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Quantum Monte Carlo algorithm for softcore boson systems
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An efficient quantum Monte Carlo algorithm for the simulation of bosonic systems on a lattice in a grand
canonical ensemble is proposed. It is based on the mapping of bosonic models to the spin models in the limit
of the infinite total spin quantum number. It is demonstrated how this limit may be taken explicitly in the
algorithm, eliminating the systematic errors. The efficiency of the algorithm is examined for the noninteracting
lattice boson model and compared with the stochastic series expansion method with the heat-bath-type scat-
tering probability of the random walker.
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During the past few years there has been an increa
number of reports on strongly correlated quantum system
lot of attention has been focused on quantum phase tra
tions @1# at zero temperature, which can be observed w
parameters such as the particle concentration and/or th
teraction constants are varied. In order to observe the q
tum phase transition experimentally, one must be able to
cisely control the parameter~s!, driving the transition, which
is usually very difficult in real experimental situation
Therefore, only analytical theories and numerical simulatio
have been able to provide an accurate description of the c
cal behavior, associated with quantum phase transiti
Quite recently, however, a very precise tuning of parame
was achieved in a system of ultracold atoms trapped in
optical lattice, formed by the intersection of laser beams@2#.
A transition from Mott insulating phase to a superfluid pha
was observed. It was argued that the system is well descr
by the bosonic Hubbard model on ad-dimensional lattice,
and comparisons were made with numerical simulati
@3,4#. This is just one example of an experimental realizat
of a strongly correlated quantum system, and a lot of exp
mental work will be done along these lines in the near
future. We believe that it is very important in such studies
be able to provide an accurate and simple theoretical des
tion of the experimental system. Since the analytical solut
of the models of strongly correlated systems is usually
possible, such a description may be in most cases prov
only by the numerical simulations.

While efficient and powerful quantum Monte Car
~QMC! algorithms exist for general quantumspin systems,
the progress in the development of the algorithms for
numerical simulations ofbosonicsystems with no hard cor
is much more modest. In the present paper we describ
QMC algorithm, allowing efficient simulations of th
bosonic models with short-range interactions on a lattice
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the grand canonical ensemble, with average particle num
controlled by the chemical potential.

Recently an efficient QMC algorithm for the simulation
spin models with arbitrary spin quantum numberS on the
lattice was proposed and implemented@5#. It is based on
coarse grainingof the conventional loop algorithm with
split-spin representation, in which each spin-S operator is
replaced by a sum of 2S Pauli matrices. One update cycle o
worldline configuration in this algorithm consists of~a!
placement of the vertices on the space-time lattice;~b! cre-
ation of a pair of spin-raising or spin-lowering worms;~c!
propagation of one of the worms through the lattice w
scattering on the vertices, resulting in changes of worldl
configuration;~d! worm annihilation. The algorithm for a
particular model is thus defined by specifying a number
parameters, depending on the local worldline configurati
density of vertices, scattering probabilities at vertices, a
the probabilities for creation and annihilation of a pair
worms.

Holstein-Primakoff~HP! transformation@6# gives a rela-
tion between the spin systems and the boson systems. In
wave theories, the transformation is used for mapping a s
problem into a boson problem. Here we do the opposite
order to derive a Monte Carlo algorithm for bosonic syste
from the above-mentioned one for spin systems. The rela
can be written as Si

15bi
†(2S2bi

†bi)
1/2, Si

25(2S
2bi

†bi)
1/2bi , and Si

z5ni2S, where Si
1 , Si

2 , and Si
z are

spin operators on the sitei, and bi
† and bi are the boson

creation and annihilation operators. At a first glance it a
pears that the algorithm derived from the HP transformat
would be directly applicable only to the boson systems t
have an artificial limitation of number of particles per si
~i.e., it cannot exceed 2S). We show that this is not the cas
in the following.

We lift the limitation by taking the limit of largeS. Ex-
amining the HP transformation, we note that ifni will be
kept finite by the chemical potential, in the largeS limit we
can neglect higher order termsmaking no error, and keep
only the lowest order inni5bi

†bi in the HP transformation
which leaves us with
©2003 The American Physical Society08-1
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b5
1

A2S
S2 and b†5

1

A2S
S1. ~1!

Mapping ~1! allows us to rewrite the Hamiltonian of
bosonic model in terms of spin operators. Thus, if there is
algorithm for spin systems with arbitraryS, and if the infinite
S limit of this algorithm exists, we can easily obtain an a
gorithm for the bosonic systems.

