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Using a generalized Jordan-Wigner transformation combined with the defining representation of the SO(N )
spin, we map the SO(N ) bilinear-biquadratic (BLBQ) spin chain into the N -color bosonic particle model. We find
that, when the Jordan-Wigner transformation disentangles the symmetry-protected topological entanglement, this
bosonic model becomes negative-sign-free in the context of quantum Monte Carlo simulation. For the SO(3)
case, moreover, the Kennedy-Tasaki transformation for the S = 1 BLBQ chain, which is also a topological
disentangler, derives the same bosonic model through the dimer-R bases. We present the temperature dependence
of the energy, entropy, and string order parameter for the SO(N = 3,4,5) BLBQ chains by a world-line Monte
Carlo simulation for the N -color bosonic particle model.
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I. INTRODUCTION

The negative-sign problem in quantum Monte Carlo (QMC)
simulations for frustrated spin systems or fermion systems has
been a long-standing issue in quantum many-body physics.
Transition probabilities of world-line configurations in QMC
simulations are usually constructed via product states relying
on single-particle bases, where the nontrivial entanglement of
the world lines often generates negative weights. In general, it
is known that the negative-sign problem is NP-hard [1], which
implies that a mere use of a basis change of a local Hilbert
space is not able to settle the problem. In other words, it is
suggested that the nonlocal quantum entanglement structure
due to the frustration effect may play an essential role in the
negative-sign problem.

Of course, a general solution for the negative-sign problem
is very tough. As for one-dimensional (1D) systems, however,
two nontrivial examples where the intrinsic negative sign has
been removed are known: the S = 1/2 zigzag spin ladder [2]
and the SU(N ) spin chain [3,4]. For the former case, the
negative sign was removed by the so-called dimer-R basis [2]
combined with a nonlocal unitary transformation similar
to the Kennedy-Tasaki (KT) transformation for the S = 1
valence-bond-solid (VBS) state [5–7]. A key point is that the
KT-type transformation enables us to rewrite the Hamiltonian
as a kind of ferromagnetic system. In addition, it should be
remarked that the dimer-R basis in Ref. [2] can be viewed as the
maximal-entangled pair in quantum information terminology.
In the modern viewpoint, the KT transformation disentangles
the topological entanglement of the dimer groundstate of the
zigzag ladder, suggesting that the entanglement of the ground
state is certainly related to the negative-sign problem in a
class of quantum spin systems. For the latter example, i.e.,
the SU(N ) spin chain, the negative sign can be removed by a
generalized Jordan-Wigner transformation [3]. However, the
situation is slightly different from the zigzag ladder. It can be
exactly solved by the Bethe ansatz, where the ground state is
gapless [8], but the role of the Jordan-Wigner transformation
has been unclear from the entanglement viewpoint. In order
to systematically control the negative sign in 1D quantum
systems, it is necessary to construct a unified theory for the

above nonlocal transformations, which may provide some
important hints for addressing the problem in th 1D frustrated
quantum spin systems.

For the purpose of revealing the relation between negative
sign and entanglement, the most suitable target is the S = 1
bilinear biquadratic (BLBQ) chain, which includes both
the Affleck-Kennedy-Lieb-Tasaki (AKLT) model, the ground
state of which is exactly described by the VBS state [9], and
the SU(3) chain that is solved by the Bethe ansatz [8]. In the
context of a QMC simulation, the negative sign appears for
the BLBQ chain in the parameter region including the AKLT
and SU(3) points. Thus, we can investigate the connection
of the KT transformation and the generalized Jordan-Wigner
transformation on an equal footing. Moreover, the hidden
Z2 × Z2 symmetry of the Haldane phase and the associated
entanglement spectrum recently attract renewed interest as
a striking example of symmetry-protected topological or-
der [10,11], although it has been a long time since the Haldane
conjecture [12]. Thus, it is also worthwhile to understand how
the hidden symmetry can be related to the sign problem.

In this paper, we first discuss the relation between
the negative-sign problem and nonlocal transformations for
the S = 1 BLBQ chain in detail, and then generalize it to the
hidden topological order of SO(N ) BLBQ chains [13,14]. In
Sec. II, we particularly find that the two distinct approaches
of the KT transformation combined with the dimer-R ba-
sis and a generalized Jordan-Wigner transformation on the
defining representation of the SO(3) group generate the same
negative-sign-free Hamiltonian in the parameter region of the
Haldane phase. Moreover, the negative-sign-free Hamiltonian
can be represented as the scattering diagrams of bosonic
particles carrying three types of color, which are suitable
for a world-line QMC calculation based on the directed-loop
algorithm [15,16]. In Sec. III, we straightforwardly generalize
the theory to the SO(N ) BLBQ model, where the negative sign
can also be removed in the parameter region corresponding
to a VBS-type ground state by a generalized Jordan-Wigner
transformation as well. Also, the SO(N ) version of the VBS
state can be disentangled to the classical product state by this
transformation. In Sec. IV, we next demonstrate QMC sim-
ulations for negative-sign-free Hamiltonians generated from
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SO(3), SO(4), and SO(5) chains. The temperature dependence
of various observables and string-correlation functions is
presented. In Sec. V, we summarize the results and discuss
further perspectives.

