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Abstract This paper presents a simple Matlab imple-
mentation for a level set-based topology optimization
method in which the level set function is updated using

a reaction diffusion equation, which is different from
conventional level set-based approaches (Allaire et al.
2002, 2004; Wang et al. 2003) that use the Hamilton-

Jacobi equation to update the level set function. With
this method, the geometrical complexity of optimized
configurations can be easily controlled by appropriately

setting a regularization parameter. We explain the code
in detail, and also the derivation of the topological deriva-
tive that is used in the level set-based topology opti-

mization. Numerical results for stiffness maximization
problems are provided to facilitate the reader’s under-
standing. The presented code is intended for educa-

tional purposes only. This paper was inspired by pre-
viously published papers presenting Matlab code for a
SIMP method (Sigmund 2001; Andreassen et al. 2011),

a level set-based method (Challis 2010), and FreeFem++
code for a structural optimization method (Allaire and
Pantz 2006). Readers can investigate results provided

by these different methods and discover the prominent
aspects of each particular method. The code presented
here can be downloaded from http://www.osdel.me.kyoto-

u.ac.jp/members/yamada/codes.html.
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1 Introduction

This paper presents Matlab code for a level set-based
topology optimization method incorporating a reaction
diffusion equation for a compliance minimization prob-

lem. Concerning level set-based structural optimization
methods, many have been proposed since the pioneer-
ing works by Allaire et al. (2002, 2004) and Wang et al.

(2003). Programming code for a level set approach is
freely available: Scilab code (Allaire et al. 2004) can be
downloaded via http://www.cmap.polytechnique.fr/ al-

laire/levelset en.html. Also, Challis (2010) presented Mat-
lab code for a discrete level set approach, which is avail-
able in the manuscript. The Matlab code discussed in

this paper can be used as an aid to understand the
similarities and differences between this level set-based
method and other topology optimization methods.

The level set method was first proposed by Osher

and Sethian (1988) as a method to implicitly represent
the evolution of interfaces. In such analyses, the evolu-
tion of interface boundaries is tracked by solving a so-

called Hamilton-Jacobi equation, using an appropriate
velocity normal to the interface of the moving bound-
ary. In level set-based approaches, structural bound-

aries are represented by the zero iso-surface of the level
set function and the level set function is defined so
that the structural domain is represented wherever the

level set function has a positive value. With respect
to boundary representation methods, we classify the
method presented here as a level set-based approach,

which was developed by several of the authors (Yamada
et al. 2010).

In this method, the level set function is updated by
solving a reaction-diffusion equation based on the topo-
logical derivative of the objective functional. Therefore,

this method allows topological changes that generate
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Fig. 1 Fixed design domain, D.

new boundaries during the optimization procedure and
it does not require re-initialization of the level set func-
tion, which is typically required in Hamilton-Jacobi-

based approaches to ensure accuracy when solving the
Hamilton-Jacobi partial differential equation. In addi-
tion, our method enables qualitative control of the ge-

ometrical complexity of the optimized configurations
by using appropriate values when setting a regulariza-
tion parameter. In the following, we provide a rigorous

derivation of the topological derivative for a mean com-
pliance minimization problem. We note that although
the term representing the effect of boundary conditions

when a hole is created in the design domain was ignored
in previous research (Yamada et al. 2010), this effect is
now considered in the method presented here.

The rest of this paper is as follows. Section 2 de-
scribes the formulation of the level set-based topology

optimization method using a reaction diffusion equa-
tion and the formulation of an optimization problem
for a compliance minimization problem. Section 3 ex-

plains the Matlab code we use, and Section 4 provides
numerical examples and an extension of the code. A
conclusion is provided in Section 5, the Matlab code

is provided in Appendix A, and the derivation of the
topological derivative is provided in Appendix B.

