INDIVISIBILITY OF CENTRAL VALUES OF L-FUNCTIONS FOR
MODULAR FORMS
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ABSTRACT. In this paper, we generalize works of Kohnen-Ono [7] and James-Ono [5] on
indivisibility of (algebraic part of) central critical values of L-functions to higher weight
modular forms.

1. INTRODUCTION

In this article, we show an indivisibility result on central critical values of L-functions
associated to quadratic twists of modular forms using a method of Kohnen-Ono [7] and
James-Ono [5].

Let f(z) = > 2, a(n)¢™ be a normalized newform of weight 2k for I'g(/N) with trivial
character. For a fundamental discriminant D with (D, N)=1, we define the D-th quadratic
twist of f by

f®xp=>_ aln)xp(n)g",

n=1

where xp is the quadratic character corresponding to the quadratic extension Q(\/E) /Q.
Then f ® xp is a newform of weight 2k for ['o(D?N). Similarly, the D-th quadratic twist
of the L-function L(f,s) is given by

17 ) 3= 200000)

Let E be the number field generated by all Fourier coefficient of f and Q. Then it is
L(f®xp.,k)Do*~1/2
Q

known that there exists a period 2; € C* satisfying that are integers in

7
E for all fundamental discriminant D with 6(f) - D > 0, where §(f) € {£1} is the sign
defined in Ono-Skinner [10, p. 655] and Dy is given by

D — |D| if D is odd,
0 |D|/4 if D is even.

We fix such a period .
For convenience, we denote

S(X)={D € Z||D| < X, D : fundamental discriminant },

and if functions f, g on R satisfy that there is a positive constant ¢ such that f(X) >
¢+ g(X) for sufficiently large X > 0, then we write f(X)>g(X).
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Theorem 1.1. Let f(z) =Y~ a(n)q" be a normalized newform of weight 2k for T'o(N)
with trivial character. Then, for all but finitely many primes A of E, we have

fo—
0

N[

Q

#{DeS(X)’é(f)-D>O,)\J(Dand Z0 mod)\}>>f7>\

log X~

This result is a refinement of results of Bruinier [2] and Ono-Skinner [10]. The proof
is based on a generalization of a method of Kohnen-Ono [7] and James-Ono [5]. In the
above theorem, we do not assume that the Fourier coefficients of f belong to Z, therefore
it does not hold the surjectivity of the residual Galois representation associated to f for
almost all places in general. This makes some technical difficulty on the proof. To solve
this problem, we may use a result of Ribet [12] on the image of Galois representations
associated to modular forms. This is an ingredient in our proof. In the last section, we
also consider an indivisibility result on non-central critical values of L-functions for higher
weight modular forms using congruences of modular form with different weights.
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ments and helpful suggestions. The author is supported in part by the Japan Society for
the Promotion of Science Research Fellowships for Young Scientists.

2. MODULAR FORMS OF HALF-INTEGRAL WEIGHT

We denote the space of modular forms of weight k + 1/2, level N with character x by
Mi41/2(N, x), and the space of cusp forms of weight k +1/2, level N with character x by
Skt1/2(N, x). Then Mjq1,2(N, x) and Sk11/2(N, x) are complex vector spaces.

For a modular form of half-integral weight

g9(2) =Y b(n)g" € My15(N, ),

n=0

we define the action of Hecke operator T)2 by

Te(9)(2) = Y ¥ (n)g",

where '(n) are given by

~-1\" /n _ _
V' (n) = b(p*n) + x(p) <?) (1—)) po(n) + x(*)p™ " b(n/p?)
and b(n/p?) are zero if p* { n.
Now we give a short review of the theory of the Shimura correspondence. Let N be a
positive integer which is divisible by four and x a Dirichlet character mod N. Then we
define a vector space Sg/Q(N, X) to be the subspace of S3/5(IV, x) generated by

{11 - f V(g™

N = 4cond())*t|N, x = x_; and (—1) = —1}

and denote the orthogonal complement by S} /2(N ,X)- Then we assume

9(2) = > b(n)g" € Sii1/2(N, X)

n=1
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if K> 2, and

g9(z) =Y _b(n)g" € Sy5(N, x)

n=1

if Kk = 1. Let ¢ be a square-free positive integer. Define a number A;(n) to be

§ ln) (i x(m)(5H* (%)) (i b(mﬂ))
ns ns—k+1 ns :
n=1 n=1 n=1

Then Shimura [14] proved that there is a positive integer M such that SH;(g(2)) = fi(z) =
oo Ai(n)g" € Sak(M, x?). (In fact, one can prove that M = N/2). Furthermore for
any t,t', the difference between SH;(g) and SHy is only constant multiple, so essentially
this correspondence is independent of choice of ¢. This correspondence between modular
forms is called the Shimura correspondence. Moreover if g is an eigenform for all Hecke
operators T,z with (p,2N) = 1, then the image of g under the Shimura correspondence is
also an eigenform for all Hecke operators 7, with (p,2N) = 1 and the Hecke eigenvalue
of T)2 for g coincides with the Hecke eigenvalue for T}, for SH;(g).