II. S = 1 BILINEAR-BIQUADRATIC CHAIN

A. Hamiltonian

Let us start with the S = 1 BLBQ chain, which has been
extensively studied in connection with the Haldane state of
the S = 1 Heisenberg chain [17–22]. Here, we focus on the
essential physics of the hidden symmetry and entanglement
associated with the negative-sign problem. The Hamiltonian
of the S = 1 BLBQ chain is given by

H =
∑

i

hi,i+1, (1)

with the local interaction term defined as

hi,i+1 = Si · Si+1 + α[(Si · Si+1)2 − 1], (2)

where S is the standard S = 1 spin matrix in the Sz-diagonal
basis. We basically consider the open boundary condition. This
Hamiltonian includes a series of important models: α = 0 is
the S = 1 Heisenberg antiferromagnetic chain and α = 1/3 is
the AKLT model, the ground state of which is exactly described
by the VBS state [9]. Recently, the VBS/Haldane state is
often referred to as a typical example of symmetry-protected
topological order [10,11]. Moreover, α = 1 corresponds to the
SU(3) chain in the fundamental representation, which can be
solved exactly by the Bethe ansatz [8], and α = ∞ corresponds
to the SU(3)-singlet chain in the [1,1] representation, which
has Temperly-Lieb equivalence to the nine-state quantum Potts
model [23]. Also, α = −1 is an integrable point, which is
Bethe-ansatz solvable, with a gapless ground state [24]. Of
course, the properties of these models have been clarified by a
variety of analytic and numerical approaches, and thus they are
very useful to see the connection between the hidden symmetry
and the negative-sign problem.

The explicit matrix elements of hi,i+1 are written as

hi,i+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 −1 + α 0 1 − α 0 α 0 0

0 1 0 0 0 0 0 0 0

0 0 1 − α 0 α 0 1 − α 0 0

0 0 0 0 0 0 0 1 0

0 0 α 0 1 − α 0 −1 + α 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(3)

which contains positive off-diagonal elements resulting in the
negative-sign problem for α > 0 (on the other hand, there is no
negative-sign problem in α � 0 [25,26]). This negative sign
cannot be removed by such a local unitary transformation as π

rotation of spin at every second site, so that QMC simulations
have not been effective for investigating the VBS ground state
so far.

B. Nonlocal transformations and diagrammatic representation

In order to remove the negative sign, the KT transformation
plays a crucial role. The KT transformation maps the nonlocal
string order [27] to a kind of ferromagnetic order, which
can be viewed as the classical state where all the spins are
disentangled from each other [5,6,28,29]. Thus, it may be
expected that the KT transformation reduces the negative-sign
problem as in the case of the usual ferromagnetic chain,
where no negative sign appears. The KT transformation was
originally defined as sequential spin and sign flips based
respectively on the hidden antiferromagnetic order, and on
the number of “0” spins existing to the left of a certain site.
However, it is more useful to rewrite the KT transformation as
a product over the pair disentanglers [28,29]

U =
∏
〈i,j〉

Ui,j , (4)

where the pair disentangler is defined for i < j as

Ui,j = eiπSz
i S

x
j , (5)

and 〈i,j 〉 runs over all spin pairs in the chain. Applying the
KT transformation to the BLBQ chain, we have

Uhi,i+1U†

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 + α 0 0 0 −1 + α 0 0 0 α

0 0 0 −1 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0

−1 + α 0 0 0 α 0 0 0 −1 + α

0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 −1 0 0 0

α 0 0 0 −1 + α 0 0 0 −1 + α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(6)

In this equation, most of the positive off-diagonal elements
were actually removed, but a source of the negative sign still
remains at (1,9) and (9,1).

Inspired by the dimer-R basis for the zigzag ladder [2], we
further introduce a local basis change as follows:

⎛
⎜⎝|1〉

|2〉
|3〉

⎞
⎟⎠ =

⎛
⎜⎝

1√
2

0 − 1√
2

1√
2

0 1√
2

0 1 0

⎞
⎟⎠

⎛
⎜⎝|+〉

|0〉
|−〉

⎞
⎟⎠ , (7)

which is equivalent to the transformation found in Ref. [6]. In
the following, we call the label of the ket state |n〉 the “color.”
Writing this local transformation matrix of Eq. (7) for the ith
site as Vi , we define V = ∏

i Vi for the entire chain. We then
apply V to the Hamiltonian (6) to obtain

H̃ = VUHU†V†, (8)
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in which the explicit form of the local Hamiltonian is

h̃i,i+1 ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α 0 0 0 −1 + α 0 0 0 −1 + α

0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 −1 0 0

0 −1 0 0 0 0 0 0 0

−1 + α 0 0 0 α 0 0 0 −1 + α

0 0 0 0 0 0 0 −1 0

0 0 −1 0 0 0 0 0 0

0 0 0 0 0 −1 0 0 0

−1 + α 0 0 0 −1 + α 0 0 0 α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9)

In this Hamiltonian, all the off-diagonal elements become non-
positive for α � 1, so that the system can be reduced to a
ferromagnetic chain, where the negative-sign problem does
not appear. From the entanglement viewpoint, all sites in the
ground state are disentangled from each other [5,6,29] and
thus there is no topological entanglement. This fact should be
contrasted with the Haldane state for the original Hamiltonian
which carries the topological entanglement entropy associated
with the protected Z2 symmetry, SEE = ln 2, for the open chain.
In this sense, a class of negative-sign problem in one dimension
may share the same background with the symmetry-protected
topological entanglement.

An essential point in Eq. (9) is that the roles of the matrix
elements can be classified by three types of interaction term:

h̃i,i+1 = −�c
i,i+1 + α�r

i,i+1 − (1 − α)�h
i,i+1. (10)

In this equation, �c represents the exchange of bosonic
particles carrying different colors between the ith and the
(i + 1)th sites, and �r represents the repulsive interaction
(α > 0) between particles of the same color, corresponding
to the diagonal elements in Eq. (9). Finally, the pair creation
and annihilation of different color particles are denoted as
�h. [The matrix elements of the �’s will be explicitly given
by Eqs. (14)–(16)]. In Fig. 1, moreover, we illustrate these
terms as schematic diagrams of the world lines, which play an
important role in world-line QMC simulations.

