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Abstract 

Various metals produced from human activity are ubiquitously detected in 

ambient air. The metals may lead to induction and/or exacerbation of respiratory 

diseases, but the significant metals and factors contributing to such diseases have not 

been identified. To compare the effects of each metal and different oxidation states of 

metals on human airway, we examined the viability and production of interleukin (IL)-6 

and IL-8 using BEAS-2B cell line, derived from human airway epithelial cells. Airway 

epithelial cells were exposed to Mn (+2), V (+4, +5), Cr (+3, +6), Zn (+2), Ni (+2), and 

Pb (+2) at a concentration of 0.5, 5, 50, or 500 µM for 24 h. Mn and V decreased the 

cell viability in a concentration dependent manner, and V (+5) tended to have a greater 

effect than V (+4). Cr decreased the cell viability, and Cr (+6) at concentrations of 50 

and 500 μM was more toxic than Cr (+3). Zn at a concentration of 500 μM greatly 

decreased the cell viability, whereas Ni at the same concentration increased it. Pb 

produced fewer changes. Mn and Ni at a concentration of 500 μM induced the 

significant production of IL-6 and IL-8. However, most of the metals including V (+4, 
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+5), Cr (+3, +6), Zn, and Pb inhibited the production of both IL-6 and IL-8. The present 

results indicates that various heavy metals have different effects on toxicity and the 

pro-inflammatory responses of airway epithelial cells, and those influences also depend 

on the oxidation states of the metals.  

 

Key Words: airway epithelial cells, heavy metals, oxidation states of metals, viability, 

pro-inflammatory responses 
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Introduction 

Particulate matter (PM) in the atmosphere is composed of solid and liquid 

materials which contain / elemental carbon (EC), organic carbon (OC), inorganic salts 

and metals. For example, diesel exhaust particles (DEPs) have a carbon core on which 

organic chemical components including polycyclic aromatic hydrocarbons (PAHs) and 

semi-volatile organic compounds (SVOCs), sulfate and nitrate ions, and heavy metals 

are adsorbed.1, 2 Human exposure to these constituents of PM occurs through inhalation, 

which may lead to the induction and/or exacerbation of respiratory diseases such as 

asthma, chronic obstructive pulmonary disease (COPD) and lung cancer.3 However, it is 

not clear which metal compositions contribute to respiratory diseases because PM is an 

aggregate of a particle and a large number of chemicals and metal materials, and 

because the compositions of PM can differ by time and place. 

Previous experimental studies have indicated that not only the insoluble 

fraction but also the soluble fraction in PM contributes to respiratory diseases. In an in 

vitro study, Knaapen et al.4 have suggested that the soluble fraction as well as the 
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insoluble particle fraction induces cellular DNA damage in human alveolar epithelial 

cells (A549). An in vivo study by Adamson et al.5 has demonstrated that instilling the 

soluble fraction to mouse lung produces inflammatory changes and lung injury. The 

water-soluble fraction in PM may contain various metals, and the metals can be one of 

the risk factors which contribute to the development/exacerbation of respiratory 

diseases. 

Various metals emitted from human activity are ubiquitously detected in 

Earth’s atmosphere.6, 7 The metal oxide particles are produced from the combustion of 

fossil fuels and metallurgical activities. They are emitted as fly ash into the atmosphere, 

and may be partly transformed into soluble metals when they co-exist with sulfate and 

nitrate ions.8, 9 The solubility of metals depends on the pH and combustion conditions 

such as temperature and added reagents.10, 11 Epidemiological studies have shown that 

increases in the ambient nickel (Ni) and vanadium (V) concentrations are significantly 

associated with an increased probability of wheezing in young children.12 Decrements in 

lung function indices associated with increasing concentrations of zinc (Zn) and iron 
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(Fe) have been observed in COPD subjects.13 Increases in ambient Zn have been 

associated with increases in asthma emergency department visits and hospital 

admissions among children.14 Hexavalent chromium (Cr+6) has been generally known to 

cause lung cancer.15 Laden et al.16 have reported that Ni, lead (Pb), and sulfur in the 

atmosphere may influence total mortality. However, it has not been fully clarified which 

metals generated from different sources contribute to respiratory health effects. 

