
 

1 

Density-Matrix Theory of Quantum Dynamics under a Strong External Field 
Switched on Nonadiabatically 

Hikaru Kitamura1  

                                                           
1 Hikaru Kitamura 
Department of Physics, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan 
E-mail: kitamura@scphys.kyoto-u.ac.jp 

Introduction 

The dynamics of quantum particles in a 
suddenly applied external field has been an 
important subject in atomic, molecular, and 
condensed-matter science.  The state-of-the-art  
vacuum ultraviolet or x-ray free electron 
lasers[1] can excite deep core electrons in a 
material within a femtosecond time scale; 
dynamic response of surrounding electrons to 
rapidly evolving core-hole potentials is a key 
issue in the analysis of the experimental data.[2]  
When a certain Bardeen-Cooper-Schrieffer 
(BCS)-type superconductor is excited suddenly 
by an intense terahertz laser pulse, a transient 
oscillation of the order parameter is observed, 
whose frequency coincides with the asymptotic 
BCS gap energy.[3,4]  Multiphoton or tunneling 
ionization of an atom or molecule is another 
notable nonlinear phenomenon induced by a 
strong laser field. [5,6] 

Generally, the transitions between quantum 
states triggered by a sudden change in the 
external potential are called nonadiabatic 
transitions.[7]  Oppositely, when an external 

potential is turned on sufficiently slowly, each 
eigenstate of the initial Hamiltonian joins 
continuously into the corresponding eigenstate 
of the new Hamiltonian, known as the adiabatic 
theorem.[8]  Comprehensive elucidation of 
quantum dynamics over a wide range of 
adiabaticity is a fundamental issue of 
significance.  

In this article, we develop a density matrix 
theory of quantum dynamics in the time-
dependent unrestricted Hartree-Fock (TDUHF) 
approximation,[9-11] where a special attention is 
paid to the nonperturbative effects due to a 
suddenly or gradually applied external field.  As 
an illustrative example, numerical simulations 
are performed for an ideal Fermi gas when a 
square-well potential is switched on with an 
arbitrary time constant τ.  We thus show that 
the nonperturbative effect gives rise to rich 
phenomena such as an oscillatory motion in the 
nonadiabatic (small-τ) regime as well as the 
enhancement of Anderson’s infrared 
catastrophe[12-14] in the adiabatic (large-τ) 
regime.  Finally, we show that the Keldysh 
formula for atomic multiphoton ionization[5] can 
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be derived from the nonperturbative term in 
the density-matrix equation. 
 
 
Density-Matrix Formalism 

We consider a general many-electron (or many-
Fermion) system.  In the initial state (t = 0), 
where the external field is absent, we suppose 
that the wave functions (0) ( )kσψ r  and energy 

levels (0)
kσε  for one-electron state k and spin σ 

are already known through the static 
unrestricted Hartree-Fock (UHF) calculation.   

The external field ext ( , t)v r  is switched on at 
t=0.  The subsequent dynamics of the system 
can be computed with the TDUHF equation for 
the one-particle wave function ( , )m tσψ r ;[9,11]  
equivalently, we can simulate the one-particle 
density matrix,  
 

occ
(0) (0)

1
( ) ( ) ( )kk m m kk

m
t t tσ σ σ σσρ ψ ψ ψ ψ′ ′

=
≡ ∑  ,  (1) 

 
where the summation is taken over all occupied 
states.[9] 

The diagonal component ( ) ( )k kkf t tσ σρ≡  
represents the average occupation number of 
state {k,σ}; it obeys the Heisenberg equation of 
motion[10] 
 

( )ext
( )

( ) 2 Im ( ) ( ) ( )k
kk kkkk

k k

f t t v t t
t
σ

σ σσε ρ′ ′′
′ ≠

∂  = +
 ∂ ∑ 



. 

(2a) 
The corresponding equation for the off-diagonal 
component ( k k′≠ ) reads 

 ( )(0) (0)( )
( )kk

kkkk
t

i t
t
σ

σσσ
ρ

ε ε ρ′
′′

∂
= −

∂


 

( ) ( )ext ext( ) ( ) ( ) ( )k k kk k k kkt t v t v tσ σ σ σε ε′ ′ ′ ′
 + − + −  

 

( )kk tσρ ′×   

( ) [ ]ext( ) ( ) ( ) ( )k k k kk kt v t f t f tσ σ σσε ′ ′′
 + + − 

 

( )( )ext
( , )

( ) ( ) ( )k q kqk q
q k k

t v t tσ σσε ρ′ ′
′≠

+ +∑ 

 

( )( )ext( ) ( ) ( )qk qkqkt v t tσ σσε ρ ′ − + 

 .     (2b) 

Note that Eq. (2a) duly satisfies the particle-
number conservation, ( )/ 0k

k
f tσ

σ
∂ ∂ =∑ . We also 

remark that (0) 0kk σρ ′ =  for k k′≠ , since both 
k and k’ are eigenstates of the initial 
(unperturbed) Hamiltonian.  