Here it should be recalled that, at α = 1, the symmetry is
enhanced to SU(3), where the pair annihilation and creation

FIG. 1. (Color online) Diagrammatic representation of the inter-
action terms in the Hamiltonian (10). The indices n and n′ represent
colors of particles. The superscripts of � indicate abbreviations of
cross, repulsive, and horizontal, respectively.

terms vanishes in Eq. (10) [30]. Taking account of this property,
we can further rewrite the Hamiltonian h̃i,i+1 as

h̃i,i+1 = h̃
[1,0]
i,i+1 − (1 − α)h[1,1]

i,i+1 (11)

with

h̃
[1,0]
i,i+1 = −�c

i,i+1 + �r
i,i+1, (12)

h
[1,1]
i,i+1 = �h

i,i+1 + �r
i,i+1, (13)

where h̃
[1,0]
i,i+1 can be associated with the SU(3) spin Hamiltonian

in the [1,0] fundamental representation without the sign in
front of the �c term, and h

[1,1]
i,i+1 describes the SU(3)-singlet

interaction in the [1,1] representation. Thus, it can be expected
that the � terms are also closely related to the generators of
the SU(3) algebra. In fact, it is found that the �’s are directly
written as

�c
i,i+1 =

∑
μ �=ν

S
μν

i S
νμ

i+1, (14)

�h
i,i+1 =

∑
μ �=ν

S
μν

i S
μν

i+1, (15)

�r
i,i+1 =

∑
μ

S
μμ

i S
μμ

i+1, (16)

where Sμν (μ,ν = 1,2,3) are the 3 × 3 matrices generating the
SU(3) algebra. Explicitly, Sμν obey the SU(3) commutation
relation [Sμν,Sμ′ν ′

] = δν,μ′Sμν ′ − δμ,ν ′Sμ′ν . Moreover, if we
introduce the Schwinger boson bμ and write the matrices as
Sμν = b†μbν with the constraint

∑
μ b†μbμ = 3, we can view the

diagrams in Fig. 1 as the scattering processes of three-color
bosonic particles.

C. Generalized Jordan-Wigner transformation
and the defining representation

As for the purpose of settling the negative-sign problem of
the S = 1 BLBQ chain, Eqs. (9) or (10) may be sufficient.
For the generalization to the SO(N ) case, however, it is
essential to reveal the relation of h̃[1,0] to the standard SU(3)
spin Hamiltonian. Let us recall that the negative sign of the
SU(N ) spin chain is removed by a generalized Jordan-Wigner
transformation [3]. Here, we construct the transformation
matrix as a product form of the following pair operator:

Qi,j ≡ diag(1,−1,−1,1,1,−1,1,1,1), (17)
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where diag(· · · ) represents a diagonal matrix whose diagonal
elements are “· · · .” Similarly to the KT transformation, we
can write the generalized Jordan-Wigner transformation for
the entire chain as

Q =
∏
〈i,j〉

Qi,j , (18)

where the product is taken for the all pairs of spins in the open
chain [29]. This operatorQ inverts the sign of a matrix element,
if particles of different colors are exchanged. Although the
Jordan-Wigner transformation is usually defined as sequential
sign flips, the product form of Eq. (18) is more useful in a
practical sense. We list some important properties of Q below.

(a) [Qi,j ,Qk,l] = 0 for any i,j,k,l. Thus, the order of
operators in Q is irrelevant.

(b) Q2 = 1. Thus, Q−1 = Q.
(c) For any adjacent sites, Q�cQ = −�c, Q�rQ = �r, and

Q�hQ = �h.
Since Qi,j is a diagonal matrix, the proofs are straightfor-

ward.
Using the properties above, we can easily show that

h
[1,0]
i,i+1 ≡ Qh̃

[1,0]
i,i+1Q = �c

i,i+1 + �r
i,i+1, (19)

which is just the nearest-neighbor interaction of the SU(3)
chain. This is basically the same as the negative-sign vanishing
mechanism for the SU(N ) chain in Ref. [3]. On the other hand,
we find that the SU(3)-singlet part is invariant under the Jordan-
Wigner transformation h

[1,1]
i,i+1 = Qh

[1,1]
i,i+1Q. We therefore arrive

at

Ĥ =
∑

i

ĥi,i+1 ≡ QH̃Q, (20)

where

ĥi,i+1 ≡ Qh̃i,i+1Q
= h

[1,0]
i,i+1 − (1 − α)h[1,1]

i,i+1

= �c
i,i+1 + α�r

i,i+1 − (1 − α)�h
i,i+1. (21)

At the present stage, Ĥ is a descendant of the sequence of
transformations U , V , and Q. In particular, U and Q involve
a similar nonlocality. In addition, the Hamiltonian ĥi,i+1

maintains a very simple structure, although the negative sign
recovered by Q. Thus, one may expect a more direct relation
between the original Hamiltonian H and the descendant
Hamiltonian Ĥ, which is actually the case. In order to clarify
the relation, we introduce another local unitary transformation
matrix,

R =

⎛
⎜⎝−i/

√
2 0 i/

√
2

1/
√

2 0 1/
√

2

0 i 0

⎞
⎟⎠ , (22)

and write the transformation for the entire chain asR ≡ ∏
i Ri .

Then, it is straightforward to see that

Ĥ = RHR†. (23)

FIG. 2. The relations among the various representations and
transformations. The transformations in the vertical direction are
nonlocal, while those in the horizontal direction are local.

Moreover, we find that the S = 1 spin matrices are transformed
by R as follows:

Lx ≡ RSxR† = −i(S23 − S32),

Ly ≡ RSyR† = −i(S31 − S13), (24)

Lz ≡ RSzR† = −i(S12 − S21),

where Sμν are the 3×3 matrices of the SU(3) algebra. An
important point is that the new spin matrices L are nothing
but the generators of the SO(3) rotational group in the defining
representation. In other words, ĥi,i+1 is written as

ĥi,i+1 = Li · Li+1 + α[(Li · Li+1)2 − 1], (25)

which is just the BLBQ interaction in the defining representa-
tion of the SO(3) rotational group.

