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Mode bifurcation of a bouncing dumbbell with chirality
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We studied the behavior of a dumbbell bouncing upon a sinusoidally vibrating plate. By introducing chiral
asymmetry to the geometry of the dumbbell, we observed a cascade of bifurcations with an increase in the
vibration amplitude: spinning, orbital, and rolling. In contrast, for an achiral dumbbell, bifurcation is generated
by a change from random motion to vectorial inchworm motion. A simple model particle was considered in a
numerical simulation that reproduced the essential aspects of the experimental observation. The mode bifurcation
from directional motion to random motion is interpreted analytically by a simple mechanical discussion.
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I. INTRODUCTION

Spatiotemporal self-organization under nonequilibrium is
an intriguing research topic in modern physics. Multiparticle
systems of active matter have been studied both experimentally
and theoretically [1–4]. In particular, the behavior of a
bouncing object has attracted considerable interest as a simple
nonlinear system under nonequilibrium conditions [5–13].
In fact, various bifurcations, including the appearance of
chaos, have been reported. One of the simplest systems is
a bouncing ball on a sinusoidally vibrating plate under the
influence of gravity [5–8]. This system has been extensively
studied as a classical problem of bifurcation and chaos. For
periodic motion, the conditions that correspond to stability and
bifurcation can be determined from analytical consideration
of a two-dimensional mapping [9]. Over the past decade, the
behavior of an anisotropic particle bouncing upon a vibrating
plate has been actively studied by experiments and theoretical
analysis, as well as by numerical simulation [10–13]. It has
been shown that an axisymmetric dimer moves either forward
or backward, depending on the initial conditions [10]. For
a head-tail asymmetric particle, such as a bolt, directional
motion was also observed [11].

In this study, we report how the breaking of chiral symmetry
creates a new scenario in the mode bifurcation of a bouncing
dumbbell. We introduce chirality by twisting a dumbbell
consisting of disks that have a center of mass that deviates
from the disk center. We observed two-dimensional motion,
such as orbital and spin motion, even though we applied only
vertical agitation in the horizontal plane isotropically.

II. EXPERIMENTS

Figure 1(a) shows a schematic side view of the dumbbell
(left) and the system (right). The reported experiments were
performed with a chiral asymmetric dumbbell composed of
brass disks with a diameter dA of 10 mm and a brass
rod with a diameter of 2 mm. The length of the rod l is
13 mm. To introduce chiral asymmetry, we drilled four holes
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with a diameter dB of 4 mm in each disk at an angular
interval α of 0.25π . Next, we rotated the front disk clockwise
with respect to the rear one by the angle β and fixed on
this geometry. The aluminum plate was placed horizontally
and then vibrated vertically with z(t) = A sin(2πf t) by an
electromagnetic shaker. The oscillation frequency f and the
dimensionless acceleration � = 4π2f 2A/g, where A is the
amplitude of the plate oscillation and g is the gravitational
acceleration, were adopted as independent control param-
eters. The conventional restitution coefficient e measured
with a collision of a brass sphere on the aluminum are
0.38 ± 0.02.

Figures 1(b)–1(d) show the characteristic modes of the
spontaneous motions of the dumbbell. The twist angle β and
f are set to 0.75π and 50 Hz, respectively. In Figs. 1(b)
and 1(c), the left panels show a series of snapshots with a
time interval of 1 s. The right panels show the trajectories
of the dumbbell center and the orientation of the dumbbell.
For � < 1, the dumbbell may remain on the plate. Depending
on the dimensionless acceleration, for � > 1, three distinctive
modes were observed. When � is slightly above unity, the
dumbbell itself spins, and the centroid moves randomly [spin +
random (SR mode), Fig. 1(b), (� = 1.3)]. When � increases
to 1.4, the dumbbell motion bifurcates into a distinctive
directional motion accompanied by spinning with an identical
period [orbital (O) mode, Fig. 1(c)]. When we set � even
higher, as shown in Fig. 1(d) (� = 2.5), the dumbbell rolled
along the axis of the rod (rolling mode). See Supplemental
Material [14] for movies.

Figure 2 shows the dependence of the angular velocity �

on the twist angle β for the SR mode (� = 1.3). When β = 0,
the dumbbell does not spin. For β > 0, the dumbbell spins
clockwise (� < 0), and otherwise it spins counterclockwise
(� > 0). The direction of rotation is determined so that the
heavier half of the disks at the ends of the dumbbell is in the
front. For example, in the sketch on the left in Fig. 1(a), the left
half of the front disk is heavier than the right half for β > 0.
Thus, the dumbbell rotates so that the front disk moves from
right to left, and the dumbbell rotates clockwise. This behavior
is the same as that of a rattleback, a popular science toy that
rotates in a preferred direction because of its chirality. This
indicates that the introduction of chirality into the geometry
of the dumbbell causes spinning motion. It was also found
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FIG. 1. (Color online) (a) Experimental setup. Left: side view
of a chiral asymmetric dumbbell. Right: overall setup. α and
β are chirality parameters. (b–d) Examples of the characteristic
spontaneous motion of a chiral asymmetric dumbbell. The vibration
frequency of the plate was fixed at 50 Hz. The scale bar is 10 mm.
(b, c) Left panels: Series of snapshots with a time interval of 1 s.
Right panels: Trajectories of the center of the dumbbell. (b) Spin +
random (SR) mode (� = 1.3): the dumbbell itself spins, and the
centroid moves randomly. (c) Orbital (O) mode (� = 1.4): orbital
motion is accompanied by spinning; the direction of the orbital
motion is determined stochastically. (d) Rolling mode (� = 2.5):
series of snapshots with a time interval of 0.3 s. The dumbbell rolls
along the axis of the rod with rhythmic switching of the rolling
direction.

