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Abstract

We discuss a method to follow step-by-step time evolution of atomic and molecular systems

based on QED (Quantum Electrodynamics). Our strategy includes expanding the electron field

operator by localized wavepackets to define creation and annihilation operators and following the

time evolution using the equations of motion of the field operator in the Heisenberg picture. We

first derive a time evolution equation for the excitation operator, the product of two creation or

annihilation operators, which is necessary for constructing operators of physical quantities such as

the electronic charge density operator. We then describe our approximation methods to obtain

time differential equations of the electronic density matrix, which is defined as the expectation

value of the excitation operator. By solving the equations numerically, we show “electron-positron

oscillations”, the fluctuations originated from virtual electron-positron pair creations and annihi-

lations, appear in the charge density of a hydrogen atom and molecule. We also show that the

period of the electron-positron oscillations becomes shorter by including the self-energy process,

in which the electron emits a photon and then absorbs it again, and it can be interpreted as the

increase in the electron mass due to the self-energy.
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I. INTRODUCTION

The elementary processes of almost every phenomenon in condensed matter physics and

chemistry can be regarded as time evolution of a system which consists of interacting charged

particles and photons. The physical theories which describe such a system are electromag-

netism and quantum mechanics, and their unified theory has already been constructed be-

fore the middle of last century as the quantum electrodynamics (QED), taking the form of

quantum field theory. The QED is the most stringently tested theory of physics and its

precision is confirmed by many types of experiments of elementary particle physics. It can

be considered as the most successful fundamental physical theory we have.

However, there has been only limited use of QED in the fields such as condensed matter

physics and quantum chemistry. There are a lot of works to simulate the time evolution of

the quantum systems involving light and matter by using the time-dependent Schrödinger,

Dirac, or DFT (density functional theory) equation with classical electromagnetic fields (i.e.

semi-classical approximation) [1–4], but both matter and light are not treated as quantized

fields. In some simulations, the quantum photon field is used but the matter part and its

interaction with the photon are much more simplified than QED [5–7], or the quantum Dirac

field is used for electrons but the interaction is not given by the photon field [8, 9]. In atomic

physics and quantum chemistry, QED is only regarded as a small correction to the Coulomb

potential which appears in the time-independent Dirac equation [10–12], and not considered

in dynamical situations.

It is true that the approximations above are valid for a broad range of systems so far,

but the atomic, molecular, and optical physics experiments are in rapid progress recently.

It is now possible to measure, fabricate, and control structures on the atomic and molecular

scale with the advances in nanotechnology. A single photon and a single electron spin can be

measured and manipulated by the current technology of photonics and spintronics [13–16].

Moreover, developments in the laser science have made it possible to observe a phenomenon

at the time scale of femtosecond to attosecond time scales [17, 18]. Considering such progress

in the experiments of smaller space-time scales and the most fundamental particle properties,

it is important for the theoretical side to develop a simulation method based on as an

elementary theory as possible. This is the reason why we try to formulate a time evolution

simulation method for atomic and molecular systems, which consist of electrons, atomic
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nuclei and photons, closely following QED in the form of quantum field theory.

To achieve our goal to develop a method to simulate time evolution of atomic and molec-

ular systems by QED, we have to overcome some issues which do not appear in the ordinary

QED. When we say the ordinary QED, we mean that it is a relativistic (Lorentz invariant)

quantum field theory and the calculation method of the scattering amplitude is performed

by the covariant perturbation theory [19, 20]. It implies that the only transition between

infinite past (“in-state”) and infinite future (“out-state”) is concerned and the quantum

fields in those states (“asymptotic states”) can be treated like non-interacting fields. This in

turn makes it possible to apply the perturbative approach by taking the asymptotic states

(where fields are described by non-interacting Hamiltonian) as the unperturbed states and

interaction as the perturbation. Also, the perturbative method is established in a quite sys-

tematic way, owing to the Lorentz invariance of the theory. Although such a method yields

physical quantities which can be precisely compared with experiments of particle physics in

particular, it is not sufficient for our interests. For simulating time evolution of atomic and

molecular systems, there are mainly three issues we have to face which are not simultane-

ously concerned in the ordinary QED: (i) there are atomic nuclei, which are non-relativistic

and not elementary particles, (ii) the matter particles in those systems are in bound states,

(iii) we would like to follow the finite time evolution of the systems step by step.

In fact, there have already been methods which can partly treat these three points within

the framework of quantum field theory. First, as for (i), there are effective field theories in

which nucleons are treated as quantized fields [21, 22], but the computation is within the

scattering theory, so they are not suited to our needs of (ii) and (iii). In principle, since

the nucleons consist of quarks and gluons which are described by quantum chromodynamics

(QCD), they can be treated in a quantum field theoretic way, and the method of lattice field

theory has been well developed to perform non-perturbative calculation of QCD, known as

lattice QCD calculation. However, it takes too much computational time even to describe

a nucleon as a bound state of quarks, and adding QED to study atoms is much more

unpractical. Other shortcomings include that the current lattice field theory is developed

only to describes an equilibrium state and time evolution cannot be treated. Also, in contrast

to lattice QCD, lattice QED has a problem that, being U(1) gauge theory which does not

exhibit asymptotic freedom, the continuum limit of lattice spacing cannot be taken. Second,

as for (ii), a well-known technique is the Bethe-Salpeter equation [23]. In Ref. [24], the
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Bethe-Salpeter equation and various other techniques to describe bound states in QED

are reviewed, but those incorporating (i) or (iii) are not found. Finally, as for (iii), some

formalisms are known to describe a non-equilibrium state by quantum field theory, such as

closed time path (CTP) formalism [25, 26] and thermo field dynamics [27]. In particular,

CTP formalism is applied to gauge theory including QED and QCD, but currently not for

bound state problems. This is because the CTP formalism uses systematic perturbative

expansion based on the interaction picture, but we cannot divide the QED hamiltonian into

unperturbed and interaction parts when we consider bound states.

Therefore, to simulate time evolution of atomic and molecular systems based on QED, we

cannot just use preexisting formalisms as mentioned above. We briefly explain our proposals

[28, 29] to cope with these issues in the following. First of all, as for (i), we add the atomic

nuclei degree of freedom as Schrödinger fields, and the interaction with the photon field is

determined from U(1) gauge symmetry as usual [28]. Although this deprives the theory of

the Lorentz invariance, since we try to follow the finite time evolution of the system, this

would not be a crucial problem. Next, as for (ii), in order to describe the bound state, we

expand the matter field operators by localized wavepackets, not by the usual plane waves,

and define the creation and annihilation operators [29]. In the case of the Dirac field operator

for electrons, for example, we may adopt the stationary solutions of the Dirac equation under

the existence of external electrostatic field, as the expansion functions. This is similar to the

Furry picture [30, 31], but, as described below, we do not assume the time-dependence of

the operators which is determined by the energy eigenvalues. Finally, as for (iii), we follow

the time evolution using the equations of motion of the field operator in the Heisenberg

picture [29]. As is mentioned earlier, since we do not have well-defined division between

unperturbed and interaction parts of the QED hamiltonian for the bound state, we cannot

work in the interaction picture.

