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Abstract 

The six subtypes of voltage-dependent Ca2+ channels (VDCCs) mediate a wide range of 

physiological responses. N-type VDCCs (NCCs) were originally identified as a high 

voltage-activated Ca2+ channel selectively blocked by omega-connotoxin (ω-CTX)-

GVIA. Predominantly localized in the nervous system, NCCs are key regulators of 

neurotransmitter release. Both pharmacological blockade with ω-CTX-GVIA and, more 

recently, mice lacking CNCNA1B, encoding the α1B subunit of NCC, have been used to 

assess the physiological and pathophysiological functions of NCCs, revealing in part their 

significant roles in sympathetic nerve activation and nociceptive transmission. The 

evidence now available indicates that NCCs are a potentially useful therapeutic target for 

the treatment of several pathological conditions. Efforts are therefore being made to 

develop effective NCC blockers, including both synthetic ω-CTX-GVIA derivatives and 

small-molecule inhibitors. Cilnidipine, for example, is a dihydropyridine L-type VDCC 

blocking agent that also possesses significant NCC blocking ability. As over-activation 

of the sympathetic nervous system appears to contribute to the pathological processes 

underlying cardiovascular, renal and metabolic diseases, NCC blockade could be a useful 

approach to treating these ailments. In this review article, we provide an overview of what 

is currently known about the physiological and pathophysiological activities of NCCs and 

the potentially beneficial effects of NCC blockade in several disease conditions, in 

particular cardiovascular diseases. 
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1. Introduction 

By mediating Ca2+ entry into cells, voltage-dependent Ca2+ channels (VDCCs) play key 

roles in a wide variety of physiological processes, including muscle contraction, Ca2+-

dependent gene transcription, neuronal excitability control and the release of 

neurotransmitters (Augustine, Charlton, & Smith, 1987; Miller, 1987). Based on their 

specific pharmacological characteristics, VDCCs have been classified into six subtypes: 

L, N, P, Q, R and T (Mori, et al., 1996; Varadi, Mori, Mikala, & Schwartz, 1995; Zhang, 

et al., 1993). T-type Ca2+ channels are known to be low voltage-activated channels that 

activate and deactivate slowly, but inactivate rapidly (Carbone & Lux, 1984; Fox, 

Nowycky, & Tsien, 1987; Nowycky, Fox, & Tsien, 1985). T-type Ca2+ channels have been 

implicated in repetitive firing and pacemaker activities in neurons, and in the gradual 

depolarization phase of sinus nodal action potentials in hearts (Mesirca, Torrente, & 

Mangoni, 2014; Perez-Reyes, 2003). In addition, under pathological conditions in the 

heart, ventricular expression of T-type Ca2+ channels appears to be increased and to 

contribute to the development of arrhythmogenicity and pathological cardiac remodeling, 

although there are still controversy about their specific functions (Chiang, et al., 2009; 

Kinoshita, et al., 2009; Kuwahara, Takano, & Nakao, 2005; Le Quang, et al., 2011; 

Nakayama, et al., 2009).  

The other five VDCCs are high voltage-activated (HVA) channels, which are 

activated through membrane depolarization to approximately -40 mV (Mori, et al., 1996). 

Among these, the N-type calcium channel (NCC) is a HVA Ca2+ channel selectively 

blocked by omega-connotoxin (ω-CTX)-GVIA (Olivera, et al., 1985). NCCs are 

expressed in presynaptic nerve terminals, where they, along with P/Q-type Ca2+ channels 

and probably, to a lesser extent, R-type Ca2+ channels, regulate release of 
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neurotransmitters from synaptic vesicles (Dutar, Rascol, & Lamour, 1989; Evans & 

Zamponi, 2006; Hirning, et al., 1988; Ishibashi, Rhee, & Akaike, 1995; Ishikawa, Kaneko, 

Shin, & Takahashi, 2005; Kamp, et al., 2005). Experiments using ω-CTX-GVIA indicate 

that NCCs are important mediators of neurotransmitter release in both the central and 

peripheral nervous systems (Clasbrummel, Osswald, & Illes, 1989; Dutar, et al., 1989; 

Hirning, et al., 1988; Ishibashi, et al., 1995; Pruneau & Angus, 1990). In central neurons, 

for example, NCCs are critically involved in the release of several neurotransmitters, 

including glutamate (Luebke, Dunlap, & Turner, 1993), γ-aminobutyric acid (GABA) 