that |�| decreases with increasing the length of the rod l.
When �(β) was normalized by the maximum values �max,
the angular velocities for different rod lengths converged to an
identical curve, as shown in the inset of Fig. 2.
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FIG. 2. (Color online) Angular velocity of spin motion � in the
SR mode (� = 1.3) as a function of β for different rod lengths l: 12.5
(squares), 17.5 (circles), 22.5 (triangles), and 27.5 (inverted triangles)
cm. Inset: � normalized to the maximum angular velocity �max of
the spin motion as a function of β.
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FIG. 3. (Color online) (a) Orbital radius. An increase (decrease)
in � is shown by filled (open) triangles. (b) Kinetic energy of the
dumbbell as a function of �. (c) and (d) Phase diagrams of the
dumbbell motion: SR mode (�), O mode (©), and Rolling mode
(�). (c): � vs. the length of the rod l, and (d): � vs. the twist angle β.

To quantitatively evaluate the modes of dumbbell motion,
we calculated the mean square displacement as a function of
time for various � values at a fixed frequency f = 50 Hz. We
performed fitting using the function

〈x(t)2〉 = 2R2(1 − cos φ̇t) + v2t2 + Dt, (1)

where R is the orbital radius, φ̇ is the angular velocity of
orbital motion, v is the velocity of ballistic motion, and D is
the diffusion coefficient. The three terms on the right-hand
side correspond to orbital, ballistic, and diffusive motion,
respectively. In the SR and O modes, the velocity of ballistic
motion was negligible. In Fig. 3(a), the orbital radius R is
plotted as a function of �. An increase (decrease) in � is shown
by filled (open) triangles. As � increases to 1.4, the orbital
radius in the SR mode is approximately zero. At � = 1.4,
the dumbbell motion switches to the O mode and the orbital
radius becomes finite. For � > 1.4, the orbital radius appears
to be independent of �. With decreasing �, orbital motion
persists even for � < 1.4, and the motion switches back to
the SR mode at � = 1.2. The SR and O modes switch in a
subcritical manner. Next, we estimated the kinetic energy to
investigate energy conversion near the bifurcation point. The
kinetic energies of the random and orbital motions, Ediff and
Eorb, respectively, were estimated as

Ediff = 1

2
mv2 = 1

2
m

4D

δt
, (2)

Eorb = 1

2
m(Rφ̇)2, (3)

where δt is the time interval of the collisions (approximately
1/f ). In Fig. 3(b), Ediff and Eorb are plotted as functions of
�. Ediff increases monotonically and then collapses at the
bifurcation point. In contrast, Eorb is approximately zero until
it becomes finite at that point. Thus, it becomes evident that,
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FIG. 4. (Color online) Experimental results for the vertical tra-
jectory of the tips of the dumbbell as a function of the vibration
phase. The height of the plate is shown as zp(θ ) by the solid blue line.
The heights of the lowest points of the disks are shown as z1(θ ) and
z2(θ ) by circles (green) and squares (red), respectively. (a) SR mode
and (b) O mode.

in conjunction with mode bifurcation, the energy of random
fluctuation is converted to that of orbital motion.

Figures 3(c) and 3(d) show phase diagrams of the dumbbell
motion, which were plotted for increasing � at a fixed rod
length l and twist angle β, respectively. For different rod
lengths l and twist angles β, the SR mode appears at lower
�, and the rolling mode appears at higher �. Between them,
the O mode is observed. As shown in Fig. 3(c), the critical
acceleration at which the mode bifurcates from the SR mode
to the O mode increases as l increases. We also confirmed that
the bifurcation point is nearly independent of the frequency.
In addition, our experiment shows that the bifurcation point
remains almost constant with a change in the twist angle β,
as shown in Fig. 3(d). These results indicate that the chirality
has a negligible effect on the magnitude of � at the bifurcation
from the SR mode to the O mode.

To evaluate the difference in vertical trajectory between the
SR and O modes, lateral images were captured by a high-speed
camera with a spatial precision of ca. 60 μm. Figure 4 shows
a plot of the vertical coordinates of the plate and the lowest
points of the disks as a function of the vibration phase θ . In
the SR mode, the two disks jump up when the acceleration
of the plate is smaller than −g, and then land on the plate at
different phases [Fig. 4(a)]. In contrast, in the O mode, one of
the disks of the dumbbell hits the plate at an identical phase,
whereas the other appears to stay near the plate throughout the
cycle [Fig. 4(b)]. This head-tail asymmetric mode is the origin
of the directional motion of the dumbbell, as pointed out in a
previous study on an axisymmetric dimer [10].