In Eqs. (2a) and (2b), we have introduced a 
matrix element of the external potential,  
 

( ) (0)* (0)
ext ext( ) ( ) ( , t) ( )k kkkv t d vσ σσ ψ ψ ′′ ≡ ∫ r r r r .   (3) 

 
It induces a transition between different k-
states, which in turn modifies the Hartree and 
exchange interactions among electrons.  Such a 
change is described by the self-energy 
matrix, [10] 
 

( )1
1 2 11 2

1 2 1

( )kk kk k kkk k k
k k

t V Vσσ σσ
σ σσ

σ
ε δ′ ′′≡ −∑  

1 2 1 1 2 1 1
( ) (0)k k k k kt fσ σρ δ × − 

 ,     (4) 

 
with the Coulomb repulsion integral, 
 

1 2 3 4 1 2

(0)* (0)
1 2 1 1( ) ( )k k k k k kV d dσσ

σ σψ ψ′ ≡ ∫ ∫r r r r   

3 4

2
(0)* (0)

2 2
1 2

( ) ( )k k
e

σ σψ ψ′ ′×
−

r r
r r

.            (5) 

 
Note that (0) 0kk σε ′ =  by definition. 
     Density-matrix formulations of TDUHF 
equations have been known for many years,[9,11] 
but Eqs. (2a) and (2b) differ from the previous 
expressions in a sense that the matrix elements 
are evaluated with the unperturbed UHF wave 
functions in the initial state.   The present 
formalism would therefore be suitable for 
solving an initial-value problem after the 
external field is switched on. 

The nonlinear term ( ,q k k′≠  ), that is, the 
last term on the right-hand side of Eq. (2b), 
accounts for a nonperturbative effect, which is 
our primary concern.   This term was ignored in 
our previous work,[10] where the density matrix 
equations were converted into the rate 
equations within the Markov approximation. 
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The total energy at time t can be evaluated 
as 

(0)
tot ext

1( ) ( ) ( ( ))
2k kk kkk

k kk
E t f t v t Wσ σ σσ

σ σ
ε ′ ′

′

= + −
∑ ∑  

1 ( ) ( )
2 kk kkt tσ σε ρ′ ′

+ 


,    (6) 

where 
 

( )1
1 1 1 1 11 1

1 1

(0)kk kk k k kkk k k
k

W V V fσσ σσ
σ σσ σ

σ
δ′ ′′≡ −∑  .     (7) 

 
At t=0, Eq. (6) appropriately reproduces the 
static UHF total energy in the unperturbed state.   

When the present method is applied to a 
realistic molecule, the initial molecular orbitals  

(0) ( )kσψ r  can be expressed in the form of a linear 
combination of atomic orbitals as usual, but 
they should be computed up to sufficiently 
high-lying excited states in order for an accurate 
simulation of the subsequent electron dynamics.  
The number of two-electron integrals (5) may 
become fairly large, but they are independent 
of time and hence computed only once. 

While the time-dependent density-
functional theory (TDDFT) may be 
computationally more efficient,[15] an advantage 
of the TDUHF theory is an absence of self-
interaction errors, owing to the rigorous 
treatment of the nonlocal exchange potential in 
the latter. The density-matrix equation can be 
derived exactly from the first-principles 
Hamiltonian and hence the formulation is 
straightforward in the Hamiltonian-based 
TDUHF theory, in contrast to the TDDFT which is 
based on the free-energy functional.  In 
principle, the electron correlation effects 
beyond UHF can be incorporated into Eqs. (2a) 
and (2b) through collision integrals.[10] 

 
 
Nonadiabatic Switching of a Square-
Well Potential 

As an illustrative application of the density-
matrix equations, we consider N free Fermions 

of mass m confined in a spherical box of radius 
R, for which the Coulomb repulsion integrals (5) 
are neglected. The unperturbed energy 
eigenvalues and wave functions are written 
as[12] 

 
2 2

(0)

2k
k

mσε =
 , (0) 1 sin( )( )

2k
kr

rRσψ
π

=r , 

nk
R
π

=   ( 1, 2,3, )n = 
,       (8) 

 
where we consider only s-waves because of the 
symmetry.  A spherically symmetric square-well 
potential of radius a0 is switched on at time t = 
0 and its depth grows toward a constant value 
V0 for t →∞ . In terms of the distance r from 
the center of the sphere, the potential is 
written in the form, 

( )/
ext ext( , ) ( , ) 1 tv t v r e τ−= ∞ −r  ,            (9) 

0 0
ext

0

,     ,
( , )

0,   .
V r a

v r
a r R

− ≤
∞ =  < ≤

        (10) 

We elucidate how the magnitude of the time 
constant τ affects the dynamics of the particles.  

 

One-particle case 

We start with the case of one particle (N = 1).  
Suppose that the particle is initially in the n = 1 
state.  Equations (2a) and (2b) are solved with 
the initial condition, 
 

1  for   / ,  ,
(0)

0   otherwise.                k
k R

f σ
π σ = =↑

= 


        (11) 

 
Throughout this section, we set R/a0 = 20 and 
the upper limit of k is truncated at n = 60.  The 
characteristic units of length and energy are a0 
and 2 2

0/ 2ma
, respectively.  Accordingly, we 

introduce dimensionless energies 
2 2

0 0 02 /V ma V≡ 

, 2 2
tot 0 tot2 /E ma E≡



, and 
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dimensionless times 2
0/ 2t t ma≡ 

 ,
2
0/ 2maτ τ≡ 

.  The midpoint method has been 
employed for numerical integrations, where the 
time step between the midpoint and the next 
point is 0.01 in the above unit. 

