Formation mechanism of threading-dislocation array in AlN layers grown on 6H-SiC (0001) substrates with 3-bilayer-high surface steps

Okumura, Hironori; Kimoto, Tsunenobu; Suda, Jun

© 2015 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.
Formation mechanism of threading-dislocation array in AlN layers grown on 6H-SiC (0001) substrates with 3-bilayer-high surface steps

Hironori Okumura, Tsunenobu Kimoto, and Jun Suda

Citation: Applied Physics Letters 105, 071603 (2014); doi: 10.1063/1.4892807
View online: http://dx.doi.org/10.1063/1.4892807
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/105/7?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in

In-situ NC-AFM measurements of high quality AlN(0001) layers grown at low growth rate on 4H-SiC(0001) and Si(111) substrates using ammonia molecular beam epitaxy
AIP Advances 5, 067108 (2015); 10.1063/1.4922193

Studies of the annihilation mechanism of threading dislocation in AlN films grown on vicinal sapphire (0001) substrates using transmission electron microscopy
Appl. Phys. Lett. 87, 101910 (2005); 10.1063/1.2042533

On the microstructure of Al x Ga 1−x N layers grown on 6H-SiC(0001) substrates
J. Appl. Phys. 97, 083501 (2005); 10.1063/1.1861152

Nucleation and growth kinetics of AlN films on atomically smooth 6H–SiC (0001) surfaces
Appl. Phys. Lett. 78, 3612 (2001); 10.1063/1.1377309

Influence of 6H–SiC(0001) substrate surface morphology on the growth of AlN epitaxial layers
Appl. Phys. Lett. 74, 985 (1999); 10.1063/1.123431

MULTIPHYSICS SIMULATION

Modeling and App Design Stories

READ LATEST ISSUE »
Formation mechanism of threading-dislocation array in AlN layers grown on 6H-SiC (0001) substrates with 3-bilayer-high surface steps

Hironori Okumura,1,a) Tsunenobu Kimoto,1,2 and Jun Suda1

1Department of Electronics Science and Engineering, Kyoto University, Kyoto 615-8510, Japan
2Photonics and Electronics Science and Engineering Center, Kyoto University, Kyoto 615-8510, Japan

(Received 21 June 2014; accepted 23 July 2014; published online 19 August 2014)

We grew AlN layers on 6H-SiC (0001) substrates with three Si-C bilayer high (0.75 nm) steps. In the AlN layers, most of the threading dislocations (TDs) were arranged in rows. The TD row consisted of arrays of a half-loop dislocation, which was formed by an AlN/SiC interfacial dislocation along the step edges of the SiC substrate surfaces and a TD pair at both ends. The configuration of the interfacial dislocation was highly relevant with two-dimensional AlN nuclei at the initial stage of growth. We concluded that the half-loop dislocation arrays were generated in the AlN nucleus coalescence over the SiC step edges. © 2014 AIP Publishing LLC.

AlN is one of the most promising materials for deep-UV light-emitting diodes (LEDs) and high-temperature electronics devices due to its large band-gap energy (6.1 eV). AlN LEDs with an emission wavelength of 205 nm allow downsizing and less power consumption than traditional techniques using mercury lamps. However, AlN LEDs have not been in practical use due to low external quantum efficiency (E QE). One factor in the low EQE is the non-radiative recombination center due to threading dislocations (TDs). AlN is usually grown on foreign substrates because of the small size and the high cost of AlN bulk crystals. The TD density (TDD) in typical AlN epilayers is very high (~1010 cm−2). A growth technique of AlN hetero-epitaxial layers with a low defect density must be established to increase the EQE of AlN LEDs.

