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Short-time dynamics and magnetic critical behavior
of the two-dimensional random-bond Potts model
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The critical behavior in the short-time dynamics for the random-bond Potts ferromagnet in two dimensions
is investigated by short-time dynamic Monte Carlo simulations. The numerical calculations show that this
dynamic approach can be applied efficiently to study the scaling characteristic, which is used to estimate the
critical exponentsu,b/n, and z, for quenched disordered systems from the power-law behavior of thekth
moments of magnetization.

PACS number~s!: 64.60.Fr, 05.50.1q, 75.40.Mg, 64.60.Ht
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I. INTRODUCTION

An understanding of the effects of quenched impurities
the nature of phase transitions is one of the significant s
jects in statistical physics, and it has been a topic of subs
tial interest for many authors in the last two decades@1–9#.
According to the Harris criterion@11#, quenched randomnes
is a relevant perturbation at the second-order critical po
when the specific-heat exponenta of the pure system is posi
tive. Following the earlier work of Imry and Wortis@1#, who
argued that a quenched disorder could produce rounding
first-order phase transition and thus inducesecond-order
phase transitions, the introduction of randomness to syst
undergoing a first-order phase transition has been com
hensively considered. It was shown by Hui and Berker w
phenomenological renormalization group arguments
bond randomness can have a drastic effect on the nature
first-order phase transition@2#, and the feature has bee
placed on a firmer basis with a rigorous proof of vanishing
the latent heat@3#. Their theory was numerically checke
with the Monte Carlo~MC! method by Chen, Ferrenberg an
Landau~CFL! @4,5#, who studied the eight-state Potts mod
with random-bond disorder. Experimental evidence has b
found in two-dimensional systems that in the order-disor
phase transitions of absorbed atomic layers, the critical
ponents are modified, on the addition of disorder, from
original four-state Potts model universality class in the p
case@12,13#. On the other hand, no modification is foun
when the pure system belongs to the Ising universality c
@14#. The theoretical study of such disordered systems is
an active field where use of intensive MC simulations
often helpful@10,15–19#.

It is well known that the pure Potts model in two dime
sions ~2D! has a second-order phase transition when
number of Potts statesq<4 and is first order forq.4. As
the specific-heat exponenta of the pure system is alway
positive forq.2, the disorder will be the relevant perturb
tion for the Potts model. As a result, all the transitions
second order for the 2Dq-state Potts models in the presen
PRE 621063-651X/2000/62~1!/174~5!/$15.00
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of quenched disorder, and the impurities have a particula
strong effect forq.4, even changing the order of the tra
sitions.

In this paper, we discuss the dynamic scaling features
the random-bond Potts model~RBPM! through MC simula-
tions, to estimate the critical exponents. We consider
important questions of whether there exists an Ising-like u
versality class for the RBPM and how the critical behavior
affected by the introduction of disorder into the pure syst
@17#. The large-scale MC results of CFL and in Ref.@18#
suggest that, in 2D, any random system should belong to
pure Ising universality class. These results are also consis
with experiments@12#. In recent papers@7,8#, however,
Cardy and Jacobsen studied the random-bond Potts mo
for several values ofq with a different approach based on th
connectivity transfer matrix~TM! formalism of Blöte and
Nightingale @20#. Their estimates of the critical exponen
lead to a continuous variation ofb/n with q, which is in
sharp disagreement with the MC results forq58 @4,5#. We
hope that the resulting critical behavior measured in this
per will play a role in settling this controversy. Furthermor
we will test theshort-time dynamic~STD! MC approach to
study spin systems with quenched disorder and show its
ficiency with numerical studies, which is also one of t
main aims of this paper.

II. MODEL AND METHOD

The Hamiltonian of theq-state Potts model with quenche
random interactions can be written as

2bH5(
^ i , j &

Ki j ds is j
, Ki j .0, ~1!

where the spins can take the values 1, . . . ,q, b51/kBT is
the inverse temperature,d is the Kronecker delta function
and the sum is over all nearest-neighbor pairs on a 2D latt
The dimensionless couplingsKi j are selected from two posi
tive ~ferromagnetic! values of K1 and K25rK 1, with a
174 ©2000 The American Physical Society



l

a
e

r

u
t

th

i-
di
ib
e
ur
gu

ns
pe

n
a
s
t

ng
o

d
m
re

l
vi

d

ui
g

nt
rigi-

in
ry

n

e at

ch
ical
s
at

re-
tion

m-
s

b-
the

ility

ond

of

ation
red
-

we
th

PRE 62 175SHORT-TIME DYNAMICS AND MAGNETIC CRITICAL . . .
strong-to-weak coupling ratior 5K2 /K1 called thedisorder
amplitude, according to a bimodal distribution,

P~K !5pd~K2K1!1~12p!d~K2K2!. ~2!