Figure 1 displays the time evolutions of the 
total energy for 0 3V = .  In the case 200τ = , 

totE  gradually decreases and asymptotically 
approaches the exact ground-state energy[16] in 
the square-well potential, 1 0.0615ε = − , 
corroborating the adiabatic theorem.  This case 
corresponds to the adiabatic regime, ω21τ >> 1, 
with (0) (0)

21 2 / , / ,R Rπ πω ε ε↑ ↑≡ −

 denoting the 

energy difference between n=1 and n=2 states.  
For 20τ =  ( 21 1ω τ ≈ ) or 2τ =  ( 21 1ω τ < ), which 
corresponds to the nonadiabatic regime, the 
total energy in the final state is significantly 
higher than 1ε , indicating a breakdown of the 
adiabatic theorem. 

 

 

Figure 1.  Time evolutions of the total energy in 
adiabatic (solid curve) and nonadiabatic cases 
(dashed and dotted curves). 
 
 

The local particle density for spin σ at 
position r can be expressed as 
 

(0)* (0)( , ) ( ) ( ) ( )kkk k
kk

n r t r r tσ σσ σψ ψ ρ ′′
′

= ∑ .      (12) 

 
It can be found in Figure 2 that the computed 
density distribution ( , ) ( , )n r t n r t↑=  for 

200τ =  converges to the exact ground-state 
value[16] already at 1500t = .  The induced 
density calculated with the second-order 
perturbation theory, Eqs. (A3) and (A4) in 
Appendix, turns out too small, indicating a 
significance of the nonperturbative effect 
described by the nonlinear term in Eq. (2b). 

In the final state, fkσ is typically populated 
over a wide range in k-space, because a 
localized wave function is expressed by a linear 
combination of a large number of extended 
wave functions. 
 
 

 

Figure 2.  Density distributions at 1500t =   
evaluated with Eq. (12) in the case of an 
adiabatic switching ( 0 3V = , 200τ = ).  The 
solid curve depicts the numerical solutions to 
Eqs. (2a) and (2b); the dashed curve is obtained 
through the ground-state wave function in the 
square-well potential.[16]  The dotted and dot-
dashed curves represent the second-order 
perturbation theory [Eqs. (A3) and (A4)] and the 
initial distribution, respectively, whose scale is 
given on the right axis.  
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Figure 3 compares time evolutions of the 
particle density at r=0 for various combinations 
of 0V  and τ .  A strong oscillation is observed 
after a nonadiabatic switching ( 20τ = ) of a 
strong potential ( 0 3V = ).  For a nearly adiabatic 
switching ( 100τ = ), the amplitude of the 
oscillation is significantly reduced, but the 
oscillation period remains the same so far as 0V
is fixed.  For a weaker potential ( 0 2V = ), the 
amplitude gets smaller, the period becomes 
longer, and the shape is slightly distorted. 
 
 

 

Figure 3.  Time evolutions of n(0,t) for various 
combinations of 0V   and τ . 
 
 

These oscillations can be interpreted as 
follows.  In Figure 4, we plot the energy levels of 
the three lowest adiabatic states, nε  (n = 1, 2, 3), 

as a function of the potential depth V  , which 
can be obtained through solutions of the 
stationary-state Schrödinger equation in the 
usual way.[17]  When V  exceeds the threshold 
value th 2.468V ≡ , the lowest level (n=1) 
becomes a localized bound state and its energy 
is separated significantly from that of the 
delocalized excited state (n=2).  Oppositely, in 
the limit of 0V → , the n=2 state is slightly 

more localized than n=1, since 
(0) (0)
2 / , / ,(0) (0)R Rπ πψ ψ↑ ↑>   in Eq. (8).  The characters 

of the two states are thus interchanged near 

thV V≈  , where the energy separation between 
the two states is the smallest.  Hence, the point 

thV V=   may be regarded as the Landau-Zener 
type crossing point.[7] 

 

 

 
Figure 4.  Energy levels of low-lying adiabatic 
states as a function of the potential depth.[17] 
 
 

When the particle is initially in the n=1 state 
and the potential V  is switched on quickly from 
0 to 0V  across thV , a nonadiabatic transition 
from n=1 to n=2 state may occur efficiently near 

thV V=  .  Then, the wave function for t >> τ 
may be nonstationary and expressed as a 
superposition of those two states,  
 

1 2
1 1 2 2( , ) ( ) ( )i t i tr t a e r a e rε εψ ψ ψ− −≈ + 

  ,   (13) 
 
where 1( )rψ  and 2 ( )rψ  are the corresponding 
stationary eigenfunctions, and the coefficients 
satisfy the relation 2 2

1 2 1a a+ = .  The total 
energy is then given as 
 

2 2
tot 1 1 2 2E a aε ε= +

  ,                  (14) 
 



 

6 
  

which is independent of time for t >> τ, as 
indicated in Figure 1.  The density distribution 

2( , ) ( , )n r t r tψ=  is likewise expressed as 
 

2 2 2 2
1 1 2 2( , ) ( ) ( )n r t a r a rψ ψ= +   

( )* *
1 2 2 1 1 22Re exp ( ) ( )a a i t r rε ε ψ ψ+ − −   

.  (15) 

 
The last term on the right-hand side of Eq. (15) 
clearly manifests an oscillation, whose 
frequency 2 1ε ε−    depends strongly on V0 but 
is independent of τ, accounting for the basic 
features shown in Figure 3. 
 