In the defining representation, the negative sign of the
BLBQ chain can be directly removed by the generalized
Jordan-Wigner transformation (18), instead of by the KT
transformation for the chain in the Sz-diagonal base. Now,
we can summarize the relations closed among the various
representations and transformations in Fig. 2.

Here, we should comment on the relation between the two
nonlocal transformationsU andQ. In order to see it, we rewrite
the KT transformation in the defining representation,

RUi,jR† = eiπLz
i L

x
j

= diag(1,−1,−1,1,−1,−1,1,1,1) (26)

∀ i,j , which is simplified to a diagonal matrix. Then, we
can see that the difference between U and the Jordan-Wigner
transformationQ is thatU has a phase factor (−1)q22 compared
to Q, where q22 is the number of all “2-2” pairs in the entire
chain. Thus, the difference between U and Q is of course
nonlocal. However, these two nonlocal transformations can be
bridged by the local unitary transformations V and R,

RUi,jR† = V†Qi,jV, (27)

which suggests the nontrivial symmetry involved in the BLBQ
chain.

As is seen in Eq. (24), the three rotation axis can be
equivalently treated in the defining representation, in contrast
to the standard Sz-diagonal representation where the z axis
plays the special role of the quantization axis. Indeed, the order
of the coloring label, n in Eq. (7), is irrelevant to the
subsequent results. This implies that the treatment of the
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dihedral group symmetry D2 becomes manifest in the defining
representation [11]. Thus, one can expect that the negative-
sign-free basis can be more systematically generalized, on the
basis of the defining representation of the SO(N ) group.

D. Correlation functions

We next examine how the correlation functions are trans-
formed through the two paths in Fig. 2. For later convenience,
we define real symmetric matrices T ,

T x ≡ S23 + S32, (28)

T y ≡ S13 + S31, (29)

T z ≡ S12 + S21, (30)

which can be considered as some kind of dual matrices
to the SO(3) spins L. For the path of the Jordan-Wigner
transformation Q, we have

QLx
i Q = eiπ

∑
j<i (L

y

j +1)Lx
i e

iπ
∑

j>i (L
z
j +1), (31)

QL
y

i Q = eiπ
∑

j<i Lz
j L

y

i e
iπ

∑
j>i Lx

j , (32)

QLz
iQ = eiπ

∑
j<i (L

x
j +1)Lz

i e
iπ

∑
j>i (L

y

j +1); (33)

While for the route of the KT transformation combined with
the dimer-R basis, the spin matrices are given by

VUSx
i UV† = T x

i eiπ
∑

j>i T x
j , (34)

VUS
y

i UV† = eiπ
∑

j<i T z
j L

y

i e
iπ

∑
j>i T x

j , (35)

VUSz
i UV† = eiπ

∑
j<i T z

j T z
i , (36)

where we have used

Vi SiV
†
i = T i . (37)

Here, it should be noted that Eqs. (31)–(33) basically have
a symmetric form with respect to x, y, and z, in contrast
to (34)–(36).

Using the above results, we have the same expressions for
the correlation functions for both paths,〈

Sa
i Sa

j

〉
H = 〈

La
i L

a
j

〉
Ĥ

= −〈
T a

i eiπ
∑

i<k<j La
k T a

j

〉
H̃

= −〈
T a

i eiπ
∑

i<k<j T a
k T a

j

〉
H̃ (38)

where a ∈ x,y,z. Note that, for example, 〈· · · 〉H̃ indicates the
expectation value with respect to the basis of the Hamiltonian
H̃. In the last equation, we have used the identity

eiπLa = eiπT a

, (39)

which is crucial to prove the equivalence between the Jordan-
Wigner and KT transformations at the correlation function
level. We also illustrate that the string correlation functions
are mapped as〈

Sa
i eiπ

∑
i<k<j Sa

k Sa
j

〉
H = 〈

La
i e

iπ
∑

i<k<j La
k La

j

〉
Ĥ

= −〈
T a

i T a
j

〉
H̃, (40)

which is consistent with the known result of the KT transfor-
mation [6].

E. AKLT point

At the AKLT point, α = 1/3, the two-site Hamiltonian (2)
becomes the projection operator to the Stot = 2 sector of the
composite spin, where the ground state is described by the
2 × 2 matrix product state (MPS) carrying the bipartition
entanglement entropy SEE = ln 2 [31]. In the negative-sign-
removed representation, however, the ground state is a kind of
classical ferromagnetic state, where every site is disentangled
from the others [5,6,29] and thus there is no topological
entanglement. Then, the four degenerate ground states of the
AKLT point are written as the very simple form

|�ν〉 =
∏

i

∣∣φν
i

〉
(41)

with

|φ1〉 = 1√
3

(|1〉 + |2〉 + |3〉), (42)

|φ2〉 = 1√
3

(|1〉 − |2〉 + |3〉), (43)

|φ3〉 = 1√
3

(|1〉 + |2〉 − |3〉), (44)

|φ4〉 = 1√
3

(|1〉 − |2〉 − |3〉). (45)

An important point is that the degenerate states are distin-
guished by the distribution of “−” in front of the three color
kets, except for the overall sign. Thus, the total number
of the degeneracy is illustrated as the number of possible
distributions of −, i.e., 23/2 = 4, which is consistent with
the (Z2 × Z2)-symmetry breaking. This fact is also significant
for the generalization to the SO(N ) spin chain.

III. GENERALIZATION TO SO(N) CHAINS

We generalize the theory for the S = 1 BLBQ chain
to SO(N ) BLBQ chains. Let us start with the defining
representation of the SO(N ) rotational group, which is given
by the N × N matrix [32]

(Lab)x,y = −i(δa,xδb,y − δb,xδa,y), (46)

where Lab is the generator of a rotation in the ab plane, and
a,b = 1, . . . ,N . Also, the subscript x,y (=1, . . . ,N) is the
matrix index representing the color of a particle. Note that Lab

is antisymmetric with respect to the permutation of a ↔ b.
For the SO(3) case, we have explicitly Lx = L23, Ly = −L13,
and Lz = L12. If we take Lz as a Cartan generator and use
the R matrix, we have the usual Sz-diagonal representation
of the S = 1 spin matrix. However, we directly deal with
Eq. (46) and then introduce the generalized Jordan-Wigner
transformation rather than the KT one based on the Cartan-
generator-diagonalizing bases.

