1 Distribution and geochemical behavior of anionic surfactants determined

- 2 as ethyl violet active substances in Lake Biwa, Japan
- 3
- 4 Hiroo Yoshida, Shunsuke Kudari, Toshitaka Hori & Masahito Sugiyama
- 5
- 6 Graduate School of Human and Environmental Studies, Kyoto University, Kyoto,
- 7 Japan
- 8
- 9 Correspondence to: Masahito Sugiyama, Yoshida-nihonmatsu-cho, Sakyo-ku,
- 10 Kyoto 606-8501, Japan. E-mail: sugiyama.masahito.5s@kyoto-u.ac.jp
- 11 Telephone: +81-75-753-6836; fax: +81-75-753-7879

13 Abstract

14	The distribution and geochemical behavior of anionic surfactants (AS)
15	determined as ethyl violet active substances (EVAS) were studied in Lake Biwa,
16	Japan. We determined the vertical distributions of dissolved EVAS (DEVAS),
17	suspended particulate EVAS (PEVAS), particulate organic carbon (POC), and
18	the PEVAS/POC ratio. Statistical analyses conducted using plots of PEVAS vs.
19	POC and PEVAS/ Chlorophyll-a (Chl-a) vs. POC/Chl-a revealed that the
20	distributions of DEVAS and PEVAS were affected by the concentrations of
21	freshly produced POC and aged POC and by the pH of the lake water.
22	Adsorption and desorption of EVAS onto the POC phase were found to be
23	important mechanisms regulating the distribution and
24	environmental/geochemical behavior of EVAS in the lake. The organic
25	carbon-normalized particle–water partitioning coefficient, K_{oc} , for EVAS was also
26	estimated and compared to that for nonylphenol.

27 Keywords

anionic surfactants; ethyl violet; distribution, geochemical behavior, Lake Biwa

29

30 Introduction

31	Linear alkylbenzene sulfonate (LAS) is the primary anionic surfactant found in
32	Japan. This compound is listed as Class I in the Pollutant Release and Transfer
33	Register Law of Japan. A Class I Designated Chemical Substance is defined as
34	continuously occurring throughout much of the environment based on its
35	physical and chemical properties, manufactured volume, and importation and
36	usage, and having risks to human health and the ecosystem (Japan Ministry of
37	the Environment 2013). Production of LAS was 72 kt in 2002 and the amount of
38	LAS discharged to the sewage in Japan was 64 kt in 2001 (National Institute of
39	Technology and Evaluation 2005). The degree of discharge is related to the
40	environmental risk.

Research on anionic surfactants (AS) in the aquatic environment has been
carried out globally. In Japan, AS concentrations have been reported to range

43	between 50–8500 $\mu\text{g/L}$ in river water (Kobayashii and Yamauchi 1979; Kobuke
44	1981; Yoshimura <i>et al.</i> 1984; Hirayama <i>et al.</i> 2006), 0–264 μ g/g in river
45	sediments (Ambe 1972; Uchiyama 1982; Yoshimura et al. 1984), and 10-50
46	$\mu g/g$ in lake sediments (Ambe 1972). LAS concentrations ranged between
47	0.6–79 μ g/L in river water in Japan (Kobuke 2004; Miura <i>et al.</i> 2008), 0–342 μ g/L
48	in South Africa (Gordon et al. 2009), and 2–126 $\mu g/L$ in the Philippines (Dyer et
49	al. 2003). LAS concentrations also ranged between 60–2300 $\mu\text{g/g}$ in suspended
50	particles in rivers in Japan (Takada and Ishiwatari 1987) and between
51	0.03–17.76 μ g/g and 0.101–0.186 μ g/g in river sediments in Portugal (Hampel <i>et</i>
52	al. 2009) and South Africa (Gordon et al. 2009), respectively.
53	As noted above, most limnological and environmental studies of AS have been
54	focused on rivers, but few studies have been conducted of AS in lakes. The
55	distribution of AS in rivers is important in determining anthropogenic pollution
56	levels and discharges to the natural environment of AS by human activities.
57	However, these studies alone are not sufficient to fully delineate the