To demonstrate this idea, we consider a simple mode
noninteracting softcore bosons on ad-dimensional hypercu-
bic lattice of linear sizeL with the Hamiltonian

H52
t

2 (̂
i j &

~bi
†bj1bj

†bi !2m(
i

bi
†bi , ~2!

wheret is the~positive! hopping amplitude,m is the chemi-
cal potential, and the first sum is over the pairs of near
neighbor sites. Using mapping~1! we can replace the
bosonic operators in Eq.~2! with the spin operators, leadin
to a model equivalent to the original bosonic model in t
limit of infinite S:

H52
t

4S (̂
i j &

~Si
1Sj

21Sj
1Si

2!2m(
i

Si
z . ~3!

Since this is anXY spin model, an efficient algorithm i
available for anyS @5#. Our task is, therefore, to take th
infinite S limit of the algorithm. It turns out that all the pa
rameters defining the coarse-grained algorithm have w
defined values in this limit as well. Below we describe t
procedure of taking this limit and give a detailed descript
of the softcore boson algorithm for the noninteracting mod
Generalizations to models with interactions, such as the
site repulsive interaction and short-ranged repulsive an
attractive interactions, are straightforward. This, for instan
makes the present idea readily applicable to the boson H
bard model.

Naturally, boson occupation number must be positi
which leads to a restriction on the possible values of che
cal potential: m,2dt or umu.dt. To apply the coarse
grained algorithm we can use the values of parameters,
rived for the generalXXZ model in Table I of Ref.@5#.
Relationship between the parameters in Ref.@5# and the pa-
rameters of our model is

h52
umu
2dS

, J5
t

2S
, J850. ~4!

One has to use the results of Ref.@5# with caution, since they
are given for the case of positiveh. Therefore, in order to use
them for the present problem, we need to change the sig
the field in Eq.~4! and at the same time reinterpret partic
numbers denoted byl and m in Ref. @5#. Namely, in the
present paperl denotes the number of holes, whereasl̄
[2S2 l denotes the number of particles. Accordingly, wh
taking the infiniteS limit with fixed density of particles we
have to assume thatl andm are close to 2S, whereasl̄ and
m̄ are of the order of unity.
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Probability of creation of a pair of spin-raising or particl
number-decreasing~PND! worms in the coarse-grained algo
rithm is l̄ /2S and that of a pair of lowering or particle
number-increasing~PNI! ones isl /2S. By taking the limit
S→` we find that the probability to create a pair of PN
worms is zero. Corresponding probability for a pair of P
worms is then unity, indicating that our cycle willalways
start with a pair of PNI worms. That, however, does n
mean that the number of particles will be constantly incre
ing, since the worm changes its type to the opposite
every time it changes direction as a result of scattering o
vertex. Once the traveling worm returns to the point of o
gin, it can either annihilate there, ending the cycle, or p
through. The probability of annihilation of a pair of PND
worms is 1/l̄ and zero for the PNI ones.

Remaining parameters, such as density of vertices and
vertex scattering probabilities, needed for the construction
the algorithm, can be derived by examining the values
Table I of Ref.@5# for region IV and taking the value ofS to
infinity. First of all, the vertex densityB is given by B

5h( lm1 lm̄1 l̄ m)/2. To list nonzero scattering probabil
ties, using the notation of Ref.@5#, we have

PS ↓U l m

l 2 mD 52S~h2J!/~2B!, ~5!

PS ↗U l m

l 2 mD 5mJ/~2B!, ~6!

PS →U l m

l 2 mD 5m̄J/~2B!, ~7!

PS ↗U l 11 m

l 1 m11D 51/l̄ , ~8!

PS →U l 21 m

l 2 m21D 51/l . ~9!

Here we have setJ850 and the superscript1 or 2 indicates
that the type of the incoming worm is PND or PNI, respe
tively. Seemingly, there is a problem with density of vertic
becoming infinite in the infiniteS limit. However, it should
be noted that all nontrivial probabilities of the scatteri
events are proportional to 1/B, so that the density of the
scattering events remains finite. In other words, in the lim
of infinite S the situation is identical to the one that occu
when taking the continuous imaginary time limit in a co
ventional loop algorithm@7#. Exploiting the analogy to the
continuous imaginary time loop algorithm, we can eas
construct a procedure for finding the time of the next sc
tering event. Namely, instead of examining each vertex, i
possible to generate the time of next event as a Pois
distributed random number where the average time inte
or the density depends on the local spin configuration and
type of the scattering process.

We can readily obtain the density of such events by m
tiplying the scattering probabilities~5!–~7! by B, and take
8-2
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the infinite S limit. Since Eq.~7! yields zero, we have two
nonzero scattering densities for intervals that have no ki
in it:

LS ↓U l m

l 2 mD 5
umu2dt

2d
~10!

and

LS ↗U l m

l 2 mD 5
t

2
. ~11!

For the scattering probability at kinks, only the scatteri
probability ~8! will remain nonzero, since probability~9!
vanishes in the infiniteS limit.