(Luebke, et al., 1993), acetylcholine (Herdon & Nahorski, 1989; Wessler, Dooley, 

Werhand, & Schlemmer, 1990), dopamine (Dooley, Lupp, Hertting, & Osswald, 1988; 

Horne & Kemp, 1991; Turner, Adams, & Dunlap, 1993; Woodward, Rezazadeh, & Leslie, 

1988) and noradrenaline (Komuro & Rakic, 1992). Likewise, in peripheral neurons, such 

as autonomic and motor neurons, and in spinal cord neurons, NCCs mediate release of 

neurotransmitters from nerve terminals (Hirning, et al., 1988).  

HVA Ca2+ channels are composed of the α1 subunit, which determines the major 

characteristics of each VDCC subtype, and the auxiliary α2/δ, β and γ subunits. Among 

the 10 different genes encoding α1 subunits, which include α1A, α1B, α1C, α1D, α1E, 

α1F, α1G, α1H, α1I and α1S, CACNA1B encodes the α1B subunit, which comprises the 

NCC (Y. Fujita, et al., 1993; Williams, Brust, et al., 1992). The α1B subunit is expressed 

widely in the nervous system, as suggested by experiments using ω-CTX- GVIA (Mills, 

et al., 1994; Takemura, Kiyama, Fukui, Tohyama, & Wada, 1989; Whorlow, Loiacono, 

Angus, & Wright, 1996). Although ω-CTX-GVIA has been used to elucidate 

physiological function of NCCs, ω-CTX-GVIA is a relatively large polypeptide whose 

distribution in tissue is somewhat limited, and it also appears to inhibit certain neuronal 

LCCs (Aosaki & Kasai, 1989; Williams, Feldman, et al., 1992). As an alternative, genetic 
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deletion of CACNA1B is a direct means of defining the physiological function of NCCs 

(Ino, et al., 2001). Using both these pharmacological and genetic approaches, the 

physiological and pathophysiological functions of NCCs have been investigated. This 

article reviews what is currently known about the activities of NCCs and the potential 

organ-protective effects of NCC inhibition in several diseases conditions, focusing in 

particular on cardiovascular diseases and related disorders. 

 

2. N-type calcium channels and their physiological function in sympathetic nerves  

 The physiological functions of NCCs have been studied using ω-CTX-GVIA and by 

generating mice lacking CACNA1B, which encodes the α1B subunit of NCCs (Ino, et al., 

2001). In CACNA1B-null superior cervical ganglion (SCG) neurons, VDCC current 

density is significantly lower than in wild-type SCG neurons. In addition, ω-CTX-GVIA 

-sensitive NCC currents are nearly absent in CACNA1B-null neurons (Ino, et al., 2001), 

suggesting the reduction in VDCC currents in CACNA1B-null SGC neurons is caused by 

the elimination of NCCs induced by deletion of CACNA1B. It also indicates that no other 

VDCC subtype compensates for the loss of NCCs SCG neurons. 

   It has been observed that ω-CTX-GVIA inhibits neurotransmitter release from 

cultured rat sympathetic neurons and in anesthetized cat heart, and suppresses 

sympathetic nerve-mediated positive-inotropic effects in isolated guinea pig atria, which 

suggests NCCs participate in the regulation of sympathetic nerve activity (Hirning, et al., 

1988; Hong & Chang, 1995; Serone & Angus, 1999; Toth, Bindokas, Bleakman, Colmers, 

& Miller, 1993; Vega, De Pascual, Bulbena, & Garcia, 1995; Yahagi, Akiyama, & 

Yamazaki, 1998; Yamazaki, et al., 1997). Consistent with those findings, it was also 

observed that the positive inotropic effect is substantially inhibited (from 35% to 8% of 

basal condition) in isolated atria from NCC knockout (KO) mice. Assuming that the 
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magnitude of the positive inotropic response reflects the amount of norepinephrine 

released from sympathetic nerve endings, these results imply that neurotransmitter release 

from sympathetic nerve terminals is predominantly governed by NCCs. The fact that the 

negative inotropic response remains intact in isolated atria from NCC KO mice indicates 

that channels other than NCCs contribute to parasympathetic nerve activity (Mori, et al., 

2002). With the exception of an altered response in nociception (Hatakeyama, et al., 2001; 