The SO(N ) BLBQ Hamiltonian is written as [13,14]

Ĥ =
∑

i

ĥi,i+1 (47)
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with

ĥi,i+1 =
∑
b>a

Lab
i Lab

i+1 + α

N − 2

⎡
⎣(∑

b>a

Lab
i Lab

i+1

)2

− 1

⎤
⎦
(48)

where the parametrization α
N−2 is for later convenience. Note

that α = 1 is the SU(N ) point, and α = N−2
N

is the SO(N ) VBS
point, where the ground state is exactly written in the matrix
product form. In particular, symmetry-protected topological
order appears in a certain region of α < 1 (the lower bound of
α depends on N ).

As in the case of SO(3), the matrix elements of the local
Hamiltonian in the defining representation can be represented
as

ĥi,i+1 = �c
i,i+1 + α�r

i,i+1 − (1 − α)�h
i,i+1, (49)

where the �s are N2 × N2 matrices representing the scattering
of the particles of ni and ni+1 (=1, . . . ,N) colors. �c

denotes the particle exchange of different colors, �r indicates
the repulsion of the same color particles, and �h means
the pair creation and annihilation of different colors. The
corresponding world-line diagrams are the same as in Fig. 1.
Their matrix elements can be explicitly given by the SU(N )
version of Eqs. (14)–(16), with the SU(3) generators replaced
by those of SU(N ). In the Hamiltonian (49) of α � 1, the
negative sign comes from the �c term.

In order to invert the sign of �c, we define a generalized
Jordan-Wigner transformation as

Q =
∏
〈i,j〉

Qi,j , (50)

where the product is taken for all the pairs in the chain. The
N2 × N2 diagonal matrix Qi,j is explicitly constructed for
i < j as

Qi,j ≡ diag(

1︷︸︸︷
1 ,

N−1︷ ︸︸ ︷
−1, . . . −1 , . . .

l︷ ︸︸ ︷
1, . . . ,1 ,

N−l︷ ︸︸ ︷
−1 . . . ,−1 , . . . ,

N︷ ︸︸ ︷
1, . . . ,1), (51)

which act on the |ni〉 ⊗ |nj 〉 space. If particles of different
colors at the ith and j th sites are exchanged, Qi,j inverts
the sign of a state vector. Thus, it is shown that Q�cQ =
−�c, Q�rQ = �r, and Q�hQ = �h. We therefore obtain the
Hamiltonian

H̃ = QĤQ =
∑

i

h̃i,i+1, (52)

where

h̃i,i+1 ≡ −�c
i,i+1 + α�r

i,i+1 − (1 − α)�h
i,i+1, (53)

which has no negative-sign problem for α � 1. If we use the
Schwinger-boson representation for the �’s, this Hamiltonian
describes N -color interacting bosonic particles, as well.

We further examine the correlation function of the SO(N )
chain. Similarly to the SO(3) case, the result for the conven-
tional spin correlation function is given by〈

Lab
i Lab

j

〉
Ĥ

= −〈
T ab

i eiπ
∑

i<k<j T ab
k T ab

j

〉
H̃

(54)

where T ab is defined as a symmetric matrix,

(T ab)x,y = δa,xδb,y + δb,xδa,y . (55)

Note that we have used the identity eiπLab = eiπT ab

in Eq. (54).
It is also straightforward to confirm that the string correlation
function is mapped as〈

Lab
i eiπ

∑
i<k<j Lab

k Lab
j

〉
Ĥ

= −〈
T ab

i T ab
j

〉
H̃

. (56)

In the Cartan-generator-diagonal base, a KT transformation
is defined for each Cartan generator [13,14], where construc-
tion of the V transformation is highly nontrivial. In contrast,
the generalized Jordan-Wigner transformation maps the string
order parameters into the ferromagnetic orders all at once. In
particular, it should be remarked that, although the KT trans-
formation is still unknown for N even, the negative sign was
removed by the Jordan-Wigner approach independently of N .

At the VBS point α = N−2
N

, the Hamiltonian is the spatial
sum of the projection operator to the SO(N )-symmetric sector
with the dimension (N + 2)(N − 1)/2 [13,14]. Thus, the
ground state of Eq. (49) can be exactly represented by the MPS,
where the ground-state energy per spin is exactly −1. For the
Hamiltonian (52) where the negative sign is removed, we can
easily obtain the ground-state wave functions by diagonalizing
ĥi,i+1:

|�ν〉 ≡
∏

i

∣∣φν
i

〉
, (57)

where

∣∣φν
i

〉 = 1√
N

N∑
ni=1

σ ν(ni)|ni〉, (58)

with σ ν(ni) = ±1. Clearly, the state |�ν〉 is the product state
with respect to the on-site wave function |φν

i 〉, where all the
spins on the chain are disentangled from each other. Thus, we
can easily calculate the expectation value of the string order
parameter, 〈

φν
i

∣∣T ab
i

∣∣φν
i

〉 = ± 2

N
, (59)

for the broken-symmetry state of Eq. (58).
The number of the degeneracy can be counted as the pos-

sible number of {σ ν(ni)}. Taking account of the irrelevance of
the overall sign, we straightforwardly obtain the number
of degeneracy as 2N−1, so that ν runs from 1 to 2N−1. In terms
of the MPS for N odd, the ground state is described by the MPS
of a 2(N−1)/2 × 2(N−1)/2 matrix, where the number of the degen-
eracy clearly corresponds to that of the edge states attributed to
the (Z2 × Z2)(N−1)/2 symmetry. For N even, the ground state
is also described by the MPS of a 2N/2 × 2N/2 matrix, but half
of its matrix elements are zero. Therefore, it is concluded that
the number of the ground-state degeneracy is consistent with
the MPS in the Cartan-generator-diagonalizing basis.