The setups described above determine the evolution equations of field operators, and

those of creation and annihilation operators, but we have to make further approximations

and assumptions to obtain the evolution equations for the expectation value of physical

quantities. In Ref. [29], we have studied the time evolution of one of the most basic physical

quantity operators, the electronic charge density operator, and have discussed approxima-

tion methods to obtain the time evolution of its expectation value. The charge density

operator is expressed by the product of two creation or annihilation operators, which is
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called an excitation operator, but since the time derivative of creation and annihilation

operators contains more than one of these operators, the time differential equation of the

excitation operator is not closed. In other words, differentiating the excitation operator

yields operators which cannot be expressed by the excitation operator. Such a problem

is generic for interacting quantum field theories [25], and not special to our approach. In

Ref. [29], we have introduced several approximations to obtain the time evolution equation

for the expectation value of the excitation operator, which is called a density matrix, and

numerically solved the time evolution of the density matrix. The time evolution of the ex-

pectation value of the charge density operator has been obtained by multiplying the density

matrix by the expansion functions of the field operator. Then, we have found that the time

evolution of the charge density of a hydrogen atom exhibits very rapid oscillations of the

period ≈ 1.7×10−4 a.u. (4.1×10−21 s), which corresponds to the inverse of twice the electron

mass. This is interpreted as the fluctuations originated from the virtual electron-positron

pair creations and annihilations, showing the effect of QED, and we have designated the

phenomenon as “electron-positron oscillations”.

In the present paper, we improve one of the approximations employed in Ref. [29] with

respect to the terms which include the photon creation and annihilation operators. In our

formalism, the time derivative of the electron excitation operator has the terms which consist

of two creation or annihilation operators sandwiching a photon creation or annihilation

operator (we call this type of operator by “ê†âê-type operator” for short). In Ref. [29],

when we take the expectation value of these terms, we have factorized the terms into the

expectation value of the excitation operator and that of the photon creation or annihilation

operator. After this approximation, these terms give finite contribution only when an initial

photon state is a coherent state, which is an eigenstate of the photon annihilation operator.

In particular, they vanish for the photon vacuum state. To go one step further, we, in this

paper, do not perform the above factorization, and solve the time evolution equation of the

ê†âê-type operators simultaneously with that of the excitation operator. As we show in a

later section, this procedure corresponds to counting the self-energy process of the electron

(the electron emits a photon and then absorbs it again), and, consistently, it gives non-zero

contribution even when the initial state is the photon vacuum state.

This paper is organized as follows. In Sec. II, we derive the time evolution equations

of the quantum operators. After we describe how we expand field operators and define
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creation and annihilation operators, we show time derivative of the creation and annihilation

operators from the equations of motion of the quantum fields. Then, we derive the time

evolution equation of the excitation operator and ê†âê-type operator. In Sec. III, we derive

time evolution equations of the density matrix by taking the expectation value of the time

derivative of the excitation operator. We explain our approximation methods to derive closed

sets of time evolution equations. In Sec. IV, we show the results of numerical computation

of these equations for a hydrogen atom and molecule. Finally, Sec. V is devoted to our

conclusion. The notations and conventions follow those in Refs. [28, 29, 32, 33].

II. EVOLUTION EQUATIONS FOR QUANTUM OPERATORS

We would like to describe atoms and molecules as systems which consist of electrons,

atomic nuclei and photons. In this paper, we work in the Born-Oppenheimer (BO) approxi-

mation, in which positions of the atomic nuclei are fixed. Then, only electrons and photons

are described as quantum field operators, and atomic nuclei contribute to the charge density

as delta functions. The source of the photon field can be both electrons and atomic nuclei.

The quantum field operators which appear in this paper are the four-component Dirac field

operator ψ̂(x) for the electron, and the U(1) gauge field Âµ(x) for the photon. (Inciden-

tally, the approach to treat the electron as the two-component Schrödinger field [34] is also

developed in our group. See Refs. [35–37] for details.) Although there are some overlaps in

this section with the contents in Ref. [29], we reproduce them in the reorganized form for

the convenience of the readers.

A. Definitions of creation and annihilation operators

Our expansion of the Dirac field operator is

ψ̂(ct, r⃗) =

ND∑
n=1

∑
a=±

êna(t)ψna(r⃗), (1)

where ψn+(r⃗) and ψn−(r⃗) are respectively the n-th electron and positron solutions of the

four-component Dirac-Hartree-Fock equation under the existence of external electrostatic

field, and they form an orthonormal basis set as
∫
d3r⃗ ψ†

na(r⃗)ψmb(r⃗) = δnmδab. In Eq. (1),

ND is the number of the electron expansion functions, which is same as one of the positron
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expansion functions. Considering the Kramers pair, ND usually equals to twice the number

of basis functions used to solve the Dirac equation. We note that ND has to be infinite to

make the expansion function set complete, but this is not available in numerical calculation.

In practice, we use a finite set which only spans a certain region of the complete space. We

should interpret thus obtained results as phenomena within the subspace spanned by the

finite set of expansion functions. We may use any localized wavepackets for the expansion

functions, but the above choice is convenient because we can obtain such functions easily

by the publicly available code like DIRAC [38]. The creation and annihilation operators

are defined as the coefficients of the expansion functions and carry the time dependence.

In our notation, ên+ is the electron annihilation operator and ên− is the positron creation

operator. Accordingly, ê†n+ is the electron creation operator and ê†n− is the positron annihi-

lation operator. In the literature, a creation operator is usually expressed by an operator

with a dagger as superscript, but, note that, in our notation, the positron creation operator

does not carry a dagger whereas the positron annihilation operator does. We adopt this

notation to make compact the expression of the expansion of Eq. (1) and equations below.

The equal-time anti-commutation relation can be written as
{
êna(t), ê†

mb(t)
}
= δnmδab, and

anti-commutators of other combinations are zero.

For later convenience, we here define the electronic excitation operator, which is formed

from two creation or annihilation operators as

Ênamb ≡ ê†na êmb . (2)

Then, the electronic charge density operator and current density operators are written by

the excitation operator as

ρ̂e(x) =

ND∑
n,m=1

∑
a,b=±

ρnamb(r⃗)Ênamb(t), (3)

ĵke (x) =

ND∑
n,m=1

∑
a,b=±

jknamb(r⃗)Ênamb(t), (4)

where we define

ρnamb(r⃗) ≡ (Zee)ψ
†
na(r⃗)ψmb(r⃗), (5)

jknamb(r⃗) ≡ Ze e c
[
ψ†
na(r⃗)γ0γkψmb(r⃗)

]
, (6)
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and Ze = −1. The total charge density operator have contribution from both electrons and

atomic nuclei, ρ̂(x) = ρ̂e(x) +
∑Nn

a=1 ρ̂a(x), where ρ̂a(x) is the atomic nuclear charge density

operator, a denotes the type of atomic nucleus and we assume Nn types of atomic nuclei

in the system. Under the BO approximation, ρ̂a(x) = Zae δ
(3)(r⃗ − R⃗a), where Za is the

nucleus a’s atomic number, and R⃗a should be understood as the direct sum of the position

of each nucleus of type a (see Appendix of Ref. [29] for details). As for the total charge

current density operator, since there is no contribution from the atomic nuclei under the

BO approximation, we have
ˆ⃗
j(x) =

ˆ⃗
je(x). Although we do not compute the energy of the

system in this paper, it may be instructive to show the QED Hamiltonian operator. This is

shown in Appendix A.

As for the photon field operator, we use the integral equation form of the equation of

motion. Namely, we use the fact that the formal solutions of the inhomogeneous Maxwell

equations are known from the classical electrodynamics [5, 39, 40], and express Âµ(x) by such

solutions [28, 29]. Similar technique is used to derive the so-called Yang-Feldman equation,

which is originally introduced to discuss the S-matrix of QED in Heisenberg picture [41].

