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Quantum Monte Carlo algorithm for softcore boson systems

Jurij Smakov:* Keniji Harad2?! and Naoki Kawashirms
'Condensed Matter Theory, Department of Physics, Royal Institute of Technology, AlbaNova University Center,
SE-10691 Stockholm, Sweden
2Department of Applied Analysis and Complex Dynamical Systems, Kyoto University, Kyoto 606-8501, Japan
3Department of Physics, Tokyo Metropolitan University, Tokyo 192-0397, Japan
(Received 22 January 2003; revised manuscript received 3 June 2003; published 21 Octoper 2003

An efficient quantum Monte Carlo algorithm for the simulation of bosonic systems on a lattice in a grand
canonical ensemble is proposed. It is based on the mapping of bosonic models to the spin models in the limit
of the infinite total spin quantum number. It is demonstrated how this limit may be taken explicitly in the
algorithm, eliminating the systematic errors. The efficiency of the algorithm is examined for the noninteracting
lattice boson model and compared with the stochastic series expansion method with the heat-bath-type scat-
tering probability of the random walker.
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During the past few years there has been an increasingpe grand canonical ensemble, with average particle number
number of reports on strongly correlated quantum systems. 8ontrolled by the chemical potential.
lot of attention has been focused on quantum phase transi- Recently an efficient QMC algorithm for the simulation of
tions [1] at zero temperature, which can be observed whespin models with arbitrary spin quantum numk&on the
parameters such as the particle concentration and/or the itattice was proposed and implementgg]. It is based on
teraction constants are varied. In order to observe the quamoarse grainingof the conventional loop algorithm with
tum phase transition experimentally, one must be able to presplit-spin representation, in which each sfimsperator is
cisely control the paramei@y, driving the transition, which  replaced by a sum of 2 Pauli matrices. One update cycle of
is usually very difficult in real experimental situations. worldline configuration in this algorithm consists @¢8)
Therefore, only analytical theories and numerical simulationgplacement of the vertices on the space-time lattibg;cre-
have been able to provide an accurate description of the critation of a pair of spin-raising or spin-lowering worms)
cal behavior, associated with quantum phase transitiongropagation of one of the worms through the lattice with
Quite recently, however, a very precise tuning of parameterscattering on the vertices, resulting in changes of worldline
was achieved in a system of ultracold atoms trapped in agonfiguration;(d) worm annihilation. The algorithm for a
optical lattice, formed by the intersection of laser begffjs  particular model is thus defined by specifying a number of
A transition from Mott insulating phase to a superfluid phaseparameters, depending on the local worldline configuration:
was observed. It was argued that the system is well describedknsity of vertices, scattering probabilities at vertices, and
by the bosonic Hubbard model oncadimensional lattice, the probabilities for creation and annihilation of a pair of
and comparisons were made with numerical simulationsvorms.
[3,4]. This is just one example of an experimental realization Holstein-Primakoff(HP) transformation 6] gives a rela-
of a strongly correlated quantum system, and a lot of experition between the spin systems and the boson systems. In spin
mental work will be done along these lines in the neareswave theories, the transformation is used for mapping a spin
future. We believe that it is very important in such studies toproblem into a boson problem. Here we do the opposite in
be able to provide an accurate and simple theoretical descrigrder to derive a Monte Carlo algorithm for bosonic systems
tion of the experimental system. Since the analytical solutiofom the above-mentioned one for spin systems. The relation
of the models of strongly correlated systems is usually im£an be written as S"=b[(25-b/b)*% S =(2S
possible, such a description may be in most cases provided bib;)¥%;, and §=n;—S, whereS", S, and S are
only by the numerical simulations. spin operators on the site and b;r and b; are the boson

While efficient and powerful quantum Monte Carlo creation and annihilation operators. At a first glance it ap-
(QMC) algorithms exist for general quantuspin systems, pears that the algorithm derived from the HP transformation
the progress in the development of the algorithms for thevould be directly applicable only to the boson systems that
numerical simulations abosonicsystems with no hard core have an artificial limitation of number of particles per site
is much more modest. In the present paper we describe @e., it cannot exceedS). We show that this is not the case
QMC algorithm, allowing efficient simulations of the in the following.
bosonic models with short-range interactions on a lattice in We lift the limitation by taking the limit of larges. Ex-

amining the HP transformation, we note thatnif will be
keptfinite by the chemical potential, in the largelimit we
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1063-651X/2003/6@}/0467085)/$20.00 68 046708-1 ©2003 The American Physical Society



éMAKOV, HARADA, AND KAWASHIMA PHYSICAL REVIEW E 68, 046708 (2003

1 1 Probability of creation of a pair of spin-raising or particle-
b=—S  and b'=—S". (1)  number-decreasin@g®ND) worms in the coarse-grained algo-

