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Quantum phase transition of site-diluted and bond-diluted Heisenberg antiferromagnets
on square lattices is studied. By using the novel continuous-time loop algorithm, we perform
quantum Monte Carlo simulations on quite larger lattices at extremely lower temperatures
than the previous numerical studies. It is found that the antiferromagnetic long-range or-
der at T = 0 persists so long as a cluster of magnetic sites percolates, that is, the critical
concentration is equal to the classical percolation threshold, in both of the site-diluted and
bond-diluted cases. Furthermore, we find that some critical exponents, such as the mag-
netization exponent β, are non-classical and strongly depend on the spin size S. On the
other hand, we show that the correlation-length exponent ν is universal and is equal to the
classical value (ν = 4/3).

§1. Introduction

Recently, by the development of cluster algorithms, such as the loop algo-
rithm, 1) - 7) the quantum Monte Carlo (QMC) techniques 8) have been improved
greatly. Together with the enhancement of the computer performance itself, it en-
ables us to perform large-scale and highly precise simulations on spin systems with
strong quantum fluctuations, which sometimes leads us to completely new physical
findings not only quantitatively but also qualitatively. In this paper, we report one
of such results of the QMC simulations on the randomly-diluted Heisenberg antifer-
romagnet (HAF) on a square lattice.

In the classical limit, i.e., S = ∞, the diluted HAF at zero temperature is
equivalent to the percolation model. 9) For the site percolation on a square lattice,
the percolation threshold is obtained as pcl = 0.5927460(5) by the most recent simula-
tion. 10) On the other hand, for the bond percolation, pcl is shown to be 1/2 analyti-
cally. 9) For S < ∞, the classical percolation threshold pcl still gives an exact lower
bound for the critical concentration of the ground-state antiferromagnetic long-range
order. One of the most important, but unsettled, questions is whether the existence
of quantum spin fluctuations makes the critical concentration deviate form pcl, or
not.
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In the previous studies, it is suggested that the critical concentration of the
quantum system is larger than the classical percolation threshold for the site-diluted
model 11) - 13) and also for the bond-diluted one. 14) In this paper, by using the
continuous-time loop algorithm, 1) - 7) we perform QMC simulation on larger systems
(L×L = 48×48) at quite lower temperatures (T = 0.0005) than the previous works.
We study the site-diluted and the bond-diluted HAF’s, and show that the critical
concentration (we refer to it as p∗) is equal to the classical percolation threshold pcl

in both cases. We also discuss the critical property of the present quantum phase
transition at p = pcl in detail.

§2. Models

We consider the site-diluted and the bond-diluted HAF’s, whose Hamiltonians
are defined as

H =
∑

〈i,j〉
εi εj Si · Sj (2.1)

and
H =

∑

〈i,j〉
Ji,j Si · Sj , (2.2)

respectively. The quenched dilution factors {εi} (or {Ji,j}) take 1 or 0 independently
with probability p and 1 − p, respectively, where p denotes the concentration of
magnetic sites (or bonds). We consider L×L square lattices with periodic boundary
conditions in both cases.

It is well known that traditional world-line Monte Carlo methods, 8) based on lo-
cal updates of world line configuration, suffer from strong correlation between succes-
sive configurations at low temperatures. This drawback is solved almost completely
by the loop algorithm. 1) - 3), 5) It often reduces the auto-correlation time by orders of
magnitude. In the present simulation, we use the continuous-time loop algorithm 4)

extended to general-S cases, 6), 7) which works directly in the Trotter limit. Another
important feature of the present algorithm is its ergodicity; the winding number of
world lines around vacant sites can change and the ground-canonical ensemble also
can be simulated.

We mainly concentrate on the static structure factor at T = 0,

Ss(L, p) = lim
T→0

1
Ld

∑

i,j

ei�k·(�ri−�rj )〈Sz
i Sz

j 〉 (2.3)

at momentum �k = (π, π). Here, d is the spatial dimension (d = 2). The bracket in
Eq. (2.3) denotes both of the thermal average and the average over samples. In the
present simulation, we use an improved estimator, which reduces the variance of data
greatly. In order to obtain the zero-temperature value, we perform QMC simulations
at low enough temperatures so that Ss exhibits no temperature dependence besides
statistical errors. The lowest temperature used in the present simulation is T =
0.0005. For each sample, 104 Monte Carlo steps (MCS) are spent for measurement
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after 103 MCS for thermalization. At each parameter set (L, T, p), physical quantities
are averaged over 102 – 104 samples depending on L, T , and p.

§3. Results

The staggered magnetization Ms(p) is calculated as

M2
s (p) = lim

L→∞
3Ss(L, p)

Ld
. (3.1)

As is clearly seen in Fig. 1, Ms(p) remains finite even at p = 0.625 for the site-diluted
cases with S = 1/2 and 1. 15) Therefore, the possibility that p∗ = 0.655 or 0.695,
which have been suggested by the previous QMC simulation 11) and the analytic
approach based on mapping to the non-linear σ model, 13) respectively, is excluded
definitely.