We recall the following result which is a useful version of Waldspurger’s formula ([17,
Theorém 1]) by Ono-Skinner. This formula gives a relation between the Fourier coefficients
of modular forms of half-integral weight and the central values of twisted L-functions for
modular forms.

Theorem 2.1 (Ono-Skinner [9], (2a),(2b)). Let f(z) = > 2, a(n)¢" be a normalized
newform of weight 2k, level M with trivial character. Then there is §(f) € {£1}, a
positive integer N with 4M | N, a Dirichlet character x modulo N, a period 0y € C* and
a non-zero eigenform

9(z) = Z b(n)q" € Sk+1/2(IV, X)

n=1
with the property that g(z) maps to a twist of f under the Shimura correspondence and
for all fundamental discriminant D with 6(f)D > 0 we have

L(f ® xp, k)Dy"*?
a
b(Do)* =<7 Q;
0 otherwise,

if (D,N) =1,

where ap and b(n) are algebraic integers in some finite extension of Q. Moreover, there
exists a finite set of primes S such that if D is a fundamental discriminant for which
(1) o(f)D >0,
(2) (D,N) =1,
then we have |L(f @ xp, k)Do* 12 /Q|x = [b(Do)?|5 for A & S.

3. SOME PROPERTIES OF FOURIER COEFFICIENTS OF MODULAR FORMS AND (GALOIS
REPRESENTATIONS

In this section we generalize some results of Serre [13] and Swinnerton-Dyer [16] using
a result of Ribet [12]. These results should be well-known for specialists. However we
give a short review for them, since it does not seem to be available in the literature. Let
[ =>"",a(n)¢" be a normalized newform of weight 2k for I'o(N) with trivial character.
Let E be the subfield of C generated by the Fourier coefficients a(n) of f. Then E is
a finite extension of Q. Let Og be the ring of integers of E. For each prime /¢, we let
Opy =0 ®zZ¢ and By = E ®qg Q.
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Theorem 3.1 (Deligne [3]). For each prime {, there exists a continuous representation

Pre: Gal(@/@) — GLQ(OE’Z) C GLQ(Eg)

unramified at all primes p { N such that tracepy (Frob,) = a(p) and detpys(Frob,) =
p*~L for all primes pt N¢, where Frob, is the arithmetic Frobenius at p.

For each prime ¢, denote

Ay = {g € GL2(Opgy) | det(g) € Z;mk*l)} ,

where Z;(Zk_l) is the group of (2k — 1)-th powers of elements in Z;". Replacing ps, by an

isomorphic representation, we may assume that for almost all py, sends Gal(Q/Q) to A,.
Then Ribet proved the following theorem.

Theorem 3.2 (Ribet [12]). Assume that f has no complex multiplication. Then for
almost all £, we have p;,(Gal(Q/Q)) = A,.

We call the set of primes ¢ with the property p;,(Gal(Q/Q)) # A, by the exceptional
primes for f. Let S be the set of exceptional places for f. Let g, : Gal(Q/Q) — Z) be
the (-adic cyclotomic character. Then by a similar argument with Swinnerton-Dyer [16],
one can see that the image of

(prese0) - Gal(Q/Q) = GLy(Opy) x Zf
is {(g,®) € GL2(Opy) x Z | det(g) = o'} if £ is not exceptional. Since A, contains

an element with the form
tracepse(o) —1
det Pre (O’ ) 0 ’

the map (tracepss,e¢) : Gal(Q/Q) — O, x Z is surjective. Moreover by a ramification
argument, one can see that the map

H(tracepf,g,sg) : Gal(Q/Q) — H(OE% X Z})

¢S ¢S

is also surjective. Therefore we have the following result which is a generalization of a
result of Serre [13, THEOREM 11] using Chebotarev density theorem.

