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Quadrupolar Order in the Quantum XY Model
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We present a new algorithm for the quantum S = 1 XY model with cubic anisotropy. In
two dimensions, by studying the behaviour of the quadrupolar moment, we find the magni-
tude of the anisotropy at which a presumably ferromagnetic phase terminates. This point
coincides with the phase boundary between the ferromagnetic phase and the quadrupolar
phase determined by the mean-field theory. However, in contrast to the mean-field predic-
tion, there is no quadrupolar phase just above the phase boundary.

§1. Introduction

The nature of real magnetic materials are affected by the various types of
anisotropy. A number of works have been done on the effects of anisotropy. The
anisotropy effect in the quantum case can be qualitatively different from that in the
classical case. For example, recently, M. Dudzinski and J. Sznajd predicted that if
the anisotropy is sufficiently strong there is a non-magnetic ordered phase with spon-
taneous quadrupolar order even at zero temperature. 1) This is interesting because
their model Hamiltonian has no term which explicitly enhances the quadrupole-
quadrupole correlation, and accordingly the quadrupolar phase does not exist in the
classical case at zero temperature. In other words, they suggested that the coexis-
tence of the anisotropy and the quantum effect may cause a new zero-temperature
phase.

While there are some theoretical studies as mentioned above, the direct numeri-
cal studies are missing in particular for quantum spin models. The anisotropic term
in the Hamiltonian is represented by the higher-order term of spin operators. It
was difficult to simulate models with these complex terms by the Quantum Monte
Carlo (QMC) methods. The recent progress of QMC algorithm, however, made
it possible in some cases. For example, we studied 2) the Heisenberg models with
the bi-quadratic interaction terms, although it still possesses the SU(2) symmetry
unlike the case we are studying in the present paper. The phase diagrams and crit-
ical exponents were numerically calculated in order to check the various theoretical
predictions.

In this paper, we present a new algorithm for the quantum S = 1 XY model
with a cubic anisotropy term, which reduces the models symmetry from U(1) to
tetragonal, and show some results of simulations on a square lattice. We also compare
our results with the phase diagram determined by the mean-field theory.

 at L
ibrary of R

esearch R
eactor Institute, K

yoto U
niversity on O

ctober 27, 2015
http://ptps.oxfordjournals.org/

D
ow

nloaded from
 

http://ptps.oxfordjournals.org/


Quadrupolar Order in the Quantum XY Model with Cubic Anisotropy 195

§2. Quantum XY model with cubic anisotropy

Our model for the quantum XY model with the cubic anisotropy in two dimen-
sions is defined by the Hamiltonian

H = −J
∑

〈ij〉

[
Sx
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]
− D
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(2.1)
where spin operators on site i are denoted by Sα

i , and the 〈ij〉 runs over all nearest-
neighbour pairs on a square lattice. In what follows, we consider the case where the
coupling constants J and D are positive.

For the anisotropy term, we take the one which usually represents the cubic
anisotropy. While we could drop the term (Sz

i )
2(Sz

j )
2 without changing the sym-

metry of the whole Hamiltonian, we speculate that it would not make a qualitative
difference. The anisotropy term is equivalent to a constant when the spin length S is
1/2. In the present paper, therefore, we discuss the case S = 1 because our interest
is in the interplay between strong quantum fluctuation and anisotropy.
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Fig. 1. The schematic phase diagram by the

mean-field approximation. The symbols

“P”, “F” and “Q” denote the param-

agnetic, ferromagnetic and quadrupolar

phase respectively. The solid (dotted)

line corresponds to the first (second) order

phase transition.