58	environmental and geochemical processes of AS, because water masses are
59	constantly renewed by flows from upstream. On the other hand, water masses
60	may stagnate in lakes and thus, studies on partitioning of AS between lake water
61	and suspended and sediment particles are more feasible.
62	Several authors have studied removal processes for AS in laboratory
63	experiments (Ou et al. 1996; Perales et al. 1999; Doi et al. 2002; Garcia et al.
64	2002). These compounds are generally known to be degraded by
65	microorganisms (Perales et al. 1999) and adsorbed by solid phases (Ou et al.
66	1996; Doi et al. 2002; Garcia et al. 2002). The former depends on the water
67	temperature, while the latter is related to the organic carbon content of the solid
68	phase, known as the particulate organic carbon (POC) content. To date, there
69	have been few studies of adsorption and partitioning of AS to POC in lakes.
70	Although some authors have addressed POC, they treated it as a homogeneous
71	material despite being a mixture of various organic materials (Yoshida et al.
72	2009). In our previous study (Yoshida <i>et al.</i> 2009), we clarified that POC in lakes

73	could be classified into two fractions, freshly produced POC (f-POC) and aged
74	POC (a-POC), based on differences in the affinity of nonylphenol (NP) to POC;
75	its affinity to a-POC was approximately 4 times higher than that to f-POC. A
76	similar evaluation is also needed for AS.
77	Colorimetric methods have often been used for analysis of AS. Among these
78	methods, methylene blue, which offers the advantage of being an easy-to-use
79	and convenient technique, is widely used. In recent years, the methylene blue
80	reagent has been replaced by an ethyl violet reagent (Soejima 1982). The ethyl
81	violet colorimetric method is more useful than methylene blue as it has: (1) high
82	sensitivity, (2) a very simple and less time-consuming procedure, (3) little
83	interference by coexisting ions, and (4) good reproducibility and quantification of
84	trace amounts of anionic surfactants (Motomizu et al. 1982). It is also used as a
85	standard method in Japan (Japan Standards Association 1998). Therefore, we
86	quantified AS as ethyl violet active substances (EVAS).

87 In this study, we determined the distribution and geochemical behavior of AS in

88	Lake Biwa as EVAS. Using plots of suspended particulate EVAS (PEVAS) vs.
89	POC and PEVAS/Chlorophyll-a (Chl-a) vs. POC/Chl-a, we evaluated adsorption
90	and partitioning of EVAS to POC in Lake Biwa. The average PEVAS/POC ratio
91	and organic carbon-normalized particle-water partitioning coefficient (\mathcal{K}_{oc}) of
92	EVAS to f-POC and a-POC were estimated and compared to those of NP.
93	

94 Materials and methods

95 Solvents and standards

96 Sodium sulfate and sodium hydroxide were purchased from Nacalai Tesque

97 (Kyoto, Japan). Acetic acid, toluene, disodium ethylenediaminetetraacetate

98 (EDTA), and sodium dodecyl sulfate (SDS) were obtained from Wako Chemicals

99 (Osaka, Japan). Ethyl violet was obtained from Tokyo Chemical Industry (Tokyo,

100 Japan).

101

102 Sampling site and sample collection

103	The sampling sites for this study were located in Lake Biwa ($35^{\circ}15'$ N, $136^{\circ}05'$ E)
104	and the Yasu River. Lake Biwa, which is the largest lake in Japan, is divided into
105	two parts, the northern and southern basins. The former has a volume of 27.3
106	km ³ with an average depth of 44 m. Thermal stratification typically occurs from
107	May to January and vertical convection of the entire water column in the lake
108	occurs regularly from February to April. The southern basin of the lake has a
109	volume of 0.2 km ³ with an average depth of 3.5 m. The water in this basin is not
110	thermally stratified and is more or less saturated with atmospheric oxygen
111	throughout the year (Sugiyama et al. 2005). Field surveys were conducted at
112	Station le-1 (35°12.58' N, 135°59.55' E) between September 2000 and August
113	2001.
114	The Yasu River is a large river that flows near Station le-1 in Lake Biwa. It has

the largest drainage area and the second highest water discharge among the
more than 110 rivers flowing into Lake Biwa (Lake Biwa Environmental
Research Institute 1986; Kunimatsu 1988). Several towns are located along this

118	river with a total population of 220,000. The river water is generally used for
119	industrial water, domestic supply, and irrigation, and then the discharge is
120	released to the river (Kimaro et al. 2002). Field surveys of the river were
121	conducted at Stations YS-1 (35°09.70' N, 135°99.30' E) and YS-2 (35°02.37' N,
122	136°01.12' E) on 5 September 2000 and 9 March 2001.
123	Lake water samples were collected vertically with a Van Dorn water sampler
124	and river water samples were collected with a glass bottle. The samples were
125	filtered through a Whatman GF/F filter (diameter 47 mm, pore size 0.7 $\mu\text{m})$ to
126	separate suspended particles from the water. The water samples were analyzed
127	within 3 days of sampling. Suspended particle samples collected on the filter
128	were kept frozen until they were analyzed.
129	
130	Analytical procedures
131	Sample treatment for AS determination was carried out as follows. Forty

milliliters of a water sample was transferred into a glass centrifuge tube. Two 132