V28 V2s rithm is 1/2S and that of a pair of lowering or particle-
Mapping (1) allows us to rewrite the Hamiltonian of a number-increasingPNI) ones isl/2S. By taking the limit

bosonic model in terms of spin operators. Thus, if there is ar‘?‘_>oo we find that the prob'ab|l|ty to crgate a palr'of PND
algorithm for spin systems with arbitray and if the infinite Worms 1S Zero. Co_rres_po_ndlrjg probability for a paur of PN
S limit of this algorithm exists, we can easily obtain an al- Worms 1S then unity, indicating that our cycle willways
gorithm for the bosonic systems. start with a pair of PNI worms. That, however, dqes not
To demonstrate this idea, we consider a simple model ofean that the number of particles will be constantly increas-

noninteracting softcore bosons ordalimensional hypercu- Ing, since t.he worm changgs its type to the opposlte one
bic lattice of linear size. with the Hamiltonian every time it changes direction as a result of scattering on a

vertex. Once the traveling worm returns to the point of ori-

t gin, it can either annihilate there, ending the cycle, or pass
H=—> > (bbj+b/b)— > blb;, (2)  through. The probability of annihilation of a pair of PND
Y ' worms is 1l and zero for the PNI ones.
wheret is the (positive hopping amplitudey is the chemi- Remaining parameters, such as density of vertices and the

cal potential, and the first sum is over the pairs of nearestVerex scgttering probabiliti.es, needed for the construction .of
neighbor sites. Using mappingl) we can replace the the algorithm, can be d_erlved by examining the values in
bosonic operators in Eq2) with the spin operators, leading 1able I of Ref.[5] for region IV and taking the value @&to
to a model equivalent to the original bosonic model in thelnfinity. First of all, the vertex densinB is given by B

limit of infinite S =h(|m+|ﬁ+l_m)/2. To list nonzero scattering probabili-
ties, using the notation of Ref5], we have
t
H=—4—SZ (S'S +SS)—pu> S 3) I m
(i ! Pl - m =2S(h—J)/(2B), (5)

Since this is anXY spin model, an efficient algorithm is
available for anyS [5]. Our task is, therefore, to take the m

infinite S limit of the algorithm. It turns out that all the pa- P( /’I‘ m) =mJ(2B), (6)
rameters defining the coarse-grained algorithm have well-

defined values in this limit as well. Below we describe the |
procedure of taking this limit and give a detailed description p( _>’
of the softcore boson algorithm for the noninteracting model. '
Generalizations to models with interactions, such as the on-

site repulsive interaction and short-ranged repulsive and/or

attractive interactions, are straightforward. This, for instance, Pl
makes the present idea readily applicable to the boson Hub-

bard model. -1 m
o

m JE—
m) —mJ/(2B), (7)

I+1 m
Y m+1

=1/, 8

Naturally, boson occupation number must be positive,
which leads to a restriction on the possible values of chemi-
cal potential: u<—dt or |u|>dt. To apply the coarse-
grained algorithm we can use the values of parameters, d
rived for the generaXXZ model in Table | of Ref[5].
Relationship between the parameters in R&f.and the pa-
rameters of our model is

I~ m-1 ©
Here we have sel’ =0 and the superscript or — indicates
%hat the type of the incoming worm is PND or PNI, respec-
tively. Seemingly, there is a problem with density of vertices
becoming infinite in the infiniteS limit. However, it should
be noted that all nontrivial probabilities of the scattering
events are proportional to B/ so that the density of the
J' =0. (4) scattering events remains finite. In other words, in the limit
of infinite S the situation is identical to the one that occurs
when taking the continuous imaginary time limit in a con-

are given for the case of positive Therefore, in order to use ventional loop algorithni7]. Exploiting the analogy to the

>~ continuous imaginary time loop algorithm, we can easil
them for the present problem, we need to change the sign %fo ginary bag y

L . : . onstruct a procedure for finding the time of the next scat-
the field in Eq.(4) and at the same time reinterpret partICIetering event. Namely, instead of examining each vertex, it is

numbers denoted by and m in Ref. [5]. Namely, in the ), e 14 generate the time of next event as a Poisson-
present papet denotes the number of holes, wherdas gjstributed random number where the average time interval
=251 denotes the number of particles. Accordingly, while or the density depends on the local spin configuration and the
taking the infiniteS limit with fixed denSity of pal’ticl_es we type of the Scattering process.