2 Formulation

2.1 Topology optimization

For structural optimization, optimization problems are
formulated using a domain Ω filled with a material do-
main, a void domain, and boundaries Γ , as follows:

inf
Ω

F [Ω] =

∫
Ω

fd(x,u,∇u) dΩ +

∫
Γ

fb(x,u,∇u) dΓ,

(1)

where fd and fb are arbitrary real functions defined for

domain Ω and boundary Γ , respectively. x represents a
point located in Ω and u represents the state variables.

In topology optimization, as Fig. 1 shows, the above
optimization problem is replaced with a material distri-

bution problem within a fixed design domain, D, using
the characteristic function χΩ . The optimization prob-
lem is then defined as

inf
χΩ

F [χΩ ] =

∫
D

fd(x, χΩ) dΩ +

∫
Γ

fb(x, χΩ) dΓ, (2)

where the χΩ is defined as

χΩ(x) =

{
1 ∀x ∈ Ω

0 ∀x ∈ D \Ω.
(3)

In the above optimization problem, topological changes

such as an increase or decrease in the number of holes
are allowed during the optimization procedure, in ad-
dition to changes in the shape represented by outer or

inner boundaries. However, the continuity of the char-
acteristic function is not guaranteed and the value of
the characteristic function can be discontinuous at ev-

ery point. That is, since the characteristic function χΩ

is defined as a subset of a bounded Lebesgue space, L∞,
which only assures integrability, the obtained solutions

can be discontinuous at every point in the fixed design
domain. The ill-posed nature of the optimization prob-
lem is due to the lack of regularity of the admissible

shapes.

In other words, because increasing the number of
holes in a given design without changing its volume,
by concomitantly decreasing their size, results in im-

proved values of the objective functional, the solution
of the optimization problem is rendered nonexistent.
This is caused by the lack of closedness of the set of

feasible designs. To overcome this obstacle, the opti-
mization problem must be regularized so that a solution
can exist. Homogenization-based approaches (Bendsøe

and Kikuchi 1988; Allaire 2002) and fictitious density
approaches such as the SIMP method (Bendsøe 1989)
are two popular methods used to regularize optimiza-

tion problems.

Homogenization-based approaches use homogeniza-
tion theory to relax the design domain, that is, enlarge
the set of possible designs. On the other hand, ficti-

tious density approaches replace the characteristic func-
tion with a fictitious material whose elasticity tensor
is assumed to be a continuous function of the mate-

rial density. The SIMP (Solid Isotropic Material with
Penalization) method is a type of fictitious density ap-
proach that uses a continuous fictitious isotropic mate-

rial whose elasticity tensor is assumed to be a function
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of material density, penalized using an exponential pa-

rameter. In both the Homogenization-based approaches
and fictitious density approaches, optimized configura-
tions are represented as density distributions expressed

using continuous values that range from 0 to 1. There-
fore, the obtained optimized configurations often in-
clude grayscale areas where the density assumes an in-

termediate value between 0 and 1. Furthermore, the
application of a boundary condition at the structural
boundaries is problematic in these approaches because

the structural boundaries are not clearly expressed.

To fundamentally overcome these problems, approaches
based on a level set method were proposed (Allaire et
al. 2002, 2004; Wang et al. 2003), in which the bound-

aries of the optimal configuration are implicitly rep-
resented using a level set function. However, because
these particular level set-based methods are based on a

boundary advection concept, topological changes that
generate new boundaries during the optimization pro-
cedure are not allowed, although the number of holes

in an existing configuration can be decreased. We note
that, for 3-dimensional problems, structural boundaries
can easily merge to create holes in the fixed design

domain, but this is different from the generation of
holes inside the material domain, which is still disal-
lowed. Therefore, although the above mechanism for

the generation of new holes makes the method much
more flexible, conventional level set-based approaches
that use the Hamilton-Jacobi equation for advecting the

shape are subject to limitations of topological changes
even for 3-dimensional problems. As a result, the ini-
tial configuration settings greatly affect the obtained

optimized configurations. To overcome this difficulty,
Allaire et al. (2005) applied the bubble method (Es-
chenauer et al. 1994) to a level set-based structural op-

timization method in which boundaries are updated us-
ing the shape derivative, and holes are inserted based
on the value of the topological derivative. In Allaire

et al. (2005), hole nucleation based on the topological
derivative is performed in several steps during the opti-
mization procedure, as the level set function is updated

using the shape derivative.