We adopt the Coulomb gauge, ∇⃗ · ˆ⃗
A(x) = 0. Then, the scalar potential is given by

Â0(ct, r⃗) =

∫
d3s⃗

ρ̂(ct, s⃗)

|r⃗ − s⃗|
, (7)

and the vector potential by

ˆ⃗
A(ct, r⃗) =

ˆ⃗
Arad(ct, r⃗) +

ˆ⃗
AA(ct, r⃗), (8)

where the first term is the quantized free radiation field in the Coulomb gauge [5, 42] and

the second term is the retarded potential.
ˆ⃗
Arad(ct, r⃗) is expressed as

Âk
rad(ct, r⃗) =

√
4πℏ2c√
(2πℏ)3

∑
σ=±1

∫
d3p⃗√
2p0

[
âp⃗σe

k(p⃗, σ)e−icp0t/ℏeip⃗·r⃗/ℏ

+â†p⃗σe
∗k(p⃗, σ)eicp

0t/ℏe−ip⃗·r⃗/ℏ
]
, (9)

where âp⃗σ (â†p⃗σ) are the annihilation (creation) operator of the photon with momentum

p⃗ and helicity σ, and e⃗ is the polarization vector. They satisfy the commutation relation

[âp⃗σ , â
†
q⃗τ
] = δ(p⃗− q⃗)δστ , and commutators of the other combinations are zero. Our convention

for e⃗(p⃗, σ) is found in Ref. [29].
ˆ⃗
AA(ct, r⃗) is expressed as

ˆ⃗
AA(ct, r⃗) =

1

c

∫
d3s⃗

ˆ⃗
jT (cu, s⃗)

|r⃗ − s⃗|
, (10)
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where we define the retarded time u = t− |r⃗− s⃗|/c, and ˆ⃗
jT (x) is the transversal component

of the current. Writing explicitly,

ĵkT (cu, s⃗) =

ND∑
p,q=1

∑
c,d=±

{
jkpcqd(s⃗)Êpcqd(u) + Ek

pcqd(s⃗)
dÊpcqd
dt

(u)

}
, (11)

where

Ek
namb(R⃗) = −Zee

4π

∫
d3s⃗ ψ†

na(s⃗)ψmb(s⃗)
(s⃗− R⃗)k

|s⃗− R⃗|3
. (12)

As we mentioned in Sec. I, we do not consider the usual asymptotic states of the field

operator, in which the state becomes non-interacting as t→ −∞ asymptotically. We assume

that the interaction is absent for t < 0 and the free part expressed above by Ârad,µ(x) is

considered to realize at t = 0. This, in particular, implies the initial condition

ĵµ(cu, s⃗) = 0, u < 0, (13)

and enables us to rewrite the retarded potential as [34]

ˆ⃗
AA(ct, r⃗) =

1

c2π

∫ t

0

du

∫ ∞

−∞
dα exp

(
iα(t− u)2

) ∫
d3s⃗

ˆ⃗
jT (cu, s⃗) exp

(
−iα(r⃗ − s⃗)2

c2

)
.(14)

To derive this, we use the following formulae for the delta function δ(x2 − a2) =

{δ(x− a) + δ(x+ a)} /(2a) with a > 0, and δ((t−u)2−(r⃗− s⃗)2/c2) = 1
2π

∫∞
−∞ dα exp[iα{(t−

u)2 − (r⃗ − s⃗)2/c2}]. This form may be convenient for the numerical calculation since the

retarded time is eliminated, but at the cost of increasing the dimension of integration.

In passing, some comments on our assumption at the initial time (t = 0) may be in

order. Following Ref. [43], we assume that the parameters and fields which appear in the

equations of motion have been renormalized at t = 0. Specifically, the renormalization has

been performed in a standard manner as me = meB + δme, e =
√
Z3eB, ψ̂(x) = ψ̂B(x)/

√
Z2

and Âµ(x) = Âµ
B(x)/

√
Z3, where “B” in the subscripts denotes a bare parameter or a bare

field, and δme, Z2 and Z3 are the renormalization constants. However, it does not mean

that we do not need renormalization at t > 0. In fact, as is discussed later in this paper,

the electron mass is shown to be increased by including the self-energy process in our time

evolution simulation.
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B. Time evolution of annihilation and creation operators

The time derivative of êna is given by substituting the expansion Eq. (1) into the Dirac

field equation, multiplying by ψ†
na(r⃗), integrating over r⃗, and using the orthonormality con-

dition [29]. This leads to

iℏ
∂êna

∂t
=

ND∑
m=1

∑
b=±

hnamb êmb +

ND∑
m,p,q=1

∑
b,c,d=±

(namb|pcqd)ê†pc êqd êmb

− 1

c2

ND∑
m=1

∑
b=±

3∑
k=1

∫
d3r⃗ d3s⃗ jknamb(r⃗)

ĵkT (cu, s⃗)

|r⃗ − s⃗|
êmb

−
√
4πℏ2√
c(2πℏ)3

ND∑
m=1

∑
b=±

3∑
k=1

∑
σ=±1

∫
d3p⃗√
2p0

[
F k
namb(p⃗)e

k(p⃗, σ)e−icp0t/ℏ âp⃗σ êmb

+F k
namb(−p⃗)e∗k(p⃗, σ)eicp

0t/ℏ â†p⃗σ êmb

]
, (15)

where the various coefficient matrices are defined as follows. In the first term, we define

hnamb = Tnamb +Mnamb +
Nn∑
a=1

(Zae)Vnamb(R⃗a), (16)

where Tnamb is the electronic kinetic energy integral, Mnamb is the electronic mass energy

integral, and Vnamb(R⃗) is the nuclear attraction integral, respectively defined as

Tnamb ≡ −iℏc
∫
d3r⃗ ψ†

na(r⃗)γ0γ⃗ · ∇⃗ψmb(r⃗), (17)

Mnamb ≡ mec
2

∫
d3r⃗ ψ†

na(r⃗)γ0ψmb(r⃗), (18)

Vnamb(R⃗) ≡ (Zee)

∫
d3s⃗

ψ†
na(s⃗)ψmb(s⃗)

|s⃗− R⃗|
. (19)

They originate respectively in the kinetic term, mass term, and the nuclear charge contri-

bution to the scalar potential term.

In the second term of Eq. (15), we define the electronic repulsion integral

(namb|pcqd) ≡ (Zee)
2

∫
d3r⃗ d3s⃗ ψ†

na(r⃗)ψmb(r⃗)
1

|r⃗ − s⃗|
ψ†
pc(s⃗)ψqd(s⃗). (20)

This term originates in the electronic charge contribution to the scalar potential term. The

third and forth terms of Eq. (15) originate in the vector potential term. The former comes

from the retarded part
ˆ⃗
AA (10) and the latter from the free radiation part

ˆ⃗
Arad (9). Finally,

in the forth term of Eq. (15), we define

F k
namb(p⃗) ≡

∫
d3r⃗ jknamb(r⃗)e

ip⃗·r⃗/ℏ. (21)
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C. Time evolution of excitation and ê†âê-type operators

In this paper, we are interested in the time evolution of electronic charge density, and

its operator ρ̂e(x) is expressed by the excitation operator as Eq. (3). Since the excitation

operator carries every time dependence of ρ̂e(x), what we need to know is the time evolution

equation of the excitation operator.

The time derivative of the excitation operator Ênamb (2) can be written as

∂Ênamb

∂t
= (Ômbna)† + Ônamb , (22)

where we define

Ônamb ≡ ê†na

∂êmb

∂t
. (23)

Using Eq. (15), this can be readily obtained as

iℏÔnamb =

ND∑
r=1

∑
e=±

hmbre ê
†
na êre +

ND∑
r,p,q=1

∑
e,c,d=±

(mbre|pcqd)ê†na ê
†
pc êqd êre

− 1

c2

ND∑
r=1

∑
e=±

3∑
k=1

∫
d3r⃗ d3s⃗ jkmbre(r⃗)ê

†
na

ĵkT (cu, s⃗)

|r⃗ − s⃗|
êre

− 1√
2π2ℏc

ND∑
r=1

∑
e=±

∑
σ=±1

∫
d3p⃗√
2p0

[
Fmbrep⃗σ(t)ê

†
na âp⃗σ êre + F∗

rembp⃗σ
(t)ê†na â

†
p⃗σ
êre
]
,

(24)

where we have defined

Fnambp⃗σ(t) ≡
3∑

k=1

F k
namb(p⃗)e

k(p⃗, σ)e−icp0t/ℏ, (25)

to make the expression shorter. For later convenience, we call the second term of Eq. (24)

“four-electron term”, the third term “retarded potential term”, and the forth term “radiation

term”.