Kim, et al., 2001), NCC KO mice show no functional or anatomical abnormalities in the 

brain (Ino, et al., 2001), indicating the dispensable role of NCCs in the normal 

development of the central nervous system. A study that addressed the developmental 

alterations in the VDCC types governing neurotransmitter release at various central 

synapses showed that P/Q-type channels predominantly mediate synaptic transmission in 

adult mammalian neurons, which may underlie the finding that NCCs are not essential 

for the normal features of central nervous system activity in adult mice (Iwasaki, 

Momiyama, Uchitel, & Takahashi, 2000). On the other hand, the evidence from NCC KO 

mice demonstrates the essential role played by NCC in regulating sympathetic nervous 

system activity. 

 

3. N-type calcium channel inhibitors 

The NCC blocker ω-CTX-GVIA is a 27-amino acid peptide isolated from venom of the 

marine cone snail Conus geographus (Olivera, et al., 1985). Likewise, ω-CTX-MVIIA 

and -CVID isolated from the venom of Conus magnus and Conus catus, respectively, also 

block NCCs. A synthetic ω-CTX MVIIA derivative, known as SNX-111 or ziconotide, 

has been approved by the U.S. FDA for treatment of refractory pain. In addition, 

gabapentin and pregabalin, two GABA analogues without GABAnergic activity used to 

treat neuropathic pain, have affinity for the α2δ VDCC subunit and inhibit trafficking of 
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Cav2.2, the α1 pore forming unit of NCCs, from the cytoplasm to the plasma membrane 

(Cassidy, Ferron, Kadurin, Pratt, & Dolphin, 2014; Lee, 2013). 

A dihydropyridine-type Ca2+ channel antagonist, cilnidipine, has been shown to not 

only block LCCs but to effectively suppress NCC activity at sub-micromolar 

concentrations (Uneyama, et al., 1997). Uneyama compared the inhibitory effects of 

various dihydropyridines on cardiac LCCs in isolated ventricular myocytes with those on 

NCCs in rat SCG neurons (Uneyama, Uchida, Konda, Yoshimoto, & Akaike, 1999). They 

showed that at a concentration of 1 µM all dihydropyridines, except cilnidipine, exert 

little if any inhibitory effect on NCCs. In dorsal root ganglion neurons, by contrast, 

cilnidipine exerted similar inhibitory effects on both LCC and NCC currents, but had no 

effect on P/Q-type Ca2+ channel currents (Fujii, Kameyama, Hosono, Hayashi, & 

Kitamura, 1997). This inhibitory effect of cilnidipine on NCC currents was further 

confirmed in human neuroblastoma cells (Takahara, et al., 2003).  

 

4. N-type calcium channels and hypertension 

Sympathetic nerve activity is a major contributor to the occurrence of hypertension (Julius, 

Schork, & Schork, 1988). NCC inhibition would therefore be expected to exert a 

hypotensive effect (Figure 1). Consistent with that idea, administration of ω-CTX-GVIA 

induces hypotension in some animal models (Bond & Boot, 1992; Pruneau & Angus, 

1990). Unexpectedly, however, Ino et al. reported that NCC KO mice show elevated 

arterial blood pressures and heart rates (Ino, et al., 2001). In that study, the mean arterial 

blood pressure and heart rate were 102±4.3 mmHg and 714±11.5 bpm (means±SEM), 

respectively, in NCC KO mice, whereas they were 77±3.9 mmHg and 625.4±20.0 bpm, 

in wild-type mice. Moreover, administration of ω-CTX-GVIA significantly reduced both 

arterial blood pressure and heart rate in wild-type mice (decreased by 22.6±2.6 mmHg 
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and 158.4±41.3 bpm, respectively), but exerted only marginal effects on arterial blood 

pressure and heart rates in NCC KO mice (decreased by 2.4±1.0 mmHg and 10.3±7.0 

bpm, respectively). In the wild-type mice, increases in mean arterial pressure elicited via 

a carotid baroreflex induced by bilateral carotid artery occlusion were significantly 

suppressed by treatment of ω-CTX-GVIA, but in NCC KO mice carotid baroreflex-

mediated increases in mean arterial pressure were impaired and unaffected by ω-CTX 

GVIA. These results suggest that carotid baroreflex function is primarily mediated by 