In this study, we focused on the effects of relatively soluble metals emitted 

from human activities on human airway epithelial cells. Specially, we compared the 

effects of metals including manganese (Mn), V, Cr, Zn, Ni, and Pb and the effects of 

different oxidation states of metals on cellular viability and pro-inflammatory responses. 

The critical point of the study is to compare different metals and different oxidation 

states under the same condition. 

 

Materials and methods  

Cell culture 
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The BEAS-2B cell line, derived from human bronchial epithelial cells 

transformed by an adenovirus 12-SV40 hybrid virus, was purchased from European 

Collection of Cell Cultures (Salisbury, Wiltshire, UK). Airway epithelial cells were 

seeded in 96-well or 12-well collagen I-coated plates and incubated for 72 h to reach 

semi-confluence in the serum-free medium LHC-9 (Life Technologies, Carlsbad, CA, 

USA) at 37°C in a humidified atmosphere of 5% CO2.  

 

Experimental protocol 

Metals (Sigma Chemical, St. Louis, MO) including Mn, V, Cr, Zn, Ni, and Pb 

(Purity; ≥99.6%) were used in the experiments. Mn was prepared in one oxidation state: 

Mn+2 (MnSO4・n H2O). V was prepared in two oxidation states: V+4 (VOSO4・n H2O) 

and V+5 (V2O5). Cr was prepared in two oxidation states: Cr+3 (Cr (NO3)3・9H2O) and 

Cr+6 (K2Cr2O7). Zn was prepared in one oxidation state: Zn+2 (ZnSO4・7H2O). Ni was 

prepared in one oxidation state: Ni+2 (NiSO4・6H2O). Pb was prepared in one oxidation 

state: Pb+2 (Pb (NO3)2). These metals were prepared in sterilized ultrapure water and/or 
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medium.  

After airway epithelial cells grew to semi-confluence in LHC-9, the cells were 

exposed to metals at a concentration of 0, 0.5, 5, 50, or 500 µM for 24 h. The cell 

viability and the release of interleukin (IL)-6 and IL-8 into the culture supernatants were 

evaluated by WST-1 assay and enzyme-linked immunosorbent assay (ELISA), 

respectively.  

The critical point of this study was to compare the effects of different metals 

under the same experimental condition. Pb2+ and Ni2+ are known to cause low toxicity, 

whereas Cr6+ has high toxicity according to the previous reports.17, 18, 19 The exposure 

time and doses selected for this study were based on the variety of toxicities previously 

reported for the determination of cell viability and pro-inflammatory responses. 

Previous studies also have used similar doses and time points as those of the present 

study to investigate the effects of each metal including Mn+2, V+4, V+5, Cr+6, Zn+2, Ni+2 

on airway epithelial cells (Table 1 and 2). 
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Cell viability 

Cell viability was measured by WST-1 assay using the Premix WST-1 Cell 

Proliferation Assay System (TaKaRa Bio, Shiga, Japan). In brief, WST-1 reagent was 

added to each well of 96-well plate and mixed by gently rocking the plate. Airway 

epithelial cells were incubated with WST-1 reagent at 37°C for 3 h. After incubation, 

absorbance was measured on an iMarkMicroplate Absorbance Reader (Bio-Rad 

Laboratories, Hercules, CA, USA) with the wavelength at 450 nm and a reference 

wavelength at 630 nm. Results are expressed as the percentage of viable cells compared 

to untreated cells (0 µM).  

 

Quantitation of inflammatory proteins in the culture supernatants 

After exposure to metals, the medium was harvested and centrifuged at 300×g for 5 

min to remove floating cells. The final supernatants were stored at −80°C until analysis. 