Next, we consider the time derivative of the ê†âê-type operators. Since the time derivative

of ê†
mb â

†
p⃗σ
êna is known by taking the Hermite conjugate of that of ê†na âp⃗σ êmb , we only show

the latter below. This can be expressed as

∂

∂t

{
ê†na âp⃗σ êmb

}
= (Q̂mbp⃗σna)† + P̂nap⃗σmb , (26)
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where we define

P̂nap⃗σmb ≡ ê†na âp⃗σ
∂êmb

∂t
, (27)

Q̂nap⃗σmb ≡ ê†na â
†
p⃗σ

∂êmb

∂t
. (28)

Using Eq. (15), we obtain

iℏP̂nap⃗σmb =

ND∑
r=1

∑
e=±

hmbre ê
†
na âp⃗σ êre +

ND∑
r,p,q=1

∑
e,c,d=±

(mbre|pcqd)ê†na âp⃗σ ê
†
pc êqd êre

− 1

c2

ND∑
r=1

∑
e=±

3∑
k=1

∫
d3r⃗ d3s⃗ jkmbre(r⃗)ê

†
na âp⃗σ

ĵkT (cu, s⃗)

|r⃗ − s⃗|
êre

− 1√
2π2ℏc

ND∑
r=1

∑
e=±

∑
τ=±1

∫
d3q⃗√
2q0

×
[
Fmbreq⃗τ (t)ê

†
na âp⃗σ âq⃗τ êre + F∗

rembq⃗τ
(t)ê†na âp⃗σ â

†
q⃗τ
êre
]
, (29)

and

iℏQ̂nap⃗σmb =

ND∑
r=1

∑
e=±

hmbre ê
†
na â

†
p⃗σ
êre +

ND∑
r,p,q=1

∑
e,c,d=±

(mbre|pcqd)ê†na â
†
p⃗σ
ê†pc êqd êre

− 1

c2

ND∑
r=1

∑
e=±

3∑
k=1

∫
d3r⃗ d3s⃗ jkmbre(r⃗)ê

†
na â

†
p⃗σ

ĵkT (cu, s⃗)

|r⃗ − s⃗|
êre

− 1√
2π2ℏc

ND∑
r=1

∑
e=±

∑
τ=±1

∫
d3q⃗√
2q0

×
[
Fmbreq⃗τ (t)ê

†
na â

†
p⃗σ
âq⃗τ êre + F∗

rembq⃗τ
(t)ê†na â

†
p⃗σ
â†q⃗τ êre

]
. (30)

We note that the last term of P̂nap⃗σmb includes the operator product of the form ê†na âp⃗σ â
†
q⃗τ
êre .

This combination of the operators could express a self-energy process, in which the electron

emits a photon and then absorbs it again. The effect of the self-energy process will be

discussed and numerically demonstrated in Sec. IVC.

III. EVOLUTION EQUATIONS FOR DENSITY MATRIX

A. Definition of density matrix

We begin by introducing notations regarding expectation values. We denote the expec-

tation value of the excitation operator with respect to the Heisenberg initial ket |Φ⟩ by

Enamb ≡ ⟨Φ|Ênamb|Φ⟩, (31)
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and call this quantity the density matrix. Below, we sometimes write just brackets around

the operator to denote the expectation value with respect to |Φ⟩, namely, ⟨· · · ⟩ ≡ ⟨Φ| · · · |Φ⟩

where · · · stands for some operators. Since (Ênamb)† = ê†
mb êna = Êmbna , taking the expec-

tation value yields (Enamb)∗ = Embna , showing that the density matrix is a Hermite matrix.

Similarly, we define the expectation value of Eq. (23) as Onamb ≡ ⟨Φ|Ônamb|Φ⟩. Then, since

⟨(Ônamb)†⟩ = (Onamb)∗ = O†
mbna , taking the expectation value of Eq. (22) leads to

∂Enamb

∂t
= O†

namb +Onamb , (32)

which is the time evolution equation for the density matrix.

Using the density matrix, the expectation value of the electronic charge density operator,

Eq. (3), can be written as

⟨Φ|ρ̂e(x)|Φ⟩ =
ND∑

n,m=1

∑
a,b=±

ρnamb(r⃗)Enamb(t). (33)

However, this quantity has a non-zero value when the Heisenberg initial ket is the vacuum,

|Φ⟩ = |0⟩, at t = 0. (Remember that ên− is the positron creation operator.) As is done in

the ordinary QED, this can be remedied by computing the expectation value of the normal-

ordered product of the operators at t = 0. In the case of ρ̂e(x), this can be accomplished

by subtracting the vacuum expectation value of ρ̂e(x) at t = 0. Then, we shall define the

electronic charge density ρe(x) as the expectation value of the electronic charge density

operator after this subtraction. Writing explicitly,

ρe(x) =

ND∑
n,m=1

∑
a,b=±

ρnamb(r⃗)
{
Enamb(t)− E0

namb(t = 0)
}
, (34)

where we define E0
namb ≡ ⟨0|Ênamb|0⟩.

B. Four-electron term and retarded potential term

The four-electron term consists of four electron creation or annihilation operators. We

approximate this term by

⟨ê†na ê
†
pc êqd êre⟩ ≈ ⟨ê†na êre⟩⟨ê†pc êqd⟩ − ⟨ê†na êqd⟩⟨ê†pc êre⟩

= EnareEpcqd − EnaqdEpcre . (35)

13



This decomposition holds exactly for t = 0 and the approximation is motivated by this fact.

In our previous paper Ref. [29], we have only used the first term, and the second term, which

describes the exchange effect, has been omitted.

As for the retarded potential term, since ĵkT is expressed as Eq. (11), it seems to have the

same structure as the four-electron term. However, since ĵkT is computed at the retarded time

and contains a time derivative of the excitation operator, the approximation like Eq. (35)

is not applicable. Thus, we approximate this term by just replacing ĵkT by its expectation

value as

⟨ê†na(t)ĵkT (cu, s⃗)êre(t)⟩ ≈ ⟨ĵkT (cu, s⃗)⟩⟨ê
†
na(t)êre(t)⟩ = J k

T (cu, s⃗)Enare(t), (36)

where we define J k
T ≡ ⟨Φ|ĵkT |Φ⟩. With this approximation, the two space integrations over

r⃗ and s⃗ in the expectation value of the retarded term becomes that of c-number. In this

six-dimensional integration, the retarded time u depends both on r⃗ and s⃗, so the integration

has to be done numerically, which is not practical. To avoid the six-dimensional numerical

integration, we rewrite the expression into the form in which the retarded time is eliminated.