133	milliliters 1 mol/L sodium sulfate solution, 2 mL acetic acid–EDTA buffer (pH 5.0),
134	0.8 mL 1 mmol/L ethyl violet solution, and 2 mL toluene were added to the tube.
135	The tube was shaken for 60 min and then centrifuged for 5 min. After phase
136	separation, the absorbance of the toluene phase was measured at 611 nm
137	(UV-1600; Shimadzu, Kyoto, Japan) and calibrated against an SDS solution.
138	Suspended particle and sediment samples were dried at 60 °C and
139	ultrasonicated twice with 10 mL methanol for 45 min at room temperature. The
140	obtained extracts were evaporated until they were dry using a centrifugal
141	vaporizer (Model CVE 2wd; Tokyo Rika Kikai, Tokyo, Japan). The residue was
142	redissolved in 40 mL water and the solution was then treated as a water sample.
143	POC was quantified with a CHN analyzer (Model 2400; Perkin Elmer, Tokyo,
144	Japan). The temperatures of the combustion and reduction chambers were set
145	to 925 °C and 640 °C, respectively.
146	Chl-a was quantified spectrophotometrically according to the methods of

147 UNESCO and Lorenzen (Lorenzen 1967).

148

149 **Results and discussion**

150 Method validation

151	In the analyses using the ethyl violet colorimetric method, sodium sulfate was
152	used to accelerate phase separation and EDTA was used to reduce
153	interferences from multivalent metal ions. AS were determined as EVAS.
154	Method validation was carried out to evaluate the suitability of this method. SDS
155	was used as a standard material for analysis of AS. The linearity of its calibration
156	curve was evaluated by taking measurements at four different concentrations of
157	SDS. The correlation coefficient <i>r</i> of the curve was >0.999 from 0 to 38 μ g/L SDS.
158	The detection limit was determined as the concentration of SDS that gave a
159	signal three times the background noise, which was 0.27 $\mu\text{g/L}.$
160	Accuracy and precision were calculated based on recovery of SDS from
161	sediments, since sediments have a more complex matrix. For this evaluation,
162	101 $\mu\text{g/g}$ SDS was spiked into a sediment sample containing 235 $\mu\text{g/g}$ of EVAS.

163	The recovery rate and precision were 115% and 3.3% ($n = 3$). Thus, this method
164	was found to be suitable for analysis of AS in environmental and geochemical
165	studies.
166	
167	Distribution and geochemical behavior of EVAS in Lake Biwa
168	Figure 1 shows the vertical distributions for water temperature, pH, and EVAS
169	concentration in Lake Biwa. During the circulation period (2 April 2001), the
170	vertical distribution of dissolved EVAS (DEVAS) was relatively constant,
171	because the lake water was well mixed due to the vertical convection that occurs
172	in early spring. Conversely, the DEVAS concentration during the stagnation
173	period (12 September and 5 October 2000, 11 April 2001) had higher values at
174	the surface and decreased at the thermocline. The concentration in the
175	hypolimnion was nearly constant except near the bottom and was similar to that
176	during the circulation period. The high DEVAS concentrations in the epilimnion
177	are believed to be due to river water with high DEVAS concentrations flowing

178	only into the epilimnion and/or to desorption of AS from the POC phase due to
179	the increase in pH in the surface water during the stagnation period. Average
180	DEVAS concentrations in the Yasu River were 18.2 $\mu\text{g/L}$ on 5 September 2000
181	and 55.7 $\mu\text{g/L}$ on 9 March 2001. These values were higher than those in the
182	epilimnion during the stagnation period and in the entire water column during the
183	circulation period. Weighted average concentrations in the epilimnion were 12.2
184	$\mu g/L$ on 12 September 2000, 14.6 $\mu g/L$ on 5 October 2000, and 12.2 $\mu g/L$ on 11
185	April 2001. During the circulation period (2 April 2001), the weighted average
186	concentration over the entire water column was 10.5 $\mu\text{g/L}.$ These results indicate
187	that the DEVAS concentration in the surface water is increased by the Yasu and
188	other rivers flowing into the epilimnion during the stagnation period.
189	In addition, the pH in the epilimnion increases with active biological
190	productivity in the summer in many lakes, including Lake Biwa (Lake Biwa
191	Research Institute and National Institute for Research Advancement 1984;
192	Sugiyama et al. 2005). It has been reported that AS desorb from the suspended