In order to describe the algorithm in detail, we introduc
concept of a constant environment interval~CEI! on which
the moving worm resides. A CEI is defined as an inter
ahead of the worm in which the environment of the wo
does not change in the imaginary time direction, i.e.,
worldline state changes neither on the current site nor on
of the neighboring sites. This interval is bounded by one
three events, closest to the worm:~a! a kink on the current
site, ~b! a kink on one of the neighboring sites, or~c! the
point of origin, where the other worm waits for the movin
worm.

Worldline configuration update cycle for the nonintera
ing model may be summarized as follows.

~1! Choose an arbitrary space-time point to place a pai
worms, one of which will move, producing the changes
the configuration, and another one will mark the point
origin. Always start with a PNI~spin-lowering! worm.
Choose the arbitrary direction~up or down! for the worm’s
initial movement.

~2! Determine the CEI.
~3! For each type of scattering and for each neare

neighbor site, which is a candidate for the final scatter
destination, generate the time of the next possible scatte
event stochastically according to the Poisson distribut
with densities~10! and ~11!.

~4! If the advancement of the worm by the smallest
these times does not take the worm out of CEI, implem
the corresponding scattering event. In case of a backsca
ing event, change the type of the worm to the opposite o
Go back to~2!.

(48) If the advancement of the worm gets the worm out
CEI, advance the worm to the end of the CEI.

~5! If the end point of the CEI is not a kink or the origina
starting point, go back to~2!.

(58) If the end point of the CEI is a kink, attempt t
scatter on it according to Eq.~8!. If the scattering fails or not
applicable, let the worm skip the kink and go on. Go back
~2!.

(59) If the end point of the CEI is the original startin
point, stochastically determine, whether they will annihila
with the probability 1/l̄ where l̄ is the particle number on th
CEI. If it annihilates, the update cycle is terminated. Oth
wise go back to~2!.
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After a number of full update cycles~resulting in worm
annihilation! the observables are measured.

To test the validity and evaluate the efficiency of the
gorithm we have performed a number of tests, comparing
results of QMC simulation of the noninteracting bos
model in three dimensions to the exact results. Although
model does not have any interaction terms, it is nontriv
enough to provide us with excellent grounds for testing
cause it displays Bose-Einstein condensation~BEC! and the
observables may be calculated analytically.

We have performed simulations atkBT52 ~here and be-
low we uset as the unit of energy, by puttingt51) at ten
different values of the chemical potential, chosen so that
resulting average occupation number would ben[^N&/V
50.1,0.2, . . . ,1.0. Three different system sizes are cons
ered: L54,8,16. If not stated otherwise, for each value
system size and chemical potential we have perform
50 000 cycles for equilibration, and another 50 000 cycles
measurement. The 50 000 measurement cycles were div
into ten bins of the equal length for estimating the statisti
error.

In all cases we investigated, including cases close to c
cality and ones deep inside the superfluid phase, we foun
excellent agreement between the numerical QMC data
the exact analytical results. As an example, Fig. 1 shows
dependence of the compressibility k[(]n/]m)T
5(kBT)21(^N2&2^N&2)/Ld as a function ofn at a fixed
temperaturekBT52. The observation of the divergent be
havior of compressibility at BEC transition is well within th
reach of numerical simulation. For low values ofn and L
516 we had to increase the number of cycles 100 times
order to obtain a good statistics because the typical lifet
of a worm becomes too short in this case. Even after
increase, the CPU time spent for this case is smaller than
for the superfluid cases.

In Fig. 2, we plot the superfluid densityrS against the

FIG. 1. The compressibility plotted against the average occu
tion number for three-dimensional free lattice boson system
kBT52.0. The lines are the exact analytical values, while the sy
bols are the results of QMC simulation. Uncertainty in the occu
tion number is in all cases smaller than the width of the symb
Data forL516 and^n&.0.4 are computed with the standard num
ber of cycles~solid diamonds!, while the data for̂ n&<0.4 were
obtained with a 100 times longer simulation~open diamonds!. Error
bars are in all cases smaller than the size of the symbols.
8-3



s
-
n
m

th
m

se

on

le
n
o
i

is
o-
rt
pe
tio
w

pl
tio

r
at
f
o

ts

xi-

rue
in
rm,
or-
ber
nts
ew
lgo-

he

the
ems
g its
n
ri-
ible
the
y
r
l-
al

ffi-
n
hms
en

r-

cc
em
T
r

ree-

-
ge
bars
rent
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average occupation number.rS is defined @8# as rS

[L2dkBT@d2F(u)/du2#u50 whereF(u) is the free energy
of a system twisted by the angleu per lattice spacing. In
QMC simulation this quantity can be measured byrS

5L22dkBT^Wx
2&, whereWx is the sum of winding number

of all worldlines in thex direction. The possibility of mea
suring the winding number fluctuation is one of the adva
tages of the present approach, compared to the algorith
such as the one used in Ref.@4#, which works in the fixed
winding number ensemble. In Fig. 2, we can again see
the onset of the condensation is captured by the QMC si
lation with the present algorithm.