The levels of IL-6 and IL-8 (Thermo Scientific, Waltham, MA, USA) in the culture 

medium were measured by ELISA according to the manufacturer’s instructions. 
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Absorbance was measured on the iMark Microplate Absorbance Reader with the 

wavelength at 450 nm and a reference wavelength at 550 nm. The detection limits of the 

IL-6 and IL-8 assay were less than 0.8–1.2 pg/mL and 0.5–2.6 pg/mL, respectively. 

 

Statistical analysis 

Data are represented as mean ± standard error of the mean (S.E.M.) for each 

experimental group (n=3–4). Differences among groups were analyzed using the 

Dunnett multiple comparison test (Excel Statistics 2010, Social Survey Research 

Information Co. Ltd., Tokyo, Japan). A p value < 0.05 was considered to indicate a 

significant difference. 

 

Results 

Effects of metals on the viability of airway epithelial cells 

 We investigated the effects of metals on the cellular viability of airway 

epithelial cells after exposure to each metal for 24 h (Fig. 1). Mn+2, V+4 and V+5 
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decreased the cell viability in a concentration-dependent manner, and V+5 tended to 

have a greater effect on cell viability than V+4. Cr+6 and Cr+3 decreased the cell viability, 

and Cr+6 at concentrations of 50 and 500 μM was more toxic than Cr+3. Zn+2 at a 

concentration of 500 μM produced a dramatic decrease in cell viability. In contrast, Ni+2 

at a concentration of 500 μM increased cell viability, whereas Pb+2 showed less change. 

The order of toxicity based on TC50 values (concentration that reduces cell viability to 

50%) was Mn+2 (3.0 µM) > Cr+6 (7.5 µM) > V+5 (36.3 µM) > V+4 (86.8 µM) > Zn+2 

(427.6 µM). Ni+2, Pb+2, and Cr+3 showed low or no inhibition of cellular viability, and 

therefore their TC50 values could not be calculated. 

 

Effects of the metals on cytokine production from airway epithelial cells 

Airway epithelial cells, which have important roles in the physical barrier and 

immunological responses against xenobiotics, are a source of cytokines. We 

investigated the effects of the metals on the pro-inflammatory responses of human 

airway epithelial cells, and we examined the productions of IL-6 (Fig. 2) and IL-8 (Fig. 
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3) after exposure to each metal for 24 h.  

Mn+2 at a concentration of 500 µM elevated the IL-6 release, but the levels of 

IL-6 at the concentrations of 0.5 and 5 µM were significantly lower than the level at 0 

µM. V+4 and V+5 at a concentration of 0.5 µM decreased the release of IL-6 compared to 

0 µM, whereas the levels of IL-6 recovered after exposure at 5 µM, and then the levels 

at concentrations of 50 and 500 µM decreased again. V+5 tended to be more influential 

than V+4. Cr+6 decreased the release of IL-6 in a concentration-dependent manner. Cr+3 

depressed the release of IL-6 except for exposure at a concentration of 50 µM. Zn+2 

concentration-dependently decreased the IL-6 release, and the IL-6 level at the 500 µM 

exposure was below the detection limit. In contrast, Ni+2 at a concentration of 500 µM 

markedly increased the level, whereas Ni+2 at concentrations of 0.5, 5, and 50 µM 

lowered the level of IL-6. Pb+2 inhibited the IL-6 release at all concentrations.  

In the results of IL-8, the IL-8 protein release showed a similar tendency to that 

of IL-6 release. Mn+2 at a concentration of 500 µM greatly elevated the IL-8 release. 

V+4 and V+5 decreased the release of IL-8 in a roughly concentration-dependent manner. 
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V+5 tended to be more influential than V+4. Cr+3 and Cr+6 decreased the release of IL-8 

at all concentrations. The effects of Cr+6 at concentrations of 5, 50 and 500 μM were 

stronger than those of Cr+3. Zn+2 at concentrations of 0.5, 5, and, 50 µM decreased the 

levels of IL-8, and the level at a concentration of 500 µM exposure showed a dramatic 

inhibition. Ni+2 at a concentration of 500 µM produced an extreme elevation of IL-8 

release; the levels of IL-8 at a concentration of 500 µM were 14-fold higher than those 

at 0 µM. Pb+2 at concentrations of 0.5 and 50 µM decreased the IL-8 release.  