193	POC phase when the pH of the aqueous phase increases (Yoshimura and
194	Nakae 1982). Therefore, the DEVAS concentration in the surface water may
195	have increased by desorption of AS from the POC phase in the suspended
196	particulate matter and the sediments in shallow and littoral area of the lake when
197	the pH of the water increased. This hypothesis was supported by the results for
198	PEVAS vs. POC (see below).
199	The concentration of PEVAS decreased from the surface to the thermocline or
200	the middle layer. However, at any given sampling time in Fig. 1, the vertical
201	distribution of PEVAS/POC, which represents the organic carbon-normalized
202	concentration of EVAS in the suspended particles, was neither uniform nor
203	similar to those of PEVAS or POC. Figure 2 plots PEVAS vs. POC. The
204	correlation coefficient <i>r</i> was relatively low at 0.619. There are believed to be two
205	reasons for this result. The first is the treatment of POC as a homogeneous
206	material despite actually being a mixture of various organic materials. The
207	second is not considering changes in the pH of the lake water, although AS is

- known to desorb from the suspended POC phase when the pH of the aqueous
 phase increases.
- The first issue can be explained further based on the results of our previous
- environmental and geochemical study on NP in Lake Biwa (Yoshida et al. 2009).
- In that study, POC was mathematically classified into two fractions, f-POC and
- a-POC, based on the affinity of NP to these fractions. The differences between
- 214 f-POC and a-POC are likely associated with their chemical structure and the
- nature of the organic matter. Therefore, in the present study, we examined the
- distribution of PEVAS and POC in a similar manner. The total concentration of
- 217 POC, [POC], can be expressed as:
- ²¹⁸ [POC] = [POC]_f + [POC]_a

where [POC]_f and [POC]_a are the concentrations of f-POC and a-POC, respectively. If the EVAS concentration accumulated by f-POC and a-POC are defined as [PEVAS]_f, and [PEVAS]_a, respectively, then the total PEVAS concentration, [PEVAS], can be expressed as:

$$= R_{\rm f}[\rm POC]_{\rm f} + R_{\rm a}[\rm POC]_{\rm a}$$

$$= R_{\rm f}[{\rm POC}]_{\rm f} + R_{\rm a}([{\rm POC}] - [{\rm POC}]_{\rm f})$$

where R_f and R_a are the average PEVAS/POC ratios for f-POC and a-POC,

227 respectively.

228 Phytoplankton is typical of freshly produced organic matter in a lake and the

229 Chl-a concentration is an index of phytoplankton abundance. Therefore, if Chl-a

is regarded as an index of the f-POC concentration, [POC]_f can be expressed as:

where α is the average f-POC/Chl-*a* ratio. The following relationship can be

233 obtained from the above equations:

²³⁴ [PEVAS] =
$$R_f \alpha$$
[Chl-a] + R_a ([POC] – α [Chl-a])

$$= R_{a}[POC] + \alpha(R_{f} - R_{a})[Chl-a]$$

²³⁶ [PEVAS]/[Chl-a] =
$$R_a$$
[POC]/[Chl-a] + $\alpha(R_f - R_a)$

237 The obtained equation can be interpreted as follows. The plot of PEVAS/Chl-a

238	vs. POC/ChI- <i>a</i> is predicted to be linear, with a slope and intercept of R_a and $\alpha(R_f$
239	– R_a), respectively. If AS accumulates in a-POC more than in f-POC (i.e., R_a >
240	$R_{\rm f}$), the intercept will be negative. Figure 3 plots PEVAS/Chl-a vs. POC/Chl-a.
241	The plot showed good linearity and its correlation coefficient ($r = 0.916$) was
242	higher than that of the PEVAS vs. POC plot ($r = 0.619$). These results suggest
243	that classification of POC into f-POC and a-POC is possible through this method
244	and is important for understanding the behavior of AS in the lake. As expected,
245	the intercept $\alpha(R_f - R_a)$ of the plot was negative (-1.27×10 ⁻² g/g). Therefore, the
246	affinity of AS to a-POC was higher than to f-POC. These results are consistent
247	with our previous study showing that NP also has stronger affinity to a-POC than
248	to f-POC (Yoshida <i>et al.</i> 2009).
249	The slope R_a and intercept $\alpha(R_f - R_a)$ of the linear regression line in Fig. 3 were
250	5.5×10 ⁻³ g/g and -1.27×10 ⁻² g/g, respectively. Using 87.8 g/g as the average α
251	value (Yoshida et al. 2009) based on the average POC/Chl-a value in culture