Theorem 3.3. Assume that f has no complex multiplication. Let t be a positive integer
and o a non-zero integer in E. Fir f € Op/aOg and r € (Z/tZ)*. Suppose that o does
not contain a prime divisor which divides an exceptional prime for f. Then the set of
prime p with the properties a(p) =  mod a and p =r mod t has positive density.

4. INDIVISIBILITY OF FOURIER COEFFICIENTS OF MODULAR FORMS OF
HALF-INTEGRAL WEIGHT

In this section, we give a result on modulo ¢ indivisibility of Fourier coefficients of
half-integral weight modular forms using a method of Kohnen-Ono [7] and James-Ono
[5]. Our result is a refinement of a result of Bruinier [2] and Ono-Skinner [10].

To consider the indivisibility of Fourier coefficients of half-integral weight modular
forms, we will use the following results.

Theorem 4.1 (Sturm [15]). Let

9(2) = b(n)g" € My(N, x)
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be a half-integral or integral weight modular form for which the coefficients b(m) are al-
gebraic integers contained in a number field E. Let v be a finite place of E and let

ordy(g) = +00 if b(n) =0 mod v for all n,
min{n|b(n) Z0 mod v} otherwise
Moreover put
k D+ 1

H= E[Fo(l) H

plN
Assume that

ord,(g) > p,

then ord,(g) = +oo.

Remark 4.2 (cf. [5] Proposition 5). In [15], Sturm proved this theorem for integral weight
modular forms with trivial character, but the general case follows by taking an appropriate

power of g.

Lemma 4.3 (Shimura, [14] Section 1). Suppose

= Z b(n)q" € Sk+1/2(N, X)

n=1

is a half integral weight cusp form and p is a prime. We define (U,g)(2), (V,9)(2) by

(Upg)(z) = Zup n)q" _pr”
(Vog)(2) = va n)q" —Zb

Then
U, () € Seare (Vo (2) ).
Let

= a(n)q" € My(N,x)
n=1
be an integral weight modular form for which the coefficients a(m) are algebraic integers
in F. For a prime A of E and positive integers r,¢ with (r,¢) = 1, define T'(r,t) and
T(\ rt) by
T(r,t) = {p: prime|a(p) =0, p = rmodt}
and
T(\ rt)={p: prime|a(p) = 0mod A, p = rmod t}.

For a positive real number X, we also denote T'(r,t,X) = {p € T(r,t)|p < X} and
T\ rt,X)={peT(\nrt)|p<X}

For g = >, b(n)¢" € Sit1/2(N, x) N Opallg]], denote s,(g) = min{ord,(b(n))|n €
Z~o}. The following two lemmas give an estimate for indivisibility of Fourier coefficients
of modular forms of half integral weight.
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Lemma 4.4. Let { be a prime greater than 3. Let f(z) = >~ a(n)q" be a normalized
Hecke eigen newform of weight 2k, level M with trivial character and let

= Z b(n)q" € Sk+1/2(NV, x)

n=1

be the eigenform given in Theorem 2.1. Assume that f has complex multiplication in the
sense of Ribet [11] and X be a prime in E above L. If there exists an integer D' such that

(f)D' >0, (D',N)=1,¢e= (%) # 0 and ord\(b(|D’|)) = sa(g), then

#{pe s (2) = otoon =)} >

Proof. By dividing g by A9, we may assume sy(g) = 0. If we put
b(n) if (n,N¢) =1 and (ﬁ) -
bo(n) = l
0 otherwise,

then

Zbo q ES}C_A'_l/Q(N/g X)

for a suitable character y’. Since f has complex multiplication, so there exists a imaginary
quadratic field K such that for every prime p satisfying p = 3 mod 4, (p, N) = 1 and

A
(—K) = —1 we have a(p) = 0, where Ak is the discriminant of K. Therefore, for such

p
p, using the formulae for the action of Hecke operator T}z, we find that

1)Fn

b(p*n) + X' (p)p" " ((_T) b(n) + X' (p*)p*"'b(n/p*) =

Hence if (r,t) =1, 4|t, r =3 mod 4, then

X
#T(r,t, X) Z#{peT(r,t)lpﬁX}>>f@

and for any p € T'(r,t) we have
(=D
p

(4.1) b(p*n) = —X'(p)p" " < ) b(n) — X" ()p* " b(n/p?).

Put k = (k+ %)%;(Nﬂ)] +1. Now, we choose (9, tg) satisfying the following properties:

(1) N|to, (ro,t0) =1, X'(rg) =1 and p =3 mod 4.