 

 

Figure 5.  Density oscillations for 0 3V = .  The 
upper and lower panels correspond to the cases 

20τ =  and 2τ = , respectively.  The solid 
curves depict numerical solutions to Eqs. (2a) 
and (2b); the dotted curves refer to the two-
state picture, Eq. (15). 
 
 

Based on this two-state picture, we have 
analyzed the data for 0 3V =  quantitatively.  We 
note that, since 1( )rψ  and 2 ( )rψ  are real, the 
coefficients a1 and a2 can be taken as real and 
positive; such a restriction merely brings an 

unimportant phase factor to the exponential 
factor in Eq. (15).  By using Eq. (14) in 
conjunction with the computed values of totE    
displayed in Figure 1, we obtain a1 = 0.856 and 
a2 = 0.517 for 20τ = ; a1 = 0.482 and a2 = 0.876 
for 2τ = .  These values are then substituted 
into Eq. (15) to compute n(0,t). 

The results are shown in Figure 5.  We find 
that, once the phase factor is chosen 
appropriately, the two-state picture can 
excellently reproduce the oscillatory behaviors.  
The time-averaged value of n(0,t) for 2τ =  
turns out smaller than that for 20τ = , because 
a faster switching leads to a larger population of 
the n=2 state which is more delocalized than 
the n=1 state.  In case 0 thV V<  , the 
nonadiabatic transition is not triggered and 
hence the oscillatory feature is significantly 
weak, which is consistent with the case 0 2V =    
in Figure 3. 

We mention that, in a nonadiabatic 
excitation of a BCS superconductor, an 
oscillation of the order parameter was likewise 
observed[3,4] and its origin was identified as a 
coherent superposition of different 
quasiparticle states.[4] 

Another familiar example of an oscillation 
between two quantum states is the Rabi 
oscillation in an atom interacting with a 
coherent laser field.[18]  It can be derived from 
Eqs. (2a) and (2b) when they are applied to a 
two-level system.[18] We also mention that a 
method combining the Floquet theory and the 
density-matrix equation has been proposed to 
analyze nonlinear optical processes in two-level 
atoms.[19] 
 
 
Ideal Fermi Gas 

We then proceed to the case of a Fermi gas 
consisting of N noninteracting particles.  The 
initial condition for fkσ(0) is now given by the 
Fermi distribution, 

F1,   for  ,
(0) (0)

0,   otherwise. k k
k k

f f↑ ↓

≤
= = 


     (16) 
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The Fermi wave number kF is fixed at kF = π/4a0 
throughout this section.  We consider only s-
waves for simplicity; the relation between N 
and kF is given by N = 2RkF/π. 

Time evolutions of (0, ) (0, ) (0, )n t n t n t↑ ↓≡ +    

are compared in Figure 6 for various 

combinations of R and τ  in the case of 0 3V = .  

It can be found that the shape of the 
nonadiabatic oscillation for R/a0=20 and 

20τ =   is rather irregular and its amplitude is 
small compared with the corresponding result 
(Figure 5) for one particle.  In the Fermi gas, the 
nonadiabatic transition from n=1 to n=2 state in 
Figure 4 is hindered because the n=2 state is 
already occupied (i.e., Pauli blocking).  The 
irregular oscillation in Figure 6 may therefore be 
considered as a superposition of many weak 
transitions to unoccupied states across the 
Fermi level, each having a different oscillation 
frequency.  As the system size R increases, the 
spacing between neighboring levels becomes 
narrow and the overall oscillatory behavior 
tends to be smeared out.  The oscillation 
disappears for 100τ = , indicating that the time 
evolution in this case is adiabatic. 
 

 

Figure 6. Time evolutions of (0, )n t   for 0 3V = . 

Our simulation for an adiabatic case 
converges automatically to an equilibrium state.  
Let us examine whether the distributions of 
metallic electrons around a static impurity can 
be reproduced in this way.  Friedel showed that 
the induced electron distribution at distance r 
far from the impurity can generally be 
expressed, up to the 1/r4 term, as[14,16,20] 

F2 3
0

1( ) (2 1)sin ( )
2 l

l
n r l k

r
δ

π

∞

=
∆ ≈ − +∑   

[ ]F Fcos 2 ( )lk r k lδ π


× + −


 

[ ]F F

F

sin 2 ( )
2

lk r k l
k r
δ π + −

− 


 .    (17) 

 
 

 
Figure 7.  Induced density at 1000t =   for R/a0 

= 100, 0 3V =   and 100τ =   (solid curve), 

compared with the l = 0 term in Eq. (17) (dotted 
curve). 
 