Mn+2 and Ni+2 elevated the IL-6 and IL-8 protein releases at 500 µM, at which 

concentration Mn+2 showed inhibition of viability and Ni+2 demonstrated no toxicity. 

The other metals significantly decreased IL-6 and IL-8 protein release. 

 

Discussion  

We found that exposing human airway epithelial cells to some metals affected 

the cell viability and changed pro-inflammatory responses via the expression of IL-6 

and IL-8. The responses of these biomarkers showed differing profiles when exposed to 
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a variety of metals and oxidation states.  

In this study, the order of toxicity based on TC50 values was Mn+2 (3.0 µM) > 

Cr+6 (7.5 µM) > V+5 (36.3 µM) > V+4 (86.8 µM) > Zn+2 (427.6 µM). Ni+2, Pb+2, and 

Cr+3 showed low or no inhibition of cellular viability. It is especially notable that Mn+2 

as well as Cr6+ at low concentrations showed greater toxicity against airway epithelial 

cells cultured in serum-free LHC-9 medium. Although Mn+2 has been known to induce 

the lung inflammation in experimental investigation20, comparative studies among 

various metals are little performed. Our results clarified that Mn+2 is a highly toxic 

metal against airway cells, even among various metals. Riley et al.18 have indicated that 

the ranking of metal toxicity is V+4 (VCl4) > Zn+2 (ZnCl2) > Cu+2 > Ni+2 (NiCl2) > Fe+2 

in a rat lung epithelial cell line (RLE-6TN). In addition, the order of cytotoxicity in 

BEAS-2B cultured in keratinocyte growth medium has been Cd+2 > Cr+6 (CrO3) > Pt+4 > 

Pd+2 (PdSO4)= Pt+2 > Ni+2 (NiCl2) > Rh+3.19  Pascal and Tessier21 have reported that 

Cr+6 (K2Cr2O7) and Mn+2, but not Ni+2, are cytotoxic to BEAS-2B cultured in F-12 

medium with 10% fetal bovine serum. It is difficult to compare the previous studies 
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with our results, because the culture conditions and metal complexes differ. However, 

the results on the ranking of metal toxicity based on TC50 values in the present study 

resembled those of previous studies.18, 19, 21 These results suggest that relatively soluble 

metals in sulfate, nitrate, oxides, and dichromate form which may exist in the 

atmosphere9, 22 have different cellular toxicities among a variety of metals and oxidation 

states of metals. 

IL-6 and IL-8 are pro-inflammatory cytokines induced by environmental 

insults, and they play important roles in inflammation in the respiratory system by 

stimulating lymphocytes, inducing neutrophils recruitment and up-regulating mucin 

secretion.23, 24, 25, 26 Our study focused on non-specific inflammatory responses and cell 

viability in airway epithelial cells rather than specific inflammatory responses by 

immune cells.  Therefore IL-6 and IL-8 were measured as non-specific inflammatory 

response markers. In addition, in our past experiments, IL-6 and IL-8 released from 

BEAS-2B changed in response to some air pollutants such as Asian sand dust 

particles.27 Moreover, the effect of these molecules in vitro correlated well with airway 
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inflammation after in vivo exposure by bronchoalveolar lavage.28 In this study, Ni+2 and 

Mn+2 especially elevated the release of IL-6 and IL-8 among metals.  

Interestingly, although Ni+2 at the high dose increased viability and release of 

IL-6/IL-8, Ni+2 at lower doses resulted in reduced viability and release of IL-6/IL-8. It 

has been reported that exposure to Ni+2 (NiSO4) induces the secretion of IL-8 in airway 

epithelial cells29, and that Ni+2 compounds induce oxidative stress.30 Ni+2 at the high 

dose may cause pro-inflammatory responses via reactive oxygen species (ROS). Ni+2 at 

the high dose may also induce metallothionein which is an antioxidatant and a 

cytoprotective protein against metal toxicities.31 It has been also reported that high 