III. NUMERICAL SIMULATION

To understand the scenario in which spinning motion
occurs, we considered a simple model particle with chiral
asymmetry. The model particle consists of two spheres
connected by a weightless rigid bond. When there is no
chiral asymmetry, as shown in Fig. 5(i), the spheres consist
of two hemispheres that have different mass densities, ρ1

(blue) for y � 0 and ρ2 (green) for y < 0. Chiral asymmetry
is introduced by twisting the lower sphere with respect to the
upper sphere by the angle β ′ [Fig. 5(ii)]. The equation of
motion for the center of the model particle (the midpoint of
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y
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FIG. 5. (Color online) Schematic illustration of the chiral sym-
metric model particle. The two hemispheres have different mass
densities: ρ1 (blue) and ρ2 (green), where ρ1 > ρ2.

the bond) x and the angular velocity ω are written as

M
d2x

dt2 =
2∑

i=1

Fi − M g,
d

dt
(Iω) =

2∑
i=1

r i × Fi − ηrω,

(4)

where M is the mass of the model particle, g is the gravitational
acceleration, I is the inertia tensor, Fi is the contact force
applied by the bottom to sphere i, and r i = xc,i − x is the
radius vector from x to the contact point of sphere i on the
plate xc,i . In the equation for rotation, the second term on
the right-hand side represents the rolling resistance [15]. The
contact force Fi and the rolling resistance are applied only
when sphere i is in contact with the vibrating plate. Because
there are two spheres at the ends of the particle, the index i

ranges from 1 to 2. The force law between sphere i and the
plate is

Fn,i = knδ
3/2
n n − ηnδ̇nδ

1/2
n n, Ft,i = ktδt t − ηt δ̇t t, (5)

where Fn,i and Ft,i are normal and tangential interactions,
respectively; δn = zp − (zi − R) is the normal component of
the overlap between the sphere and the plate; zp and zi are
the z coordinates of the plate and sphere i, respectively; R

is the radius of the spheres. Further, δ̇n = vc · n is the time
derivative of δn, where vc = vi − vp is the relative velocity,
and vi and vp are the velocities of sphere i and the bottom plate,
respectively. Note that the force law consists of the Hertzian
elastic force and viscous damping [16]. Because the contact
on the plate is always in the vertical direction, the normal
unit vector n is ez, whereas the tangential vector is defined as
t = ex + ey . The tangential component of the relative velocity
of the contact point is defined as δ̇t = (vc − Rω × n) · t .
When the sphere starts to touch the plate at t = t0, it puts a
“virtual” spring at the contact point, and δt (t) = − ∫ t

t0
δ̇t (t ′)dt ′

is the total tangential displacement at time t . The parameter
values we used are R = 1 cm, kn = 2.0 × 1012 g/(cm1/2s2),
kt = 1.14 × 1012 g/s2, ηn = 5.32 × 107 g/(cm1/2s), and ηt =
3.04 × 107 g/s. Note that the normal restitution coefficient
is approximately 0.4. The mass densities of the hemispheres
of the particle are ρ1 = 8.85 and ρ2 = 6.85 g/cm3. The
parameters are chosen to fit the material properties of the model
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FIG. 6. (Color online) Horizontal trajectories of the tips of the dumbbell at f = 40 Hz, l = 8 cm, and β ′ = 0.01π . (a) SR mode at � = 1.68
for 2.7 × 104 s (inset: trajectory of the center of the dumbbell) and (b) O mode at � = 1.74 for 2 × 103 s.

particle to those of the dumbbell. We solved the equations
of motion of the center position of the model particle by
employing the Adams method with a time step of 5.0 × 10−7 s.
Conversely, the angular velocity was obtained by calculating
the inertia tensor from its quaternion at each time step in
the laboratory frame. In the initial configuration, as shown
in Fig. 5(ii), the moment of the inertia tensor I0 is obtained
analytically as

I 0
xx = 4

5
mR2 + 1

2
ml2 − my2

g, (6)

I 0
yy = 4

5
mR2 + 1

2
ml2 − mx2

g, (7)

I 0
zz = 4

5
mR2 − m

(
x2

g + y2
g

)
, (8)

I 0
xz = −π

8
(ρ1 − ρ2) sin β ′R4l, (9)

I 0
yz =−π

8
(ρ1 − ρ2)(1 − cos β ′)R4l, (10)

I 0
xy = mxgyg, I 0

yx = I 0
zx = I 0

zy = 0, (11)

where xg = sin β ′ πR4

8M
(ρ1 − ρ2) and yg = −(1 +

cos β ′)πR4

8M
(ρ1 − ρ2). The mass of a sphere is defined as

m = 2
3π (ρ1 + ρ2)R3. We established the simulations in

the upright position on the plate by applying the angular
velocity ωx and ωy . Figures 6 and 7 show the qualitative
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FIG. 7. (Color online) Vertical trajectories of the tips of the
dumbbell as a function of the vibration phase at f = 40 Hz, l = 8
cm, and β ′ = 0.01π . (a) SR mode at � = 1.68 and (b) O mode at
� = 1.74.

reproduction of the horizontal and vertical trajectories of the
tips of the model particle, respectively. The typical time scale
of the dumbbell motion in the numerical simulation is about
103 times larger than that in the experimental results. We
conducted numerical simulations with a symmetric dumbbell
(ρ1 = ρ2) and measured the translational velocity for different
stiffnesses. The viscous coefficient ηn was chosen so that
the restitution coefficient is identical. As shown in Fig. 8,
the translational velocity depends on the stiffness parameter
kn. In addition, we found that the translational velocity is an
increasing function of the contact duration (inset of Fig. 8).
Consequently, it makes the translational motion faster. In
the experiments, the contact duration is expected to be even
longer for a linear contact because of the discoid shape of the
ends of the dumbbell. Because we chose the stiffness to fit the
material properties of the dumbbell particle, the translational
velocity of the dumbbell appeared to be much smaller than
that observed experimentally. Note that the essential aspect of
the dumbbell motion was reproduced using the simple model
particle.