NCCs in wild-type mice, and that baroreflex function is greatly impaired in NCC KO 

mice (Ino, et al., 2001). However, the molecular mechanism responsible for the 

paradoxical elevation of basal arterial blood pressure in NCC KO mice described in this 

report remains unclear. Furthermore, Saegusa et al. reported that blood pressures and heart 

rates in NCC KO mice are equivalent to those in control wild-type mice (blood pressures, 

107.3±3.4/59.8±2.6 mmHg for wild-type mice and 111.6±3.5/59.5±2.8 mmHg for NCC 

KO mice; heart rates, 564.3±21.9 bpm for wild-type mice and 547.0±25.8 bpm for NCC 

KO mice) (Saegusa, et al., 2001). In addition, another group reported that heart rates were 

lower in NCC KO mice than wild-type mice (659±13 bpm vs. 712±15 bpm) (Murakami, 

et al., 2007). In our recent study, systolic blood pressures and heart rates did not 

significantly differ between NCC heterozygotic KO mice and wild-type mice, but systolic 

blood pressure was lower in the KO than wild-type mice (91.25±2.78 mmHg vs. 

101.25±7.26 mmHg) (Yamada, et al., 2014). The reason for the inconsistency among 

these results is not known, but mouse backgrounds and/or experimental conditions could 

contribute to differences in the blood pressure phenotype. At present, the contribution of 

NCC activity to physiological blood pressure regulation remains unclear. 

In addition to the potential contribution of NCC expressed in the sympathetic nerve 

to blood pressure regulation, recently it has been reported that NCC is also expressed in 
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vascular endothelial cells (Nishida, et al., 2013).  Angiotensin II-induced, oxidative 

stress-related impairment of endothelium-dependent relaxation of thoracic aorta was 

significantly attenuated in aorta from NCC KO mice.  In addition, cilnidipine, a dual 

NCC and LCC blocker, but not amlodipine, prevented angiotensin II-induced endothelial 

dysfunction. NCC expressed in the vascular endothelial cells may also contributes to the 

regulation of vascular function by modifying endothelial function. 

 

5. Cardioprotective effect of N-type Ca2+ channel blockade 

As overactivation of sympathetic nerve activity underlies the development of several 

cardiovascular disorders, one might expect that the sympatholytic action of NCC 

inhibitors would exert a cardioprotective effect (Cohn, et al., 1984; Julius, 1993; Spalding, 

et al., 1998) (Figure 1). For example, the cardioprotective action of cilnidipine, which 

blocks both NCCs and LCCs, has been evaluated in a rabbit model of myocardial 

infarction. It was found that myocardial interstitial norepinephrine levels during 

ischemia/reperfusion, the size of myocardial infarction, and the incidence of ventricular 

premature contractions were all reduced in animals treated with cilnidipine (Nagai, et al., 

2005). Enhanced sympathetic activity also appears to be an important factor contributing 

to the sudden arrhythmic death associated with chronic heart failure. This is evidenced by 

the finding that treating chronic heart failure with β-blockers reduces the incidence of 

sudden arrhythmic death in patients with chronic heart failure and reduced ejection 

fraction (Jafri, 2004). In addition, we evaluated the contribution of NCCs to lethal 

arrhythmias associated with chronic heart failure using a mouse model of non-ischemic 

cardiomyopathy, the cardiac-specific dominant-negative mutant of neuron-restrictive 

silencer factor (NRSF) transgenic (dnNRSF-Tg) mouse (Kuwahara, et al., 2003; Yamada, 

et al., 2014). dnNRSF-Tg mice develop cardiomyopathy at around 8 weeks of age and 
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then die suddenly due to lethal arrhythmias. We treated dnNRSF-Tg mice with cilnidipine, 

a dual NCC/LCC blocker, or with nitrendipine, a more selective LCC channel blocker, 

and compared the effects on cardiac phenotypes of each drug. Among the untreated 

control group, nitrendipine group and cilnidipine group, only cilnidipine-treated mice 

showed a reduced incidence of malignant arrhythmias and improved survival rates. On 

the other hand, the cilnidipine dose used in this study had no effect on cardiac structure 

or systolic function. Heart rate variability, a marker of the balance of autonomic nervous 

system activities, was significantly disturbed in dnNRSF-Tg mice. As heart rate 

variability predominantly correlates with parasympathetic activities in mice, this indicates 

reduced parasympathetic nervous system activities in these mice (Just, Faulhaber, & 