252 experiments of phytoplankton from Lake Biwa (Tezuka 1985), Rf can be

estimated as 5.4×10⁻³ g/g. According to the definition given above, $R_{\rm f}$ and $R_{\rm a}$ are 253 254 the average EVAS/POC ratios for f-POC and a-POC, respectively. Therefore, these values indicate that the affinity of AS to a-POC is somewhat higher than 255 that to f-POC. 256 257 The second reason for the poor correlation coefficient (r = 0.619) between PEVAS and POC in Fig. 2 can be explained by the PEVAS vs. POC plots shown 258 in Fig. 4. Based on the pH of the lake water, the data can be classified into 3 259 groups: Group A, samples of the epilimnion in September and October 2000 (pH 260 7.6-7.8; 0-13 m in September and 0-17 m in October); Group B, samples of the 261 hypolimnion in September and October 2000 (pH 6.9-7.1; 20-72 m); and Group 262 C, samples at all depths on 2 and 11 April 2001 (pH 7.1-7.4). The correlation 263 264 coefficients for the three groups were 0.690, 0.926, and 0.908, respectively. The PEVAS/POC value (3.38) for the epilimnion with high pH values was smaller 265 than those (5.57 and 7.84) for the hypolimnion and at all depths with low pH 266 267 values. These results are consistent with the increase in the DEVAS

268	concentration in the epilimnion with high pH values during the stagnation period,
269	and also indicates that PEVAS concentrations in the POC decreased with an
270	increase in the pH of the lake water. In other words, EVAS is desorbed from the
271	suspended POC phase when the pH of the aqueous phase increases.
272	We previously reported that some oxyanions are also released from solid
273	phases such as sediments and suspended particulate matter with an increase in
274	the pH of lake water (Harita et al. 2005), similar to the present results. Therefore,
275	adsorption and desorption of chemical components onto solid phases with
276	changes in the pH of lake water are considered to be important mechanisms
277	regulating their distribution and environmental/geochemical behavior in lakes.
278	However, such a trend was not observed in our previous study of NP. This is
279	likely because NP, as a non-ionic compound, is not affected by changes in pH.
280	As shown in Fig. 4, the PEVAS/POC value (5.57) in the hypolimnion in
281	September and October was smaller than that (7.84) at all depths in April. This is
282	believed to be due to degradation of PEVAS in the hypolimnion during the

283 stagnation period.

284

285	Comparison of K_{oc} values for EVAS and NP
286	The partition coefficient K_{oc} is calculated using the following equation, which
287	uses the DEVAS concentration and the PEVAS/POC ratio ($R_{\rm f}$ and $R_{\rm a}$):
288	$K_{oc}(mL/g - POC) = [PEVAS/POC(g/g - POC)]/[DEVAS(g/mL)]$
289	The average DEVAS concentrations were 15.9×10^{-9} g/mL and 9.1×10^{-9} g/mL in
290	the epilimnion and hypolimnion, respectively. Using these concentrations, log
291	$K_{\rm oc}$ was determined to be 5.5 and 5.8 for $R_{\rm f}$ and $R_{\rm a}$, respectively. These values
292	are within those (2.5-5.9) obtained in a previous study (Vincent and Glenwood
293	1987).
294	The log K_{oc} values for EVAS (5.5–5.8) were higher than those for NP (4.8 and
295	5.4). The high K_{oc} values for EVAS are likely due to formation of a bulky ionic
296	pair with cationic organic compounds such as quaternary ammonium ions as
297	well as its high affinity to POC. Cationic surfactants, which typically contain

298	quaternary ammonium ions, are widely used in industrial and household
299	detergents and are discharged into lake and river waters. Their production in
300	Japan was 70 kt in 1997 (Japan Surfactant Industry Association 1997). Cationic
301	surfactants easily form a stable ion pair with coexisting anionic surfactants in
302	environmental waters (Utsunomiya et al. 1998) and this ion pair is quickly
303	absorbed onto sewage sludge and sediments with a high partitioning coefficient
304	(Sun <i>et al</i> . 2003; Sütterlin <i>et al.</i> 2008).

305

306 Conclusions

We studied the distribution and geochemical behavior of EVAS in Lake Biwa, Japan. The distributions of DEVAS and PEVAS were clearly affected by the concentrations of the two POC fractions, f-POC and a-POC, and by the pH of the lake water. Thus, adsorption and desorption of EVAS onto the POC phase were found to be important mechanisms regulating their distribution and environmental/geochemical behavior in lakes.