(2) If p is a prime with p =y mod t¢, then <( DA n) = —1for any 1 < n < k with
(n, N¢?) = 1. g

(3) For each prime p =y mod ¢y, we have (f)

e (222)

(4) Each prime p = ry mod t, satisfies
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If p € T(rg,to) is a sufficiently large prime, for all 1 <n <k

4p(pn) = bo(pn) = —x'(P)p*" (“3 ”) bo(n) — P2 (p)bo(n /)

Since by(n/p?) = 0, we have u,(pn) = x'(p)p*~'bo(n) = p*1by(p) = p*~v,(pn). By the
relation (4.1),

—1)* D’
10D = 1) =~ (S o),
and
up(P*| D'[) = bo(p'|D']) = —p* X' (0°)bo(|1D']).
Therefore by the assumption and the choice of (rg, o),

10D~ DD, = | (o2 = s (ST ) ago)

Hence

= 1.
A

ord(Upg0 — pk_IV;Jgo) < +00.

By Theorem 4.1 and Lemma 4.3, there exists a integer n, such that

1\ [o(1) : FO(N€2P)]
1<n,< (k + —) D

5 :/i(p—i—l), (np>p):1

and
bo(nyp) = up(ny) # p*~lup(n,) =0 mod .
Consequently, let Dy be the square-free part of D = n,p, then

|b0<DSf)|/\ =1.

For convenience, let p; be the primes in T'(rg,to) in increasing order, and let D; be the
square-free part of pn,,. If r < s < t and D, = D, = Dy, then p,p,p:|D,. However
this can only occur for finitely many r, s and ¢ since |D;| < kp;(p; + 1). Therefore, the
number of distinct |D;| < X is at least half the number of p € T'(rg, ty) with p < \/X/k.
Therefore the lemma follows from #71'(rg, o, X) >, X/log X. O

Lemma 4.5. Let f(z) = >~ a(n)q" be a normalized Hecke eigen newform of weight
2k, level M with trivial character. Denote E = Q({a(n)|n > 1}) and let

9(z) = Z b(n)q" € Sk+1/2(IV, X)

n=1

be the eigenform given in Theorem 2.1. We fix a prime number { greater than 3 and let
A be a prime in E above €. Assume that f does not have complex multiplication and the
image of the Galois representation associated to f

Pre - Gal(@/@) — GLQ(OE’g)
coincides with A,. If there exists an integer D' such that §(f)D' > 0, (D',N) = 1,

€= (%) # 0 and ord,\(b(|D'])| = sa(g), then

#{Desn) \ (7) == o) = sslo) > 10“5(-
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Proof. First, we may assume ordy(g) = 0. If we put

n
bo(n) = (n) if (n, ) an <€> g,
0 otherwise,

then
Zbo n)q" € Sgi1/2(NC,X)

for a suitable character x'. If a(p ) = 0 mod A, by the formula for the action of Hecke
operator T,» we find that
(=D*n

b(p*n) + X' (p)p" ( .

By the assumption, ¢ is not exceptional. Hence Theorem 3.3 implies

) b(n) + x*(p)p** 'b(n/p*) =0 mod A.

#T(\rt, X)=#{peT\rt)|p< X}>pn log X

and for each p € T'(\, 7, 1)
(=DFn

(4.2) b(p*n) = —x'(p)p* ( ; ) b(n) — X*(p)p™'b(n/p*) mod .

Let k be the number as in the proof of Lemma 4.4. Now, we choose (7, ty) satisfying the
following properties:

<1> N€2’t07 (To,to) = 17 X/(TO) =1

—1)*
(2) If p is a prime with p = ry mod %y, then (M) = —1forany 1 <n < k with
p
(n, N(?) = 1.
—1)*| D’
(3) For each prime p =y mod ty, we have (w) =—1.
p

(4) Each prime p = rq mod ty has the property that 1 +p Z 0 mod .
If p € T(\ ro,to) is a sufficiently large prime, for all 1 < n < x with (n, N¢?) = 1, one
has

u,(pn) = bo(p*n) = —p*~ <

By the relation (4.2), we have
(D)) = bo(p*| D']) = p*'o(|D'])  mod A,

(~1)*n

) bo(n)—p*tbo(n/p*) = p"bo(n) = p"v,(pn) mod .

also
up (P D']) = bo(p*|D']) = —p™ 'bo(|D'])  mod .
Therefore by assumption and the choice of (rg, tp),
P (0 1D']) = up (0P| D']) = p* 21+ p)bo(ID']) £ 0 mod A.
Hence
ordy(U,go — p*'V,90) < +o00.