levels of metallothionein in the nucleus of cells contributes to promoting cell 

proliferation.32 In brief, increased pro-inflammatory responses at the high dose have 

possibility to occur via ROS. Moreover, increased viability may relate with the effects 

of metallothionein induced by Ni+2. On the other hand, Ni+2 at lower doses may not 

produce ROS although the expression of metallothionein may be slightly induced in 

response to Ni+2. Therefore, metallothionein as an antioxidative molecule may scavenge 
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ROS under control conditions, and Ni+2 at lower doses mainly inhibit the release of IL-6 

as shown in the present study. Accordingly, the cellular events at the high dose can be 

different from those at the low doses. 

Mn+2 at a high dose showed inhibition of viability and elevation of IL-6/IL-8 

release. It has been reported that exposure to Mn+2 induces the secretion of IL-6 or IL-8 

in airway epithelial cells21, and that Mn+2 compounds induce oxidative stress.33 Mn at a 

dose of 500 µM showed high toxicity against airway epithelial cells. After Mn induces 

pro-inflammatory protein in the early stages, cell death such as necrosis may happen. 

The other metals significantly decreased IL-6 and IL-8 protein release. The 

inhibitory effect on IL-6 and IL-8 caused by V+4, V+5, Cr+6 and Zn+2 at high 

concentrations may be due to the cytotoxic effect. However, apart from the results 

obtained with high concentrations, the present findings are inconsistent with those of 

previous studies. Some studies have reported that Mn+2, V+4, V+5, Cr+6, Zn+2, Ni+2 (and 

not Cr+3 and Pb+2) induce IL-6 and IL-8 from airway epithelial cells (Tables 1 and 2). 

On the other hand, in this study, Cr+3 reduced cell viability to about 80% at all doses, 
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and depressed IL-6 release except for a concentration of 50 µM. Pb+2 decreased 

IL-6/IL-8 in some doses with no cytotoxicity. Although Cr+3 and Pb+2 are known to 

show low cellular toxicity,17,34 there are few studies showing changes to 

pro-inflammatory cytokines in airway epithelial cells. The discrepancies appear to 

depend on the differences in cells, media, and metal complex forms. Veranth et al.35 

have suggested that the IL-6 response to V+4 (VOSO4) treatments changes when the 

same cells, BEAS-2B, are grown in KGM or LHC-9 medium. In brief, BEAS-2B in 

LHC-9 has shown no response to V+4, whereas BEAS-2B in KGM has produced IL-6. 

The Veranth group has noted that the method of cell passaging, and the exact growth 

factors in the media, are likely to affect both the populations of receptors on the cell 

surface and the intracellular signal transduction. Actually, in addition to the findings 

reported by Veranth et al.35, unchanged response of IL-6 and IL-8 to Ni+2 and decreased 

response of IL-6 to Zn+2 have been also observed. Salnikow et al.29, Carter et al.36, and 

Jaspers et al.37 have shown different IL-8 responses after Ni+2 exposure in different cells 

and media (Table 2). There have also been reports that the IL-6 release in RLE cultures 
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significantly decreases in response to Zn+2 exposure at a concentration of 100 µM, 

which causes < 20% cell death (Table 1; Riley et al.18). Further investigations are 

needed to understand the meanings and the mechanism by which metals decrease IL-6 

and/or IL-8 release. 

We investigated the effect of different oxidation states of V and Cr on human 

airway epithelial cells. V+4 and Cr+3 are known to be more stable compared with V+5 

and Cr+6, respectively. When humans inhale PM, airway epithelial cells may often 

encounter V+4 and Cr+3. In the aqueous in vitro setting, V+5 and Cr+6 may partially 

change into chemical forms of V+4 and Cr+3. In this study, even though they are the 

same element, different oxidation states of V and Cr have demonstrated different 

behaviors in biological reaction.  