Ehmke, 2000; Kinoshita, et al., 2009). Furthermore, in dnNRSF-Tg mice urinary 

norepinephrine levels were significantly increased, which is indicative of the increased 

sympathetic nervous system activities in these mice. Cilnidipine treatment mitigated these 

abnormalities in dnNRSF-Tg mice, whereas nitrendipine did not. Genetic titration of 

NCCs in dnNRSF-Tg mice, achieved by crossing dnNRSF-Tg with CACNA1B-null mice, 

also restored cardiac autonomic balance, reduced the incidence of malignant arrhythmias 

and improved survival. The precise mechanisms by which NCC inhibition improved 

parasympathetic activity in these mice model of chronic heart failure are not clear at 

present. However, there are accumulating data indicating that sympathetic nervous 

system and parasympathetic nervous system interacts via multiple mechanisms at both 

the central and peripheral levels of the neurexis. NCC inhibition-induced reduction of 

sympathetic activity may affect these interactions, ameliorating the reduction in 

parasympathetic activity observed in dnNRSF-Tg. 

These results imply the pivotal role played by NCCs in mediating the sympathetic 

nervous system activation that leads to the occurrence of malignant arrhythmias in failing 
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hearts (Nattel, 2014). Intriguingly, although pharmacological inhibition of NCCs using 

cilnidipine did not ameliorate the reduction in cardiac function seen in dnNRSF-Tg mice, 

genetic deletion of NCCs blocked the deterioration of cardiac function. The reasons for 

this difference in the effects on cardiac function are not known. One possibility is that the 

relatively low dose of cilnidipine used in this study was not sufficient to prevent the 

decline in cardiac function. Another possibility is that the NCC inhibition achieved 

through CACNA1B knockdown was more prolonged and more constant than that 

achieved with cilnidipine, which was not started until the mice were 8 weeks of age in 

this study (Yamada, et al., 2014). In addition, the inhibitory effect of cilnidipine on NCCs 

expressed in the brain may also differ from the effect of genetic titration because 

cilnidipine has little ability to cross the blood-brain barrier (Watanabe, Dozen, & Hayashi, 

1995). 

The renin-angiotensin II-aldosterone system (RAAS) plays an important role in the 

development of cardiovascular diseases. One recent report showed that cilnidipine, but 

not amlodipine, suppresses angiotensin II-induced aldosterone production in cultured 

adrenal cells (Aritomi, et al., 2011). In this report, adrenal cells were shown to express 

NCCs, and angiotensin II-induced production of aldosterone was inhibited in the presence 

of ω-CTX-GVIA or cilnidipine, suggesting the involvement of NCCs in aldosterone 

secretion from adrenal cells. In addition to its direct inhibitory effect on aldosterone 

production, NCC blockade may also affect RAAS activity through inhibition of 

sympathetic nerve activity. Renin secretion from juxtaglomerular cells is regulated in part 

by renal sympathetic activity. For instance, β-adrenergic stimulation is known to be a 

powerful stimulus for renin secretion and renin gene expression in juxtaglomerular cells 

in vivo (Holmer, et al., 1997). Dihydropyridine LCC blockers can also stimulate renin 

production in juxtaglomerular cells (Schricker, et al., 1996; Stornello, et al., 1983). In the 
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spontaneously hypertensive rat (SHR)/Ism model, cilnidipine treatment had no effect on 

plasma renin activity or angiotensin II levels, whereas amlodipine increased both. 

Furthermore, cilnidipine and ω-CTX-GVIA each suppressed plasma aldosterone levels, 

but amlodipine did not (Konda, et al., 2009). These suppressive effects on RAAS activity 

may also contribute to the favorable effects of NCC blockade on cardiovascular diseases 

(Figure 1). 

 

6. Renoprotective effect of N-type Ca2+ channel blockade 

In kidney, CACNA1C, encoding the LCC α1C subunit, is preferentially expressed in 

glomerular afferent arterioles, but not in efferent arterioles (Hayashi, et al., 2007). 