314	Acknowledgements
315	This study was partly supported by grants from the Japan Society for the
316	Promotion of Science (12480150 and 15651028) and from the Nippon Life
317	Insurance Foundation. The authors thank Mr. T. Koitabashi and Mr. T. Miyano
318	from the Center for Ecological Research at Kyoto University for their assistance
319	with collection of samples in Lake Biwa.
320	
321	
322	References
323	Ambe, Y. (1972) Distribution of Alkylbenzenesulfonate in the Bottom Muds of
324	Lake Suwa. Jpn. J. Limnol., 33 , 44–50 (in Japanese).
325	Doi, J., Marks, K. H., DeCarvalho, A. J., McAvoy, D. C., Nielsen, A. M., Kravetz,
326	L. and Cano, M. L. (2002) Investigation of an Onsite Wastewater Treatment
327	System in Sandy Soil: Sorption and Biodegradation of Linear Alkylbenzene

328	Sulfonate. Environ. Toxicol. Chem., 21 (12), 2617–2622.
329	Dyer, S. D., Peng, C., McAvoy, D. C., Fendinger, N. J., Masscheleyn, P., Castillo,
330	L. V. and Lim, J. M. (2003) The Influence of Untreated Wastewater to
331	Aquatic Communities in the Balatuin River, The Philippines. Chemosphere,
332	52 (1), 43–53.
333	Garcia, M. T., Campos, E., Dalmau, M., Ribosa, I. and Sánchez-Leal, J. (2002)
334	Structure-activity Relationships for Association of Linear Alkylbenzene
335	Sulfonates with Activated Sludge. Chemosphere, 49 (3), 279–286.
336	Gordon, A. K., Muller, W. J., Gysman, N., Marshall, S. J., Sparham, C. J.,
337	O'Connor, S. M. and Whelan, M. J. (2009) Effect of Laundry Activities on
338	In-stream Concentrations of Linear Alkylbenzene Sulfonate in a Small Rural
339	South African River. Sci. Total. Environ., 407 (15), 4465–4471.
340	Hampel, M., Canário, J., Branco, V., Vale, C. and Blasco, J. (2009)
341	Environmental Levels of Linear Alkylbenzene Sulfonates (LAS) in Sediments
342	from the Tagus Estuary (Portugal): Environmental Implications. Environ.

343	<i>Monit. Assess.</i> , 149 (1–4), 151–161.
344	Harita, Y., Hori, T. and Sugiyama, M. (2005) Release of Trace Oxyanions from
345	Littoral Sediments and Suspended Particles Induced by pH Increase in the

- Epilimnion of Lakes. *Limnol. Oceanogr.*, **50** (2), 636–645.
- 347 Hirayama, Y., Ikegami, H., Machida, M. and Tatsumoto, H. (2006) Simple and
- 348 Rapid Determination of Linear Alkylbenzene Sulfonates by In-tube
- 349 Solid-phase Microextraction Coupled with Liquid Chromatography. J. Health.
- 350 Sci., **52** (3), 228–236.
- 351 Japan Ministry of the Environment (2014) PRTR Substances.
- 352 http://www.env.go.jp/en/chemi/prtr/substances/index.html [accessed 23
- 353 January 2014]
- Japan Standards Association. (1998) Japanese Industrial Standards K0101.
- 355 Japan Standards Association, Tokyo.
- Japan Surfactant Industry Association. (1997) Annual Report of Japan. Japan

357 Surfactant Industry Association, Tokyo.

358	Kimaro, T., Tachikawa, Y. and Takara, K. (2002) Development of a Hydrological
359	Model for Predicting the Effects of Land Use Changes at Yasu River Basin.
360	Proceedings of the International Conference on Urban Hydrology for the 21 st
361	<i>Century</i> , pp. 696–705.
362	Kobayashi, S. and Yamauchi, K. (1979) LAS (MBAS) and Phosphate in Nagara
363	River Water. Jpn. J. Limnol., 40 (1), 29–39 (in Japanese).
364	Kobuke, Y. (1981) Anionic Surfactant Concentration in the River and Sea Waters
365	of Hyogo Prefecture and its Relationship to Phosphorus Concentration. Jpn.
366	<i>J. Limnol.</i> , 42 (4), 189–200 (in Japanese).
367	Kobuke, Y. (2004) LAS in Urban Rivers and Factors Contributing to Reduction of
368	their Concentrations. Water. Sci. Technol., 50 (5), 355-361.
369	Kunimatsu, T. (1988) Mechanism of Pollution Discharged from River and
370	Presumption of Pollution Load into Lake Biwa . Biwako Kenkyusyo
371	Go-syunen Kinenshi, 49–63 (in Japanese).
372	Lake Biwa Research Institute and National Institute for Research Advancement.