 
Here, δ l(kF) is the scattering phase shift for a 
partial wave with angular momentum l and 
wave number kF.  For s-wave (l = 0), it can be 
evaluated as[16] 

1 F
0 F s 0 F 0

s
( ) tan tan( )kk k a k a

k
δ −   

= −  
  

      (18) 



 

8 
  

with 
1/22

s 0 0 F 0( )k a V k a = + 
 .  Equation (17) 

exhibits an oscillatory behavior, known as the 
Friedel oscillation, arising from the discontinuity 
in the Fermi distribution at k = kF.  In our 
simulation, ∆n(r) can be evaluated in 
accordance with ( ) ( , ) ( ,0)n r n r n r∆ = ∞ − .  

Figure 7 reveals that our simulation result for 
R/a0 = 100 can reproduce the l=0 part of the 
Friedel oscillation accurately. 

Generally, when an electron gas is 
perturbed by a local potential, the electrons are 
scattered out of the Fermi sea, [13,14] causing a 
rounding of the Fermi distribution.  Such a 
feature can be confirmed through the solid 
curve in Figure 8, which illustrates a typical 
momentum distribution function obtained 
through Eqs. (2a) and (2b) after an adiabatic 
switching. 
 
 

 
Figure 8.  Momentum distribution functions 

k k kf f f↑ ↓≡ =  for R/a0 = 200, 0 9V =  and 

300τ = , computed at 1500t = .  The solid 
curve represents the full solutions to Eqs. (2a) 
and (2b); the dotted curve is evaluated by the 
perturbation formulas (A1) and (A4). 
 

It would be instructive to compare the 
result with the perturbation theory.  Formula 
(A4) can be evaluated in the bulk limit R →∞   
as 

 
2

(2) 0 0
0( ) ( )k

V af I ka
Rσ π

∞ = −


,  (19)  

with 

 
F 0

2 2( / )

1( )
( ) ( )k R a

I x dx
x x x xπ

∞

+
′=

′ ′− +∫   

2sin( ) sin( )x x x x
x x x x
′ ′− + × − ′ ′− + 

.    (20) 

 
This integral is divergent for F 0x k a→  and 

R →∞ . A reasonably accurate analytic formula 
that reproduces Eq. (20) for 0 < x < kFa0 is 
 

2
0

2
00

sin(2 )1( ) 1
2(2 )

F

FF

k aI x
k ak a

 
≈ − 

 
 

 
( ) 00

1 1

FF R k ak a xπ

 
× − 

+ −  

 .   (21) 

 
Equation (19), combined with Eq. (21), can lead 
to an unphysical behavior such that fkσ < 0 
( F 0k k→ − ) and fkσ > 1 ( F 0k k→ + ) when 

0V   is large.  Even for a finite-size system, such 

an anomaly is exposed by two sharp peaks 
below and above kF, as indicated by the dotted 
curve in Figure 8.  When the nonperturbative 
effect is fully taken into account (solid curve), 
the unphysical feature no longer appears even 

though the potential is fairly strong ( 0 9V = ). 
These low-energy excitations give rise to the 

infrared (or orthogonalization) catastrophe 
predicted by Anderson.[12-14]  He proved for a 
system of noninteracting Fermions that the 
many-body wave function (i.e., the Slater 
determinant) in the presence of a local 
potential becomes orthogonal to that in the 
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absence of the potential as the system size 
increases; namely, the overlap integral S of the 
two Slater determinants vanishes[12] as N−ε, ε>0. 
The infrared catastrophe is responsible for 
anomalies in the x-ray absorption or 
photoemission spectra.[2] 

Let us revisit this problem through the 
density-matrix theory.  When k and k’ designate 
the occupied states below the Fermi level, the 
density matrix (1) can be regarded as a N/2 by 
N/2 matrix, which we denote shortly as ρσ(t).  
Then, it follows that 
 

2 det ( ) det ( )S ↑ ↓= ∞ = ∞ρ ρ ,          (22) 

 
provided that the adiabatic theorem is satisfied.  
Hence, S is directly accessible through our 
adiabatic simulations.  

In addition, the perturbation theory of the 
density matrix yields an approximate analytic 
expression for S in the bulk limit, which has not 
been reported before.  To derive such a formula, 
we employ Eqs. (A3) and (A4), taking the limits 

1k kσω τ′ >> , t τ>> , and R →∞ .  It follows 

from Eqs. (16) and (A3) that ( ) 0kk tσρ ′ =  if 

both k and k′ ( k≠ ) are occupied states.  Thus, 
 

F

(2)det ( ) 1 ( )k
k k

fσ σ
≤

 ∞ = + ∞ ∏ρ             

F

(2)exp ( )k
k k

f σ
≤

 
≈ ∞ 

  
∑   

F (2)
0

exp ( )
k

k
R dk f σπ
 ≈ ∞  ∫  .         (23) 

By substituting Eqs. (19) and (21) into Eq. (23) 
and carrying out the k-integration, we arrive at 

2

2

CNS
−

 =  
 

,        (24) 

2 2
0 0

F 0 0

sin(2 )1
2 2

F

F

V k aC
k a k aπ

   
≈ −   
   



.     (25a) 

 
In particular, for a weak potential such that 

2
0 F 0( )V k a<< , the comparison between Eqs.  