V in the atmosphere results from the combustion of residual fuel oil. It has 

been reported that most of the V spectra in the combustion of residual fuel oil closely 

resembles those of VOSO4, and oxide, probably V2O5.8 In present study, V+5 (V2O5) 

tended to be more influential than V+4 (VOSO4). It has been reported that the toxicity 
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caused by the ingestion of V+5 (V2O5) is higher than the toxicity caused by V+4 

(VOSO4).38 However, Pierce et al.39 have reported that the intratracheal instillation of 

V+4 (VOSO4) in rat induces a higher neutrophil influx in bronchoalveolar lavage than 

that of intratracheal instillation of V+5 (V2O5). They have suggested that V+5 (V2O5) 

would dissolve less quickly in surfactant of the lung. The toxicity of V compounds may 

differ by exposure routes (oral or intratracheal instillation) in vivo study. However, in an 

in vitro study using V+4 (VOSO4) and V+5 (Na3VO4), Carter et al.36 have indicated that 

V+4 (VOSO4) and V+5 (Na3VO4) are equally potent in inducing the production of IL-6, 

and V+4 (VOSO4) induces slightly higher levels of IL-8 than V+5 (Na3VO4) in normal 

human bronchial epithelial cells cultured in BEGM media. As mentioned above, the 

differences in oxidation state may also depend on the cell type, culture condition and 

metal complex. The impact of V compounds on pro-inflammatory reactions in the 

human airway has not been clear. Further investigations are needed to understand the 

different behaviors of V+4 and V+5 in biological reaction.  

The oxidation states of Cr which exist in the atmospheric environment are Cr+3 
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and Cr+6. Chemical reactions between Cr+3 and Cr+6 would occur in the aqueous phase 

of PM. The unstable species Cr+6 reduce to Cr+3 under typical atmospheric conditions.40 

Previous studies have suggested that Cr+6 is more toxic than Cr+3 in multiple types of 

cells, and that Cr+6 causes cytotoxicity during the reduction of Cr+6 to Cr+3 in cells.34 

Accordingly, as V+4 and V+5, or Cr+3 and Cr+6 show different responses, it is important 

to understand the effect of the differences in oxidation state on the airway as well as the 

differences in metal element. 

Humans can be exposed to air pollutants containing various metals. However, 

in this test system, we have not examined combinations of metals. The synergistic or 

antagonistic relationships may occur depending on the metal transporter and cell signal 

transduction. Indeed, it has been reported that the simultaneous addition of iron in either 

ferric or ferrous form and nickel completely inhibit IL-8 production in the 1HAEo- 

cells.29 That will be a subject for future analysis. 

In addition to the immortalized BEAS-2B cell line used as an in vitro model, 

we may need studying sensitivity against each metal under conditions which are more 
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close to in vivo such as primary cells. Because BEAS-2B cells have inherent limitations 

in cell culture studies although BEAS-2B is one of cell lines used to evaluate 

biological responses induced by environmental pollutants. For examples, 

Mn-superoxide dismutase activity has been able to be lower in BEAS-2B cells than in 

primary cultures.45 Moreover, BEAS-2B cells in two-dimensional systems fail to 

undergo mucociliary differentiation. Recently, polarized human airway epithelial cells 

in air-liquid interface (ALI) cultures are developing as a respiratory model; they enable 

mucociliary transport. 46, 47 The mucus on the apical side of airway epithelial cells 

protects from environmental stimuli. These characteristics may have impacts on metal 

toxicity as involves the production of reactive oxygen species. Accordingly, in vitro 

exposures using not only BEAS-2B cell lines but also primary cells and/or ALI cultures 

may enable us to compare with real human exposures adequately. 

 

Conclusion 

The present study obtained comparative data among metals. We have found 
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that exposure to various heavy metals results in differing cell toxicity and 

pro-inflammatory responses of airway epithelial cells, and these differences also depend 

on the oxidation states of the metals. The biological reaction of airway epithelial cells to 

metals in the atmosphere can lead to airway damage and the development/exacerbation 

of respiratory diseases.  