373	(1984) Data Book of World Lakes. 513 LECS '84, Otsu, Japan.
374	Lake Biwa Environmental Research Institute. (1986) Data Book of Shiga
375	Prefecture Environmental Atlas. Lake Biwa Environmental Research
376	Institute, Shiga, Japan.
377	Lorenzen, C. J. (1967) Determination of Chlorophyll and Pheopigments,
378	Spectrophotometric Equations. Limnol. Oceanogr., 12 (2), 343–346.
379	Miura, K., Nishiyama, N. and Yamamoto, A. (2008) Aquatic Environmental
380	Monitoring of Detergent Surfactants. J. Oleo. Sci., 57 (3), 161–170.
381	Motomlzu, S., Fujlwara, S., Fujiwara, A. and Toei, K. (1982) Solvent
382	Extraction-Spectrophotometric Determination of Anionic sSurfactants with
383	Ethyl Violet. Anal. Chem., 54 (3), 392–397.
384	National Institute of Technology and Evaluation (2005) Linear Alkylbenzene
385	Sulfonic Acid and its Salt. Initial Risk Assessment Report, 1, 4–7.
386	Ou, Z. A., Yediler, Y., He, Y., Jia, L., Kettrup, A. and Sun, T. (1996) Adsorption of
387	Linear Alkylbenzene Sulfonate (LAS) on Soils. Chemosphere, 32 (5),

- 388 **827–839**.
- 389 Perales, J. A., Manzano, M. A., Sales, D. and Quiroga, J. A. (1999)
- 390 Biodegradation Kinetics of LAS in River Water. Int. Biodeterior.
- 391 *Biodegradation*, **43** (4), 155–160.
- 392 Soejima, K. (1996) Studies on Spectrophotometric Determination of Anionic
- 393 Surfactants with Ethyl Violet. Saga-ken Kankyo Senta Shoho, **11**, 56–59 (in
- 394 Japanese).
- 395 Sugiyama, M., Hori, T., Kihara, S. and Matsui, M. (2005) Geochemical Behavior
- of Trace Elements in Lake Biwa. *Limnology*, **6** (2), 117–130.
- 397 Sun, H. F., Takata, A., Hata, N., Kasahara, I. and Taguchi S (2003)
- 398 Transportation and Fate of Cationic Surfactant in River Water. J. Environ.
- 399 *Monit.*, **5**, 891–895.
- 400 Sütterlin, H., Alexy, R., Coker, A. and Kümmerer, K. (2008) Mixtures of
- 401 Quaternary Ammonium Compounds and Anionic Organic Compounds in the
- 402 Aquatic Environment: Elimination and Biodegradability in the Closed Bottle

403	Test Monitored by LC–MS/MS. Chemosphere, 72 (3), 479–484.
404	Takada, H. and Ishiwatari, R. (1987) Linear Alkylbenzenes in Urban Riverine
405	Environments in Tokyo: Distribution, Source, and Behavior. Environ. Sci.
406	<i>Technol.</i> , 21 (9), 875–883.
407	Tezuka, Y. (1985) C:N:P Ratios of Seston in Lake Biwa as Indicators of Nutrient
408	Deficiency in Phytoplankton and Decomposition Process of Hypolimnetic
409	Particulate Matter. Jpn. J. Limnol., 46 (4), 239–246 (in Japanese).
410	Uchiyama, M. (1982) The Distribution of Methylene Blue Active Substances
411	(MBAS) in Lake Oze. Jpn. J. Limnol., 43 (1), 39–43 (in Japanese).
412	Utsunomiya, A., Mori, Y. and Hasegawa, K. (1998) Adsorption of Linear
413	Alkylbenzenesulfonates and their Complexes with Cationic Surfactants on
414	River Sediment, and their Biodegradation in River Water. Jpn. J. Toxicol.
415	Environ. Health, 44 (4), 264–276 (in Japanese).
416	Vincent, C. H. and Glenwood, K. W. (1987) Structure-Activity Relationships for
417	Sorption of Linear Alkylbenzenesulfonates. Environ. Sci. Technol., 21 (4),

- 419 Yoshida, H., Kudari, S., Hori, T. and Sugiyama, M. (2009) Distribution of
- 420 Particulate Nonylphenol in Lake Biwa, Japan. Water. Air. Soil. Pollut., 200

```
421 (1–4), 267–276.
```

- 422 Yoshimura, K. and Nakae, A. (1982) Studies on the Biodegradation of Linear
- 423 Alkylbenzene Sulfonate by Activated Sludge (I). Jpn. J. Water. Pollut. Res., 5
- 424 (2), 19–25 (in Japanese).
- 425 Yoshimura, K., Hayashi, K., Kawase, J. and Tsuji, K. (1984) Existence of Anionic
- 426 Surfactants in River. Jpn. J. Limnol., **45** (1), 51–60 (in Japanese).