The dependence of the angular velocity � on the twisting
parameter β ′ is shown in Fig. 9. |�| tends to increase when
the bond length l of the particle shortens. This result is
consistent with the experimental result (Fig. 2). In addition,
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FIG. 8. (Color online) Dependence of translational velocity of a
symmetric dumbbell on the stiffness kn. The viscous coefficient is
chosen so that the restitution coefficient is identical. Inset: the relation
between translational velocity v and contact duration tc for different
stiffnesses.
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FIG. 9. (Color online) Angular velocity of the spin motion � as
a function of β ′ for different rod lengths l: 3.5 (squares), 4 (circles),
5 (triangles), 6 (inverted triangles), 8 (diamonds) cm. Inset: scaled by
the maximum value.

when we normalized the curves by their maximum values,
they converged to the identical curve fitted as sin(β ′/2), as
shown in the inset in Fig. 9. Our theoretical understanding
of the spinning motion should be deepened by clarifying the
origin of sin(β ′/2).

Starting from the O mode with a decrease in �, the mode
bifurcates into the SR mode at �c. This �c is the lower limit
at which the upper sphere can maintain periodic collision.
We examined the dependence of the bifurcation point �c on
the restitution coefficient as shown in Fig. 10. The restitution
coefficient is defined by the ratio of the relative preimpact
velocity of the upper sphere against the bottom plate to the
relative postimpact velocity as

V − żp = e′(U − żp), (12)

where V and U are the preimpact and postimpact velocities
of the upper sphere, respectively, and żp is the velocity of the
bottom plate at collision. Note that this reduced restitution
coefficient e′ is not equivalent to an ordinary restitution
coefficient e defined with a normal two-body collision. We
will discuss this point in detail in Sec. IV. The curves for the

Restitution coefficient 

- - Theory
Experiment
Simulation: 
Simulation: 
Simulation: 

FIG. 10. (Color online) Dependence of the critical acceleration
�c on the restitution coefficient e′. Lower limit of steady collision
in the theoretical analysis (dotted line), experiments (green square),
and numerical simulation with β ′ = 0.01π (blue triangles), β ′ =
0.75π (red circles), and ρ1 = ρ2 (cyan diamonds). Experimental
data are given for rubber (e′ = 0.223 ± 0.024), aluminum (e′ =
0.305 ± 0.008), and glass plates (e′ = 0.472 ± 0.026).

twist angle β ′ = 0.01π and 0.75π are shown to be identical.
A numerical simulation with a symmetric dumbbell (ρ1 = ρ2)
was also conducted, and �c appeared to be on the same curve
as those of the chiral particles. Thus, the twist angle β ′ is
shown to have no effect on �c. To examine the dependence
of �c on the restitution coefficient experimentally, we also
conducted experiments using different substrates, such as
glass and rubber. The conventional restitution coefficients e

measured with a collision of a brass sphere on the glass and
rubber plates are 0.54 ± 0.04 and 0.48 ± 0.04, respectively.
As shown in Fig. 10, for the glass plate (e′ = 0.472 ± 0.026),
the experimental value of �c in the experiments appears to
agree with the numerical results. With a decrease in e′, the
experimental �c deviates from the numerical results. In the
next section, we will analytically obtain �c with a simple
mechanical model. In addition, we will discuss causes of the
deviation.

IV. STABILITY ANALYSIS OF THE
DIRECTIONAL MOTION

In this section, we aim to obtain the critical acceleration
�c as a function of the restitution coefficient and compare it
with the experimental and numerical results shown in Fig. 10.
As indicated in Fig. 3(d), the bifurcation between the SR and
O modes is expected to be independent of the chirality. At
�c, the dumbbell motion switches from directional to random
behavior. Therefore, for simplicity, we focus on the bifurcation
from directional to random motion of a symmetric dumbbell.
Here, we consider a symmetric dimer (ρ1 = ρ2) placed parallel
to the x axis, as shown in Fig. 11. Because of its symmetry,
the motion of the dimer will be restricted to the x-z plane. The
orientation of the rod on the x-z plane is defined as ξ . The time
derivative of ξ corresponds to −ωy . As shown in Eq. (5), the
equations of motion are written as

d

dt
(Iω) =

2∑
i=1

N i =
2∑

i=1

r i × Fi , (13)

where N is the torque. The radius vectors are written as

r1 =
(

− l

2
cos ξ,0, − l

2
sin ξ − r0

)
, (14)

r2 =
(

+ l

2
cos ξ,0, + l

2
sin ξ − r0

)
. (15)