Consequently, LCC blockers such as nifedipine cause a greater increase in the glomerular 

filtration rate than in renal plasma flow, and thus increase the filtration fraction 

(Nagahama, Hayashi, Fujiwara, Ozawa, & Saruta, 2000). By contrast, sympathetic 

innervation is distributed along both the afferent and efferent arterioles, so that NCC 

blockade may dilate both afferent and efferent arterioles (Hayashi, et al., 2007; Kon, 

1989) (Figure 1). Cilnidipine, a dual LCC/NCC blocker, predominantly affects the 

afferent arterioles in isolated perfused hydronephrotic kidneys (Nagahama, et al., 2000), 

but in the canine kidney in vivo, cilnidipine elicited substantial dilation of both afferent 

and efferent arterioles (Hayashi, et al., 2007). These results suggest that cilnidipine can 

dilate both afferent and efferent arterioles by blocking NCC expressed in sympathetic 

nervous system in the in vivo settiings. The predominance of the effect of LCC blockers 

on glomerular afferent arterioles could cause glomerular hypertension resulting in renal 

injury. By contrast, Ca2+ channel blockers acting on both afferent and efferent arterioles 

theoretically mitigate glomerular hypertension and thus may exert a beneficial effect on 

the progression of renal injury. Supporting this possibility, cilnidipine reduces glomerular 
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capillary pressure, afferent and efferent arteriolar resistances, urinary albumin excretion 

and glomerular volume, as well as plasma norepinephrine levels in animal renal injury 

models (Konda, Enomoto, Matsushita, Takahara, & Moriyama, 2005; Zhou, Ono, Ono, 

& Frohlich, 2002). In addition, in the SHR/ND mcr-cp model of metabolic syndrome, 

cilnidipine suppressed proteinuria and podocyte injury to a greater degree than did 

amlodipine (Fan, et al., 2010). 

The RAAS suppression induced by NCC blockade may also contribute to its 

renoprotective effect. RAAS makes a critical contribution to the development of 

proteinuria and chronic kidney injury (Ando, 2013). Several clinical trials have shown 

the renoprotective effect of RAAS inhibitors such as ACE inhibitors and angiotensin II 

AT1 receptor blockers in patients with diabetic or non-diabetic nephropathy (Brenner, et 

al., 2001; Lewis, Hunsicker, Bain, & Rohde, 1993; Lewis, et al., 2001; Wright, et al., 

2002). In addition, mineral corticoid receptor antagonists have been shown to ameliorate 

urinary protein and the progression of kidney damage in human clinical studies (Epstein, 

et al., 2006; White, et al., 2003).  

Cilnidipine also exerts an anti-proteinuric effect in hypertensive patients with the 

kidney disease (Kojima, Shida, & Yokoyama, 2004; Rose, et al., 2001), and reduces 

urinary albumin in patients with type II diabetic nephropathy treated with an angiotensin 

receptor blocker (Katayama, et al., 2006). In the multicenter, open-label, randomized 

Cilnidipine versus Amlodipine Randomized Trial for Evaluation in Renal Disease 

(CARTER) trial, cilnidipine was superior to amlodipine for preventing the progression of 

proteinuria in hypertensive patients with chronic kidney disease who were already 

receiving a renin-angiotensin system (RAS) inhibitor (T. Fujita, et al., 2007). These 

studies demonstrate the potential renoprotective effects of cilnidipine. However, in the 

recent SAKURA trial, in which the anti-albuminuric effects of cilnidipine and amlodipine 
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in RAS inhibitor-treated diabetic patients with microalbuminuria were compared, 

cilnidipine did not show greater renoprotection than amlodipine (Ando, et al., 2013). Thus 

cilnidipine may only reduce urinary protein or albumin levels more effectively than LCC 

blockers in hypertensive patients with non-diabetic chronic kidney disease.  

  

7. N-type Ca2+ channel blockade in metabolic diseases 

Metabolic syndrome is a cluster of abnormalities, including hyperglycemia, central 

obesity, dyslipidemia and hypertension. Because several aspects of the ailment appear to 

be associated with sympathetic overactivation (Canale, et al., 2013), it is plausible that 

modulating sympathetic nerve activity is important for effective management of 

metabolic syndrome.  

Insulin secretion from β-cells and glucagon secretion from α-cells in the pancreatic 

islets of Langerhans are both initiated by Ca2+ influx, which is mediated in part through 

NCCs (Barg, Galvanovskis, Gopel, Rorsman, & Eliasson, 2000; Gromada, et al., 1997; 

Komatsu, et al., 1989; Ramanadham & Turk, 1994; Taylor, et al., 2005; Vignali, Leiss, 

Karl, Hofmann, & Welling, 2006; Yang & Berggren, 2005). NCC KO mice fed a normal 

diet show improved glucose tolerance without changes in insulin sensitivity, while NCC 

KO mice fed a high-fat diet exhibit less body weight gain than control wild-type mice 

(Takahashi, et al., 2005). 