When p50.5, the system isself-dualand the exact critica
point can be determined from@21#

~eKc21!~eKc821!5q, ~3!

whereKc and Kc8 are the critical values ofK1 and K2, re-
spectively, at the transition point.r 51 corresponds to the
pure case, the critical point is located atKc5 ln(11Aq), and
the phase transitions are first order forq.4. With additional
random-bond distribution, however, new second-order ph
transitions are induced for anyq-state Potts model and th
new critical points are determined according to Eq.~3! for
different values of disorder amplituder and state paramete
q.

In this work we choseq58, which is known to have a
strong first-order phase transition, in the hope that we wo
find a new second-order phase transition caused by
quenched disorder to show the effect of impurities on
first-order system. Several values ofr were used, as in
@5,6,10#, to check the Ising-like universality class. To min
mize the number of bond configurations needed for the
order averages, we confined our study to the bond distr
tions in which there are the same number of strong and w
bonds in each of the two lattice directions. This proced
should reduce the variation between different bond confi
rations, with no loss of generality.

We performed our simulations by the STD method@22#
on 2D square lattices with periodic boundary conditio
These dynamic MC simulations have been successfully
formed to estimate the critical temperaturesTc and the criti-
cal exponentsu,b,n, and dynamic exponentz for the 2D
Ising model @23# and the 2D three-state Potts model@24#,
since for both models there exist second-order phase tra
tions. Recently this approach has also been extensively
plied to the Fully frustratedXY model and spin glass system
to study the critical scaling characteristic, which is used
estimate all the dynamic and static critical exponents@25–
27#.

Traditionally, it was believed that universality and scali
relations could be found only in the equilibrium stage
long-time regime. In Ref.@28#, however, it was discovere
that for a magnetic system in states with a very high te
peratureT@Tc suddenly quenched to the critical temperatu
Tc and then evolving according to a dynamics of modeA
@29#, there emerges a universal dynamic scaling beha
already within the short-time regime, which satisfies

M (k)~ t,t,L,m0!5b2kb/nM (k)~b2zt,b1/nt,b21L,bx0m0!,
~4!

whereM (k) is the kth moment of the magnetization,t5(T
2Tc)/Tc is the reduced temperature,b and n are the well
known static critical exponents, andb is a scaling factor. The
variablex0, a new independent exponent, is the scaling
mension of the initial magnetizationm0. This dynamic scal-
ing form is generalized from finite size scaling in the eq
librium stages@33#. It is important to note that the scalin
se
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behavior of Eq.~4! can be applied to both dynamic expone
measurements and estimates of the static exponents o
nally defined in equilibrium.

We begin our study of the evolution of magnetization
the initial stage of the dynamic relaxation starting at ve
high temperature and small magnetization (m0;0). For a
sufficiently large lattice (L→`), from Eq. ~4! by settingt
50, b5t1/z, it is easy to derive that

M (k)~ t,m0!5t2kb/nzM (k)~1,tx0 /zm0!. ~5!

When k51 we get the most important scaling relation o
which our measurements of the critical exponentu are based,

M ~ t !;m0tu, u5~x02b/n!/z. ~6!

As a result, the magnetization undergoes an initial increas
the critical pointKc after a microscopic timetmic . This pre-
diction is supported by a number of MC investigations whi
have been applied to detect all the static and dynamic crit
exponents @23,24# as well as the critical temperature
@25,31#. The advantage of the dynamic MC simulation is th
it may eliminate critical slowing down, since the measu
ments are performed in the early time stages of the evolu
where the spatial and time correlation lengths are small.

In our simulations, the time evolution ofM (t) is calcu-
lated through the definition

M ~ t !5
1

N Fq^MO&2N

q21 G . ~7!

HereMO5max(M1 ,M2 , . . . ,Mq) with Mi being the num-
ber of spins in thei th state amongq states.̂ •••& denotes the
initial configuration averages over independent random nu
ber sequences, and@•••# the disorder configuration average
over quenched random-bond distributions.N5L2 is the
number of spins on this square lattice andq58 is chosen.

The susceptibility plays an important role in the equili
rium. Its finite size behavior is often used to determine
critical temperature and the critical exponentsg/n andb/n
@5#. For the STD approach, the time-dependent susceptib
~the second moment of the magnetization! is also interesting
and important. For the random-bond Potts model, the sec
moment of the magnetization is usually defined as

M (2)~ t !5
1

N
@^M2~ t !&2^M ~ t !&2#. ~8!

To study the scaling behavior of the second moment
magnetization, we have to take the initial states ofm050 to
start the relaxation processes. Because the spatial correl
length at the beginning of the relaxation is small compa
with the lattice sizeLd in the short-time regime of the dy
namic evolution, the second moment behaves asM (2)(t,L)
;L2d. Then the finite size scaling Eq.~4! induces a power-
law behavior at the critical temperature,

M (2)~ t !;ty, y5~d22b/n!/z. ~9!