have to assume thatandm are close to 3, wheread and We can readily obtain the density of such events by mul-

m are of the order of unity. tiplying the scattering probabilitie€s)—(7) by B, and take

| ] t

"="2ds TTo2s

One has to use the results of Rf| with caution, since they
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the infinite S limit. Since Eq.(7) yields zero, we have two 10° . . . . .
nonzero scattering densities for intervals that have no kinks - .
— — L=4, exar L
in it: 162 b |— L8 exect ]
--- L=16, o
o L=‘11, Qelsl(gc(tiata ,p’ o
I m _ |/'L|_dt 10" | 3t:3b?3"-fcd3§a s
Al L - ml= 2a (10 « L=16, QMIC data
-]
10°
and
107
[ m t
A ==, 11
</‘| m) 2 - 10° : : : : -
0 0.2 0.4 0.6 0.8 1
For the scattering probability at kinks, only the scattering n
probability (8) will remain nonzero, since probabilityd) FIG. 1. The compressibility plotted against the average occupa-
vanishes in the infinité& limit. tion number for three-dimensional free lattice boson system at

In order to describe the algorithm in detail, we introduce akgT=2.0. The lines are the exact analytical values, while the sym-
concept of a constant environment inter¢@EIl) on which  bols are the results of QMC simulation. Uncertainty in the occupa-
the moving worm resides. A CEl is defined as an intervaltion number is in all cases smaller than the width of the symbols.
ahead of the worm in which the environment of the wormData forL =16 and(n)>0.4 are computed with the standard num-
does not change in the imaginary time direction, i.e., theber of cycles(solid diamonds while the data foxn)=<0.4 were
worldline state changes neither on the current site nor on a,.gbtained with 2 100 times longer simulati@pen diamonds Error
of the neighboring sites. This interval is bounded by one ofars are in all cases smaller than the size of the symbols.
three event;, closest to the wor(p) a ki_nk on the current After a number of full update cycleSesulting in worm
site, (b) a kink on one of the neighboring sites, @) the  anpinilation the observables are measured.
point of origin, where the other worm waits for the moving o test the validity and evaluate the efficiency of the al-

worm. _ _ ) gorithm we have performed a number of tests, comparing the
~ Worldline configuration update cycle for the noninteract-results of QMC simulation of the noninteracting boson
ing model may be summarized as follows. model in three dimensions to the exact results. Although the

(1) Choose an arbitrary space-time point to place a pair omodel does not have any interaction terms, it is nontrivial
worms, one of which will move, producing the changes inenough to provide us with excellent grounds for testing be-
the configuration, and another one will mark the point ofcause it displays Bose-Einstein condensat®EC) and the
origin. Always start with a PNI(spin-lowering worm.  observables may be calculated analytically.

Choose the arbitrary directiofup or down for the worm’s We have performed simulations lggT=2 (here and be-
initial movement. low we uset as the unit of energy, by putting=1) at ten
(2) Determine the CEL. different values of the chemical potential, chosen so that the

(3) For each type of scattering and for each nearestresuling average occupation number would e (N)/V
neighbor site, which is a candidate for the final scattering=0.1,0.2...,1.0. Three different system sizes are consid-
destination, generate the time of the next possible scatteringre(: L=4,8,16. If not stated otherwise, for each value of
event stochastically according to the Poisson distributionsystem size and chemical potential we have performed
with densities(10) and (11). 50 000 cycles for equilibration, and another 50 000 cycles for

(4) If the advancement of the worm by the smallest of measurement. The 50 000 measurement cycles were divided
these times does not take the worm out of CEIl, implemeninto ten bins of the equal length for estimating the statistical
the corresponding scattering event. In case of a backscattesrror.
ing event, change the type of the worm to the opposite one. |n a|| cases we investigated, including cases close to criti-
Go back to(2). cality and ones deep inside the superfluid phase, we found an

(4') If the advancement of the worm gets the worm out ofexcellent agreement between the numerical QMC data and
CEl, advance the worm to the end of the CEI. the exact analytical results. As an example, Fig. 1 shows the

(5) If the end point of the CEl is not a kink or the original dependence of the compressibility kx=(dn/dum)
starting point, go back t¢2). _ _ =(kgT) Y((N?)—(N)?)/LY as a function ofn at a fixed

(5') If the end point of the CEl is a kink, attempt t0 temperatureksT=2. The observation of the divergent be-
scatter on it according to E¢B). If the scattering fails or not havior of compressibility at BEC transition is well within the
applicable, let the worm skip the kink and go on. Go back tojeach of numerical simulation. For low values wfand L
(2). _ _ o =16 we had to increase the number of cycles 100 times in