This is done by the same process as the one used to derive Eq. (14). Then, for the expectation

value of the retarded term, we have

− 1

c2

ND∑
r=1

∑
e=±

3∑
k=1

∫
d3r⃗ d3s⃗ jkmbre(r⃗)

J k
T (cu, s⃗)

|r⃗ − s⃗|
Enare(t) =

ND∑
r=1

∑
e=±

IjT [E , Ė ]mbre(t)Enare(t), (37)

where we define

IjT [E , Ė ]mbre(t) ≡ − 1

c3π

ND∑
p,q=1

∑
c,d=±

∫ t

0

du

∫ ∞

−∞
dα exp

(
iα(t− u)2

)
×
{
Ijj,mbrepcqd(α)Epcqd(u) + IjE,mbrepcqd(α)

dEpcqd
dt

(u)

}
, (38)

with

Ijj,mbrepcqd(α) ≡
3∑

k=1

∫
d3r⃗ d3s⃗ jkmbre(r⃗)j

k
pcqd(s⃗) exp

(
−iα(r⃗ − s⃗)2

c2

)
, (39)

IjE,mbrepcqd(α) ≡
3∑

k=1

∫
d3r⃗ d3s⃗ jkmbre(r⃗)E

k
pcqd(s⃗) exp

(
−iα(r⃗ − s⃗)2

c2

)
. (40)

Here, we put [E , Ė ] after IjT for the notation of the integral (38) in order to emphasize that

it depends on the density matrix and its time derivative at times earlier than t. Since the
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functions appearing in Eqs. (39) and (40) are defined by Eqs. (6) and (12), Ijj and IjE are

four-center integrals and analytic formulae can be obtained when the expansion functions

of the Dirac field operator are gaussian functions. We show the integral formulae in the

Appendix B.

C. Radiation term

In this section, we describe two approximation methods for the expectation value of the

radiation term. We first describe the simplest approximation method, which is same as the

one adopted in Ref. [29]. In this approximation, we use

⟨ê†na âp⃗σ êre⟩ ≈ ⟨âp⃗σ⟩⟨ê
†
na êre⟩ = ⟨âp⃗σ⟩Enare , (41)

and, similarly, ⟨ê†na â
†
p⃗σ
êre⟩ ≈ ⟨âp⃗σ⟩∗Enare . This factorization holds exactly for t = 0, when êna

and âp⃗σ commutes, and the approximation is motivated by this fact. We note that this term

may give finite contribution only when the initial photon state is a coherent state, which is

an eigenstate of the photon annihilation operator. Then, combined with the approximations

described in the previous subsection, we obtain

iℏOnamb =

ND∑
r=1

∑
e=±

hmbreEnare +

ND∑
r,p,q=1

∑
e,c,d=±

(mbre|pcqd)
(
EnareEpcqd − EnaqdEpcre

)
+

ND∑
r=1

∑
e=±

IjT [E , Ė ]mbre(t)Enare

− 1√
2π2ℏc

ND∑
r=1

∑
e=±

∑
σ=±1

∫
d3p⃗√
2p0

[
Fmbrep⃗σ(t)⟨âp⃗σ⟩Enare + F∗

rembp⃗σ
(t)⟨âp⃗σ⟩∗Enare

]
.

(42)

This gives us a closed differential equation for the density matrix.

In the second approximation method, we do not use the above factorization. We use

evolution equation for the expectation value of the ê†âê-type operators simultaneously with

one for the density matrix. We first define

Enap⃗σmb ≡ ⟨Φ|ê†na âp⃗σ êmb|Φ⟩. (43)

Note that ⟨Φ|ê†na â
†
p⃗σ
êmb|Φ⟩ = E∗

mbp⃗σna . We next define the expectation value of the operator

P̂nap⃗σmb , Eq. (27), as Pnap⃗σmb ≡ ⟨Φ|P̂nap⃗σmb|Φ⟩. Similarly for the operator Q̂nap⃗σmb , Eq. (28),

15



we define Qnap⃗σmb ≡ ⟨Φ|Q̂nap⃗σmb|Φ⟩. Then, the expectation value of Eq. (24) can be written

as

iℏOnamb =

ND∑
r=1

∑
e=±

hmbreEnare +

ND∑
r,p,q=1

∑
e,c,d=±

(mbre|pcqd)
(
EnareEpcqd − EnaqdEpcre

)
+

ND∑
r=1

∑
e=±

IjT [E , Ė ]mbre(t)Enare

− 1√
2π2ℏc

ND∑
r=1

∑
e=±

∑
σ=±1

∫
d3p⃗√
2p0

[
Fmbrep⃗σ(t)Enap⃗σre + F∗

rembp⃗σ
(t)E∗

rep⃗σna

]
,

(44)

and the time evolution of Enap⃗σmb can be expressed as

∂Enap⃗σmb

∂t
= Q∗

mbp⃗σna + Pnap⃗σmb , (45)

which is obtained by taking the expectation value of Eq. (26).

As for Pnap⃗σmb , the expectation value of the operator product in the second term of

Eq. (29) is approximated to be

⟨ê†na âp⃗σ ê
†
pc êqd êre⟩ ≈ ⟨âp⃗σ⟩

{
⟨ê†na êre⟩⟨ê†pc êqd⟩ − ⟨ê†na êqd⟩⟨ê†pc êre⟩

}
. (46)

In this approximation, we assume that the initial photon state is a number state and not

a coherent state. Then, since ⟨âp⃗σ⟩ = 0, the contribution of this term vanishes. The third

term of Eq. (29) includes the retarded time and its expectation value would be approxi-

mated in the same way as the retarded potential term of Eq. (24). Following the procedure

described below Eq. (36), we have the expression of the form of Eq. (37) with Enare(t) re-

placed by Enap⃗σre(t). The forth term of Eq. (29) includes two four-operator terms, which are

approximated to be

⟨ê†na âp⃗σ âq⃗τ êre⟩ ≈ ⟨âp⃗σ âq⃗τ ⟩⟨ê
†
na êre⟩, (47)

⟨ê†na âp⃗σ â
†
q⃗τ
êre⟩ ≈ ⟨âp⃗σ â

†
q⃗τ
⟩⟨ê†na êre⟩. (48)

Since we do not consider a coherent state for the initial photon state as mentioned above,

⟨âp⃗σ âq⃗τ ⟩ = 0 in the first equation and its contribution vanishes. In the second equation, since

⟨âp⃗σ â
†
q⃗τ
⟩ = (np⃗σ + 1)δ(3)(p⃗− q⃗)δστ , where np⃗σ is the occupation number of the photon mode
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(p⃗, σ) in the initial state, it may give a non-zero contribution. Putting these approximations

together, we have

iℏPnap⃗σmb =

ND∑
r=1

∑
e=±

hmbreEnap⃗σre +

ND∑
r=1

∑
e=±

IjT [E , Ė ]mbre(t)Enap⃗σre

− 1√
2π2ℏc

ND∑
r=1

∑
e=±

1√
2p0

F∗
rembp⃗σ

(t)(np⃗σ + 1)Enare , (49)

when we assume a number state for the photon initial state. The expectation value of

Eq. (30) can be approximated in a similar manner to be

iℏQnap⃗σmb =

ND∑
r=1

∑
e=±

hmbreE∗
rep⃗σna +

ND∑
r=1

∑
e=±

IjT [E , Ė ]mbre(t)E∗
rep⃗σna

− 1√
2π2ℏc

ND∑
r=1

∑
e=±

1√
2p0

Fmbrep⃗σ(t)np⃗σEnare , (50)

where we have used ⟨â†p⃗σ âq⃗τ ⟩ = np⃗σδ
(3)(p⃗− q⃗)δστ .

IV. RESULTS

In this section, we show the results of numerical solution of the time evolution equations

which have been derived in the previous section. The computation is performed for a

hydrogen atom and molecule using the QEDynamics code [44] developed in our group.

In Sec. IVA, we describe our setups for numerical calculation including the initial condition

for the density matrix. The results of two approximation methods discussed in Sec. III C

are respectively presented in Sec. IVB and Sec. IVC.