From a scaling analysis of the spatial correlation function
easily realize the nonequilibrium spatial correlation leng
j;t1/z. ThereforeM (2)(t);j (d22b/n).
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TABLE I. The tendency and measured values ofu as a function of the disorder amplituder for different
initial m0 at the critical pointsKc on a 642 lattice.

m0

r 0.06 0.04 0.02 0.01 u Kc(r )

2 0.310~8! 0.338~8! 0.350~8! 0.352~7! 0.353~6! 0.920185271 . . .
5 0.160~6! 0.215~6! 0.252~5! 0.257~4! 0.262~4! 0.512307010 . . .
8 0.106~5! 0.167~4! 0.208~4! 0.216~3! 0.221~3! 0.367963156 . . .
10 0.090~4! 0.146~3! 0.193~3! 0.201~3! 0.203~3! 0.312655667 . . .
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In the above considerations the dynamic relaxation p
cess was assumed to start from a disordered state or
small magnetizationm0. Another interesting and importan
process is dynamic relaxation from a completely orde
state. The initial magnetization is located exactly at its fix
point m051, where scaling of the form

M (k)~ t,t,L !5b2kb/nM (k)~b2zt,b1/nt,b21L ! ~10!

is expected@30#. This scaling form appears the same as
dynamic scaling one in the long-time regime; however, it
now assumed to be already valid in the macroscopic sh
time regime. For the magnetization itself,b5t1/z yields, for a
sufficiently large lattice,

M ~ t,t!5t2b/nzM ~1,t2b/nzt!. ~11!

This leads to a power-law decay behavior of

M ~ t,t!5t2c1, c15b/nz, ~12!

at the critical point (t50). The formula can be used to ca
culate the critical exponentsb/n andz. For a small but non-
zerot, the power-law behavior will be modified by the sca
ing function M (1,t2b/nzt), which has been used t
determine the critical temperatures@31,32#. Furthermore, by
introducing a Binder cumulant

U~ t,L !5
M (2)~ t,L !

@M ~ t,L !#2
21, ~13!

a similar power-law behavior at the critical point induc
from the scaling Eq.~10! shows that

U~ t,L !;tc2, c25d/z, ~14!

on a large enough lattice. Here, unlike the relaxation fr
the disordered state, the fluctuations caused by the in
configurations are much smaller. In practical simulatio
these measurements of the critical exponents and cri
temperature are better in quality than those from the real
tion process starting from disordered states.

III. MC SIMULATIONS AND RESULTS

Since it has been pointed out that the heat-bath algori
is more efficient than the Metropolis algorithm in the ST
@24#, and universality is satisfied for different algorithms, w
perform the MC simulations only with the heat-bath alg
rithm at the critical points of a 2D eight-state RBPM for a
optimal disorder amplituder * 510, which is located in the
-
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random fixed point regime with the largest value of cent
chargec51.5300(5) @10#. Samples for averages are take
over both 300 disorder distribution configurations and ab
500 independent initial configurations on the square latti
L2 with L up to 128. Statistical errors are simply estimat
by performing three groups of averages with different ra
dom seed selects for the initial configurations. It should
noted that, except forM (t), the measurements ofM (2)(t)
and U(t) are restricted to initial states withm050 or m0
51. It was verified that the critical exponents have the sa
values as those in the equilibrium orlong-timestage of the
relaxation@23#. Therefore we can measure these expone
based on the corresponding scaling relation in the ini
stages of the relaxation.

We start our simulations to verify the power-law scalin
behavior ofM (t) with several values of disorder amplitud
at the critical pointsKc(r ) shown in Table I. The initial
configurations are prepared with small magnetizationm0
50.06–0.01 and exact zero states. In Fig. 1, the time ev
tion of the magnetizationM (t) versus the disorder amplitud
r on a 642 lattice is displayed with a double-logarithmi
scale. We can easily find that all the curves exhibit t
power-law behavior predicted by Eq.~6!. Thus u can be
estimated from the slopes of the curves. The values ofu as a
function of the disorder amplituder for small initial magne-
tization m0 are presented in Table I.

We then setm050 to measure the second moment
magnetization. Power-law behavior of the second mom
M (2)(t) is observed in Fig. 2, where the curves for differe

FIG. 1. The time evolution of magnetization showing ther de-
pendence ofu, plotted on a double-logarithmic scale on a lattice
64364 with m050.01.
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lattice sizes are plotted. Again, they present a very n
power-law increase. Values of scaling dimensiony5(d
22b/n)/z determined from slopes of the curves duringt
5@10,200# are listed in Table II.