We have also compared the performance of the pre
algorithm with the directed loop algorithm@9#, one of the
best QMC algorithms currently available for the simulati
of softcore boson systems. The directed loop algorithm
quite general and powerful method, applicable, in princip
to any quantum system. However, it is up to the user to fi
a set of scattering probabilities, optimizing the efficiency
the algorithm for a given model. Due to a huge freedom
the choice of algorithm parameters, in most cases this
highly nontrivial task. Also, to apply the directed loop alg
rithm to the softcore boson systems, one has to set an a
cial upper bound for the site occupation number. This up
bound must be taken large enough to make the simula
free from the systematic error. For comparison purposes
have used the directed loop algorithm with a set of sim
heat-bath scattering probabilities and the site occupa
number was limited byni<20.

To perform a quantitative comparison of algorithm perfo
mance, we have constructed an estimator for the integr
autocorrelation time~IACT! by measuring bin averages o
observables for different bin sizes. Denoting the variance
a set of averages over the bins of sizem by Vm , the IACT t
may be estimated as a largem limit of

t~m!5
mVm

2V1
, ~12!

where V1 is the variance of the individual measuremen
This allows us to determine the IACT by plottingt(m) as a

FIG. 2. The superfluid density plotted against the average o
pation number for three-dimensional free lattice boson syst
Standard simulation parameters were used for all data points.
lines are the exact analytical values while the symbols are the
sults of QMC simulation.
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function of m and reading off the limiting value for largem.
If convergence to a constant value is not achieved for ma
mum m used in the measurements, value oft(m) for this
value is taken to be the lower bound estimate for the t
IACT. For a fair comparison we have expressed the IACT
the number of scattering events experienced by the wo
since the simulation time for both cases is directly prop
tional to the number of these events rather than the num
of cycles. Table I shows the results of IACT measureme
for the occupation number and superfluid density at a f
values of parameters, obtained using both the proposed a
rithm and the stochastic series expansion~SSE! heat-bath
algorithm.

It can be clearly seen that in all cases, the IACT for t
proposed algorithm ismuch smaller than that for the SSE
heat-bath algorithm. As a consequence of a large IACT
heat-bath algorithm starts to develop convergence probl
as the average occupation number is increased, makin
use impractical in the vicinity of the superfluid transition. O
the other hand, the IACT for the proposed algorithm expe
ences only moderate increase. Moreover, there is no vis
slowing down when the system size is doubled even in
vicinity of the critical point,nc;0.6. This can be seen b
comparing the IACTs forL54 divided by the total numbe
of sites,L3, with those forL58. Therefore, the present a
gorithm is perfectly suitable for simulations near the critic
point and also inside the superfluid phase.

In summary, we have described a construction of an e
cient QMC algorithm for the simulation of softcore boso
models on the lattice, based on the coarse-grained algorit
for the spin models. By establishing the relationship betwe
the boson and spin operators in the infiniteS~total spin quan-
tum number! limit, we have mapped the model of noninte

u-
.

he
e-

TABLE I. The integrated autocorrelation time~IACT! for the
occupation number and the superfluid density, measured for th
dimensional systems with linear sizesL54,8 at different values of
the average occupation number^n& using the bin averaging tech
nique ~see text!. The IACT is expressed in terms of the avera
number of scattering events, experienced by the worm. Error
are estimated from four runs with identical parameters and diffe
random number generator seeds.

L ^n& Proposed algorithm SSE heat-bath algorithm

Occupation number IACT
4 0.2 265650 (28.363.2)3104

4 0.4 348624 (61.463.2)3104

4 0.6 669625 .2.633106

8 0.2 25956198 .1.433106

8 0.4 28036377 .3.923106

8 0.6 29436329 .1.883107

Superfluid density IACT
4 0.2 9865 (17.560.7)3103

4 0.4 200612 (7.361.4)3104

4 0.6 626627 .4.893105

8 0.2 173647 .1.593104

8 0.4 448634 .8.363104

8 0.6 .2340 .3.453106
8-4
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acting bosons on a lattice to a spinXY model in a magnetic
field. We have demonstrated that the limit of infiniteS may
be taken directly in the algorithm, leading to improved p
formance and absence of systematic errors. The resultin
gorithm was found to perform better than existing alg
rithms. The result of applications of the present algorithm
other models, such as the Bose Hubbard model, will be
ported elsewhere@10#.
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