It has been reported that ambient PM2.5 increases and/or decreases 

pro-inflammatory protein in airway epithelial cells. 48, 49, 50 The components of ambient 

PM2.5 including metals differ in place and time, which changes the effects on 

respiratory health. In brief, increased and/or decreased pro-inflammatory protein may 

depend on quantity of metals. Accordingly, this study contributes to elucidating 

mechanism by which air pollutants cause/inhibit pro-inflammatory responses in real 

exposed situation. 
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Table 1. Literature evaluation of IL-6 responses against metals under various experimental conditions using airway epithelial cells.  

Cells Medium Metal 
compounds 

Oxidation 
state 

Experimental 
concentrations Period Outcome of 

 IL-6 Citation 

SAEC SAGM ? Mn+2 0.2, 2, 20, 200 µM 6 h Increase 
(Protein) Pascal and Tessier.21  

BEAS-2B LHC-9 VOSO4 V+4 100 µg/cm2 20-22 h No change 
(Protein) Veranth et al.35 

BEAS-2B KGM VOSO4 V+4 100 µg/cm2 20-22 h Increase 
(Protein) Veranth et al.35 

NHBE BEGM VOSO4 V+4 100, 500, 750 µM 2 h Increase 
(Protein) Carter et al.36 

BEAS-2B KGM VOSO4 V+4 80 μg/mL 24 h Increase 
(Protein) Veranth et al.44 

NHBE BEGM NaVO3 V+5 100, 500, 750 µM 2 h Increase 
(Protein) Carter et al.36 

SAEC SAGM K2Cr2O7 Cr+6 0.2, 2, 20, 200 µM 6 h Increase 
(Protein) Pascal and Tessier.21 

BEAS-2B LHC-9 K2Cr2O7 Cr+6 5 µM 72 h Increase 
(mRNA) O’Hara et al.42 

RLE-6TN DME ZnCl2 Zn+2 100, 1000 µM 24 h Decrease 
(Protein) Riley et al.18 

NHBE BEGM NiSO4 Ni+2 100, 500, 750 µM 2 h 
No change 
(Protein)  
data not shown 

Carter et al.36 

[Cells] SAEC: Normal human small airway epithelial cells, NHBE: Normal human bronchial epithelial cells, RLE-6TN : a rat type II alveolar epithelial 
cells [Medium] SAGM: Small airway growth medium supplemented with 30 µg/mL bovine pituitary extract, 0.5 µg/mL hydrocortisone, 0.5 mg/mL human 
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recombinant epidermal growth factor, 0.5 µg/mL epinephrine, 10 µg/mL transferring, 5 µg/mL insulin, 0.1 mg/mL retinoic acid, 6.5 mg/mL triiodothryonine, 
50 µg/mL gentamicin, 50 mg/mL amphotericin, and 5% fatty acid-free bovine serum albumin, KGM: Keratinocyte growth medium is prepared from KBM 
basal media with additives, BEGM: Bronchial epithelial cell growth medium known as LHC-9 with modification, DME: DME media supplemented with 
10% fetal bovine serum and 1% antibiotic-antimycotic solution. 
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Table 2. Literature evaluation of IL-8 responses against metals under various experimental conditions using airway epithelial cells. 

Cells Medium Metal 
compounds 

Oxidation 
state 

Experimental 
concentrations Period Outcome of  

IL-8 Citation 

SAEC SAGM ? Mn+2 0.2, 2, 20, 200 µM 6 h Increase 
(Protein) Pascal and Tessier.21 

NHBE BEGM VOSO4 V+4 100, 500, 750 µM 2 h Increase 
(Protein) Carter et al.36 

Primary NHBE BEGM VOSO4 V+4 12.5, 25, 50 µM 24 h Increase 
(Protein) Jaspers et al.37 

BEAS-2B KBM VOSO4 V+4 500 µM 

20 min 
exposure 
and then 
sampled at 
6 and 24 h 

Increase 
(Protein) Samet et al.43 

NHBE BEGM NaVO3 V+5 100, 500, 750 µM 2 h Increase 
(Protein) Carter et al.36 

BEAS-2B KBM Cr2(SO4)3 Cr+3 500 µM 

20 min 
exposure 
and then 
sampled at 
6 and 24 h 

No change 
(Protein) Samet et al.43 

SAEC SAGM K2Cr2O7 Cr+6 0.2, 2, 20, 200 µM 6 h Increase 
(Protein) Pascal and Tessier.21 