We further setm051 to observe the evolution of th
magnetization and the Binder cumulant; both should sh
power-law behavior as predicted by Eq.~12! and Eq.~14!.
Their curves are plotted in Figs. 3 and 4, respectively. T
values of the scaling dimensionsc15b/nz andc25d/z were
then estimated and are shown in Table II. Now the results
y, c15b/nz, andc25d/z can be used to estimate the cri
cal exponentb/n, which is also presented in Table II. Fo
comparison, also listed in Table II are the corresponding
sults for the scaling dimension for the Ising andq53 Potts
models on 2D~3D! square~cubic! lattices, and in Table III
we summarize the results for the critical exponentb/n up to
the present.

IV. SUMMARY AND CONCLUSION

In this paper we have investigated the short-time criti
dynamics of the random-bond Potts model on 2D lattices
verify whether it has a second-order phase transition in
Ising-like universality class. Dynamic scaling behavior w
found, and has been used to estimate the critical expon
u, z, andb/n. Our main results are summarized in Table
they are obtained from the slopes of power-law curves

FIG. 2. The time evolution of the second moment of magn
zation starting from absolute random states, plotted on a dou
logarithmic scale on lattices of 32332, 64364, and 1283128.
e
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M (t), M (2)(t), and U(t) on double-logarithmic scales b
least squares fits.

Our work shows that for the RBPM there exists a pow
law behavior, which is a typical feature of a continuo
phase transition in STD processes. Ther dependence char
acteristics of the dynamic exponentu gives evidence that the
dynamic MC behavior is different from that of the pure Isin
model, and the values of the magnetic exponentb/n in our
calculation seem to be the same as those given by the
formula @8#, but not those by given by CFL. For the appare
m0 dependence ofu we argue that the effect ofu5(x0
2b/n)/z on the initial magnetizationm0 is due to the fact
that the scaling dimensionx0 is determined by a critical char
acteristic functionx(b,m0)5bx(b,m0)m0, which is a non-
trivial function ofm0 and shows an off-fixed-point correctio
for the exponentu whenm0 deviates from the fixed point o
m050 @34#.

In conclusion, this study presents numerical evidence
the quenched impurities in the RBPM can induce seco
order phase transitions, but they appear not always to be
to the Ising-like universality class, although the result for t
critical exponentu is the same for both ther 510 RBPM and
the Ising model within the error bars by present calculatio
Second, as the effect of critical slowing down in the equil
rium stage for the RBPM is more severe than that for p
systems, cluster algorithms have been frequently used u

-
e-

FIG. 3. The power-law decay of magnetization starting fro
fully ordered states, plotted on a double-logarithmic scale on
tices of 32332, 64364, and 1283128. The finite size effect is
obvious when the lattice sizeL,64.
red

TABLE II. The values of scaling exponents for the 2Dq58 RBPM with r 510, measured from the

scaling functionsM (t), M (2)(t), andU(t), respectively, starting from both random initial states and orde
states. Also listed are those for the 2D Ising andq53 Potts models, and the 3D Ising model@22,24,32#.

Exponent m0 2D RBPM 2D Ising 2D Potts 3D Ising

u ;0.0 0.197~4! 0.191~1! 0.075~3! 0.108~2!

y5(d22b/n)/z 0.438~6! 0.817~7! 0.788~1!

c15b/nz 51.0 0.0390~6! 0.056~1! 0.065~1! 0.2533~7!

c25d/z 0.518~9! 0.926~8! 0.934~9! 0.1462~12!

2b/n5d2yz 0.302~6! 0.240~36! 0.269~7! 1.034~4!

2b/n ~exact! 1/4 4/15
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178 PRE 62HE-PING YING AND KENJI HARADA
now in MC simulations of the 2D RBPM@4,5,9,10,19#. In
the present paper, however, we have applied STD MC si
lations, which use local updating schemes for the 2D RBP
The fact that dynamic MC simulations can avoid the critic
slowing down in STD processes, where the spatial corr
tion length is still small, makes it easier to calculate t
critical exponents. An important subject for further study

FIG. 4. The time evolution of the Binder cumulant starting fro
fully ordered states, plotted on a double-logarithmic scale on
tices of 32332, 64364, and 1283128.
e

v

u-
.

l
a-

the dependence of the dynamic critical exponentb/n on the
state parameterq and the disorder amplituder by systematic
simulations using the STD method in order to clarify t
crossover behavior from the random fixed point to a per
lationlike limit @35#. This is being studied at present.
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TABLE III. Results for the magnetic scaling exponentb/n es-
timated by different methods for the 2D eight-state RBPM.

Reference r b/n Technique

CFL @4# 2 0.118~2! MC
Cardy and Jacobsen@8# 2 0.142~4! TM
Chatelain and Berche@9# 10 0.153~3! MC
Olson and Young@17# 0.156~3! MC
Picco @35# 10 0.153~1! MC
Present work 10 0.151~3! STD
.
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