428 Figure captions

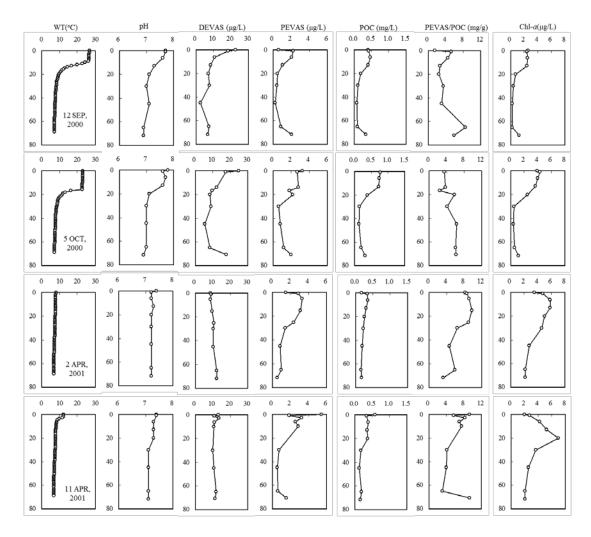
429

- 430 **Fig. 1.** Vertical distributions of WT, pH, DEVAS, PEVAS, POC, PEVAS/POC,
- and Chl-*a* at Station le-1 in Lake Biwa. WT: water temperature.

432

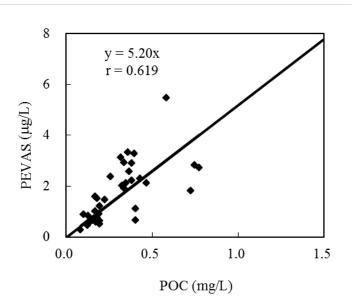
- 433 Fig. 2. Plot of PEVAS vs. POC. The regression line for the plot of PEVAS vs.
- 434 POC was constrained to pass through the origin to estimate an average
- 435 PEVAS/POC ratio. The correlation coefficient *r* was estimated from the PEVAS
- 436 and POC data.

437

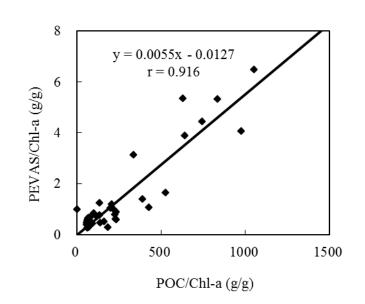

Fig. 3. Plot of PEVAS/Chl-*a* vs. POC/Chl-*a*. The correlation coefficient *r* was
estimated from the PEVAS/Chl-*a* and POC/Chl-*a* data.

440

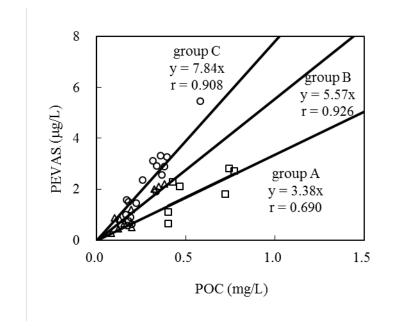
Fig. 4. Plot of PEVAS vs. POC. The data were classified into 3 groups: Group A,
samples of the epilimnion (squares) in September and October 2000 (pH)


443	7.6–7.8; 0–13 m in	September and 0–17	m in October);	Group B, samples of the
-----	--------------------	--------------------	----------------	-------------------------

- 444 hypolimnion (triangles) in September and October 2000 (pH 6.9–7.1; 20–72 m);
- and Group C, samples from all depths (circles) on 2 and 11 April 2001 (pH
- 446 7.1–7.4). The regression line for the plot of PEVAS vs. POC was constrained to
- 447 pass through the origin to estimate an average PEVAS/POC ratio. The
- 448 correlation coefficient *r* was estimated from the PEVAS and POC data.


450

451 **Fig. 1.**



453 **Fig. 2.**

Fig. 3.

Fig. 4.