For AlN (0001) epitaxial growth, SiC (0001) is one of the most suitable substrates due to the small lattice mismatch (1%) between AlN and SiC, the same hexagonal structure as AlN, and commercially available high-quality large-area (up to 6 in.) SiC wafers. However, AlN growth on SiC substrates has two critical issues: polytype and valency mismatches. If SiC’s step height is controlled by the unit cell (6 bilayers for 6H-SiC and 4 bilayers for 4H-SiC), the AlN stacking arrangements on each (0001) terrace of SiC correspond without generating SMBs. Unit-cell-high steps can be formed by a micro-step bunching phenomenon during high-temperature gas etching or SiC homoepitaxial growth. We obtained 6-bilayer-high steps by the high-temperature H2-gas etching of 6H-SiC (0001) substrates, but the area was limited to several mm2 due to the slight fluctuation in the off-direction from (1100). We uniformly obtained half-unit-cell (3-bilayer) steps at a whole 2-in. 6H-SiC wafer due to an insensitive off-direction and found that 6H-SiC substrates with 3-bilayer-high steps as well as 6-bilayer-high steps enable AlN growth without SMBs. In practical terms, we used 6H-SiC (0001) substrates with 3-bilayer-high steps for AlN growth without SMBs.

Al-N is a III–V compound semiconductor, but Si-C is a IV–IV compound semiconductor. This valency mismatch increases the interface energy between AlN and SiC and contributes to the three-dimensional (3D) growth mode at an initial growth stage of AlN growth on SiC. The 3D growth mode, which has a deformed lattice spacing to reduce the elastic-strain energy, causes a high density of dislocations in the 3D islands and the 3D island coalescence. Using metal gallium (Ga) as a surfactant and immediately starting the AlN growth after the nitrogen plasma was ignited, we achieved a two-dimensional (layer-by-layer) growth mode just after the AlN growth, which was coherently grown on SiC, and successfully reduced the TDD to 4 × 108 cm−2. Our transmission electron microscopy (TEM) studies revealed that most of the TDs in the AlN layer on the 6H-SiC substrates with 3-bilayer-high steps were arranged in rows. In this study, we clarified the generation mechanism of the TD rows by focusing on the defect structure in the AlN layers on 6H-SiC (0001) substrates with 3-bilayer-high steps to obtain clues for further TDD reduction.

We used 6H-SiC (0001) (vicinal angle of 0.2° toward 10 ± 2° from [1100] to [2110]) semi-insulating substrates treated with chemical mechanical polishing (CMP). By high-temperature H2-gas etching in a hot-wall chemical-vapor deposition technique, we formed 0.75-nm-thick Si-C bilayer steps on 6H-SiC (0001) substrates.

...
deposition (CVD) system, the SiC step height was controlled to three bilayers (0.75 nm). The surface morphology of the gas-etched 6H-SiC (0001) substrate is shown in Fig. 1(a). It had a step-and-terrace structure with 3-bilayer-high steps (0.75 nm). We obtained atomically smooth terraces and sharp step edges (facet angles are thought to exceed 12°, Ref. 26). Just before the AlN growth, each substrate was cleaned by an ex situ wet process, loaded into the exchange chamber of a plasma-assisted molecular-beam epitaxy (PAMBE) system, heated at around 200°C for degassing, and loaded into the main chamber. The MBE system is equipped with effusion cells for Ga and Al evaporation and a Veeco Unibulb radio-frequency (rf) plasma cell for producing active nitrogen. The residual oxygen adsorbed on the substrates was removed by in situ Ga deposition and desorption processes. The SiC substrate was exposed to 2 mono-layers (ML) of metal Ga as soon as the nitrogen plasma was ignited. Next, AlN was grown at 650°C with two types of low and high TDD. In this paper, TD rows I and II is our name for the TD rows with low and high TDDs, respectively, which were alternatively observed.

A plan-view high-resolution (HR) TEM image of two TDs in the TD row II for a 100-nm-thick AlN layer is shown in Fig. 2(a). The Burgers vectors of the two TDs faced opposite directions: \(\mathbf{b} = 1/3[1\bar{1}20]\) and \(1/3[1\bar{1}20]\). Fig. 2(b) shows a plan-view TEM image of ten TDs, which include the above two TDs. All ten TDs in TD row II had Burgers vectors of an edge-type component, consisting of cross-sectional TEM observation at two beam conditions. These ten TDs can be separated into five sets of TD pairs with Burgers vectors of opposite directions. For the TD row I (not shown), two TDs also had Burgers vectors of opposite directions. These results indicate that the TD rows consist of dislocation pairs. In Fig. 2(b), the five TD pairs in TD row II can be separated into the following two types: pair A with \(\mathbf{b} = 1/3[1\bar{1}20]\) and \(1/3[1\bar{1}20]\) and pair B with \(\mathbf{b} = 1/3[1\bar{1}20]\) and \(1/3[1\bar{1}20]\). Another TD pair with \(\mathbf{b} = 1/3[2\bar{1}10]\) and \(1/3[2\bar{1}10]\), which is nearly parallel to the off-direction [2110] of the substrate surface, was not observed.