In Fig. 2, we show the system size dependence of Ss(L, p) just at the classical
percolation threshold for the site-diluted cases with S = 1/2 and 1 and also for the
S = 1/2 bond-diluted case. We observe no tendency of saturation for large L in all
the cases, which strongly supports that p∗ = pcl. Furthermore, the data for larger
systems (L ≥ 20) exhibits a clear power-law behavior

Ss(L, pcl) ∼ LΨ . (3.2)

For the site-diluted cases with S = 1/2 and 1, the value of exponent Ψ is estimated as
1.17(6) and 1.57(3), respectively, by least-squares fitting for the data with L ≥ 24. 15)

It should be emphasized that Ψ ’s for S = 1/2 and 1 differ definitely with each
other, and furthermore both of them are significantly smaller than the classical value
(Ψ = 43/24 = 1.7917). 9) For the bond-diluted case, one can also find that the static
structure factor tends to diverge. However, we observe larger corrections to scaling
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Fig. 1. Concentration dependence of the staggered magnetization of the site-diluted models with

S = 1/2, 1, and ∞. The dotted lines are guide to eye. In the inset, we show the double-

logarithmic plot of the staggered magnetization against (p− pcl). The dashed lines are obtained

by least-squares fitting for p ≤ 0.70.
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Fig. 2. System-size dependence of the static structure factor at the percolation threshold (p = pcl).

The dashed lines are obtained by least-squares fitting for L ≥ 24.
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Fig. 3. Scaling plot of the static structure factor of the S = 1/2 site-diluted HAF. The critical

concentration is assumed to be equal to the percolation threshold.

in comparison with the site-diluted case (Fig. 2). We obtained Ψ = 1.05 from the
data with L = 32 and 40, which is slightly smaller than that in the site-diluted case.

Next, we consider the correlation-length exponent ν. We perform finite-size
scaling analysis for the static structure factor of the S = 1/2 site-diluted model with
0.585 ≤ p ≤ 0.605 by assuming p∗ = pcl. As seen in Fig. 3, the data with L ≥ 24 are
scaled fairly well with Ψ = 1.19(1) and ν = 1.25(13). The value of Ψ is consistent
with that obtained by the scaling analysis at p = pcl (Fig. 2). Note that on the other
hand, the value of ν coincides with the classical value (ν = 4/3) 9) within the error
bar.

§4. Summary and discussion

In the present paper, we have investigated the ground-state phase transition of
the diluted HAF. Contrary to the previous works, 11) - 14) our present QMC study has
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shown that the critical concentration is equal to the classical percolation threshold
even in the S = 1/2 case. On the other hand, it is found that the transition is
non-universal; the critical exponents depend on the spin size S. This means that
not only the fractal nature of the lattice geometry at p = pcl, but also the strength
of the quantum fluctuation, controlled by the spin size S, are relevant in the present
quantum phase transition. The criticality at p = pcl might be characterized by an
S-dependent exponent α, which is defined in terms of the staggered spin correlation
function between two sites on a fractal cluster as

C(i, j) ∼ r−α
i,j for ri,j 
 1 . (4.1)

In the classical case, C(i, j) takes a constant value, and therefore α = 0. Together
with the cluster-size distribution at p = pcl, predicted by the percolation theory, 9)

we obtain a scaling relation between the S-dependent exponents Ψ and α:

Ψ = 2D − d − α , (4.2)

where D is the fractal dimension (D = 91/48).
On the other hand, the critical exponent ν has been found to be unmodified

from the classical value (ν = 4/3) within the present numerical uncertainty (Fig. 3).
We can also obtain the exponent β from the staggered magnetization at p > pcl

as β = 0.46(3) and 0.32(3) for the S = 1/2 and 1 site-diluted model, respectively
(Fig. 1). By using a scaling relation 15)

2β = −(2D − 2d − α)ν = (d − Ψ)ν , (4.3)

we obtain ν = 1.2(1) and 1.5(2), respectively. These values are also consistent with
ν = 4/3. This implies that there is no macroscopic length scale other than the
geometrical length scale, 15) which is defined as the average size of finite clusters in
the percolation theory. 9)

Quite recently, the S = 1/2 bond-diluted model is reexamined by using the
stochastic series expansion. 17) Contrary to the previous study, 14) it is concluded
that the critical concentration is equal to the percolation threshold, which is consis-
tent with the present study. However, it is suggested furthermore that the critical
exponents are unmodified from the classical values. The reason of this disagreement
is now being examined, but we believe that it might be due to smallness of the
system size, (L ≤ 18) or improper scaling assumption made in Ref. 17).
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