A. Setups for numerical calculation

To perform numerical calculation, we first need to determine an orthonormal set of ex-

pansion functions to define the electron creation and annihilation operators, as explained

in Sec. IIA. We generate the set by solving the Dirac equation with the four-component

Dirac-Coulomb hamiltonian. They are computed by the publicly available program package

DIRAC [38], using the Hartree-Fock method with the STO-3G basis set. Note that, for

the hydrogen atom in this basis set, we have two (= ND) orbitals for electron and positron
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respectively taking into account the Kramers partners. The density matrix is 4 × 4 matrix

whose components denote electron (1+), its Kramers partner (1̄+), positron (1−), and its

Kramers partner (1̄−). As shown here, we put a bar on the orbital number to denote the

Kramers partner. Similarly, the size of the density matrix for the hydrogen molecule in this

basis set is 8 (ND = 4).

We next explain the initial condition for the density matrix. We choose the initial Heisen-

berg ket |Φ⟩ to be the ground states of the hydrogen atom and molecule, which are obtained

by the above explained computation method. Namely, expressing |Φ⟩ = |Φe⟩⊗ |Φph⟩, where

|Φe⟩ is the electron part and |Φph⟩ is the photon part, we use |Φe⟩ = ê†1+ |0⟩ for the hydrogen

atom, and |Φe⟩ = ê†
1̄+
ê†1+ |0⟩ for the hydrogen molecule. In general, the ground state of a Ne-

electron system in the Hartree-Fock method is expressed as |Φe⟩ =
∏Ne/2

i=1 ê†
ī+
ê†i+|0⟩ when Ne

is even, and |Φe⟩ = ê†((Ne+1)/2)+

∏(Ne−1)/2
i=1 ê†

ī+
ê†i+|0⟩ when Ne is odd. For later use, we here in-

troduce the terminology “occupied” orbitals. If |Φe⟩ contains ê†i+ , the i-th electron orbital is

called “occupied” (i can be with or without bar), and we can write |Φe⟩ =
∏

i=occupied ê
†
i+ |0⟩.

Then, using the anti-commutation relation, the initial condition for the density matrix is

Enamb(t = 0) =


δnm (a = b = +, n : occupied)

δnm (a = b = −)

0 (otherwise)

. (51)

In particular, the vacuum expectation value at t = 0, which is needed to compute Eq. (34),

is

E0
namb(t = 0) =

 δnm (a = b = −)

0 (otherwise)
. (52)

Other numerical details are as follows. We work in the atomic units so that me = e = ℏ =

1, and c = 137.035999679. The 1 a.u. of time corresponds to 2.419×10−17 s or 24.19 as. As

for the positions of the atomic nuclei, we locate them at the origin in the case of the hydrogen

atom, and at (x, y, z) = (0, 0,±0.7) in the case of the hydrogen molecule. For both hydrogen

atom and molecule, we report the electronic charge density at (x, y, z) = (0, 0, 1). To solve

the differential equations, we use the Euler method with the time step 10−9 a.u. In this

paper, we omit the contribution from the retarded potential by setting the integral IjT [E , Ė ],

Eq. (38), to be zero. This integral, including numerical integration, has to be computed at

every time step, and performing this straightforwardly takes too much computational time.
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We shall study an effective approximation method in our future work, and just neglect it in

the present work.

B. Effect of photon coherent state

In this section, we show the results when the first approximation method explained in

Sec. III C is adopted. Namely, we solve the time differential equation (32) using Eq. (42).

As mentioned in the end of Sec. IVA, the third term of Eq. (42), expressing the retarded

potential, is neglected. As for the photon initial Heisenberg ket, when there is no radiation

field, |Φph⟩ = |0⟩, since ⟨âp⃗σ⟩ = 0, the forth term of Eq. (42) is dropped. In fact, ⟨âp⃗σ⟩ = 0

holds when |Φph⟩ is any photon number state. We may have ⟨âp⃗σ⟩ ̸= 0 when |Φph⟩ is a

coherent state, and we study its effect in this section. Since we quantize the radiation field

in the whole space, we consider the continuous-mode coherent state. Following the notation

of Ref. [5], we denote it as |{α}⟩. This is characterized by the eigenvalues of the photon

annihilation operator of each mode (p⃗, σ) as

âp⃗σ |{α}⟩ = α(p⃗, σ)|{α}⟩, (53)

where α(p⃗, σ) is called spectral amplitude [5]. In this paper, we use the delta-function type

spectral amplitude and its center is chosen to be a mode (p⃗j, σj), as

α(p⃗, σ) = αjδ
(3)(p⃗− p⃗j)δσσj

. (54)

Such photon state corresponds to a classical oscillating electromagnetic field whose propa-

gating direction is p⃗j, direction of circularly polarization is σj, and amplitude is proportional

to αj. The period of the oscillations is determined by p0 = |p⃗j| as 2π/(p0c).

We first show the results when there is no initial radiation field. The case of the hydrogen

atom is shown in the upper panel of Fig. 1 and the case of the hydrogen molecule is in the

upper panel of Fig. 2. In these figures, the variation of the electronic charge density from

its initial value is plotted. The common feature is the oscillations with very short period of

about 1.7× 10−4 a.u. As has been argued in Ref. [29], since this is very close to the period

which is determined from twice the mass of electron, 2π/(2mec
2) = 1.67 × 10−4, it can be

interpreted as the fluctuations originated from virtual electron-positron pair creations and

annihilations. Hence, we call this phenomenon the “electron-positron oscillations” [29]. In
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Ref. [29], we show this using the hydrogen atom. In this paper, we show that the electron-

positron oscillations occur similarly for the hydrogen molecule, and expect that we find them

universally for any atomic and molecular systems.

We next show the results when the initial photon state is a coherent state. We choose its

spectral amplitude to be the form expressed by Eq. (54) with p⃗j/|p⃗j| = (1, 0, 0) and σj = +1.

We compute the cases with p0 = 10 and 20 for each hydrogen atom and molecule. The case

of p0 = 10 (20) is shown in the middle (lower) panel in Figs. 1 and 2. In these panels,

we can see that the electron-positron oscillations with the short period are modulated by

the longer period oscillations which are caused by the external oscillating electromagnetic

field. In fact, the periods of the modulating oscillations seen in the panels for p0 = 10

in both hydrogen atom and molecule are close to 2π/(p0c) = 4.59 × 10−3 a.u. Similarly,

in the panels for p0 = 20, we see the periods of the modulating oscillations are close to

2π/(p0c) = 2.29 × 10−3 a.u. We note that we have tuned the value of αj for each case, in

order to make these effects visible clearly. We have chosen αj = 103 (104) when p0 = 10 (20)

for the hydrogen atom and αj = 2× 104 (105) when p0 = 10 (20) for the hydrogen molecule.

We note that whether this “electron-positron oscillations” is a real physical phenomenon

or an artifact of our model is an open question. We can say with certainty that the electron-

positron oscillations are caused by including the positron solutions in our expansion func-

tions for the Dirac field operator (so they do not take place if we model the electron by

the Schrödinger field), and, in fact, (1+, 1−)-component of the density matrix oscillates in

the case of the hydrogen atom simulation. However, it is also true that the results are ob-

tained with several approximations and some ingredients of QED are missing. In particular,

including the retarded potential may affect the electron-positron oscillations.