(18) and (25) yields  
 

[ ]20 F( ) /C kδ π≈ ,     (25b)  

 
an analytic expression often seen in the 
literature.[14] 
 
 

 
 
Figure 9.  The Anderson’s overlap integral for 

0 3V =   calculated with Eq. (22).  The dots are 

obtained through full solutions of Eqs. (2a) and 
(2b); the crosses are the perturbation-theoretic 
results based on Eqs. (A3) and (A4).  The solid 
lines are for a guide to the eyes.  The dashed 
and dotted curves depict formulas (25a) and 
(25b), respectively, combined with Eq. (24). 
 
 

Figure 9 compares the behaviors of S2 for 

0 3V =  obtained by different methods.  Within 

the perturbation theory, the numerical results 
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for finite-size systems agree fairly well with the 
bulk formula (25a), although a discrepancy 
exists due to the smallness of N (N = 10-100).  In 
the original article,[12] Anderson provided only 
an upper bound of S by neglecting the 
enhanced particle density inside the potential 
well.  Figure 9 reveals that the nonperturbative 
effect, described by the nonlinear term in Eq. 
(2b), reduces the values of S significantly.  The 
slope of the curve turns out to be consistent 
with formula (25b) rather than (25a), although 
both formulas are derived through perturbation 
theories.  The largest system size treated in the 
simulation is R/a0 = 200, where energy levels up 
to n =360 have been included in Eq. (8). 

Although the oscillation in the nonadiabatic 
regime is suppressed by Pauli blocking in 
noninteracting Fermi gas, it would emerge as 
the plasma oscillation in interacting electron 
gas.[14]  The plasma oscillation stems from the 
self-energy matrix (4).  The contributions from 
the states with higher angular-momentum 
quantum numbers (p-, d-waves, etc.) should 
also be considered in order for a realistic 
description of the energy levels and dynamics of 
three-dimensional Fermi gas.  These are the 
issues for future studies. 
 
 

Multiphoton ionization 

We shall prove in this section that the nonlinear 
term in Eq. (2b) can account for the Keldysh 
formula of multiphoton ionization.[5,6]  We 
consider the ionization of a 1s electron in a 
hydrogen-like atom by an oscillating electric 
field E(t) = E0cos(ωt).  The potential of external 
field is written as ext ( , ) ( )v t e t= ⋅r r E , with e 

denoting the elemental charge. The spin index 
is neglected for brevity. 

The underlying assumptions in the Keldysh 
theory are: (i) the bound states other than 1s 
are neglected; and (ii) the continuum wave 
functions are approximated by the plane waves 

(0) ( ) /ieψ ⋅= Ωk r
k r , with Ω denoting the 

volume of the system.  Equation (2b) can then 
be expressed as 

( ),1 (0) (0)
,11s

( )
( )s

s
t

i t
t

ρ
ε ε ρ

∂
= − −

∂
k

kk

 

[ ]1 , 1( ) ( ) ( )s st f t f t− ⋅ −k kd E   

,1
( )

( ) ( )st tρ′ ′
′ ≠

+ ⋅∑ k k k
k k

d E ,          (26) 

where 
(0)* (0) *

1 , ,11 ( )( ) ( )s ssd eψ ψ≡ − =∫k kkd r r r r d  , (27)  

(0)* (0)( )( ) ( )d eψ ψ′ ≡ −∫k k k kd r r r r   

3(2 ) ( )e
i

π δ− ∂ ′= −
Ω ∂

k k
k

                  (28) 

 
refer to the dipole transition matrix elements. 

With the help of Eq. (28), the last term on 
the right-hand side of Eq. (26), i.e., the 
nonperturbative term, can be rewritten as 

,1( ) ( ) /sie t tρ⋅∂ ∂kE k  .  To proceed further, we 

make the transformation { , } { , }t t→k k  

according to ,t t=  
0

  ( )
te dt t′ ′= + ∫k k E






 ( )t≡ +k η  .[21]  Equation (26) is then 

transformed as 
 

(0) (0)
1 ( ),1s  ( )

 ( ),1

( )
( )

st t
t s

t
i t

t

ρ ε ε
ρ− −

−

∂ −
=

∂
k η k η

k η


 















  

11 ,  ( )  ( )( ) ( ) ( )ss t t
i t f t f t− −

 + ⋅ − k η k ηd E
 

 

  



.  (29)  

 
We further approximate as 

 ( ) ( ) 0tf t− ≈k η



  and 

1s ( ) 1f t ≈  by neglecting the saturation effect.   

