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Abstract 1 

Preeclampsia is a multifactorial disorder characterized by heterogeneous clinical manifestations. 2 

Gene expression profiling of preeclamptic placenta have provided different and even opposite 3 

results, partly due to data compromised by various experimental artefacts. Here we aimed to 4 

identify reliable preeclampsia-specific pathways using multiple independent microarray data sets. 5 

Gene expression data of control and preeclamptic placentas were obtained from Gene Expression 6 

Omnibus. Single-sample gene-set enrichment analysis was performed to generate gene-set 7 

activation scores of 9,707 pathways obtained from the Molecular Signatures Database. Candidate 8 

pathways were identified by t-test-based screening using data sets, GSE10588, GSE14722, and 9 

GSE25906. Additionally, Recursive Feature Elimination was applied to arrive at a further 10 

reduced set of pathways. To assess the validity of the preeclampsia pathways, a 11 

statistically-validated protocol was executed using five data sets including two independent other 12 

validation data sets, GSE30186, GSE44711. Quantitative real-time PCR was performed for 13 

genes in a panel of potential preeclampsia pathways using placentas of 20 women with normal or 14 

severe preeclamptic singleton pregnancies (n=10, respectively). A panel of ten pathways were 15 

found to discriminate women with preeclampsia from controls with high accuracy. Among these 16 
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were pathways not previously associated with preeclampsia, such as the GABA receptor pathway, 1 

as well as pathways that have already been linked to preeclampsia, such as the  glutathione and 2 

CDKN1C pathways. The mRNA expression of GABRA3 (GABA receptor pathway), GCLC and 3 

GCLM (glutathione metabolic pathway), and CDKN1C were significantly reduced in the 4 

preeclamptic placentas. In conclusion, ten accurate and reliable preeclampsia pathways were 5 

identified based on multiple independent microarray data sets. A pathway-based classification 6 

may be a worthwhile approach to elucidate the pathogenesis of preeclampsia.  7 
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 Introduction 1 

Preeclampsia is a major cause of maternal and neonatal mortality and morbidity 2 

(Young BC1 et al., 2010).  Preeclampsia is a heterogeneous syndrome in which the 3 

pathogenesis can be diverse among women (Young BC1 et al., 2010). Although the primary role 4 

of the placenta in the pathogenesis of preeclampsia is undisputed, its precise mechanism has yet 5 

to be fully elucidated. Consequently, the only definitive treatment for preeclampsia is delivery of 6 

the placenta, and no other effective therapy has been developed despite decades of extensive 7 

clinical and basic research. Thus, clearly there is an urgent need for clarification of the 8 

pathogenesis of preeclampsia. 9 

Gene expression microarray data is a form of high-throughput genomics data for 10 

thousands of genes in each sample. Microarray-based gene expression profiling has provided 11 

numerous genes and pathways involved in preeclampsia (Sitras V et al., 2009: Winn VD et al., 12 

2009: Tsai S et al., 2011: Louwen F et al., 2012).  For example, Maynard et al. conducted gene 13 

expression profiling of placental tissue from women with and without preeclampsia, and found 14 

soluble fms-like tyrosine kinase 1 (sFlt1) (Maynard SE et al., 2003) to be closely related to the 15 

pathogenesis of preeclampsia. In addition, angiogenesis and immune-response pathways have 16 

been shown to be involved in preeclampsia in most microarray data sets (Sitras V et al., 2009: 17 

Winn VD et al., 2009: Tsai S et al., 2011: Louwen F et al., 2012). However, the genes and 18 

pathways derived from microarray analyses are diverse and even occasionally conflicting in 19 

existing studies (Winn VD et al., 2009: Tsai S et al., 2011: Louwen F et al., 2012). This might be 20 

attributed to sample differences in gestational age, modes of delivery, or experimental artefacts 21 
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such as types of chips and platform, as well as heterogeneous aetiologies or clinical 1 

manifestations. Thus, a single microarray data set may be insufficient to provide meaningful 2 

genes and pathways specific to preeclampsia. Indeed, more robust sets of genes and pathways 3 

have been provided through multiple independent data sets in a wide range of fields such as 4 

cancer research (Sorlie T et al., 2003: Rhodes DR et al., 2004). In the last decade, thousands of 5 

microarray data sets have appeared in public databases, which allow other researchers to confirm 6 

the results of published papers or to permit novel analyses of the data. Nevertheless, few studies 7 

(Moslehi R et al., 2013) have been conducted with the use of multiple data sets to seek genes and 8 

pathways in preeclamptic placentas. We hypothesized that pathways identified based on multiple 9 

independent microarray data sets from studies with large sample sizes were more likely to be 10 

functionally relevant to the pathogenesis of preeclampsia, and could potentially be new 11 

therapeutic targets for preeclampsia. The aim of our study was to provide preeclampsia-specific 12 

pathways using the three largest microarray data sets from four different platforms freely 13 

available in a web database.  14 

 15 

Materials and Methods 16 

Identification of common pathways overlapping three independent data sets in silico 17 

In order to identify potentially relevant pathways to preeclampsia, gene expression data 18 

of control and preeclamptic placentas were obtained from the Gene Expression Omnibus (GEO; 19 

http://www.ncbi.nlm.nih.gov/gds/) as series matrix files. The selection criteria for the datasets 20 

were the datasets from the three largest sample sizes (sample size: GSE10588, 43; GSE14722, 21 
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23; GSE25906, 60) available at GEO DataSets, because the larger sample sizes can yield more 1 

reliable results. A summary of the analysed microarray data sets is shown in Table 1 (Sitras V et 2 

al., 2009: Winn VD et al., 2009: Tsai S et al., 2011: Meng T et al., 2012 : Blair JD et al., 2013). 3 

In GSE14722 study, the same samples were assayed on two different versions of the Affymetrix 4 

U133 arrays.  The HG-U133A Array includes representation of the RefSeq database sequences 5 

and probe sets related to sequences previously represented on the Human Genome U95Av2 Array. 6 