Here, we should make a comment on the linear dependence
of the ground state of Eq. (58). For the local Hamiltonian
at the VBS point, the ground state belongs to the SO(N )
singlet sector or the antisymmetric sector with dimension
N (N − 1)/2 [13,14]. Thus there are only 1 + N (N − 1)/2
number of linear independent eigenvectors of the ground
state. This implies that, for N > 3, the vectors |φν

i 〉 for
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ν = 1, . . . ,2N−1 are linearly dependent within the two-site
problem. However, when the chain becomes long, the product
state |�ν〉 recovers its linear independence, where the total
Hilbert space is exponentially enlarged.

IV. QUANTUM MONTE CARLO SIMULATION

In the previous section, we obtained the negative-sign-free
Hamiltonian (52) for the SO(N ) BLBQ chain, which can
be regarded as the problem of interacting bosonic particles
with N colors, in the basis of the Schwinger-boson repre-
sentation. In this section, we demonstrate a QMC simulation
based on a directed-loop algorithm for the negative-sign-free
Hamiltonian.

A. Directed-loop algorithm

To formulate a QMC algorithm for the N -color particle
models of Eq. (52), the world-line representation of the
partition function is useful (see the review paper Ref. [16]).
Using the Suzuki-Trotter decomposition and inserting the
N -color Hilbert basis |n〉 (=⊗L

i=1|ni〉) between decomposed
terms, the partition function is written as

Z = Tr exp[−(H̃ − C)/T ] ≈
∑
n(·)

W ({n}), (60)

W ({n}) ≡
ML∏
t=1

L∏
i=1

〈n(t + 1)|[1 − (h̃i,i+1 − C)δτ ]|n(t)〉, (61)

where T is the temperature and L is the chain length
and |n(ML + 1)〉 = |n(1)〉. Also, δτ = 1/MT denotes the
imaginary-time slice discretized by the Trotter number M

(� 1). We rescale the temperature such that the Boltzmann
constant kB = 1. We set the periodic boundary condition
for Trotter direction t . The classical configuration n(·) can
be drawn as the N -color world-line configuration in two-
dimensional space (see Fig. 3). The W ({n}) can be regarded as
the classical Boltzmann weight. The constant C does not affect
the expectation values of physical quantities, where C � α is
necessary so that the Boltzmann weight W ({n}) is positive.

We can construct the directed-loop algorithm for this
classical model. It introduces a pair of singular points into the
world-line configuration, which are called the worm’s head and
tail (see the solid up and down triangles in Fig. 3). The colors of
the world lines change at these singular points. We first insert
a worm’s head and tail on a world-line configuration so that
the new color is inserted into an initial world line at random.
Setting the worm’s head and tail virtually at the same position,
we can insert it freely. We change the world-line configuration
by moving these worm’s head and tail. If the worm’s head
meets its tail, we can annihilate them. Then we obtain a
new world-line configuration which may be globally different
from the initial configuration. In practice, we move only the
worm’s head. The direction of movement is represented as
the up or down triangle in the Trotter direction in Fig. 3.
After the head (black up triangle) hits a slice 〈n(t + 1)|[1 −
(h̃i,i+1 − C)δτ ]|n(t)〉 from a corner (t,i + 1), it will take one of
four possible positions: (t,i), (t,i + 1), (t + 1,i), (t + 1,i +
1). The new direction of the head always points toward the
outside of the slice box. The probabilistic rule for scattering the

i

t

Chain direction

Tr
ot

te
r d

ire
ct

io
n

(t,i) (t,i+1)

(t+1,i) (t+1,i+1)

1 − (h̃i,i+1 − C)δτ

(t,i)=(1,1) (1,2) (1,3) (1,4) (1,1)

Tail
Head

FIG. 3. (Color online) (N = 3)-color world-line configuration of
Eq. (60) with L = 4 with a periodic boundary. The gray box denotes
an imaginary-time slice with a local Boltzmann weight 〈n(t + 1)|[1 −
(h̃i,i+1 − C)δτ ]|n(t)〉. The solid up and down triangles are a worm’s
head (black) and tail (white).

head satisfies the balance condition between the four possible
configurations, because the frequency of a new world-line
configuration must be proportional to the classical Boltzmann
weight defined without the worm’s head and tail. The rule
which satisfies the balance condition is not unique. We use the
scatter table determined by Suwa and Todo’s reversible kernel
of the Markov chain [33]. Then, if C � α, we always obtain the
no-turn-back table. In addition, we take the continuous-time
limit as δτ = 0 (M → ∞) in the algorithm level. Thus, there
is no systematic error from the Trotter discretization in our
simulations. We note that the present algorithm includes the
QMC algorithm for the SU(N ) models of Ref. [3] as a special
case. In addition, the present algorithm can also be applied
not only to the one-dimensional model, but also to higher-
dimensional models with N color particles. It is interesting to
mention that a similar QMC simulation was actually performed
for a S = 1 ferromagnetic biquadratic model on a triangular
lattice, which includes only the �h diagram [34].