FIG. 11. (Color online) Schematic drawing of bouncing dimer
model.
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From the numerical simulation, we confirmed that �c shifts
only 1% at maximum by switching off the tangential contact
force. Thus, we consider that the tangential friction is not
crucial for the stability of the O mode and take into account
only the normal force in this model. The normal force applied
by the bottom plate is defined as

F1 = (0,0,F1), F2 = (0,0,F2). (16)

F1 and F2 are nonzero only when the dimer ends are in contact
with the bottom plate. For sphere 1, the condition of contact is
written as

z −
(

l

2
sin ξ + r0

)
� zp, (17)

where z and zp are the z coordinates of the center of mass of
the dimer and the position of the bottom plate, respectively.
Similarly, for sphere 2, the condition of contact is

z −
(

− l

2
sin ξ + r0

)
� zp. (18)

The normal forces are

N1 = r1 × F1 =
(

0,
l

2
F1 cos ξ,0

)
, (19)

N2 = r2 × F2 =
(

0, − l

2
F2 cos ξ,0

)
. (20)

For a symmetric dimer, the asymmetric components of I are
zero. Because the motion of the dimer is now restricted to the
x-z plane, the inertia tensor Iyy is time independent. Therefore,
the time evolution equation for ξ is

− I ξ̈ = N1 + N2 = l

2
cos ξ (F1 − F2), (21)

where I is Iyy = (4/5)mR2 + (1/2)ml2. The vertical veloci-
ties of spheres 1 and 2 are written as

ż1 =− l

2
ξ̇ cos ξ + ż, ż2 = + l

2
ξ̇ cos ξ + ż. (22)

When the orientation of the dimer is sufficiently small, it can be
assumed that ξ � 1, cos ξ ∼ 1, and sin ξ ∼ ξ . Then Eqs. (21)
and (22) are simplified as

I ξ̈ = l

2
(−F1 + F2), (23)

ż1 =− l

2
ξ̇ + ż, ż2 = + l

2
ξ̇ + ż. (24)

The equation of motion of the center of mass z is written as

Mz̈ =−Mg + F1 + F2, (25)

where M = 2m is the total mass of the dimer. By taking the
time derivative of Eq. (24) and substituting Eqs. (23) and (25),
we obtain

z̈1 =−g +
(

1

M
+ l2

4I

)
F1 +

(
1

M
− l2

4I

)
F2, (26)

z̈2 =−g +
(

1

M
− l2

4I

)
F1 +

(
1

M
+ l2

4I

)
F2. (27)

Here, we rewrite z1 − r0 and z2 − r0 as z1 and z2, respectively.
These equations can be written as

z̈1 =−g + (1 − α)F ′
1 + αF ′

2, (28)

z̈2 =−g + αF ′
1 + (1 − α)F ′

2, (29)

where F ′
1 = F1/m and F ′

2 = F2/m. The coefficient α, which
characterizes the cross-coupling interaction, is written as

α = 4(r/ l)2

5 + 8(r/ l)2
. (30)

This reflects the effect of the shape of the dumbbell on the
equations of motion. The conditions of contact are z1 � zp and
z2 � zp. Now we obtain the equations of motion of the spheres
with cross-coupling terms. When α is sufficiently small, the
motions of the spheres at the ends of the dimer can be described
as those of two bouncing balls under gravity weakly interacting
with each other.

To obtain the lower limit of � for the directional motion,
we consider asymmetric collisions. Suppose sphere 1 is on
the lower end and stays on the bottom plate throughout the
oscillation phase, z1 = zp. Then the normal force applied to
sphere 1 by the bottom plate is written from Eq. (28) as

F ′
1 = (g + z̈p)/(1 − α). (31)

Here we neglect the impulsive force αF ′
2 resulting from the

collision of sphere 2. The effect of bouncing of sphere 1 due
to αF ′

2 will be discussed in the Appendix. For � > 1, sphere
1 may detach from the bottom plate when Aω2 sin(ωtd ) = g.
The effect of the flight and collision of sphere 1 will also
be discussed in the Appendix. The upper sphere, sphere 2,
collides with the bottom plate periodically. We assume that
the duration of contact with the bottom is sufficiently short
(typically 10−4 s in the numerical simulation). In addition,
the contact force from the bottom plate is assumed to be
sufficiently large compared with the gravitational force. Thus,
during a collision, we neglect the displacement of the bottom
plate, gravity (g), and the normal contact force F1 of sphere 1.
Then, the time evolution equation of sphere 2 during a collision
can be written as

m ¨δz2 = (1 − α)
( − kn|δz2| 3

2 − ηn|δz2| 1
2 ˙δz2

)
, (32)

where δz2 = z2 − zp. From the time integral of Eq. (32), we
can calculate the restitution coefficient of sphere 2 as

Vi − żp(ti) = e′[Ui − żp(ti)], (33)

where Vi and Ui are the preimpact velocity and postimpact
velocity, respectively, of the ith collision at time ti . The
restitution coefficient e′ of sphere 2 is a function of kn, ηn,
and α. Note that in the limit of α = 0, e′ is identical to the
ordinary restitution coefficient of a single bouncing ball e. For
a linear spring model, F2 = −kn|δz2| − ηn

˙δz2, we can easily
obtain the analytical form of e′ as

e′ = exp

(
− π√

1
1−α

4mkn

η2
n

− 1

)
. (34)