In contrast, the HG-U133B Array contains primarily probe sets representing expressed sequence 7 

tag clusters. Thus, both of the two different versions of the Affymetrix U133 arrays are meant to 8 

be complementary and non-overlapping. HG-U133A and HG-U133B data were therefore 9 

combined for further analysis. Different types of microarray platforms have shown significant 10 

variability when comparing across platforms. Therefore, the three largest data sets from four 11 

different platforms were used for subsequent analysis. Single-sample gene-set enrichment 12 

analysis (ssGSEA) was performed to generate gene-set activation scores (Barbie DA et al., 2009). 13 

The ssGSEA script was obtained from GenePattern 14 

(http://www.broadinstitute.org/cancer/software/genepattern). According to the instructions 15 

described in ssGSEAProjection Documentation, v4 16 

(http://www.broadinstitute.org/cancer/software/genepattern/modules/docs/ssGSEAProjection/4), 17 

GCT files containing the gene expression data were created as input files. Gene sets (8,513 18 

pathways) were downloaded from the Molecular Signatures Database v3.1 19 

(http://www.broadinstitute.org/gsea/downloads.jsp), and a “msigdb.v3.1.symbols.gmt” file, that 20 

consisted of all gene set collections named c1, c2, c3, c4, c5 and c6, was used for ssGSEA. We 21 

http://www.broadinstitute.org/cancer/software/genepattern
http://www.broadinstitute.org/gsea/downloads.jsp
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added sets that combined up- and down-regulated sets derived from the same experimental 1 

condition or publication (option provided by ssGSEA package). The final total was therefore 2 

9,707 pathways. Pathway activation scores in each sample were calculated using R (64 bit, 3 

2.15.1) software (http://www.r-project.org/) using the “ssGSEAProjection.Library.R” and 4 

“common.R” scripts of the ssGSEA package, as shown in Supplementary Table 1. The t-test was 5 

used to compare the pathway activation scores between preeclampsia and control groups. 6 

Candidate preeclampsia pathways were explored using t-test-based screening of the 9,707 7 

pathways on three independent microarray data sets (GSE10588, GSE14722, and GSE25906). In 8 

each data set, 180 pathways with top-ranked pathway activation scores were uniformly selected. 9 

Concordant candidate pathways in at least two data sets were considered as 10 

preeclampsia-specific pathways. 11 

 12 

Validation of potential candidate pathways for preeclampsia in silico 13 

In order to assess the resulting set of pathways on the ability to distinguish between 14 

preeclamptic and control cases, we executed 100 trials of Support Vector Machine (SVM) 15 

modeling and prediction, randomly splitting the samples into equal amounts of training and test 16 

data, for both endpoints for each trial (B. Schçlkopf et al., 2002).  Hence, for example, in the 17 

case of experiments using the GSE10588, GSE14722, and GSE25906 datasets, 37 of the 74 18 

control cases were randomly selected for use as training data, and the remaining 37 were held out 19 

for a prediction test; the 52 preeclampsia cases were handled similarly, and thus a training set 20 

contained 63 example cases along with a test set of 63 cases not included in the training data. 21 
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In each modeling trial, a SVM model was constructed after an automated parameter 1 

grid search using 3-fold cross-validation.  This model was then used to predict the preeclampsia 2 

or control status of each case in the test data, and the model was evaluated using the accuracy 3 

[ (TP+TN) / (TP+FP+TN+FN) ], Area Under the ROC Curve (AUC) on the test data, and 4 

Matthews Correlation Coefficient [ (TP*TN) - (FP*FN) / sqrt ((TP+FP) * (TP+FN) * (TN+FP) * 5 

(TN+FN)) ] (MCC) metrics. 6 

In order to handle the per-batch effects of microarrays and resulting ssGSEA scores, 7 

two normalization procedures were executed for evaluation of modeling and analysis of results.  8 

In both cases, the normalization was done with respect to each pathway (ssGSEA score) using all 9 

samples in the batch processed.  The first normalization procedure was to scale by using the 10 

sample mean and standard deviation, which is also known as the Z-scale transformation [(x – u) 11 

/s, u = sample mean, s = sample standard deviation].  The second normalization procedure was 12 

to apply an affine scaling by using the original range of values and scaling to the range [-1,1]. It 13 

is well known that the SVM algorithm performs better in general when data is scaled, so these 14 

two pathway score transformations are appropriate to the data and algorithm used in the study. 15 

In total, four variations of randomized analysis on the reduced pathway set were 16 

executed.  The reason for this is because we evaluated the statistical performance of modeling 17 

using the GSE10588, GSE14722, and GSE25906 datasets as well as when including the 18 

GSE30186 and GSE44711 studies (total of 5 datasets).  The two types of combined datasets 19 

have nearly identical ratios of preeclampsia to control cases.  For each type of combined dataset, 20 

the two aforementioned normalizations were applied before evaluation. 21 
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 1 

Systematic identification of a reduced set of critical pathways 2 

Next, we executed a further analysis to assess if the focused set of pathways could be 3 

further reduced to an even smaller pathway subset which maintains predictive ability.  For this 4 

purpose, we executed Recursive Feature Elimination (RFE), with a linear kernel Support Vector 5 

Machine as the modeling algorithm and feature (pathway) weighting mechanism (Isabelle Guyon 6 

et al., 2002). In RFE, the sample features are assigned weights during the model construction 7 

process, and features with lower weight are eliminated; this process is recursively done until the 8 

original number of features is reduced to a specified number of features.  In this work, we 9 

eliminated one pathway per RFE pass. 10 

As in the case with the randomized sample modeling, we executed RFE for four 11 

variations of datasets.  The number of pathways was reduced by RFE to 10 for each dataset.  12 

The remaining pathways in each variation were tabulated and considered for their involvement in 13 

preeclampsia.  Further, randomized sample modeling based on the RFE-reduced set of 14 

pathways was executed using the same protocol described above. 15 

As an additional method of examining the results of RFE, we applied 16 

multi-dimensional scaling (MDS) to the further reduced datasets (J.B.Kruskal et al ., 1964). In 17 

short, MDS automatically derives coordinates for a series of datapoints, given a matrix of 18 

distances between each pair of datapoints.  For visualization purposes, we calculated a MDS 19 

solution in two-dimensional space after transforming the post-RFE matrices to per-patient 20 

distances quantified by the standard Euclidean distance metric. 21 
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 1 