B. SO(N) BLBQ chains at finite temperatures

1. Ground-state phase diagram

At zero temperature, the SO(N ) BLBQ models of (48)
have four types of phase depending on N and α: the Haldane
phase for odd N , the non-Haldane phase for even N [35], the
dimer phase, the ferromagnetic phase, and the critical phase
(see Fig. 5 in Ref. [13]). In addition, there are a couple of
solvable points in the ground-state phase diagram. The SU(N )
symmetric point corresponds to α = 1, which can be solved
by the Bethe ansatz and has a gapless ground state [8]. Another
point solvable by Bethe ansatz is located at α = (N − 4)/(N −
2), where the ground state is also gapless [24,36]. The phase
between these two points is in the Haldane phase or the non-
Haldane phase, where symmetry-protected topological order
appears. In particular, at α = (N − 2)/N , the ground-state
wave function is described by a VBS-type wave function,
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FIG. 4. (Color online) Energy per site for SO(3), SO(4), and
SO(5) BLBQ models at finite temperatures. The system size L is
256. Horizontal dotted lines are the exact values of the ground-state
energy.

which is exactly represented by the MPS. On the other hand,
the dimer phase appears between α = (N − 4)/(N − 2) and
−1. Note that these phases are gapful, where the density
matrix renormalization group method works effectively. Thus,
there are also many studies of the ground-state properties
of the SO(N ) BLBQ chains [13,14,35–39]. However, the
finite-temperature behavior is not well studied.

2. Energy

We derived the N -color bosonic particle model of Eq. (52)
from the SO(N ) BLBQ model by a generalized Jordan-Wigner
transformation. This model has no negative-sign problem for
α � 1. Thus, using the directed-loop algorithm above, we can
estimate its temperature-dependent behavior numerically. In
the following, we will show the results of QMC simulations
at finite temperatures. The typical number of world-line
configurations is more than 106.

Figure 4 shows the energy of the SO(3), SO(4), and SO(5)
BLBQ chains at the VBS and SU(N ) points. The system size
L is 256. We cannot see the system-size dependence on the
scale of Fig. 4. We note that all cases in Fig. 4 suffer from
the negative-sign problem if we directly calculate the original
SO(N ) BLBQ models. The horizontal dotted lines are the
exact values of the ground-state energy. All the results of
QMC calculations smoothly converge to the exact values of
the ground-state energy. Thus, we numerically confirmed the
correctness of our transformation.

Here, we make a comment on the boundary condition in
the QMC simulations. The negative-sign-free Hamiltonian
is basically derived under the open boundary condition due
to nonlocal transformations. However, we have in practice
performed the simulations in Fig. 4 under the usual periodic
boundary condition, by neglecting the nonlocal interaction
between the boundary sites of i = 1 and L. Of course, the
directed-loop algorithm also works for the open boundary
system and we have actually confirmed that the results for
the open boundary are consistent with those for the periodic
boundary, which implies that the periodic boundary condition
yields no undesirable effect in the QMC simulation. However,
the finite-size dependence of the results for the periodic

 0
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 0.6
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 0  5  10  15  20
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1 / T

α  = 1
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FIG. 5. (Color online) Entropy per site of the SO(3) BLBQ model
at finite temperatures. The system size L is 256.

boundary is much less than those for the open boundary.
Therefore, we basically show the results for the periodic
boundary condition below.

3. Entropy

If the temperature dependence of the energy can be pre-
cisely calculated, we can estimate the temperature dependence
of the thermal entropy S from a numerical integration of the
energy as

S(β) = S(β = 0) +
∫ β

0
dβ ′β ′ ∂〈H̃〉H̃

∂β ′ , (62)

where β = 1/T and S(β = 0)/L = ln(N ) for the SO(N )
BLBQ models. Since the energy rapidly changes in the higher-
temperature region, we took enough points in the higher-
temperature regions. Figure 5 shows the entropy of the SO(3)
BLBQ models at finite temperatures. In the gapped Haldane
phase (α �= 1), the entropy quickly goes to zero when the tem-
perature is lower than the energy gap. On the other hand, the en-
tropy of gapless point (α = 1) decreases slowly. We also found
the qualitatively same behavior in the SO(4) and SO(5) models.

As discussed in Ref. [3], the dependence of entropy growth
on the SO(N ) symmetry is important for decreasing the
temperature of a system by the evaporative cooling technique.
If the entropy grows much faster at a low temperature for
increasing N , the temperature corresponding to a given entropy
decreases very fast. In Ref. [3], such behavior was confirmed
at the SU(N ) point. Here, we have confirmed the faster growth
with respect to N not only at the SU(N ) point, but also in the
whole region of α. Figure 6 shows the temperature dependence
of the entropy at the VBS points of the SO(N ) BLBQ models
[α = (N − 2)/N]. When N increases, the entropy grows much
faster at low temperature. At the VBS points, gaps are opened.
However, even if the temperature is larger than the energy gap
scale, rapid growth of the entropy is observed. The main reason
is the size of the Hilbert space for the SO(N ) state.

In the mapped bosonic particle system, the SO(N )
symmetry of the original BLBQ chain is hidden by the
nonlocal transformation. In other words, a bosonic particle
model with specific interaction parameters, which does not
exhibit explicit SO(N ) symmetry, can be inversely converted
to the SO(N ) BLBQ chain through nonlocal transformation.
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SO(5) BLBQ models at the VBS points [α = (N − 2)/N ]. The
system size L is 256.

From the experimental viewpoint, for optical lattices, then,
an interesting point is that fine tuning of the interaction
parameters is rather easy compared with the usual spin
systems. This suggests that the low-temperature properties of
the SO(N ) BLBQ chain may be observed for an optical lattice
with efficient evaporative cooling.

4. String order parameter

For SO(N ) BLBQ chains, the generalized Jordan-Wigner
transformation maps the string correlation function into
the off-diagonal correlation function 〈T ab

i T ab
j 〉H̃ defined by

Eq. (56). Then, the hidden-symmetry breaking of the topolog-
ical order in the original system can be detected as the explicit
symmetry breaking characterized by the order parameter
〈T ab〉H̃ in the mapped system.