C. Effect of electron self-energy

In this section, we show the results when the second approximation method explained

in Sec. III C is adopted. Namely, we solve time differential equations (32) and (45) using

Eqs. (44), (49) and (50). As in Sec. IVB, the terms which originate from the retarded

potential are neglected. As for the photon initial Heisenberg ket, we assume that there is

no radiation field, |Φph⟩ = |0⟩, in this section. Therefore, the occupation number is zero for

every photon mode (p⃗, σ), np⃗σ = 0. However, even in such a case, as is expressed by the
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factor (np⃗σ +1) in the third term of Eq. (49), every photon mode contributes to the radiation

term. This is reasonable because, as is mentioned in the end of Sec. II C, this term comes

from a self-energy process of the electron, in which the electron emits a virtual photon and

then absorbs it again. This virtual photon could have any momentum.

Before showing our results, we explain here the numerical details regarding the discretiza-

tion of the photon modes. We have to discretize the index p⃗σ in Enap⃗σmb to perform numerical

calculation. We adopt the spherical coordinate system (p0, θ, ϕ) to express p⃗ and use equally

spaced grid points for each coordinate whose numbers are denoted by Np0 , Nθ and Nϕ respec-

tively. One more parameter we need to specify is the maximum of p0, denoted by p0max. We

first set Nθ = 5 and Nϕ = 4, and compare the case with (p0max, Np0) = (10, 10) and the case

with (p0max, Np0) = (20, 20). Since the results do not change, we adopt (p0max, Np0) = (10, 10)

in the following. As for the choice of (Nθ, Nϕ), the result with (Nθ, Nϕ) = (7, 8) is slightly

different from the case with (Nθ, Nϕ) = (5, 4), but it is almost same as the result with

(Nθ, Nϕ) = (11, 10). Therefore, in summary, we adopt (p0max, Np0 , Nθ, Nϕ) = (10, 10, 11, 10)

as the photon-mode discretization parameters.

The results are shown in Fig. 3, the upper panel for the hydrogen atom and the lower

panel for the hydrogen molecule. As in Sec. IVB, the variation of the electronic charge

density from its initial value is plotted. In each panel, the solid red line shows the result

without the self-energy process and the green dashed line shows one including the self-energy

process. Note that computation for the case without the self-energy process is same as the

one described in Sec. IVB. However, in Fig. 3, the results are multiplied by 104 for the

hydrogen atom and by 102 for the hydrogen molecule in order to make easy the comparison

with the case including the self-energy process. In the figure, we see the electron-positron

oscillations still take place when we include the self-energy process for both hydrogen atom

and molecule. However, the period of the oscillations is slightly shorter than the case without

the self-energy process. We have mentioned earlier that this rapid oscillations are originated

from virtual electron-positron pair creations and annihilations and their period is inversely

proportional to the electron mass. Therefore, decrease in the period implies increase in the

electron mass. This is reasonable because the electron mass should be increased by including

the self-energy process.

We note that this “increase” in the electron mass is not the physical reality. The self-

energy of the electron is the interaction energy between the electron and the electromagnetic
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field which is originated from the electron itself [40, 42]. (It exists for either classical or quan-

tum electrodynamics.) Since this is something we cannot remove from the electron, the total

energy including the self-energy is considered to give the observed electron mass. This is

the idea of the (mass) renormalization. Although the method of the renormalization is

well-established for the ordinary perturbative QED, since it is based on the notion of the

asymptotic states, which exist in the infinite past and future, it is not straightforwardly

applicable to our QED simulation in which finite time evolution is followed. We have suc-

ceeded in extracting the self-energy of the electron in our simulation. Our next task is how

to renormalize the “increase” in the electron mass, and this will be studied in our future

work.

In the end of this section, we shall make comments on the self-energy effect. Although the

change in the period of the electron-positron oscillations can be interpreted as the electron

mass shift due to the self-energy effect, one may wonder why the shift is not infinite as in the

ordinary QED. One reason is that we have truncated the infinitely many hierarchy of time

evolution equations of operators at the level of ê†âê-type operator. We would have a greater

self-energy effect by considering the time evolution equation of higher order operators such

as the ê†ââ†ê-type operator, which appears in the last term of Eq. (29). Another reason

is that we have only included localized wavepackets for the expansion functions in Eq. (1).

During the self-energy process, when the electron emits the virtual photon, the electron

could be in an unbounded state as a virtual particle, but such a state cannot be expressed

by our present expansion functions. In order to improve this point, we may add plane wave

functions to the expansion functions to express continuum modes.

V. CONCLUSION

In this paper, we have discussed a method to follow the step-by-step time evolution of

atomic and molecular systems based on QED. Our strategy includes expanding the electron

field operator by localized wavepackets to define creation and annihilation operators and

following the time evolution using the equations of motion of the field operator in the

Heisenberg picture. Under the BO approximation, we have first derived a time evolution

equation for the excitation operator, which is the product of two creation or annihilation

operators. We need this operator to construct operators of physical quantities such as the
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electronic charge density operator. We have then described our approximation methods to

obtain time differential equations of the electronic density matrix, which is defined as the

expectation value of the excitation operator.

In particular, we have presented two approximation methods for the expectation value of

the radiation term, which includes the ê†âê-type operators. One is to factorize their expec-

tation values into the expectation value of the excitation operator and that of the photon

creation or annihilation operator, and has been used to study the effect of external oscil-

lating electromagnetic field by setting the initial photon state as a coherent state. Another

is to solve the time evolution equation of the ê†âê-type operators simultaneously with that

of the excitation operator, which enables us to include the self-energy effect of the electron.

By solving these equations numerically, we have shown the electron-positron oscillations

appear in the charge density of a hydrogen atom and molecule, for the cases both with

and without including the self-energy process. We have also shown that the period of the

electron-positron oscillations becomes shorter by including the self-energy process, and it

can be interpreted as the increase in the electron mass due to the self-energy.

Although the results obtained in this paper can be reasonably interpreted so far, there

are many things to incorporate for establishing the time evolution simulation method of

atomic and molecular systems based on QED. Two important points which are not included

in the present work are computation of the retarded potential and renormalization of the

electron mass. As for the retarded potential, its computation is likely to be achieved by using

the gaussian integral formulae which have been derived in the Appendix, although we need

efficient approximation and storage methods. As for the electron mass renormalization, we

shall develop a different method from that of the ordinary QED, because our renormalization

should also be performed step-by-step in time. Specifically, we may need a time-dependent

renormalization factor. These issues will be addressed in our future works and incorporated

in our computation code.
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Appendix A: QED Hamiltonian operator and energy

The QED Hamiltonian density operator ĤQED(r⃗) [28, 33] can be expressed by a sum of

the electromagnetic field energy density operator Ĥγ(r⃗) and the energy density operator of

electron Ĥe(r⃗) (Ref. [33], Eqs. (3.4) and (3.5)). The QED Hamiltonian operator can be

written as ∫
d3r⃗ĤQED(r⃗) =

∫
d3r⃗

[
1

2
Â0ρ̂+

1

8π

(
1

c

∂
ˆ⃗
A

∂t

)2

− 1

8π
ˆ⃗
A · ∇2 ˆ⃗A

+c ˆ̄ψ

{
−iℏγ⃗ ·

(
∇⃗ − i

Zee

ℏc
ˆ⃗
A

)
+mec

}
ψ̂

]
, (A1)

in the Coulomb gauge. This can be expressed using the creation and annihilation operators

by substituting Eqs. (1), (7), (8), (9), and (10). Since the terms involving
ˆ⃗
A cannot be

put in a simpler form due to the existence of the retarded time, we show the Hamiltonian

operator expressed by the creation and annihilation operators under the electrostatic limit,
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namely
ˆ⃗
A = 0,∫

d3r⃗ĤQED,electrostatic(r⃗)

=

ND∑
n,m=1

∑
a,b=±

hnamb Ênamb +
1

2

ND∑
n,m,p,q=1

∑
a,b,c,d=±

(naqd|mbpc)ê†na ê
†
mb êpc êqd , (A2)

where the coefficient matrices are defined in Eqs. (16) and (20). Here, we have excluded

some terms which are infinite constants.