Patients and placenta samples 2 

Twenty women with normal and severe preeclamptic singleton pregnancies were 3 

analysed in this study (n=10, respectively; Table 2). Severe preeclampsia was defined as 4 

maternal systolic blood pressure ≥ 160 mmHg and/or diastolic blood pressure ≥ 110 mm Hg in 5 

two consecutive measurements at least six hours apart, and proteinuria ≥ 2 g/24 h after 20 weeks 6 

of gestation. Small for gestational age was defined as relative birth weight less than the 10th 7 

percentile according to Japanese standards. Women with pre-existing chronic hypertension, renal 8 

disease, lupus erythematosus, diabetes or gestational hypertension without proteinuria were 9 

excluded. 10 

Placental villous tissues were obtained immediately after Caesarean section in the 11 

absence of labour at Kyoto University Hospital, Japan. Villous tissues were collected from the 12 

central part of the placenta, and were macroscopically free of infarction or calcification. After 13 

brief rinsing in saline, these tissues were stored in RNAlater (Ambion, Austin, Texas) at -80ºC 14 

until RNA extraction. The study protocol was approved by the Ethics Committee, Graduate 15 

School and Faculty of Medicine, Kyoto University, and written informed consent was obtained 16 

from each patient. 17 

 18 

Quantitative real-time PCR  19 

Total RNA extraction from placental tissues was performed using an RNeasy Mini kit 20 

(QIAGEN, Germantown, Maryland). The quality and quantity of RNA was measured using an 21 
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ND-1000 spectrophotometer (Nanodrop, Wilmington, North Carolina). Reverse transcription of 1 

1 mg RNA was performed using the Rever Tra Ace (TOYOBO, Osaka, Japan). The forward and 2 

reverse primers used for cDNA amplification are shown in Supplementary Table 2. Quantitative 3 

real-time PCR was performed using SYBR premix ExTaqII (Takara Bio, Otsu, Japan) on the 4 

LightCycler 480 Real-Time PCR system (Roche Diagnostics, Mannheim, Germany) as 5 

previously described (Chigusa Y et al., 2013). 6 

 7 

 8 

Results 9 

Pathway analysis based on independent data sets to discover preeclampsia-specific pathways  10 

The results of comprehensive analysis of 9,707 pathways using t-test-based screening 11 

are available at XXXX. Of the top 180 pathways in each data set, only 21 pathways were 12 

common to at least two data sets (Supplementary Table 3). The panel of candidate pathways 13 

included well-known pathways involved in preeclampsia such as glutathione (oxidative stress), 14 

NF-kB (inflammation) and CDKN1C pathways. Moreover, the current study exhibited the 15 

emergence of novel pathways (e.g. GABA receptor and Sonic hedgehog) and potential 16 

susceptibility loci (3q and 4p15) for preeclampsia that have not been reported as being associated 17 

with preeclampsia. All of the genes involved in preeclampsia-specific pathways are shown in 18 

Supplementary Table 4. 19 

 20 

Validation of potential candidate pathways for preeclampsia in silico 21 
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The results of randomized sampling and modeling using the reduced set of 21 1 

pathways are as follows.  The smaller combined dataset (GSE10588, GSE14722, and 2 

GSE25906) had an average accuracy of 84.6% +/- 4.9%, AUC-test of 0.980 +/- 0.014, and MCC 3 

of 0.691 +/- 0.092 using affine scaling; using Z-scaling, they had an average accuracy of 83.2% 4 

+/-4.3%, AUC-test of 0.975 +/- 0.016, and MCC of 0.664 +/- 0.085.  The larger combined 5 

dataset (GSE10588, GSE14722, GSE25906, GSE30186, and GSE44711) had an average 6 

accuracy of 79.9% +/- 4.6%, AUC-test of 0.964 +/- 0.022, and MCC of 0.593 +/- 0.092 using 7 

affine scaling; applying the Z-scale transformation led to average accuracy of 80.8% +/- 4.5%, 8 

AUC-test of 0.965 +/- 0.018, and MCC of 0.616 +/- 0.089.  From these results, we conclude 9 

that either type of normalization provides highly reasonable prediction performance, and the 10 

difference in prediction performance metrics as a function of dataset size is not dramatically 11 

altered.  It suggests that the focused set of pathways related to prediction of preeclampsia is 12 

appropriate. 13 

Randomized sample modeling based on the RFE-reduced set of 10 pathways (Table 3) 14 

was executed and evaluated.  The results using the smaller combined set with affine scaling had 15 

an average accuracy of 86.2% +/- 4.4%, AUC-test of 0.982 +/- 0.014, and MCC of 0.720 +/- 16 

0.090; the smaller dataset with Z-scaling resulted in an average accuracy of 83.6% +/- 4.8%, 17 

AUC-test of 0.976 +/- 0.013, and MCC of 0.669 +/- 0.085.  The larger dataset normalized by 18 

affine scaling had an average accuracy of 82.0% +/- 3.5%, AUC-test of 0.971 +/- 0.015, and 19 

MCC of 0.636 +/- 0.072; Z-scale normalization yielded an average accuracy of 83.1% +/- 3.7%, 20 

AUC-test of 0.973 +/- 0.014, and MCC of 0.660 +/- 0.073.  From such results and comparison 21 



 

 

13 

to the original random sampling experiment using 21 pathways, we observe that the 10 pathways 1 

remaining after RFE-SVM analysis continue to have a high discriminative ability for 2 

preeclampsia.   3 

In Figure 1, the results of RFE-SVM analysis using the Z-scale transformation on the 4 

smaller combined dataset are shown.  It is evident from the figure that the reduced set of 10 5 

pathways is discriminative for preeclampsia, and motivates further study on the individual 6 

pathways and their involvement.  A further analysis of only the preeclampsia patients in which 7 

they are clustered using the cosine distance with complete linkage is given as Supplementary 8 