A plan-view TEM image of a 50-nm-thick AlN layer at a 20° tilt is shown in Fig. 3(a) and includes the SiC substrate and the AlN layer because the TEM specimen’s thickness exceeds 50 nm. Dark lines parallel to the AlN/SiC interface were observed at the same position as the TD rows. A dark line and two TDs consisted of a U-shaped structure, i.e., half-loop defects (Fig. 3(b)), which were arranged in rows without overlapping. These indicate that the TD rows consist of dislocation half-loop arrays, agreeing with the observation of the dislocation pairs in Fig. 2(a). Under two beam conditions, we confirmed that the dark lines (interfacial dislocations) had Burgers vectors with \(\{1\bar{1}20\}\) directions. We

FIG. 1. (a) Surface morphology of 6H-SiC (0001) after high-temperature H₂-gas etching. 3-bilayer-high steps (0.75 nm) and atomically smooth terrace with widths of 200–300 nm were obtained. (b) Bright-field plan-view TEM image (zone axis) of 300-nm-thick AlN layer on 6H-SiC (0001) with 3-bilayer-high steps. TDs are arranged in rows, indicated by arrows. Separation of TD rows is between 200 and 300 nm. TD rows are generated over step edges of SiC and have two types of defect structures I and II.

FIG. 2. (a) Plan-view HRTEM image of TD pair A in AlN layer and magnified image of white square in Fig. 2b. Relation between slip planes \[1100\] and TD pairs is schematically shown in the insetted figure. (b) Bright-field plan-view TEM image of TD row in 100-nm-thick AlN layer on 6H-SiC (0001) with 3-bilayer-high steps. There are two types of TD pairs (A and B) with different Burgers vectors.
consider that the interfacial dislocations over the SiC step edges are misfit dislocations due to the lattice mismatch (1%) between AlN and SiC.

The misfit-dislocation line direction was near (1120) and made a 60° angle with the Burgers vector, corresponding to other reports. For a triangular misfit dislocation array, plastic relaxation \(\varepsilon \) is given by \(\varepsilon = 3/2(\beta \sin \beta)l \), where \(\beta \) is the magnitude for edge component of the Burgers vector, \(\beta \) is the angle between the misfit dislocation line and the Burgers vector, and \(l \) is the misfit dislocation spacing. By assuming that the lattice of an AlN layer over the step edges of the SiC substrates (terrace width \(l \) of 300 nm) is just relaxed toward the [2110] direction, effective plastic relaxation \(\varepsilon' = 1/3 \varepsilon = 0.045\% \), which is much smaller than the 1% lattice difference between AlN and SiC. Next, we estimated the residual in-plane strain \(\varepsilon_{xx} \) in the AlN layer at 9.62 \(\times 10^{-3} \), corresponding to the value \(\varepsilon_{xx} = 9.62 \times 10^{-3} \) calculated from the 20-0 X-ray diffraction (XRD) scans in the symmetric (0002) reflection of the 300-nm-thick AlN layer grown on SiC. We consider that the AlN layers just over the SiC step edges were slightly relaxed, causing TD arrays with misfit dislocations.

