions 

increases by adding Li+ in the system. Actually, the atomic number density of 

Li0.1Mg0.1Cs0.8[TFSA]1.1 (0.0568 Å-3) is smaller than that of Mg0.1 Cs0.9[TFSA]1.1 (0.0571 Å-3), as 

shown in Table 1. This may be closely related to the successful electrodeposition of Mg in the 

ternary LipMgqCsr[TFSA]p+2q+r system.22, 23 To obtain statistical details regarding the distribution of 

the anion around Mg2+, the distributions of the Li-N and Mg-N correlations were calculated, as 

shown in Fig. 5. Since the integral maximum distance was set to 4.0 Å, the zero of the coordination 

number exists. As can be seen in this figure, the coordination number of Mg2+ decreases in 

Li0.1Mg0.1Cs0.8[TFSA]1.1 compared to that in Mg0.1Cs0.9[TFSA]1.1; however it is still larger than that 

of Li+. This feature is consistent with the results in the previous study, which suggested the 

formation of clusters of two TFSA anions around Li+ ion.17 The distribution of the Cs-N correlation 

is unchanged in these compositions, as shown in Fig. S5. Fig. 4(b) shows a schematic illustration of 

the coordination environment around Mg2+ in Mg0.1Cs0.9 [TFSA]1.1. The inside dashed line of 4.0 Å 

indicates the Mg-N distance at around NMg-N ~ 1.5 in Mg0.1Cs0.9[TFSA]1.1, whereas that in 

Li0.1Mg0.1Cs0.8[TFSA]1.1 becomes 4.4 Å, as shown in Fig. 4(c). It is worth mentioning that the free 

volume around Mg2+ is extended approximately 37.8 % as the volume. Such increase of free 

volume around Mg2+ is induced by the addition of Li+. This suggests that the coexistence of Li+ 

facilitates the electrodeposition of Mg in alkali-TFSA molten salts. The small Li+ cations would 

attract TFSA anions strongly compared to large Cs2+ cations due to their high surface density of 

charges, which may enlarge the free volume around Mg2+ cations. Thus, the coexistence of such 

cations of different ionic radii and charges would facilitate the magnesium electrodeposition, which 

contributes to the development of high-performance batteries.  

Conclusion 
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From the Raman spectroscopy measurement, the increase of the cis-TFSA anion is observed 

in LipMgqCsr[TFSA]p+2q+r molten salts containing Li+ and/or Mg2+ ions, which is consistent with 

the earlier works.17 The present reverse Monte Carlo structural refinements using molecular 

mechanics (RMC-MM) simultaneously reproduce high-energy X-ray diffraction data and Raman 

spectroscopic results, quantitatively fixing two kinds (cis and trans) of conformers in the TFSA 

anion. The plausible RMC structures indicate the coordination number of the anion around Mg2+, 

NMg-N, decreased in Li0.1Mg0.1Cs0.8[TFSA]1.1 molten salt compared to that in Mg0.1Cs0.9[TFSA]1.1. It 

is emphasized here that the Mg-anion distance under the coexistence of Li+ is approximately 10-

15 % longer than that without Li+ at around NMg-N  ~ 1.5, and thus the coexistence of Li+ can 

increase the free volume around Mg2+ in the TFSA molten salts, which would facilitate the Mg 

electrodeposition. Actually, it is already reported that Mg metal can be electrodeposited in the TFSA 

molten salts containing Li+ and/or Mg2+.22, 23 Therefore, our present finding is a considerably 

important concept in the TFSA molten salts, and would lead to further understanding of the 

correlation between their structures and electrochemical behaviors.  

 

EXPERIMENTAL METHODS 

Samples were prepared as described previously.9 Raman spectra were obtained at 443 K 

using the 633 nm line of a He-Ne laser as the excitation line (Nanofinder 30, Tokyo Instrument). 

The sample was loaded in a Ni open cell that was placed in an air tight heating stage (10042, Japan 

High Tech Co., Ltd.) under dry Ar atmosphere. On the basis of the previous work,25, 36 the ratio of 

cis- and trans-conformers in the TFSA anion was determined from the intensities of two peaks (cis- 

and trans-conformers correspond to the peaks at high and low frequencies, respectively) at 

approximaltely 400 cm-1 in the observed Raman spectra. The Raman peaks were assumed to be 

represented as a Lorentzian function and their positions were not fixed during fitting.  