Figure 1.  Additionally, the original set of 9707 pathways visualized by means of MDS could 9 

not result in clearly distinguishable patient groups, but MDS visual analysis was much more 10 

successful with the reduced set of 10 pathways (see Supplementary Figure 2). 11 

 12 

Quantitative real-time PCR for genes in preeclampsia-specific pathways  13 

To validate the results obtained from pathway analysis, the expressions of selected 14 

genes involved in the glutathione metabolic pathway (GCLC and GCLM), CDKN1C pathway 15 

(CDKN1C), and GABA receptor pathway (GABRA3) were analysed by quantitative real-time 16 

PCR, respectively. The expression of each of these genes was significantly reduced in the 17 

preeclamptic placentas compared to controls (Figure 2), and these findings reinforce the data of 18 

pathway analysis based on independent data sets. 19 

 20 

Discussion 21 
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Preeclampsia has diverse clinical manifestations such as mild or severe preeclampsia, 1 

early or late onset, and presence or absence of foetal growth restriction. Although previous 2 

studies using microarray analysis sought to find differentially expressed genes and pathways in 3 

preeclampsia, their results have been inconsistent (Sitras V et al., 2009: Winn VD et al., 2009: 4 

Tsai S et al., 2011: Louwen F et al., 2012: Meng T et al., 2012: Blair JD et al., 2013). This may 5 

be partly due to small numbers of study participants or differences in the microarray platform. In 6 

the current study, we used the independent data sets with the three largest sample sizes from four 7 

different platforms available as GEO datasets in order to avoid various biases. Initially, we tried 8 

to screen candidate pathways using false discovery rate (FDR). FDR is designed to prevent a 9 

large proportion of false positives, and is commonly used in the analysis of a large number of 10 

distinct variables in multiple samples. In the current case, there was only a single pathway left 11 

(KORKOLA_CHORIOCARCINOMA) common to at least two data sets (FDR<0.25). Thus, we 12 

did not use FDR as a method for screening for candidate preeclampsia pathways. Instead, we 13 

performed t-test-based screening.  14 

We found that t-test-based screening under the following conditions (180 top-ranked 15 

pathways in GSE10588, GSE14722, and GSE25906) of the 9,707 pathways yielded only two 16 

pathways (IL2_UP.V1 and KORKOLA_CHORIOCARCINOMA) common to all of the three 17 

independent microarray data sets, suggestive of the heterogeneous genomic expression in 18 

preeclampsic placentas. Nevertheless, the pathway analysis also revealed that a panel of 21 19 

identified pathways, as well as 10 pathways that were narrowed down using computational 20 

analysis, discriminates preeclamptic placentas from controls in not only the smaller combined 21 
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three data sets used to identify the pathways but also in larger data sets including two 1 

independent data sets despite various gestational ages, mode of delivery, and presence or absence 2 

of labour onset, indicating that these pathways are highly specific to the pathogenesis of 3 

preeclampsia. 4 

To date, a single study alone has been reported with the use of multiple datasets from 5 

multiple data sources to seek genes and pathways involved in preeclampsia, but their study 6 

demonstrated computational analysis alone without sufficient validation (Moslehi R et al., 2013). 7 

Our study seems to have a number of strengths despite the conceptual similarity between their 8 

study and ours. First, our analysis included the largest placenta microarray study in preeclampsia 9 

(GSE25906). Second, we conducted pathway-based screening using a collection of pre-specified 10 

gene sets. Organizing genes into gene sets provides a more intuitive and stable context for 11 

assessing deeper biological insights in preeclampsia, because gene function is collectively 12 

exerted and may vary by environmental stimuli, or disease state. Finally, in order to confirm 13 

screening results, we conducted multiple validation through 100 trials of SVM modeling and 14 

prediction for both the smaller collection of three GSE datasets and the slightly larger collection 15 

of five GSE datasets. We found that results were quite similar regardless of either the collection 16 

and/or the method used to normalize data when compensating for per-batch effects. Additionally, 17 

we applied RFE to arrive at a further reduced set of pathways that contribute to the 18 

discriminative ability of a SVM to distinguish PE from control cases. Via RFE, we selected 10 19 

pathways, and repeated the 100-trial random sampling and evaluation procedure. We found that 20 

performance was similar to the initial 100-trial experiment executed, signalling the importance of 21 
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the pathways selected by RFE. Furthermore, we performed confirmatory quantitative real time 1 

PCR for several selective genes related to candidate pathways using preeclamptic placentas and 2 

controls from our own institution.  In reality, the results of microarray analysis are quite often 3 

unable to be verified in other datasets. Nevertheless, cluster analysis demonstrated that not only 4 

the initially reduced dataset (21 pathways) but also a further reduced dataset (10 pathways) 5 

discriminated preeclamptic placentas from controls irrespective of the smaller or larger dataset, 6 

and irrespective of the pathway score normalization procedure. Taken together, we believe that 7 

the panel of 10 pathways can provide deep biological insights into preeclampsia because our 8 

findings were based on multiple independent microarray data sets and deliberate validation. 9 

Potential candidate functions or pathways that have been reported previously include 10 

angiogenesis, immune, inflammatory, oxidative stress, cell proliferation and differentiation, and 11 

metabolism (Sitras V et al., 2009: Winn VD et al., 2009: Tsai S et al., 2011: Louwen F et al., 12 

2012: Meng T et al., 2012: Blair JD et al., 2013). Consistently, we identified ten 13 

preeclampsia-specific pathways which contained previously described pathways such as 14 

glutathione (Mistry HD et al., 2010), IL2 (Hmai et al., 1997) and CDKN1C (Kanayama N et al., 15 