Detailed TEM observation (Fig. 3(a)) shows two types of TD rows with different dislocation density, corresponding to TD rows I and II in Fig. 1(b). TD row I (low TDD) is on a straight line and has long dark lines (~100 nm), and TD row II (high TDD) has a zigzag structure with short dark lines (~30 nm). These two types of TD rows were alternatively observed. We noticed that the structures of the TD rows resembled the surface morphology of an AlN layer at an initial growth stage (Fig. 4(a)). Until around 10-nm AlN growth, 3-bilayer-high steps were maintained on the AlN surface and 2D nuclei were observed on the SiC terraces. Due to the threefold symmetry of the AlN crystal, the AlN 2D nucleus has a triangular shape with [1100] facets, like GaN. Triangle 2D nuclei are inverted on each terrace of the SiC surfaces because the stacking arrangements of the AlN layer and SiC with 3-bilayer-high step are different on each terrace. We alternatively observed two types of step-edge shapes of AlN surfaces, i.e., straight and zigzag. These AlN 2D nuclei had similar shapes to the misfit dislocations generated over the SiC step edges, suggesting that the AlN nuclei coalescence over the SiC step edges reflects the generation of the misfit dislocations in the TD rows.

We discuss the origin of the misfit dislocations over the step edges of 6H-SiC (0001) with 3-bilayer-high steps. A lattice-mismatch film accumulates in-plane strain energy during growth, and its overly critical thickness causes lattice relaxation by introducing misfit dislocations. In this work, the AlN epilayer was coherently grown on SiC terraces in a layer-by-layer growth mode and only caused misfit dislocations over the step edges of the SiC substrates, indicating that few misfit dislocations result from the glide motions of pre-existing or new dislocations that should be randomly distributed. Massies and Grandjean reported that misfit dislocations can be generated in the nucleus coalescence because the compressive/tensile strain energy in the epilayer expands outward/inward in the lattice spacing near the nucleus edges. In AlN coherently grown on SiC, a compressive strain must exist because of a larger a-axis lattice constant of AlN (0.311 nm) than SiC (0.308 nm) that expands outward in the lattice spacing near the AlN nucleus edges. Each strained AlN nucleus on the adjacent terraces coalesces over the SiC step edges after the 3-bilayer AlN growth (Fig. 4(b)). The deletion of a prismatic plane between the coalesced AlN nuclei yielded a (1120) misfit dislocation over the SiC step edges to relieve part of the in-plane strain energy in the 0.75-nm-thick AlN layer.

Based on the above discussion (Fig. 4(b)), misfit dislocation is generated between a [1100] facet of an AlN 2D nucleus and a step edge of the AlN surface. If an AlN 2D nucleus perfectly coalesces with the AlN step edges without an extra-half plane (Fig. 4(c)), the misfit dislocation bends at the coalesced point and extends to the surface, generating half-loop dislocation with a dislocation pair. In the layer-by-layer growth mode, two types of AlN nuclei alternatively
appeared on the adjacent SiC terraces due to threefold symmetry (Fig. 4(a)), which resembled the structure of the TD rows (Fig. 3(b)). From these results, we propose that the misfit dislocations bend at some changing points of the \(\{1100\} \) facets of AlN 2D nuclei, e.g., a point between the \((01\bar{1}0)\) and \((10\bar{1}0)\) facets, causing dislocation half-loop arrays. In this model, the 2D nuclei with straight step edges, which face only a \((1100)\) facet for 3-bilayer-high AlN steps (black triangles in Fig. 4(a)), generate long misfit dislocations \((\sim100\text{~nm})\), resulting in TD row I (low TDD). The 2D nuclei with zigzag step edges, which face both \((01\bar{1}0)\) and \((10\bar{1}0)\) facets (gray triangles in Fig. 4(a)), yield many short misfit dislocations \((\sim10\text{~nm})\), resulting in TD row II (high TDD). If we can control the AlN nuclei coalescence over the SiC step edges, further reduction of the TD rows will be possible.

In summary, we have reported a generation mechanism of half-loop dislocation arrays in AlN layers on 6H-SiC substrates with 3-bilayer-high steps. Most of the TDs were formed over the SiC step edges and consisted of half-loop dislocation arrays, including a misfit dislocation along the SiC step edge at the AlN/SiC interface and a TD pair at the both ends. We concluded that the dislocation arrays were generated in the AlN nuclei coalescence to relieve the in-plane stress due to a lattice mismatch between AlN and SiC.

This work was supported by the Global Center of Excellence (COE) Program (C09) from the Ministry of Education, Culture, Sports, Science and Technology of Japan as well as a Grant-in-Aid from the Japan Society for the Promotion of Science (21.5229).