By Theorem 4.1 and Lemma 4.3, there exists a integer n, such that

1< n, < (k+1/2)[To(1) : To(N€p)]/12 = 5(p+ 1), (ny,p) =1
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and
bo(nyp) = up(n,) # p*~lup(n,) =0 mod .
In particular, let Dy be the square-free part of D = n,p, then

[b0(Dsq)[x = 1.

Now the lemma follows from the same argument with the proof of the previous lemma
using Theorem 3.3. [

Proof of Theorem 1.1.
Now we give the proof of Theorem 1.1. Let

9(z) = Zb(n)q" € Sgt1/2(N, X)

be the eigenform given in Theorem 2.1 for f.

By replacing f by a suitable quadratic twist of f if necessary, we may assume that
e = 0(f), where ¢ is the sign of the functional equation of L(f,s). By the result of
Friedberg and Hoffstein [4], we can take an integer D’ such that 6(f)D" > 0, (D',2N) =1
and b(D') # 0. In particular, for almost all finite places A of E we have

b(D)|x = L.
Thus by Lemmas 4.4, 4.5, Theorem 2.1 and Theorem 3.3, for all but finitely many primes
A we have
L(f @ xp. k) Dy

(f)-D>0,(D)=1and
Qf

# {D € S(X)

vX
=10>7a :
\ log X
This completes the proof.

5. INDIVISIBILITY FOR THE NON-CENTRAL CRITICAL VALUES

In this section, we consider a special case for non-central values of L-functions for
modular forms. We fix a prime ¢ greater than 7 and let f = ">°, a(n)¢" be a normalized
Hecke eigenform of weight ¢ + 1 for SLy(Z). Let A be a prime in a number filed E. We
assume that the integer ring of E contains all Fourier coefficients of f and choose a period
Q]jf as in Ash-Stevens [1, Theorem 4.5]. Then for any Dirichlet character y, the quotient

( ,1)L(f ® X5 1)

——— is an integer in E)(x) where 7 is the Gauss sum and + = y(—1).
(2m1) Q5

Theorem 5.1. Let A be a prime in E above {. We assume the following conditions.
(1) There exists a unique eigenform F of weight 2 for T'y(¢) such that

F=f modA\

(2) ¢ is not exceptional.
(3) There exists an square-free negative integer dy such that (do,20) = 1, xq4,(¢) =
—e(F), where (F) is the sign of functional equation of L(F,s) and

L(f X Xdo > 1)\/d_O
(27”)9;[ =0 mod .

Then we have

#{DGS(X)‘L(M?XDJ)\/E

NOE
(2mi)$2;

d A .
Z0 mo }>>f7>\ log X
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For the proof, we recall a result of Ash and Stevens.

Theorem 5.2 (Ash-Stevens, [1]). Let k be a positive integer less than € + 2 and f =
Yoo ra(n)g™ € Sp(To(1)) an eigenform satisfying the assumptions of Theorem 5.1. We
fix a prime X above £ in a number field E which contains all Fourier coefficients of f.
Assume that

(1) There exists a prime q satisfying a(q) Z ¢*~* +1 mod \.

(2) There exists an unique eigenform F € So(I'1(¢)) such that f = F mod .

Then there exists a complex number Qf such that for any Dirichlet character x satisfying
(cond x,p) =1, we have

T HL(fex, ) _ r(xHLF®@x, 1)
(2mi)Qy - (2m1) Q0%

mod .

Now we prove Theorem 5.1. By the Kohnen-Zagier formula [6], there exists an eigenform

9(z) = Y b(n)q" € Sya(Lo(40))

n=1

D
such that for any negative square-free integer D satisfying (—> = —¢(F),

I
s o VD {g,9)
1b(] D) =2 TFF)
(F,F)

where (-, -) is the Petersson inner product. We can normalize g by the relation 0] Q}jf

L<F & XD, 1)7

Taking a linear combination of twists of g, one may assume b(|D|) = 0 if (2) # —&(F)
and D < 0. From the assumptions of the theorem, ¢ is not exceptional. This implies the
existence of a prime ¢ satisfying a(q) #Z ¢*~' + 1 mod ), therefore the assumptions of
Theorem 5.1 implies the assumptions of Theorem 5.2. Since 7(xp)~* = £1/4/D, one can
see that
L(f®x.)¥D _ L(F®x,1)VD
@Qmri)Qy (2m)Q;
with a A-adic unit ¢. By the assumption (3), we have
oxd (L(f ® Xt 1i)\/d_o> L
(2mi) €2y

therefore ord, (b(dy)) = min{ord,(b(n)) | n : square-free, xq,(¢) = —e(f)}. Hence Lemma
4.5 implies

= |b(ID])|* - ¢ mod X

#{D € S(X) | xp(t) = —&(f), ord\(b(D)) = s} > g’

thus we have
L(f ® xp,1)VD
(2772')9?