(5”) If the end point of the CEl is the original starting order to obtain a good statistics because the typical lifetime
point, stochastically determine, whether they will annihilategf 3 worm becomes too short in this case. Even after this
with the probability 1¥ wherel is the particle number on the increase, the CPU time spent for this case is smaller than that
CEL If it annihilates, the update cycle is terminated. Otherfor the superfluid cases.
wise go back tq2). In Fig. 2, we plot the superfluid densitys against the
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TABLE I. The integrated autocorrelation tim@ACT) for the
06 | occupation number and the superfluid density, measured for three-
et dimensional systems with linear sizes-4,8 at different values of
-o- Lt et the average occupation numb@r) using the bin averaging tech-
04 o L=8, QMC data ) nique (see text The IACT is expressed in terms of the average
& o L=16, QMG data A, number of scattering events, experienced by the worm. Error bars
ﬁ‘f/‘s are estimated from four runs with identical parameters and different
02t g random number generator seeds.
L (n) Proposed algorithm SSE heat-bath algorithm
0 ] 02 04 06 08 1 Occupation number IACT
n 4 0.2 265+ 50 (28.3:3.2)x 10"
FIG. 2. The superfluid density plotted against the average occu4 0.4 348-24 (61.4-3.2)x 10*
pation number for three-dimensional free lattice boson system4 0.6 66925 >2.63x10°
Standard simulation parameters were used for all data points. Thg 0.2 2595-198 >1.43x 10°
lines are the exact analytical values while the symbols are the reg 0.4 2803377 >3.92x10°
sults of QMC simulation. 8 0.6 2043 329 >1.88x 10’
. . . Superfluid density IACT
average occupation numbepg is defined [8] as pg 4 0.2 085 (17.5+0.7)x 10°
=L 9%gT[d?F(6)/d6?],-, whereF(6) is the free energy , 0.4 200+ 12 (7.3 1.4)x 10°
of a system twisted by the angle per lattice spacing. In 4 0.6 626-27 >4.89x 10°
QMC simulation this quantity can be measured py 8 0.2 17347 >1.59x 10*
=L2"9%gT(W2), whereW, is the sum of winding numbers g 0.4 448-34 >8.36x 10°
of all worldlines in thex direction. The possibility of mea- g 0.6 >2340 >3.45x 10°

suring the winding number fluctuation is one of the advan

tages of the present approach, compared to the algorithms, | ) o
such as the one used in REA], which works in the fixed function ofmand reading off the limiting value for large.

winding number ensemble. In Fig. 2, we can again see thdf convergence to a constant value is not achieved for_maxi-
the onset of the condensation is captured by the QMC simyUm m used in the measurements, value¢m) for this
lation with the present algorithm. value is taken to be th_e lower bound estimate for the true
We have also compared the performance of the presedfCT. Fora fair comparison we have ex'pressed the IACT in
algorithm with the directed loop algorithi®], one of the the number of scattering events experienced by the worm,
best QMC algorithms currently available for the simulationSince the simulation time for both cases is directly propor-
of softcore boson systems. The directed loop algorithm idional to the number of these events rather than the number
quite general and powerful method, applicable, in principle,Of cycles. Table_ | shows the results of IA_CT megsurements
to any quantum system. However, it is up to the user to findor the occupation number and superfluid density at a few
a set of scattering probabilities, optimizing the efficiency ofvalues of parameters, obtained using both the proposed algo-
the algorithm for a given model. Due to a huge freedom infithm and the stochastic series expansi@B heat-bath
the choice of algorithm parameters, in most cases this is &'gorithm. _
highly nontrivial task. Also, to apply the directed loop algo- !t can be clearly seen that in all cases, the IACT for the
rithm to the softcore boson systems, one has to set an artifoPosed algorithm isnuch smaller than that for the SSE
cial upper bound for the site occupation number. This uppep€at-bath algorithm. As a consequence of a large IACT the
bound must be taken large enough to make the simulatioR€@t-bath algorithm starts to develop convergence problems
free from the systematic error. For comparison purposes waS the average occupation number is increased, making its
have used the directed loop algorithm with a set of simple!Se impractical in the vicinity of the superfluid transition. On
heat-bath scattering probabilities and the site occupatiof® other hand, the IACT for the proposed algorithm experi-
number was limited by < 20. ences only moderate increase. Moreover, there is no y|S|bIe
To perform a quantitative comparison of algorithm perfor-Slowing down when the system size is doubled even in the
mance, we have constructed an estimator for the integratedCinity of the critical point,n.~0.6. This can be seen by
autocorrelation timelACT) by measuring bin averages of comparing the IACTs fot. =4 divided by the total number
observables for different bin sizes. Denoting the variance off Sites,L, with those forL=8. Therefore, the present al-
a set of averages over the bins of siady V,,, the IACT 7 gorithm is perfectly suitable for simulations near the critical

may be estimated as a largelimit of point and also inside the superfluid phase.
In summary, we have described a construction of an effi-
mV,, cient QMC algorithm for the simulation of softcore boson
7(m)= 2V, (120 models on the lattice, based on the coarse-grained algorithms

for the spin models. By establishing the relationship between
where V, is the variance of the individual measurements.the boson and spin operators in the infirtéotal spin quan-
This allows us to determine the IACT by plottingm) as a  tum numbey limit, we have mapped the model of noninter-
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