2002) pathways. Furthermore, we also discovered several novel pathways potentially involved in 16 

the pathogenesis of preeclampsia, such as GABA receptor and Sonic hedgehog pathways. After 17 

executing RFE analysis described above, we found that the GABA receptor, Sonic hedgehog, 18 

and 4p15 pathway were always selected as a relevant pathway. Hence, these newly identified 19 

pathways warrant further investigation. 20 

Glutathione, a predominant intracellular antioxidant, is synthesized in the cytosol in a 21 
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tightly regulated manner. Mistry et al. reported that antioxidant enzyme glutathione peroxidase 1 

(GPx) is reduced in preeclamptic placentae (Mistry HD et al., 2010). In addition, we first found 2 

that GCLC and GCLM, both of which are rate-limiting enzymes in the biosynthesis of 3 

glutathione, were significantly decreased in preeclamptic placentae. Consistent with this, we 4 

previously reported that the activation of Nrf2, a predominant transcriptional factor of both 5 

GCLC and GCLM, was reduced in preeclamptic placentae (Chigusa Y et al., 2012). Furthermore, 6 

this is the first report that GABRA3 are suppressed in preeclamptic placentae. GABA receptors 7 

are associated with oxidative stress-induced apoptosis (Berntsent HF et al., 2013), and the 8 

activation of GABA receptor signalling reduces oxidative stress-mediated damage in liver 9 

(Gardner LB et al., 2012). These findings support the evidence that an impaired antioxidant 10 

defence system in the placenta is related to the pathogenesis of preeclampsia. 11 

Preeclampsia is a multifactorial systemic vascular disorder affecting 5%–8% of all 12 

pregnancies. It has been suggested that immunologic factors cause failure of the trophoblast to 13 

sufficiently invade and remodel maternal uterine arteries at the fetomaternal interface (Redman 14 

CW et al., 2005), and that some are linked to a multifactorial polygenic inheritance with a 15 

genetic component (Redman CW et al., 2005: Arngrímsson R et al., 1999: Lachmeijer AM et al., 16 

2001). A familial predisposition to preeclampsia has been demonstrated through previous studies 17 

which identified susceptibility loci for preeclampsia on 2p, 4q, 9p, 10q, 11q and 22q 18 

(Arngrímsson R et al., 1999: Lachmeijer AM et al., 2001: Laivuori H et al., 2003). In the present 19 

study, the loci on chromosome 3q and 4p15 were newly identified as candidate loci for 20 

preeclampsia. 21 
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Preeclamptic placenta and cancer share a number of common pathways including 1 

angiogenesis, immune, inflammatory, oxidative stress, cell proliferation and differentiation, and 2 

metabolic pathways (Louwen F et al., 2012). Although most cancer is quite heterogeneous in 3 

clinical phenotype as well as pathological findings, a pathway-based classification discovered 4 

subtypes that reflect specific histological properties and clinical outcomes in breast and lung 5 

cancer (Gatza ML et al., 2003: Nevins JR et al., 2011). We anticipate that this is also the case 6 

with preeclampsia. In the current study, some of the 10 pathways showed seemingly opposite 7 

directions and four subtypes may exist in preeclamptic cases (Supplementary Figure 1). For 8 

example, the heatmap of normalized pathway activation scores demonstrated that the Sonic 9 

hedgehog pathway or the glutathione pathway was down-regulated in most, but not all, samples 10 

from preeclamptic placentas. These findings are probably due to the heterogeneity of 11 

preeclampsia, and suggest that the pathway-based classification is likely to be a worthwhile 12 

approach to elucidate the pathogenesis of preeclampsia, and that preeclampsia could be 13 

categorized into clinically meaningful subtypes, including early/late onset, mild/severe 14 

preeclampsia, presence/absence of severe proteinuria, and coincident or not with foetal growth 15 

restriction, based on multiple distinct pathways. If detailed vital information could be obtained in 16 

each data set analysed in the current study, subpopulations of patients with common clinical 17 

manifestations might be identified using the panel of 10 pathways. The present study may be 18 

valuable in the understanding of the heterogeneity of preeclampsia and for providing a 19 

framework to develop rational therapeutic strategies according to pathway-based subtypes. On 20 

the other hand, the major limitation of the study is that this is basically an in-silico study using a 21 
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limited number of data sets including different modes of delivery, and presence or absence of 1 

labour onset. 2 

In conclusion, ten accurate and reliable preeclampsia pathways were identified based 3 

on multiple independent microarray data sets.  4 
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Figure legends 1 

Figure 1. Cluster analysis using a panel of 10 preeclampsia pathways 2 

Heatmap of normalized pathway activation scores using combined dataset (GSE10588, 3 

GSE14722, and GSE25906). The results of RFE-SVM analysis using the Z-scale transformation 4 

are shown. In the heatmap, each column represents one pathway, and each row corresponds to a 5 

sample of placenta. The relative score of each sample to the pathway is represented by a colour. 6 

High and low scores are shown in yellow and blue, respectively. 7 

 8 

Figure 2. Expression of preeclampsia pathway-related genes in placenta 9 

Validation of pathway analysis of microarray data by quantitative real-time PCR. Genes involved 10 

in glutathione metabolic pathway (GCLC and GCLM), CDKN1C pathway (CDKN1C), and 11 

GABA receptor pathway (GABRA3) were significantly down-regulated in the preeclamptic 12 

placentas compared to controls (n=10 in each group, Mann–Whitney U test). Data are shown as 13 

mean relative expression + SEM.  14 

 15 

Supplementary Figure 1. Cluster analysis using a panel of 10 preeclampsia pathways in 16 

cases of preeclampsia 17 

Heatmap of analysis of only the preeclampsia patients in which they are clustered using the 18 

cosine distance with complete linkage on ssGSEA scores normalized using the Z-scale 19 

transformation (GSE10588, GSE14722, and GSE25906).  20 

 21 
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Supplementary Figure 2. MDS visual analysis based on pathways 1 

The reduced set of 10 pathways (upper panel) can discriminate control from preeclamptic 2 

placentas more clearly than the original set of 9707 pathways (lower panel). 3 



Dataset Platform Number of probes Sample size Gestaional age (wks) labored Cesarean delivery Fetal gender Year Reference
17 severe preeclampsia 34.0 ± 3.6 (n=16 †) 5/16 † 11/16 † N/A
26 control 39.6 ± 1.3 (n=21 †) N/A 8/21† N/A