The high-energy X-ray diffraction experiments for molten salts LipMgqCsr[TFSA] p+2q+r (p, 

q, r: 0.0, 0.0, 1.0; 0.0, 0.1, 0.9 and 0.1, 0.1, 0.8) were carried out at 438 K within 5 K at the SPring-
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8 BL04B2 beamline using a two-axis diffractometer.37 The incident X-ray energy obtained from a 

Si 111 crystal monochromator was 113 keV. The diffraction patterns of the sample and an empty 

capillary were measured in the transmission geometry. The intensity of incident X-ray was 

monitored in an ionization chamber filled with Ar gas and the scattered X-rays were detected by a 

Ge detector. A vacuum electric chamber was used to suppress air scattering around the sample. The 

collected datasets were corrected for the absorption, background, and polarization effects. The 

details of data correlation and normalization procedures are given in ref. 37. 

 

COMPUTATIONAL METHOD 

The molecular mechanics (MM) procedure was performed by employing the widely used 

TINKER code.38-40 The total potential energy is given in the following equation as a sum of the 

potential energy of each molecule: 

Emolecule = Σ Ebond + Σ Eangle + Σ Etorsion, 

where Ebond is the bond energy, Eangle is the energy of the angle, and Etorsion is the energy of the 

torsion in the molecule. Before analyzing the inter-molecular correlations in detail, it is of primary 

importance to reproduce the intra-molecular geometries in the TFSA anion using the results of 

Raman spectroscopic results listed in Table 1.  These geometries are realised by using the following 

equation of torsion energy:  

Etorsion = K ( 1 + cos( n φ –φ0 ) ), 

where K is the force constant, n is the number of the symmetry, φ is the dihedral angle, and φ0 is the 

initial phase. We selected 2 and 90 for n and φ0, respectively, which realise the dihedral angle of 0° 

and 180° for the cis- and trans-conformers, respectively, in the TFSA anion.  

 In our RMC-MM simulations, the total number of alkali TFSA molten salts was 500 cation-

anion pairs. It was 8750 atoms when Mg2+ ion was present, and 8000 atoms when absent. To obtain 

a plausible structural model, we checked the densities (Fig. S6). The initial configurations were 

prepared by arranging the cation-anion pairs randomly in a cubic box with corresponding densities 
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as listed in Table 1. The cut-offs, i.e., the minimum allowed distances between atom pairs, were 

estimated from the experimental pair distribution function. The force-field parameters for the alkali 

TFSA molten salts were taken from the parameters given in ref. 41. The simulations were 

performed for four different initial configurations for each composition, and the validities were 

checked.  
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Table  
 
Table 1. Details of alkali TFSA molten salts; compositions, densities, atomic number densities, 
particle numbers for RMC simulation, and the ratios of cis- and trans-conformers. 
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Figures 
 
 

 
Figure 1. Raman spectra in the range 360-480 cm-1 for alkali TFSA molten salts.  
Black, blue, and red lines represent p, q, r = 0.0, 0.0, 1.0; 0.0, 0.1, 0.9 and 0.1, 0.1, 0.8 of LipMgqCsr 
[TFSA]p+2q+r, respectively. 
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Figure 2. Total X-ray structure factors S(Q) at 438 K for alkali TFSA molten salts for the Q range of 
0 < Q < 20. Circles, experimental data; lines, the RMC-MM models. Line colours correspond to 
those in Figure 1. 
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Figure 3. Pair distribution functions, g(r), for Mg-N (a), Li–N (b), and Cs–N (c) derived using the 
RMC-MM models for alkali TFSA molten salts. Line colours correspond to those in Figure 1. 
 

 
Figure 4. Bond distances for the Mg-N correlation derived using the RMC-MM models based on 
the valence compensation of Mg2+, and their difference is shown to the upper part (a). Schematic 
illustrations of TFSA anions around Mg2+ for Mg0.1Cs0.9[TFSA]1.1 (b) and Li0.1Mg0.1Cs0.8[TFSA]1.1 
(c) which satisfied the coordination number of 1.5 for Mg-N correlation. 
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Figure 5. Coordination number statistics for alkali TFSA molten salts obtained using the RMC-MM 
model. Normalized fractions of Li – N (a) and Mg – N (b) coordination numbers within 4.0 Å. 
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