#{D S S(X)‘

This completes the proof.

Remark 5.3. Lemma 4.5 states only for g given in Theorem 2.1, but one can show
the similar result for any eigenform g € Sipy12(N,x) if & > 2 (S5(N,x) if k = 1)
2

corresponding to some eigenform f € Sop(L'o(M)) under the Shimura correspondence.
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Example 5.4. Let
f=A= qH )** € S1p(To(1))
and N
=a[J0 -0 = ") € sty

Then it is well-known that f = F mod 11, dimSy(I'g(11)) = 1 and the mod 11 Galois
representation associated to f is surjective. Moreover one can check that

L(A b2y X-3, 1)

ax

by using MAGMA. So the assumptions of Theorem 5.1 are satisfied for f = A. Hence we
have

= 36741600 2 0 mod 11

A®x-3

L(A® xp,1)vVD v X
D X 11 _
#{ e S( )' i) #0 mod >>logX
REFERENCES

[1] A. Ash and G. Stevens, Modular forms in characteristic £ and special values of their L-functions,
Duke Math. 53 (1986), 849-868.

[2] J. H. Bruinier, Non-vanishing of modulo | of Fourier coefficients of half-integral weight modular forms,
Duke Math. J. 98 (1999), 595-611.

[3] P. Deligne, Formes modulaires et représentations l-adiques, Sém. Bourbaki, éxp. 355, Lect. Notes in
Math. 179 (1969), 139-172.

[4] S. Friedberg, J. Hoffstein, Nonvanishing theorems for automorphic L-functions on GL(2), Ann. Math.
142 (1995), 385-423.

[5] K. James and K. Ono, Selmer groups of quadratic twists of elliptic curves, Math. Ann. 314 (1999),
1-17.

[6] W. Kohnen, Fourier coefficients of modular forms of half-integral weight, Math. Ann. 271 (1985),
237-268.

[7] W. Kohnen and K. Ono, Indivisibility of class numbers of imaginary quadratic fields and orders
of Tate-Shafarevich groups of elliptic curves with complex multiplication, Invent. Math. 135 (1999),
387-398.

[8] B. Mazur , J. Tate, J. Taitelbaum, On p-adic analogues of the conjectures of Birch and Swinnerton-
Dyer, Invent. Math. 84 (1986), 1-48.

[9] K. Ono and C. Skinner, Non-vanishing of quadratic twists of L-functions, Invent. Math. 134 (1998),
651-660.

[10] K. Ono and C. Skinner, Fourier coefficients of half-integral weight modular forms mod I, Ann. of
Math. 147 (1998), 453-470.

[11] K. Ribet, Galois representations attached to eigenforms with Nebentypus, Lect. Notes in Math. 601
(1977), 17-51.

[12] K. Ribet, On l-adic representations attached to modular forms. II, Glasgow Math. J. 27 (1985),
185-194.

[13] J.-P. Serre, Congruences et formes modulaires (d’apres H. P. F. Swinnerton-Dyer), Lecture Notes
in Math. 317 (1973), 319-338.

[14] G. Shimura, On modular forms of half-integral weight, Ann. Math. 197 (1973), 440-481.

[15] J. Sturm, On the congruence of modular forms, Springer Lect. Notes Math. 1240 (1984), 275-280.

[16) H. P. F. Swinnerton-Dyer, On Il-adic representations and congruences for coefficients of modular
forms, Lecture Note in Math. 350 (1973), 1-55.

[17] J. L. Waldspurger, Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J.
Math. Pures et Appl. 60 (1981), 375-484.

E-mail address: chida@math.kyoto-u.ac.jp



12 MASATAKA CHIDA

GRADUATE SCHOOL OF MATHEMATICS, KYOTO UNIVERSITY, KITASHIRAKAWA, SAKYO-KU, KYOTO,
JAPAN, 606-8502