By taking the expectation value of the normal-ordered product of Eq. (A2) with respect

to the Heisenberg ket, we can obtain the energy of the system under the electrostatic limit,

EQED,electrostatic. When the Heisenberg ket is assumed to be the one introduced in Sec. IVA,

at t = 0, it gives the ordinary DHF energy as

EQED,electrostatic =

ND∑
n=1

∑
a=⊕

hnana +
1

2

ND∑
n,m=1

∑
a,b=⊕

{
(nana|mbmb)− (namb|mbna)

}
, (A3)

where ⊕ denotes the occupied electron orbitals.

Appendix B: Molecular integral formulae for retarded potential term

When we compute the retarded potential term as described in Sec. III B, we need two

types of four-center integrals shown in Eqs. (39) and (40). To our knowledge, gaussian

integral formulae which are needed to compute them are not seen in literature. In the

present paper, the retarded potential term is neglected as explained in Sec. IV, but we

shall derive the formulae in this section for convenience of future works. The formulae and

derivation here are based on a method described in Ref. [45].

Let us write an unnormalized gaussian function whose center is on A⃗ and exponent is αA

as

g̃(r⃗; A⃗, αA, n⃗) ≡ (x− Ax)
nx(y − Ay)

ny(z − Az)
nze−αA|r⃗−A⃗|2 . (B1)

Then, we need the integral of the form∫
d3r⃗ d3s⃗ g̃(r⃗; R⃗i, αi, n⃗i)g̃(r⃗; R⃗j, αj, n⃗j)g̃(s⃗; R⃗k, αk, n⃗k)g̃(s⃗; R⃗l, αl, n⃗l)θ(r⃗, s⃗), (B2)

with θ(r⃗, s⃗) being

θjj(r⃗, s⃗;α) ≡ exp

(
−iα |r⃗ − s⃗|2

c2

)
, (B3)
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for Eq. (39), and

θkjE(r⃗, s⃗;α) ≡
∫
d3t⃗

{
∂

∂tk
1

|s⃗− t⃗|

}
exp

(
−iα |r⃗ − t⃗|2

c2

)
, (B4)

for Eq. (40). Note that this becomes the usual electronic repulsion integral when θ(r⃗, s⃗) =

1/|r⃗− s⃗|. In the method of Ref. [45], in order to compute the integral of the form Eq. (B2),

we first need to compute

[000|θ|000] =
∫
d3r⃗ d3s⃗ exp

(
−αP |r⃗ − P⃗ |2

)
exp

(
−αQ|s⃗− Q⃗|2

)
θ(r⃗, s⃗), (B5)

where

αP = αi + αj, (B6)

P⃗ =
αiR⃗i + αjR⃗j

αi + αj

, (B7)

αQ = αk + αl, (B8)

Q⃗ =
αkR⃗k + αlR⃗l

αk + αl

, (B9)

and then compute

[NLM |θ|N ′L′M ′]

=

(
∂

∂Px

)N (
∂

∂Py

)L(
∂

∂Pz

)M (
∂

∂Qx

)N ′ (
∂

∂Qy

)L′ (
∂

∂Qz

)M ′

[000|θ|000] . (B10)

Finally, Eq. (B2) is obtained by summation over N , L, M , N ′, L′ and M ′ after multiplying

[NLM |θ|N ′L′M ′] by appropriate coefficients which depend on n⃗i, n⃗j, n⃗k and n⃗l. Thus, we

show below [000|θ|000] and [NLM |θ|N ′L′M ′] for θjj and θ
k
jE.

We first consider the case of α = 0. As for θjj, since θjj(r⃗, s⃗;α = 0) = 1, Eq. (B2) is the

product of two overlap integrals. As for θjE, Eq. (B2) is shown to be divergent.

In the case of α ̸= 0, we can show that

[000|θjj|000] = π3B−3/2 exp
(
−αT |D⃗|2

)
, (B11)[

000|θkjE|000
]
= −4π4B−3/2F1(αT |D⃗|2)Dk, (B12)
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where

D⃗ = P⃗ − Q⃗, (B13)

A =
iα

c2
, (B14)

B = A(αp + αq) + αpαq, (B15)

C = αpαqA, (B16)

αT =

(
1

αp

+
1

αq

+
1

A

)−1

=
C

B
, (B17)

and

Fj(T ) =

∫ 1

0

u2j exp
(
−Tu2

)
du, (B18)

is a function defined in Ref. [45] and its recursion formula is also discussed there.

The differentiation to derive [NLM |θ|N ′L′M ′] can be done in a straightforward manner.

As for θjj, we can show

[NLM |θjj|N ′L′M ′] = π3B−3/2 exp
(
−αT |D⃗|2

)
α

N+L+M+N′+L′+M′
2

T (−1)N+L+M

× HN+N ′(α
1/2
T Dx)HL+L′(α

1/2
T Dy)HM+M ′(α

1/2
T Dz), (B19)

where Hn(x) is a Hermite polynomial of degree n. As for θjE, we can show

[
NLM |θxjE|N ′L′M ′] = −4π4B−3/2(−1)N

′+L′+M ′

×
{
DxR̃N+N ′,L+L′,M+M ′ + (N +N ′)R̃N+N ′−1,L+L′,M+M ′

}
, (B20)[

NLM |θyjE|N
′L′M ′] = −4π4B−3/2(−1)N

′+L′+M ′

×
{
DyR̃N+N ′,L+L′,M+M ′ + (L+ L′)R̃N+N ′,L+L′−1,M+M ′

}
, (B21)[

NLM |θzjE|N ′L′M ′] = −4π4B−3/2(−1)N
′+L′+M ′

×
{
DzR̃N+N ′,L+L′,M+M ′ + (M +M ′)R̃N+N ′,L+L′,M+M ′−1

}
.(B22)

Here, we have defined

R̃NLM =

(
∂

∂Dx

)N (
∂

∂Dy

)L(
∂

∂Dz

)M

F1(T ), (B23)

where T = αT (D
2
x + D2

y + D2
z). For generating a table of all R̃NLM up to some maximum

N + L+M , recursion relations discussed in Ref. [45] can be applied. In particular, we can

29



use the recursion relation for the more general integral RNLMj,

RNLMj = (−α1/2
T )N+L+M(−2αT )

j

×
∫ 1

0

uN+L+M+2jHN(α
1/2
T Dxu)HL(α

1/2
T Dyu)HM(α

1/2
T Dzu)e

−Tu2

du, (B24)

through the relation

R̃NLM =
RNLM1

−2αT

. (B25)

The details of the recursion relations and efficient numerical techniques are found in Ref. [45].
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FIG. 1: Time evolution of the charge density of the hydrogen atom at (x, y, z) = (0, 0, 1). The

variation from the initial value is plotted. The upper panel shows the result when there is no

photon in the initial state. In the middle and lower panels, the initial photon states are chosen to

be coherent states with the photon modes whose energy is p0 = 10 and 20 respectively. In both

cases, they are chosen to be circularly polarized in the positive direction and have momenta in the

direction of x-axis positive. See the texts for other details.
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FIG. 2: Similar to Fig. 1 for the hydrogen molecule.
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FIG. 3: Time evolution of the charge density of the hydrogen atom (upper panel) and molecule

(lower panel) at (x, y, z) = (0, 0, 1). The variation from the initial value is plotted. There is no

photon in the initial state. The cases without and with the self-energy process are respectively

plotted by the red solid lines and green dashed lines in each panel. As for the case without the

self-energy process, to make comparison easily, we plot the values which are multiplied by 104 for

H and by 102 for H2.
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