Affymetrix Human Genome U133A Array 22115 12 severe preeclampsia 31.0 ± 4.6 10/12 6/12 N/A
Affymetrix Human Genome U133B Array 22477 11 control (preterm) 32.1 ± 3.3 11/12 2/11 N/A

23 preeclampsia 34.2 ± 3.6 16 induced/23 N/A 10 male, 13 female
37 contol 37.7 ± 2.0 8 induced/37 N/A 21 male, 16 female

6 preeclampsia 36.4 ± 0.9 0/6 6/6 N/A
6 control 39.0 ± 0.7 0/6 6/6 N/A

8 early-onse preeclampsia 32.2 ± 3.5 N/A N/A 6 male, 2 female
8 control 31.4 ± 3.9 N/A N/A 6 male, 2 female

†, Data are shown as described in the article.

Table 1. Summary of analysed microarray data sets

2012

2013

9

10

GSE30186 Illumina HumanHT-12 V4.0 expression beadchip

GSE44711 Illumina HumanHT-12 V4.0 expression beadchip

47231

47231

GSE14722 2009 3

GSE25906 Illumina human-6 v2.0 expression beadchip 48701 2010 4

GSE10588 ABI Human Genome Survey Microarray Version 2 32878 2009 2



Table 3. Preeclampsia-specific pathways based on multiple independent microarray data sets

Pathway
KORKOLA_CHORIOCARCINOMA
BIOCARTA_SHH_PATHWAY
ISHIDA_TARGETS_OF_SYT_SSX_FUSIONS
chr4p15
REACTOME_GABA_RECEPTOR_ACTIVATION
GNF2_CDKN1C
KEGG_BUTANOATE_METABOLISM
IL2_UP.V1
CYCLASE_ACTIVITY
KEGG_GLUTATHIONE_METABOLISM



Figure 1





Supplementary Table 1 

R script for ssGSEA analysis. 
 

 

#ssGSEA R code 

source("common.R") 

source("ssGSEAProjection.Library.R")  

ssGSEA<-ssGSEA.project.dataset( 

    #javaexec, 

    #jardir, 

    input.ds= "Input_file_name.gct", # change the name 

    output.ds= "Output_file_name.gct", # change the name 

    gene.sets.database= "", 

    gene.sets.dbfile.list= "msigdb.v3.1.symbols.gmt", # Geneset.gmt 

    gene.symbol.column= "Description", # Description column contains gene symbol 

names. 

    gene.set.selection = "ALL", 

    sample.norm.type    = "rank", 

    weight              = 0.75, 

    combine.mode        = "combine.add", 

    min.overlap         = 1) 

 



Primer sequences used in quantitative real-time PCR.

Gene Forward Reverse Accession Number
GCLC GGCACAAGGACGTTCTCAAGTG CCATACTCTGGTCTCCAAAGGGTAG  NM_001498.2
GCLM CCCAGATTTGGTCAGGGAGTTTCCA ACTGAACAGGCCATGTCAACTGCA  NM_002061.2
CDKN1C GGCCTCTGATCTCCGATTTCTTCG GGGGCTCTTTGGGCTCTAAATTGG  NM_000076.2
GABRA3 TTTGGGCCATGTTGTTGGGACAGA ACTCTCTGTTGAGCCAGAACGACAC  NM_000808 
GAPDH GAGTCAACGGATTTGGTCGTATTGG GCCATGGGTGGAATCATATTGGAAC  NM_002046.3

Supplementary Table 2



Pathway GSE10588 GSE14722 GSE25906
KORKOLA_CHORIOCARCINOMA 0.0001 0.0000 0.0033
BIOCARTA_SHH_PATHWAY 0.0001 0.3820 0.0014
DACOSTA_UV_RESPONSE_VIA_ERCC3_XPCS 0.0001 0.5785 0.0029
ISHIDA_TARGETS_OF_SYT_SSX_FUSIONS 0.0001 0.8588 0.0069

MEISSNER_NPC_ICP_WITH_H3_UNMETHYLATED 0.0002 0.0008 0.7354

chr4p15 0.0002 0.0097 0.0424
RESPONSE_TO_NUTRIENT_LEVELS 0.0002 0.0013 0.1869

NEGATIVE_REGULATION_OF_RESPONSE_TO_STIMULUS 0.0002 0.0009 0.4361

LIM_MAMMARY_LUMINAL_PROGENITOR_DN 0.0003 0.0106 0.7399
REACTOME_GABA_RECEPTOR_ACTIVATION 0.0005 0.5389 0.0075
KEGG_BUTANOATE_METABOLISM 0.0008 0.0049 0.7086
IL2_UP.V1 0.0008 0.0096 0.0000
CYCLASE_ACTIVITY 0.0008 0.0541 0.0040

DACOSTA_UV_RESPONSE_VIA_ERCC3_XPCS_UP 0.0009 0.8480 0.0016

MANTOVANI_NFKB_TARGETS 0.0009 0.6597 0.0065
GNF2_CDKN1C 0.0110 0.0045 0.0001
MYELOID_CELL_DIFFERENTIATION 0.1252 0.0029 0.0091
chr3q 0.3021 0.0073 0.0004

NEGATIVE_REGULATION_OF_PHOSPHATE_METABOLIC_PROCESS 0.4665 0.0001 0.0079

KEGG_GLUTATHIONE_METABOLISM 0.6358 0.0041 0.0050
PID_P38ALPHABETAPATHWAY 0.9364 0.0036 0.0088

Supplementary Table 6. Preeclampsia-specific pathways based on multiple independent microarray data sets

180 top-ranked pahways in each dataset are shown in bald.



Supplementary Table 7. Genes involved in 21 pathways.