Equation (29) can then be integrated easily and 
transformed back to the {t, k} representation as 
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,1 1 , ( )  ( )0
( ) ( )

t
s s t s

it ds sρ + −≈ − ⋅∫k k η ηd E


  

(0) (0)
1( )  ( )exp

t st t
s

i dt
ε ε′+ −

 −
′ ×

  
∫ k η η



.     (30) 

 
On the other hand, Eq. (2a) can be rewritten 

as 

,1 ,1
( ) 2 Im ( ) ( )s s

f t t t
t

ρ∂
= − ⋅

∂
k

k kd E


.      (31) 

 
By substituting Eq. (30) into Eq. (31), the 
ionization rate can be evaluated in accordance 
with   lim (t) /

t
w f t

→∞
= ∂ ∂∑ k

k

.  By assuming the 

free-electron spectrum (0) 2 2 / 2k mε =k  , the 

result is  
 

*
2

2 lim Re ( , ) cos( )
t

w L t tω
→∞

= ∑
k

k


 

                 
0

( , ) cos( )
t
dsL s sω×∫ k ,                  (32) 

with 
 

2( , ) exp ieL s
mω

⋅ ≡  
 

0E kk   

2 22 2
(0) 0
1 2exp

2 4s
e Ei k s

m m
ε

ω

  
× − − +      





 

0 sin( )eV sω
ω

 × − 
 

0Ek


  

2 2
0

2 3 exp cos( ) sin(2 )
8

ie ie Es s
m m

ω ω
ω ω

 ⋅
× − + 

 
0E k



, (33) 

 
and 0 1 , 0( ) sV ≡ ⋅kk d E .  Equation (32) is 

equivalent to Eq. (8) of the original article by 
Keldysh,[5] except for a presence of the factor 2 
in the former.  The product of the last two 
factors on the right-hand side of Eq. (33) is a 
periodic function of ωs, so that it can be 

expanded in a Fourier series.[5]  We thus 
reproduce the Keldysh formula, 
 

2

0

2 ( )
n

w Lπ ∞

=
= ∑∑

k
k



  

2 2
(0)

p 12 s
k U n
m

δ ε ω
 

× + − −  
 





,        (34) 

 
where 
 

0
1( ) cos  sin

2
eL dx x V k x

π

ππ ω−

 ≡ − 
 ∫ 0Ek



  

2 2
0

2 3exp cos sin(2 )
8

e e Ei x x
m mω ω

  ⋅
× − −      

0E k


  

2 22 2
(0) 0
1 2exp

2 4s
e Ex ki

m m
ε

ω ω

  
× − − +      





,        (35) 

 
and 2 2 2

p 0 / 4U e E mω≡  refers to the 

ponderomotive energy.[5,6]  Equation (34) 
manifests the n-photon process under the 
ponderomotive shift at high intensities, called 
as the above-threshold ionization.[6] 

 

 

Conclusions 

We have presented density matrix equations 
describing the quantum dynamics in the TDUHF 
approximation, where the nonpertubative 
effect due to the time-dependent external field 
is incorporated through the nonlinear term.  
With the knowledge of the UHF wave functions 
in the initial unperturbed state, subsequent 
time evolutions of total energies, particle 
densities and so forth, can be computed 
through numerical integrations of the density 
matrix equations. 

We have thereby analyzed the dynamics of 
ideal Fermi gas around a square-well potential 
switched on with an arbitrary time constant τ.  
When τ is small, an oscillation of a particle 
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stems from a quantum superposition of n=1 and 
n=2 states driven by a nonadiabatic transition at 
the Landau-Zener type crossing point.  The 
oscillation is clearly seen when the system size 
N is small but smeared out by the Pauli blocking 
effect as N increases.   

In the case of a slow switching for which the 
adiabatic theorem holds, our simulations have 
successfully reproduced the long-range Friedel 
oscillation characteristic of an electron gas 
around an impurity atom.  We have shown that 
the strong localization of a particle inside the 
potential well tends to enhance the Anderson’s 
infrared catastrophe significantly. 

We have also presented a straightforward 
derivation of the Keldysh formula of atomic 
multiphoton ionization through the density-
matrix formalism.  The present theory is thus 
applicable to various types of nonadiabatic 
perturbations; it would provide a basis for 
analyzing ultrafast electron dynamics under 
intense x-rays, for example. 

It has been known that a confined Fermi gas 
exhibits a shell structure,[22] whose influence on 
the infrared catastrophe was recently discussed 
by Bandopadhay and Hentschel.[23]  It would be 
an interesting issue to analyze the quantum 
dynamics of interacting particles confined in 
various mesoscopic geometries.[24]  In doing so, 
the interaction between electrons can be 
incorporated through the self-energy matrix (4).  
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Appendix. Perturbation theory 

General properties of pertubative solutions to 
the time-dependent Schrödinger equation for 
various types of external fields were discussed 
in detail by Langhoff et al.[25] with the wave-
function formalism, and by Hammer and 
Weber[26] with the U-matrix approach.  Here, we 
present perturbative solutions to the density 
matrix equations (2a) and (2b) in compact 
analytical forms for the case of noninteracting 
particles.   

When the external field (9) is weak, the 
diagonal and off-diagonal components of the 
density matrix can be expressed in a 
perturbation series as 
 

(0) (1) (2)( ) ( ) ( )k k k kf t f f t f tσ σ σ σ= + + +   , 
(1)( ) ( )kk kkt tσ σρ ρ′ ′= +  , k k′≠ ,      (A1) 

 
with the initial conditions (0)(0)k kf fσ σ=  and 

(0) 0kk σρ ′ = .  The first-order solution to 
equation (2b) is determined through 
 

( )
(1)

(0) (0) (1)
( )

( )kk
kk kk

t
i t

t
σ

σσ σ

ρ
ε ε ρ

′
′ ′

∂
= −

∂


 