BEAS-2B KBM ZnSO4 Zn+2 500 µM 

20 min 
exposure 
and then 
sampled at 
6 and 24 h 

Increase 
(Protein) Samet et al.43 

BEAS-2B KGM ZnSO4 Zn+2 15, 50 µM 12 h Increase 
(Protein) Kim et al.41 
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1HAEo- RPMI 1640 NiSO4 Ni+2 250 µM  8, 16, 24, 
40, 48 h 

Increase 
(Protein) Salnikow et al.29 

Primary NHBE BEGM NiSO4 Ni+2 12.5, 25, 50 µM 24 h 
No change 
(Protein)  
data not shown 

Jaspers et al.37 

NHBE BEGM NiSO4 Ni+2 100, 500, 750 µM 2 h 
No change 
(Protein)  
data not shown 

Carter et al.36 

[Cells] SAEC: Normal human small airway epithelial cells, NHBE: Normal human bronchial epithelial cells, Primary NHBE: Normal human bronchial 
epithelial cells obtained from healthy, nonsmoking adult volunteers, 1HAEo-: SV40-transformed normal human airway epithelial cells, [Medium] SAGM: 

Small airway growth medium supplemented with 30 µg/mL bovine pituitary extract, 0.5 µg/mL hydrocortisone, 0.5 mg/mL human recombinant epidermal 
growth factor, 0.5 µg/mL epinephrine, 10 µg/mL transferring, 5 µg/mL insulin, 0.1 mg/mL retinoic acid, 6.5 mg/mL triiodothryonine, 50 µg/mL gentamicin, 
50 mg/mL amphotericin, and 5% fatty acid-free bovine serum albumin, BEGM: Bronchial epithelial cell growth medium known as LHC-9 with 

modification, KBM: Keratinocyte basal medium supplemented with 30 µg/mL bovine pituitary extract, 5 ng/mL human epidermal growth factor, 500 ng/mL 
hydrocortisone, 0.1 mM ethanolamine, 0.1 mM phosphoethanolamine, and 5 ng/mL insulin. Cells were replaced in KBM without supplements before 

experiments. SAGM: Small airway growth medium supplemented with 30 µg/mL bovine pituitary extract, 0.5 µg/mL hydrocortisone, 0.5 mg/mL human 
recombinant epidermal growth factor, 0.5 µg/mL epinephrine, 10 µg/mL transferring, 5 µg/mL insulin, 0.1 mg/mL retinoic acid, 6.5 mg/mL triiodothryonine, 
50 µg/mL gentamicin, 50 mg/mL amphotericin, and 5% fatty acid-free bovine serum albumin, KGM: Keratinocyte growth medium, RPMI1640: Cells were 
changed to a serum-free/iron-free RPMI 1640 medium, after cells were grown in medium with Earle’s modified salts containing 10% FCS, 2 mM 

L-glutamine, 100 µg/mL streptomycin, and 100 U/mL penicillin.
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Figure legends 

 

Figure 1. Effects of metals on the viability of human airway epithelial cells. Cells were 

treated with the indicated concentrations of metals for 24 h. Cell viability was assessed 

by WST-1 assays. Data are presented as the percentage of the viability of the control (0 

µM). Data are mean ± SEM of 3-4 individual cultures. *p<0.05 versus 0 µM. 

 

Figure 2. IL-6 production from airway epithelial cells in response to metals. The 

protein levels in the culture supernatant after exposure to metals for 24 h were measured 

by ELISA. Data are mean ± SEM of 3-4 individual cultures. *p<0.05 versus 0 µM. ND: 

not detected. 

 

Figure 3. IL-8 production from airway epithelial cells in response to metals. The 

protein levels in the culture supernatant after exposure to metals for 24 h were measured 

by ELISA. Data are mean ± SE of 3-4 individual cultures. *p<0.05 versus 0 µM. 
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