Because we adopt a nonlinear spring model in our simulation,
it is difficult to obtain an analytical form of e′. Thus, we
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numerically calculate e′ from Eq. (33). When the duration of
contact is sufficiently small, we can rewrite the contact force
F ′′

2 by using a δ function as

F ′′
2 = (1 − α)F ′

2 =−(e′ + 1)(Ui − żp)δ(t − ti). (35)

The time integral of Eq. (35) around ti satisfies Eq. (33).
Consequently, the time evolution equation of sphere 2 at the
leading order of α is

z̈2 =−(1 − α)g + αz̈p + F ′′
2 . (36)

Note that α/(1 − α) ∼ α.
Now we obtain the equation of motion of sphere 2 in a

form independent of the motion of sphere 1. Hereafter, the
stability of sphere 2 is analyzed in the same way as for periodic
bouncing of a single ball [9]. The time integral of Eq. (36) gives
the relation between Vi and Ui+1 as

Ui+1 = Vi − (1 − α)g(ti+1 − ti)

+αAω(cos ωti+1 − cos ωti). (37)

Similarly, the time integral of ż2 from ti to ti+1 gives

(1 − α)A(sin ωti+1 − sin ωti)

= (Vi − αAω cos ωti)(ti+1 − ti) − (1 − α)
g

2
(ti+1 − ti)

2.

The relation between Vi+1 and Ui+1 can be obtained as

Vi+1 = Ui+1 − (1 + e′)(Ui+1 − Aω cos ωti+1).

Here, we normalize the variables as φi = ωti , ui = Uiω/g,
vi = Uiω/g, and � = Aω2/g. Thus, the governing equations
are written as

φi+1 = φi + τi, (38)

ui+1 = vi − (1 − α)τi + α�(cos φi+1 − cos φi), (39)

vi+1 =−e′ui+1 + (1 + e′)� cos φi+1, (40)

(1 − α)�(sin φi+1 − sin φi)

= (vi − α� cos φi)τi − (1 − α)
1

2
τ 2
i . (41)

We assume that the height of sphere 2 is larger than the
vibration amplitude [9]. Thus, we neglect the left-hand side
of Eq. (41). From Eq. (41),

τi = 2

1 − α
(vi − α� cos φi). (42)

This system is the mapping of φi and vi . The periodic collision
with τi = 2π , φ = φi+1 = φi , and v = vi+1 = vi gives a fixed
point as

v = π (1 − α) + α� cos φ, (43)

� cos φ = π
1 − e′

1 + e′ . (44)

The stability of the fixed point of the system is determined by
the eigenvalues of the Jacobian matrix as

∂φi+1

∂φi

= 1 + ∂τi

∂φi

,

∂φi+1

∂vi

= ∂τi

∂vi

,

∂vi+1

∂φi

=−{α + (1 − α)(1 + e′)}� sin(φi + τi)
∂φi+1

∂φi

+αe′� sin(φi),

∂vi+1

∂vi

= e′ − {α + (1 − α)(1 + e′)}� sin(φi + τi)
∂φi+1

∂vi

.

Here, we consider the stability of the fixed point τi = 2π . By
taking the derivative of Eq. (41) with Eq. (43), we obtain

∂τi

∂vi

= 2

1 − α
, (45)

∂τi

∂φi

= α� sin φ
∂τi

∂vi

. (46)

Then, the trace and determinant of the Jacobian matrix are
written as

∂φi+1

∂φi

+ ∂vi+1

∂vi

= (1 + e′)(1 − 2� sin φ),

(
∂φi+1

∂φi

∂vi+1

∂vi

− ∂φi+1

∂vi

∂vi+1

∂φi

)
= e′.

Therefore, the eigenvalues λ± of the Jacobian matrix are

λ± = 1

2
(1 + e′ − γ ±

√
(1 + e′ − γ )2 − 4e′), (47)

where γ = 2(1 + e′)� sin φ. If we assume 1 − e′ + γ > 0, the
condition λ+ < 1 leads to γ > 0. γ > 0 ensures 1 − e′ + γ >

0. Then, we obtain the conditions as

sin φ > 0. (48)

This, in conjunction with Eq. (44), gives the lower limit of �

as

� > �c = π
1 − e′

1 + e′ . (49)

Because e′ is a function of α, the effect of the shape of the
dimer is taken into account. Nevertheless, if the restitution
coefficient of the upper sphere is defined as Eq. (33), �c has
functional form identical to that of a single bouncing ball with
an ordinary restitution coefficient e [9]. As a result, as shown
in Fig. 10, we confirmed that the bifurcation points �c obtained
in the numerical simulations show excellent agreement with
the theoretical curve of Eq. (49). With a decrease in e′, the
experimental �c deviates from the numerical and analytical
results. When e′ is smaller, the contact duration becomes
longer, and the discoid shape of the ends is expected to have a
nonnegligible effect. This reveals for the first time that mode
bifurcation of a dumbbell from directional to random motion
can be well-interpreted analytically irrespective of chirality by
adopting a simple mechanical model.
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V. CONCLUSION