It is well known that the classical
non-anisotropic XY model in two di-
mensions has the phase transition of
the Kosterlitz-Thouless type predicted
by the renormalization group theory, 4)

and it has been also confirmed through
numerical simulation in the quantum
case. 5) However, our understanding of
the model with an anisotropy term is
limited. For the cubic anisotropy case,
we calculated the phase diagram by the
mean-field approximation. 3) As we can
see in Fig. 1, there are two phases at
low temperature, whose boundary is at
D = 2J . In the weak anisotropy re-
gion (2J > D > 0), there is the ferro-
magnetic phase in which the dipole mo-
ment is finite. In the strong anisotropy
region (D > 2J), on the other hand,
there is no finite dipole moment whereas
the quadrupolar moment is finite. The
phase transition from the paramagnetic phase to the quadrupolar phase is always of
the first order, and it is the case also in the weak anisotropy region near the D = 2J
point. But as the anisotropy becomes sufficiently weak, the transition becomes sec-
ond order. For this second order transition, J. V. Jose et al. predicted that the
values of the critical exponents continuously change. 6)
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§3. Loop algorithm for the quantum S = 1 XY model with cubic
anisotropy

Quantum Monte Carlo methods based on the world-line representation were for-
mulated in the early eighties and have been successfully applied to quantum spin
systems since. 7) The recent QMC algorithms, such as the loop algorithm, 8) consist
of non-local updates of the spin configuration or the world-line configurations. Their
relaxation times are usually much smaller than that of the conventional algorithm,
and, when the continuous imaginary time scheme is adopted, 9) they have no system-
atic errors due to the discretization of imaginary time integral. Therefore, we can do
high-precision numerical simulations for quantum spin systems at low temperature.

The loop algorithms are usually constructed for the Hamiltonian matrix rep-
resented in the basis which diagonalizes the Sz

i . It was firstly formulated only for
the quantum S = 1/2 spin systems. But it is possible to apply it to the quantum
spin systems with larger spins by decomposing the one original spin into 2S Pauli
spins. 10)

In general, the loop algorithm consists of two procedures: (i) placing graphs
on the world-line configurations by a Poisson process whose density depends on the
Hamiltonian matrix and (ii) flipping loops formed in the procedure (i) independently
with the probability 1/2. The flipping of these loops, instead of flipping single spin,
often reduces the correlation times at low temperature. The number of distinct
types of graph is usually very few. For example, in the case of the isotropic (i.e.
U(1) symmetric) XY model, we need only first two types of graphs among the three
in Fig. 2.

To accommodate the cubic anisotropy term, we need the last type of graph.
Graphs of this type obviously cause branching of the lines, turning loops into clusters.
Therefore, it often happens that one particular cluster contains almost all the spins
in the system at low temperature and the computational correlation times become
very large. This makes it impossible to do high-precision numerical simulations.
In order to avoid this difficulty, we use the new basis which diagonalizes the cubic
anisotropic terms:

|+〉 = 1√
2
(|1〉 + | − 1〉), |0〉, |−〉 = 1√

2
(|1〉 − | − 1〉). (3.1)

Although the XY model term does not have the negative sign problem in this new
basis, the Heisenberg model does, which is the another reason for studying the XY
model instead of the Heisenberg model. The new loop algorithm has three steps: (i)

cross horizontal

Fig. 2. Graphs in the loop algorithm on the basis which consists of eigenstates of the z-direction

spin operators. The vertical direction corresponds to the imaginary time.
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cross cross horizontal horizontal bind

Fig. 3. Graphs in the new loop algorithm. The vertical solid and dashed lines denote the two spin

states selected in the step (i).

randomly selecting two states among the three |+〉, |0〉 and |−〉 to be updated, (ii)
placing graphs on top of the world-lines of their states, (iii) each loop is independently
flipped. In doing so, we must fix the loop whose flipping would result in the states
corresponding to vanishing matrix elements of the Hamiltonian matrix in the new
basis. We use the graphs in Fig. 3 for the present model. The density of the Poisson
process for placing each type of graphs is shown in Table I. As can be seen in Table
I, the types of graphs are changed at D = 2J which is the physical phase boundary
in the mean-field predictions. The correspondence between the algorithmic and
physical boundaries is also observed in other models as well. 2) It is related to the
symmetry or anisotropy of the model.

Table I. Strength of the Poisson distribution of graphs.