 

8. N-type calcium channel in pain transmission and its blockade in refractory pain 

Using both pharmacological and genetic approaches, it has been shown that NCCs play 

an important role in pain pathways. For example, ω-CTX-GVIA blocks the release of 

calcitonin gene-regulated peptide (CGRP) and substance P from primary afferent nerves, 

suggesting NCCs contribute to nociceptive transmission (Holz, Dunlap, & Kream, 1988; 
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Maggi, Tramontana, Cecconi, & Santicioli, 1990; Santicioli, Del Bianco, Tramontana, 

Geppetti, & Maggi, 1992). Supporting this possibility, autoradiography using 

radiolabeled ω-CTX-GVIA revealed spinal localization of NCCs in the surface laminae 

of the dorsal horn, where primary afferent nerves terminate (Kerr, Filloux, Olivera, 

Jackson, & Wamsley, 1988; Takemura, et al., 1989). In addition, selective NCC blockade 

or genetic deletion of NCCs provides analgesia in animal pain models (Adams & Berecki, 

2013). In NCC KO mice, NCC currents are almost completely abolished in DRG neurons, 

nociceptive responses are significantly reduced (Hatakeyama, et al., 2001), and 

neuropathic pain is greatly reduced (Saegusa, et al., 2001). Taken together, these results 

suggest NCC inhibition can be beneficial in reducing pathological pain, and in 2004 the 

U.S. FDA approved a synthetic ω-CTX-MVIIA derivative, ziconotide, for refractory pain 

(Lee, 2013). However, the use of ziconotide has been limited due to its narrow therapeutic 

window, uncomfortable intrathecal administration, severe side effects and cost of 

production (Penn & Paice, 2000). To overcome these limitations, much effort is being 

made to develop other, less toxic, peptide neurotoxins or systemically available small 

molecules that inhibit NCCs for pain control (Yamamoto & Takahara, 2009). 

 

9. Conclusions and future directions 

In this review, we summarized the physiological and pathophysiological actions of NCCs 

and the potentially protective effect of their blockade in several pathological conditions. 

NCCs are predominantly localized in the nervous system, where they are key mediators 

of neurotransmitter release. Both pharmacological and genetic inhibition revealed that 

NCCs are essential for proper sympathetic nerve activation and nociceptive transmission, 

which suggests NCCs could be a useful therapeutic target in several pathological 

conditions. As mentioned in the previous section, ziconotide, a synthetic ω-CTX-MVIIA 
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derivative, has been approved by the U.S. FDA for chronic pain management, but its use 

is limited by undesirable characteristics, such as its narrow therapeutic window, 

uncomfortable intrathecal administration and severe side effects. Other synthetic ω-CTX 

derivatives and small-molecule inhibitors are currently under development, mainly for 

the treatment of chronic and neuropathic pain (Adams & Berecki, 2013). Cilnidipine, a 

dihydropyridine LCC blocker, also blocks NCC activity (Uneyama, et al., 1997). 

Overactivation of sympathetic nervous system is known to be involved in the 

development of hypertension and related cardiovascular, kidney and metabolic disorders. 

NCC blockade exerts a suppressive effect on RAAS activation, which is critically 

involved in the development of these conditions (Dzau, et al., 2006). Thus NCC blockade 

alone or in conjunction with LCC blockade may be beneficial in patients with 

hypertension and cardiovascular and metabolic diseases, which is supported by 

observations in several animal models. In addition, the CARTER trial, in which the 

abilities of cilnidipine and amlodipine to prevent the progression of proteinuria were 

compared in hypertensive patients with chronic kidney disease and already having 

received a RAS inhibitor, showed that cilnidipine was superior to amlodipine (T. Fujita, 

et al., 2007). But in the recent SAKURA trial, in which the anti-albuminuric effects of 

cilnidipine and amlodipine were compared in diabetic patients with microalbuminuria 

having been treated with a RAS inhibitor, cilnidipine failed to show greater renoprotective 

effects than amlodipine (Ando, et al., 2013). Further clinical studies will be needed to 

translate the promising results from animal studies into clinical practice. 
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Figure Legend 

Figure 1. Effects of N-type Ca2+ channel inhibition on the cardiovascular system 
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