We observed cascade of different modes on two-
dimensional motions by introducing chiral asymmetry into
a dumbbell particle under vertical vibration. The SR mode
shows spinning motion accompanied by random behavior of
the centroid, whereas the O mode shows spinning motion
accompanied by directional motion. In addition, the SR and
O modes switched in a subcritical manner as a function of �.
In numerical simulations, a simple three-dimensional model
particle reproduced the SR and O modes. It was also shown that
the angular velocity of the spinning motion that originates in
the chirality is determined by sin(β ′/2). A simple mechanical
model was considered to obtain the lower limit of � for the
directional motion of the dumbbell irrespective of chirality.
The estimated critical acceleration �c agreed well with the
numerical results. The condition for periodic collision of the
upper sphere appeared to have functional form identical to that
of a single bouncing ball. An analysis of the bifurcation from
the O mode to the rolling mode is in progress.
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APPENDIX: THE EFFECT OF BOUNCING
OF THE LOWER SPHERE

In this appendix, we consider the flight of sphere 1. When
sphere 2 collides with the plate, sphere 1 leaves the bottom
plate and bounces on it a few times before resting on the
bottom plate again. We define ti as the sequence of collision
times of sphere 2. Then, we assume that sphere 1 undergoes
the j th collision with the bottom plate at t = ti + sj . Here, we
define the normalized j th collision time, preimpact velocity,
and postimpact velocity of sphere 1 as ψj , u1,j , and v1,j ,
respectively. From Eqs. (28) and (35), the mappings of sphere
1 are

ψj+1 = ψj + χj , (A1)

u1,j+1 = −χj + v1,j , (A2)

v1,j+1 = −ej+1u1,j+1 + (ej+1 + 1)� cos ψj+1, (A3)

�(sin ψj+1 − sin ψj ) = −v1,jχj + 1

2
χ2

j , (A4)

where ej is the restitution coefficient of the j th collision of
sphere 1. The initial conditions are

v1,0 = � cos φi − α(e′ + 1)(ui − � cos φi), (A5)

ψ0 = 0. (A6)

Here, we assume that sphere 1 rests on the bottom plate after
the nth collision. Then, the normal force F ′

1 acting on sphere
1 is modified as

F ′
1 =−

n∑
j=1

(1 + ej )(u1,j − żp(ψj ))δ(φ − ψj ),

(φi < φ < φi + ψn) (A7)

F ′
1 = � sin φ + 1

1 − α
, (φi + ψn < φ < φi+1). (A8)

By using the step function θ , F ′
1 is written as

F ′
1 = � sin φ + 1

1 − α
+ F ′ (A9)

F ′ =−θ (φi < φ < φi + ψn)
� sin φ + 1

1 − α

−
n∑

j=1

(1 + ej )[u1,j − żp(ψj )]δ(φ − ψj ). (A10)

If Eqs. (35) and (A9) are substituted into Eq. (29), the equation
of sphere 2 is

z̈2 =−1 − 2α

1 − α
g + α

1 − α
z̈p + F ′′

2 + αF ′. (A11)

Thus, αF ′ represents the deviation due to the flight and
collision of sphere 1. Here, we treat αF ′ as a perturbation.
Then, we calculate F ′ from Eqs. (A1)–(A6) with the nonper-
turbed solution � = �c, φi = 0, and τi = 2π . Subsequently,
F ′ becomes constant, and the lower limit of � is easily
calculated:

� > �c + δ�, (A12)

δ� = α

(
J

2π
+ e′

1 + e′ I
)

, (A13)

I =− 1

1 − α
(�c cos ψn − �c + ψn)

−
n∑

j=1

(1 + ej )(u1,j − �c cos ψj ), (A14)

J =− 1

1 − α

(
�c sin ψn − �cψn + 1

2
ψ2

n

)

− I (2π − ψn)

− 2π

n∑
j=1

(1 + ej )(u1,j − �c cos ψj )

+
n∑

j=1

(1 + ej )(u1,j − �c cos ψj )ψj , (A15)

where the initial conditions are v1,0 = �c + 2πα and ψ0 = 0.
For simplicity, we assume ej = e′ and calculate δ� numeri-
cally. Except for e ∼ 1, we confirm that δ�/�c is in the order
of 0.01.
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For �c > 1, sphere 1 leaves the plate again at ψ = ψd =
sin−1(1/�c). We can calculate the effect of this flight from
Eqs. (A12)–(A15) with v1,0 = �c cos ψd and ψ0 = ψd . In

this case, the trajectory of sphere 1 could be complex.
However, the flight of sphere 1 changes the lower limit of �

by ∼1%.
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vibrated polar disks, Phys. Rev. Lett. 105, 098001 (2010).

[5] L. A. Wood and K. P. Byrne, Analysis of a random repeated
impact process, J. Sound Vib. 78, 329 (1981).

[6] P. J. Holmes, The dynamics of repeated impacts with a
sinusoidally vibrating table, J. Sound Vib. 84, 173 (1982).

[7] C. N. Bapat, S. Sankar, and N. Popplewell, Repeated impacts
on a sinusoidally vibrating table reappraised, J. Sound Vib. 108,
99 (1986).

[8] N. B. Tufillaro and A. M. Albano, Chaotic dynamics of a
bouncing ball, Am. J. Phys. 54, 939 (1986).

[9] J. J. Barroso, M. V. Carneiro, and E. E. N. Macau, Bouncing
ball problem: Stability of the periodic modes, Phys. Rev. E 79,
026206 (2009).