Updated pair Gcross Gcross Ghorizontal G
horizontal

Gbind

(+, 0) or (−, 0) when D > 2J J 0 J 0 D − 2J

(+, 0) or (−, 0) when D ≤ 2J J/2 + D/4 J/2− D/4 J/2 + D/4 J/2− D/4 0

(+,−) 0 0 0 0 D

§4. Simulations

We have performed simulations at various magnitudes of anisotropy, D, on the
square lattices with L = 4, 8, 16, 32, 64. Each run is of more than 104 Monte Carlo
sweeps. In our simulations, we have measured the energy, the specific heat and the
quadrupolar moment

Qxy ≡ S2
x,i − S2

y,i. (4.1)

Unfortunately, the magnetization cannot be measured except at the D = 2J point,
even if we use the improved-estimator method 11) for computing the off-diagonal
Green’s function.

In Fig. 4, we plot the thermodynamic averages of the absolute value of the
quadrupolar moment on the square lattice for L = 32 at various values of D/2J .
The behaviour of the quadrupolar moment at low temperature clearly changes at
the D = 2J point.

Below this value, the quadrupolar moment increases as temperature decreases
until it reaches the saturated value near zero temperature (Figs. 4 and 5). This
indicates some spontaneous symmetry breaking in this region. We suspect that this
phase is the ferromagnetic phase because it is supposed to be so at least for very small
anisotropy, 6) and there is no clear qualitative change in the temperature dependence
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Fig. 4. Quadrupolar moment on the square

lattice with L = 32.
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Fig. 5. Quadrupolar moment at D/2J =

0.625 < 1.

of the quadrupolar moment in the whole region of 0 < D < 2J . However, we cannot
really confirm that this is the case since we cannot directly measure the magnetization
as stated above. The continuously changing critical exponents predicted by Jose et al.
are another issue of interest here. However, the results of the present simulations are
not enough for us to determine whether the phase transition in the weak anisotropy
region is of the first or the second order or whether the values of the critical exponents
continuously change or not. We are still continuing additional simulations and the
results will be reported elsewhere.
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Fig. 6. Specific heat at D/2J = 2.5 > 1.

The value D/2J = 1 agrees with
the mean-field phase boundary be-
tween the ferromagnetic phase and the
quadrupolar phase. However, in the
strong anisotropy side of this bound-
ary, the values of the quadrupolar
moments show somewhat strange be-
haviour which is quite unlikely for the
quadrupolar phase. As the temper-
ature is lowered it increases initially,
but starts to decrease at some temper-
ature and rapidly converges to zero at
lower temperatures. We know, on the
other hand, that there is the quadrupo-
lar phase at low temperature in the limit

of strong anisotropy, since the model with J = 0 is equivalent to the classical 3-state
Potts model, which does have a phase transition at a finite temperature.

In order to see if a phase transition exists at a finite temperature for strong but
finite anisotropy, we computed the specific heat at D/2J = 2.5 > 1 (Fig. 6). The
peak is observed near the temperature at which the quadrupolar moment at J = 0.
The peak height and width show a significant size dependence for small systems but
seem to converge as the system becomes larger. This may indicate that the sharp
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peak in the specific heat is not of a phase transition but only of a crossover.

§5. Conclusion

We have presented a new loop algorithm for the quantum S = 1 XY model
with the cubic anisotropy term, and done numerical simulations in two dimensions.
In contrast to the mean-field prediction, the phase transition to the quadrupolar
phase is missing at least for some finite region just above the boundary D = 2J ,
and we did not observe any evidence for its presence at any value of D although it
is technically difficult in the present case to distinguish between a mere crossover
and a phase transition. On the other hand, in the weak anisotropy region, there
is a phase transition from the paramagnetic phase to the phase with spontaneously
broken symmetry, presumably the ferromagnetic phase. We are still working on the
refinement of the D/J-T phase diagram of the present model. In addition, studies
of other anisotropic models are also in progress. They will be reported elsewhere.
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