In the QMC simulations, we can measure the two-point
correlation function of the off-diagonal order at a finite tem-
perature, as follows. Since the worm’s head and tail correspond
to the operator T ab, the probability that the worm’s head and
tail are put in a world-line configuration is proportional to the
value of the two-point Green function 〈T ab

i (t)T ab
j (t ′)〉H̃ . Thus,

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  20  40  60  80  100  120  140

〈 T
αβ

0 T
αβ

R
〉 H~

⁄
〈  T

αβ
0 T

αβ
0

〉 H
~

R

T=1
T=1/2
T=1/4

 1e-07
 1e-06
 1e-05

 0.0001
 0.001

 0.01
 0.1

 1

 0  20  40  60  80  100 120 140

FIG. 7. (Color online) Two-point correlation function of the off-
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we can estimate the two-point correlation function of T ab from
a histogram of the distance between head and tail. Figure 7
shows the two-point correlation function at the AKLT point of
the SO(3) case, which is estimated from the histogram of the
distance between the worm’s head and tail. The vertical axis of
this figure is normalized by 〈(T ab

0 )2〉H̃ . As shown in the inset,
the function’s form can be written as 〈T ab

i T ab
j 〉H̃ ∝ exp[−|i −

j |/ξ (T )], where ξ (T ) is the correlation length at a temperature
T . Because the AKLT point is in the Haldane phase, the
string correlation function grows over the whole distance as
the temperature decreases. In other words, the correlation
length diverges when the temperature goes to zero, which
implies that long-range order of T ab occurs in the ground
state. Figure 8 shows the correlation length estimated from the
second moment of the correlation function, which diverges
as ξ (T ) ∝ exp(�ξ/T ). We estimated �ξ as 0.845, using the
results between 1/T = 4 and 6. Note that, at the AKLT point,
the ground state in the mapped system is reduced to be the
classical product state of Eq. (41). Thus, we may intuitively
expect that �ξ would coincide with the energy gap from the
ground state, as in the 1D Ising chain. However, it is different
from the known value � = 0.700 which has been evaluated by
a variety of methods, such as variational approximation [40],
the magnetization curve [41], and the tensor network methods
[42]. The value 0.845 suggests that a nontrivial quantum effect
is involved in the excited states, although the ground state
has no entanglement. We will report further details of the
off-diagonal order in the N -color particle model elsewhere.

V. SUMMARY AND DISCUSSION

In this paper, we have studied the relation between the
symmetry-protected topological order and the negative-sign
problem for SO(N ) BLBQ chains. A generalized Jordan-
Wigner transformation combined with the defining repre-
sentation of the SO(N ) spin removes the negative sign in
the parameter region corresponding to VBS-type phases. So
far, the negative-sign problem in QMC simulations has been
addressed for such particular models as the zigzag ladder [2]
and SU(N ) chain [3], and there is no systematic approach
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even in one dimension. A key point in this paper is that
the generalized Jordan-Wigner transformation is reconstructed
from the pair disentanglers, which provides a systematic
construction of the nonlocal transformation. Moreover, the
symmetry among the rotational axes hidden by the Cartan-
generator-diagonalizing representation becomes manifest in
the defining representation. Then, the explicit matrix repre-
sentation of the transformation enables us to systematically
disentangle the symmetry-protected topological entanglement
and to obtain the correlation functions in the mapped system. It
is also interesting that this transformation totally disentangles
the ground-state entanglement for N > 3, in contrast to the fact
that a series of KT transformations is required in order to dis-
entangle the VBS state [13]. Recently, the relation between the
nonlocal unitary transformation and the symmetry-protected
topological order has attracted much attention [43,44]. Our
results might stimulate further investigations of negative-sign
problems for a variety of systems associated with symmetry-
protected topological orders [45].

We have formulated a directed-loop algorithm for the
negative-sign-free Hamiltonian, which is nothing but the
N -color bosonic particle model. The scattering of the world
lines is given by the diagrams in Fig. 1. QMC simulations
were demonstrated for SO(N ) BLBQ chains with N = 3,4,5
and their thermodynamic behaviors were clarified. Although
the AKLT model is a most essential model in quantum spin
systems, it has been difficult to reveal its thermodynamics,
because of the negative-sign problem. In particular, we would
like to emphasize that the present approach enables us to obtain
the temperature dependence of the string correlation function,
which may provides further insight into the thermodynamics
of the hidden topological order.

At the VBS point, the VBS state of the original BLBQ
Hamiltonian is in particular mapped into the classical product
state of Eq. (57). The number of the degeneracy is consistent
with the edge degrees of freedom in the MPS representation
in the original system. The ground-state wave function of the
mapped system (57) is clearly invariant under a translation
operation, independently of N . In the spin ladder represen-
tation of the SO(4) BLBQ chain, however, the ground state

is interpreted as the staggered dimer pattern accompanying
the spontaneous translational symmetry breaking in the leg
direction [35]. A reason for this is that the staggered dimer
operator is not SO(4) invariant and thus becomes nonlocal in
the mapped system. For the connection between the negative-
sign problem and the ground state with broken translational
symmetry, a further investigation of the zigzag ladder or the
SO(4) BLBQ chain may provide an interesting perspective.

What we have clarified in this paper is that the symmetry-
protected topological entanglement is a possible source of the
negative sign, and this negative sign can be removed by a
nonlocal transformation. However, we should finally remark
that the sign problem involves information not only of the
ground state but also of the excited states, which implies that
an argument relying only on the ground-state entanglement
may occasionally be misleading. For instance, the ground
states of the S = 1/2 zigzag ladder or the SO(4) BLBQ chain
at the VBS point are exactly described by the decoupled
dimers accompanying the translational symmetry breaking,
where there is no entanglement between the decoupled dimers.
Thus, one might expect that a local unitary transformation
disentangling the dimer pair could remove the negative sign.
However, this is not the case; the nonlocal transformation was
actually required, as was seen in this paper. In this sense, the
hidden symmetry, which is also relevant to the excited states,
plays a crucial role behind both the negative-sign problem and
the symmetry-protected topological entanglement.
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