Pathway
KORKOLA_CHORIOCARCINOMA CGA HSD3B1 LEP LHB TFPI XAGE3
BIOCARTA_SHH_PATHWAY DYRK1A DYRK1B GLI1 GLI2 GLI3 GSK3B PRKACB PRKACG PRKAR1A PRKAR1B PRKAR2A PRKAR2B PTCH1 SHH SMO SUFU
DACOSTA_UV_RESPONSE_VIA_ERCC3_XPCS ABCC1 ABCE1 ACAP2 ADCY9 AGFG1 AHDC1 AKAP10 APBB2 ARAP2 ARHGEF10 ASXL1 ATP2C1 ATP8B1 ATRN AVL9 BDNF BICD1 BMPR1A BTRC CDH2 CENPC1 CTIF CUL2 DKK1 DLEU2 DLG1

DOCK4 DOCK9 DST DUSP5 E2F5 EIF2C2 EIF3A FAM155A FAM168A FAM179B FAM193A GPATCH8 GRK5 HEG1 HERC4 HOXB2 IGF1R IL6 INTS3 KIAA0182 KIAA0922 MALT1 MPHOSPH9 MSH6 MTAP MYO9B
NAV3 NFATC3 NFKB1 PCCA PCNT PDLIM5 PDS5B PHF14 PIK3C2A PLCB4 PLCE1 PTEN PTX3 PVRL3 RALGAPB RANBP2 RB1CC1 RPS6KA3 SFMBT1 SLC25A12 SLIT2 SMAD4 SON SOS2 SP100 TERF1
TFPI TGFBR3 TMCC1 TSC22D2 UBXN7 VLDLR VPS13B WDR37 WWP1 ZEB2

ISHIDA_TARGETS_OF_SYT_SSX_FUSIONS B4GALT1 BAX DDIT3 GDF15 HYOU1 NUPR1
MEISSNER_NPC_ICP_WITH_H3_UNMETHYLATED GPT COL6A2 EPN3 EPPK1 EVPL FOXS1 H1FNT KRT85 LECT1 LEP LYL1 MOGAT1 NCKAP5 PAK6 PALM3 PLEKHG4 PPIH PROKR1 S1PR4 SHANK2 TNFRSF13C TSSK3 TUBA3C ZNF599
chr4p15 HGD ANAPC4 ARAP2 ATP1B1P1 ATP5LP3 BST1 C1QTNF7 C4orf52 CC2D2A CCDC149 CCKAR CD38 CLRN2 CPEB2 DCAF16 DHX15 DKFZp547J222 EPPS FAM200B FBXL5 FGFBP1 FLJ39653 FLJ45721 FRA4D GBA3 GPR125

GRXCR1 HLN2 HSP90AB2P KCNIP4 KCNIP4-IT1KLHL5 LAP3 LCORL LGI2 LOC133185 LOC152742 LOC285540 LOC285547 LOC285548 LOC391636 LOC391640 LOC391642 LOC441009 LOC643446 LOC643751 LOC644753 LOC644816 LOC644868 LOC645108 LOC645433 LOC645481
LOC645716 LOC727819LOC727823 LOC729006 LOC729071 LOC729175 MAPRE1P2 MESTP3 MRPL51P1 NCAPG OB4 PARK4 PCDH7 PI4K2B PPARGC1A PROM1 QDPR RBPJ RPL21P46 RPL31P31 RPS7P6 SEL1L3 SEPSECS SLC34A2 SLIT2 STIM2
TAPT1 TBC1D1 TBC1D19 UGDH USP17 ZCCHC4

RESPONSE_TO_NUTRIENT_LEVELS ALB ASNS CARTPT CCKAR CDKN2B CDKN2D CHMP1A ENPP1 ENSA FADS1 GCGR GHRL GHSR GIPR GNAI2 LEP NPY NUAK2 OGT PCSK9 PPARG SREBF1 SST SSTR1 SSTR2 STC1
STC2 TP53 TULP4

NEGATIVE_REGULATION_OF_RESPONSE_TO_STIMULUS CARTPT CHRNA7 FOXP3 GHRL GHSR KLK8 LEP PTPRC SPINK5 TARBP2 TGFB2
LIM_MAMMARY_LUMINAL_PROGENITOR_DN ASPH CERS6 CUX1 DST EPDR1 HSPB8 ITGA5 KCNIP3 KIF3C PLCH2 SCARF2 SEMA3F TBC1D9 TRIM29
REACTOME_GABA_RECEPTOR_ACTIVATION ADCY1 ADCY2 ADCY3 ADCY4 ADCY5 ADCY6 ADCY7 ADCY8 ADCY9 ARHGEF9 GABBR1 GABBR2 GABRA1 GABRA2 GABRA3 GABRA4 GABRA5 GABRA6 GABRB1 GABRB2 GABRB3 GABRG2 GABRG3 GABRR1 GABRR2 GNAI1

GNAI2 GNAI3 GNAL GNB1 GNB2 GNB3 GNG10 GNG12 GNG2 GNG3 GNG4 GNG5 GNG7 GNG8 GNGT1 GNGT2 KCNJ10 KCNJ12 KCNJ15 KCNJ16 KCNJ2 KCNJ3 KCNJ4 KCNJ5 KCNJ6 KCNJ9
KEGG_BUTANOATE_METABOLISM AASC ABAT ACADS ACAT1 ACAT2 ACSM1 ACSM2A ACSM3 ACSM4 ACSM5 AKR1B10 ALDH1B1 ALDH2 ALDH3A2 ALDH5A1 ALDH7A1 ALDH9A1 BDH1 BDH2 ECHS1 EHHADH GAD1 GAD2 HADH HADHA HMGCL

HMGCS1 HMGCS2 L2HGDH OXCT1 OXCT2 PDHA1 PDHA2 PDHB
IL2_UP.V1 AATK ABTB2 ADAM19 AHR AIM2 AK4P3 ALDH4A1 AMIGO2 ANXA2P1 AP3M2 ASCL3 ASPA BMP2 BTC C10orf2 C11orf80 C12orf44 C13orf15 C19orf28 CALML4 CAPN10 CCDC85B CCR4 CD3EAP CD52 CD69