[10] S. Dorbolo, D. Volfson, L. Tsimring, and A. Kudrolli, Dynamics
of a Bouncing Dimer, Phys. Rev. Lett. 95, 044101 (2005).

[11] D. Yamada, T. Hondou, and M. Sano, Coherent dynamics of an
asymmetric particle in a vertically vibrating bed, Phys. Rev. E
67, 040301 (2003).

[12] H. S. Wright, Michael R. Swift, and P. J. King, Stochastic
dynamics of a rod bouncing upon a vibrating surface, Phys.
Rev. E 74, 061309 (2006).

[13] J. Wang, C. Liu, Y.-B. Jia, and D. Ma, Ratchet rotation of a 3D
dimer on a vibrating plate, Eur. Phys. J. E 37, 1 (2014).

[14] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.91.052905 for movies of dumbbell motion.

[15] K. Iwashita and M. Oda, Rolling resistance at contacts in
simulation of shear band development by DEM, J. Eng. Mech.
124, 285 (1998).

[16] H. J. Herrmann and S. Luding, Modeling granular media on the
computer, Continuum Mech. Thermodynam. 10, 189 (1998).

052905-9

http://dx.doi.org/10.1103/PhysRevLett.96.180602
http://dx.doi.org/10.1103/PhysRevLett.96.180602
http://dx.doi.org/10.1103/PhysRevLett.96.180602
http://dx.doi.org/10.1103/PhysRevLett.96.180602
http://dx.doi.org/10.1126/science.1140414
http://dx.doi.org/10.1126/science.1140414
http://dx.doi.org/10.1126/science.1140414
http://dx.doi.org/10.1126/science.1140414
http://dx.doi.org/10.1103/PhysRevLett.100.058001
http://dx.doi.org/10.1103/PhysRevLett.100.058001
http://dx.doi.org/10.1103/PhysRevLett.100.058001
http://dx.doi.org/10.1103/PhysRevLett.100.058001
http://dx.doi.org/10.1103/PhysRevLett.105.098001
http://dx.doi.org/10.1103/PhysRevLett.105.098001
http://dx.doi.org/10.1103/PhysRevLett.105.098001
http://dx.doi.org/10.1103/PhysRevLett.105.098001
http://dx.doi.org/10.1016/S0022-460X(81)80143-5
http://dx.doi.org/10.1016/S0022-460X(81)80143-5
http://dx.doi.org/10.1016/S0022-460X(81)80143-5
http://dx.doi.org/10.1016/S0022-460X(81)80143-5
http://dx.doi.org/10.1016/S0022-460X(82)80002-3
http://dx.doi.org/10.1016/S0022-460X(82)80002-3
http://dx.doi.org/10.1016/S0022-460X(82)80002-3
http://dx.doi.org/10.1016/S0022-460X(82)80002-3
http://dx.doi.org/10.1016/S0022-460X(86)80314-5
http://dx.doi.org/10.1016/S0022-460X(86)80314-5
http://dx.doi.org/10.1016/S0022-460X(86)80314-5
http://dx.doi.org/10.1016/S0022-460X(86)80314-5
http://dx.doi.org/10.1119/1.14796
http://dx.doi.org/10.1119/1.14796
http://dx.doi.org/10.1119/1.14796
http://dx.doi.org/10.1119/1.14796
http://dx.doi.org/10.1103/PhysRevE.79.026206
http://dx.doi.org/10.1103/PhysRevE.79.026206
http://dx.doi.org/10.1103/PhysRevE.79.026206
http://dx.doi.org/10.1103/PhysRevE.79.026206
http://dx.doi.org/10.1103/PhysRevLett.95.044101
http://dx.doi.org/10.1103/PhysRevLett.95.044101
http://dx.doi.org/10.1103/PhysRevLett.95.044101
http://dx.doi.org/10.1103/PhysRevLett.95.044101
http://dx.doi.org/10.1103/PhysRevE.67.040301
http://dx.doi.org/10.1103/PhysRevE.67.040301
http://dx.doi.org/10.1103/PhysRevE.67.040301
http://dx.doi.org/10.1103/PhysRevE.67.040301
http://dx.doi.org/10.1103/PhysRevE.74.061309
http://dx.doi.org/10.1103/PhysRevE.74.061309
http://dx.doi.org/10.1103/PhysRevE.74.061309
http://dx.doi.org/10.1103/PhysRevE.74.061309
http://dx.doi.org/10.1140/epje/i2014-14001-x
http://dx.doi.org/10.1140/epje/i2014-14001-x
http://dx.doi.org/10.1140/epje/i2014-14001-x
http://dx.doi.org/10.1140/epje/i2014-14001-x
http://link.aps.org/supplemental/10.1103/PhysRevE.91.052905
http://dx.doi.org/10.1061/(ASCE)0733-9399(1998)124:3(285)
http://dx.doi.org/10.1061/(ASCE)0733-9399(1998)124:3(285)
http://dx.doi.org/10.1061/(ASCE)0733-9399(1998)124:3(285)
http://dx.doi.org/10.1061/(ASCE)0733-9399(1998)124:3(285)
http://dx.doi.org/10.1007/s001610050089
http://dx.doi.org/10.1007/s001610050089
http://dx.doi.org/10.1007/s001610050089
http://dx.doi.org/10.1007/s001610050089