 ( ) ( )( )/ (0) (0)
ext ( ) 1 t

k kk kv e f fτ
σ σσ

−
′′+ ∞ − −  .  (A2) 

 
Analytic solution to this equation can be 
expressed in terms of the energy difference 

(0) (0)
k k kkσ σσω ε ε′ ′= −   as 

 
( ) ( )ext(1) (0) (0)( )

( ) k k
kkk k

v
t f fσ

σσ σρ ′
′ ′

∞
= − −



 

 
/1 k k k ki t i tt

i
k k k k

e e eσ σω ωτ

σ σ τω ω

′ ′− −−

′ ′

 − −
× − 

+  
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( ) ( )

( ) ( )

/
ext (0) (0)

ext (0) (0)

( ) 1 ,      

    for 1,

( ) 1 ,  

     for 1.

k k

t
k k

k k
k k

k k

i t
k k

k k
k k

k k

v ef f

v ef f
σ

τ
σ

σ σ
σ

σ

ω
σ

σ σ
σ

σ

ω

ω τ

ω

ω τ

′

−
′

′
′

′

−
′

′
′

′

 ∞ −
− −

 >>≈ 

∞ −− −

 <<





 

                       (A3) 
 

This solution is substituted into Eq. (2a), 
leading to 

 
(1) ( ) 0kf tσ =  , 

( )
2(2) (0) (0)

ext2
( )

2( ) ( ) ( )k k kk k
k k

f t v f fσ σ σσ ′′
′ ≠

= − ∞ −∑


 

( )
2

2 21

1 1 cos 1k k
k k k k

tσ
σ στ

ω
ω ω ′

′ ′

    × − −   + 

 

            
( ) ( )

2

/
2 1

sin( ) 1 tk k

k k k k

t e τσ

σ σ τ

ω

ω τ ω
−′

′ ′

− −
+

 

( ) }
2

2/
2 1

1 1 1
2

t

k k
e τ

σ τ
ω

−

′

+ −
+

  

( ) ( )

( )

( )

(0) (0) 22 /
ext2 2

( )

(0) (0)2
ext2 2

( )

1 ( ) 1 ,

      for 1,         

2 ( )                  

   1 cos ,    for 1.

tk k
k k

k k k k

k k

k k
k k

k k k k

k k k k

f f
v e

f f
v

t

τσ σ
σ

σ

σ

σ σ
σ

σ

σ σ

ω

ω τ

ω

ω ω τ

−′
′

′ ≠ ′

′

′
′

′ ≠ ′

′ ′

 −
− ∞ −

 >>

≈  − − ∞


  × − << 

∑

∑





     (A4) 
 
Note that Eq. (A4) duly satisfies the particle-
number conservation (2) ( ) 0k

k
f tσ

σ
=∑ , but does 

not necessarily satisfy the constraint 
0 ( ) 1kf tσ≤ ≤   for Fermions. 

In the nonadiabatic limit 1k kσω τ′ << , both 
Eqs. (A3) and (A4) contain oscillatory terms, 
whose frequency is equal to the energy 
difference between the two states.  We note, 
however, that the coherent oscillation indicated 
in Figure 5 is basically a nonperturbative effect. 

The total energy at time t can be calculated 
with Eqs. (6), (A3) and (A4) as 

 

( )(0) / (0)
tot ext( ) ( ) (1 )t

k kkk
k

E t v e fτ
σ σσ

σ
ε − ≈ + ∞ − ∑   

( ) 2

ext (0) (0)

( )

( )
(1 )k k

k k
k k k

v
f fσ
σ σ

σ

′
′

′ ≠

∞
+ −∑ ∑



 

/ 2(1 )t

k k

e τ

σω

−

′

 −
× −


  

( )2

2 / /

2 2 1

1 2 cos( )t t
k k

k k k k

e e tτ τ
σ

σ σ τ

ω
τ ω ω

− −
′

′ ′

+ − + 
+ 

.  (A5) 

 
Here, the first and the second terms inside the 
curly brackets represent the adiabatic and 
nonadiabatic components, respectively, of the 
second-order energy: These two terms were 
derived recently by Mandal and Hunt[27] in a 
more general form. 

The asymptotic total energy is 
 

( )

( )

( )

2
ext

(0) (0)
( )

(0)
ext

(0) (0)

tot

(0) (0)
ext

( )

( )
  (1 )     

( )
          for 1,

( ) ,                

          for 1.

k k

k k kk

k kk
k

kk

k k

k kkk
k

k k

v

v

f f

E

v f

σ

σσ

σ σ
σ

σσ

σ

σ σσ
σ

σ

ε ε

ε

ω τ

ε

ω τ

′

′ ≠ ′
′

′

′

−

 
+ ∞ 


 ∞ − −  ∞ ≈ 
 >>

  + ∞  

<<

∑

∑

∑



      (A6) 
 
Here, the expression for the adiabatic limit 

1k kσω τ′ >>   was derived earlier by 
McWeeny[28] through a stationary perturbation 
theory of the density matrix.  It is interesting to 
note here that the second-order perturbation 
term in the expression for 1k kσω τ′ >>   , which 
stems from a modification of the wave function 
due to perturbation, is absent for a sufficiently 
fast switching, 1k kσω τ′ << . 
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