CDC25A CDCP1 CDH3 CISH CLDN5 CNKSR2 CXCL12 CXCL3 DGKG DHRS3 DUSP2 DUSP4 DUSP6 EGR1 EGR2 EGR3 EHD2 ELMO3 ESRP2 EVPL EVX1 F2RL2 FAM57A FLJ11827 FLT1 FLT3LG
FOS FOSL1 FOSL2 FOXP3 FZD5 GABARAPL3 GABRB3 GADD45B GALNT8 GFAP GNRH2 GPT HABP4 HEG1 HK2 HOXA11 HTR4 IFNW1 IL10 IL13 IL18RAP IL1A IL5 INHBB INSR IQCG
IRS1 ITGA9 JUNB KCNA3 KCNE1L KCNG1 KCNK5 KCTD12 KIF13A KIF1C KIF21B KIR2DL5A KLF6 KLRK1 LGALSL LIF LILRB4 LMO3 LOC388796 LOC96610 LRP8 LRRC6 MAFF MAGIX MEGF6 MPP6
NCS1 NR2F2 OR10J1 OR6A2 OR7E47P OSM PAK6 PDE4A PIM1 PIM2 PIP PLEC PLXNA3 PMM2 POLR3G PPAP2C PPP4R4 PQLC2 PRAF2 PRKCD PRR7 PRSS50 PTCH1 PTH1R PTPN7 PUS1
PUS7 PYCRL RAB11FIP1 RAC3 REST RGS16 RGS3 RHBDF2 RHOB RNF144A RNF20 RPA4 RPP25 RRP7B RSPH6A SH2D4A SIGLEC9 SLAMF1 SLC1A5 SLC29A2 SLC2A3 SLC34A1 SLC7A5 SLCO4A1 SOCS1 SOCS2
SPATA2L SPHK1 SPP1 SPRY2 STX11 TAS2R16 TBC1D9 TEX13A TLR3 TM4SF1 TM4SF5 TMEM158 TMPRSS6 TNFAIP8 TNFRSF12A TNFRSF1B TNFRSF21 TNFRSF4 TNFRSF9 TNFSF11 TNFSF14 TPBG TRIB1 TRMU TTTY1 URB2
USH2A USP36 VDR VSNL1 WDR62 WISP3 YRDC ZBTB32 ZNF215 ZNF343

CYCLASE_ACTIVITY PCYT1A ADCY7 ADCY8 ADCY9 GUCY1A2 GUCY1A3 GUCY1B3 GUCY2C GUCY2D GUCY2F RTCD1
DACOSTA_UV_RESPONSE_VIA_ERCC3_XPCS_UP ADO ALDH1B1 CASP3 CCNT2 CDKN1C CTH FBXL14 FRAT2 GLS GSTT2 HAUS3 IFI30 IRF1 LACRT MED6 MPDU1 PCDH9 PDCL RAD9A RPUSD2 SAT1 SRSF9 TERF2 TMX4 TP53 TRIM21

WBSCR22 ZKSCAN1
MANTOVANI_NFKB_TARGETS AP4B1 BCL2 C1S C3 CA2 CASP4 CCDC64 CCL2 CCL7 CDC14B CP CXCL1 CXCL12 CXCL9 DUSP6 FLT1 FSD1 GTF3C1 IGFBP7 IL10 INHBB LATS2 MTRF1 MYC NFKBIZ OPN4

OSMR PLD4 PPP1R1B PRKCE SAA1 SLC16A4 SLC26A9 SLC29A1 SPP1 STEAP4 SYN3 TRIM2 TRPV6 TTYH3 VCAM1 VEGFA ZCWPW1
GNF2_CDKN1C ADAM12 ALPP CAPN6 CDKN1C CRH CYP19A1 EGFL6 GCM1 GDF15 GH2 HSD17B1 HSD3B1 KISS1 LEP MAFF MAN1C1 PAPPA2 PSG1 PSG2 PSG3 PSG4 PSG5 PSG7 PAPPA3 SEMA3B SVEP1

TIMP2
MYELOID_CELL_DIFFERENTIATION ACIN1 ACVR1B ACVR2A ALAS2 CALCA CARTPT CDC42 CDK6 CEBPG CSF1 DYRK3 ETS1 FOXO3 HCLS1 IFI16 IL31RA IL4 INHA INHBA KAT6A KAT8 LDB1 LYN MAFB MMP9 MYH9

NCOA6 PF4 RASGRP4 RPS19 RUNX1 SCIN SNRK SPI1 TM7SF4 ZBTB16 ZNF675
chr3q CBLB CLDN16 CLDN18 HGD PCYT1A SLC33A1
NEGATIVE_REGULATION_OF_PHOSPHATE_METABOLIC_PROCESS CDKN1A CDKN1B CDKN2A CDKN2B CDKN2C CDKN2D IGFBP3 INHA INHBA NF2 NLRP12 PPP2R4 SOCS1
KEGG_GLUTATHIONE_METABOLISM ANPEP G6PD GCLC GCLM GGCT GGT1 GGT5 GGT6 GGT7 GPX1 GPX2 GPX3 GPX4 GPX5 GPX6 GPX7 GSR GSS GSTA1 GSTA2 GSTA3 GSTA4 GSTA5 GSTK1 GSTM1 GSTM2

GSTM3 GSTM4 GSTM5 GSTO1 GSTO2 GSTP1 GSTT1 GSTT2 GSTZ1 IDH1 IDH2 LAP3 MGST1 MGST2 MGST3 ODC1 OPLAH PGD RRM1 RRM2 RRM2B SMS SRM TXNDC12
PID_P38ALPHABETAPATHWAY BLK CCM2 CDC42 DUSP1 DUSP10 DUSP16 DUSP8 FGR FTN HCK LCK YKN MAP2K3 MAP2K4 MAP2K6 MAP3k12 MAP3K3 MAPK11 MAPK14 PAK1 PAK2 PAK3 PPKG1 RAC1 RALA RALB

RIPK1 SRC TAB1 TRAF6 YES1

Genes common to more than one pathway are shown in bald.
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