2.2 Level set-based topology optimization using a

reaction diffusion equation

This subsection describes the level set-based topology
optimization method applied in this paper. (Yamada et

al. 2010). In this method, the level set function is up-
dated by solving a reaction-diffusion equation based on
the topological derivative of the objective functional.

Therefore, this method allows topological changes that

generate new boundaries during the optimization pro-

cedure, and re-initialization of the level set function is
not required.

As shown in Fig. 2, the structural boundaries in a
level set-based topology optimization method are im-
plicitly represented using the iso-surface of the level set

function ϕ, as follows.


1 > ϕ(x) > 0 ∀x ∈ Ω \ ∂Ω
ϕ(x) = 0 ∀x ∈ ∂Ω

0 > ϕ(x) > −1 ∀x ∈ D \Ω.

(4)

The above level set function is used to represent the
boundaries of the target structure; positive values rep-

resent the material domain, negative values represent
the void domain, and zero represents the structural
boundaries. The level set function has upper and lower

limits imposed for the regularization term, used for reg-
ularizing the optimization problem, which will be ex-
plained in the next subsection. To avoid confusion con-

cerning the sign of the level set function, we note that
even though we define positive values of the level set
function as corresponding to points in the material do-

main, as in (Wang et al. 2003; Yamada et al. 2010), an
inverse definition where negative values correspond to
points in the material domain, as in (Allaire et al. 2002,

2004; Challis 2010), is equally valid. We also note that
the level set function used in the method presented here
is not a signed distance function, such as is typically

used in many level set-based approaches. The optimiza-
tion problem that minimizes an objective functional F
under an inequality constraint G is then formulated as

Fig. 2 Fixed design domain D and level set function ϕ.
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follows, using the level set function ϕ defined above.

inf
χϕ

F [χϕ] =

∫
D

fd(x, χϕ) dΩ +

∫
Γ

fb(x, χϕ) dΓ (5)

subject to G[χϕ] =

∫
D

g(x, χϕ) dΩ −Gmax 6 0 , (6)

where g is the density function and Gmax is the upper

limit value of the response
∫
D
g(x, χϕ) dΩ. The charac-

teristic function χϕ(ϕ) is now defined as

χϕ(ϕ) =

{
1 if ϕ > 0

0 if ϕ < 0 .
(7)

The above optimization problem is now replaced with

an unconstrained optimization problem, using Lagrange’s
method of undetermined multipliers, as follows.

inf
ϕ

F̄ [χϕ, ϕ]= F + λG , (8)

where λ is the Lagrange multiplier. Based on the above
formulation, the KKT (Karush-Kuhn-Tucker) conditions
of this optimization problem are described as

F̄ ′ = 0 , λG = 0 , λ > 0 , G 6 0 , (9)

where the notation F̄ ′ represents the derivative of the

Lagrangian F̄ .
Level set functions that satisfy the above KKT con-

ditions are candidate solutions of the level set function

that represent optimized configurations. However, it is
nearly impossible to find such optimized solutions di-
rectly, so the optimization problem is replaced with a

time evolution equation by introducing a fictitious time
t. The level set function is then updated by solving this
equation, and an optimized configuration is ultimately

obtained, as explained below.

2.3 Time evolution equation

For the following formulation, which introduces ficti-
tious time t, it is assumed that the variation of the
level set function is proportional to the gradient of La-

grangian F̄ , as follows.

∂ϕ

∂t
= −KF̄ ′ , (10)

where K > 0 is a coefficient of proportionality. The op-
timization problem as formulated above is an ill-posed

problem, so it is regularized by adding a regularization
term, as follows.

∂ϕ

∂t
= −K(F̄ ′ − τ∇2ϕ) , (11)

The above equation is a reaction diffusion equation,

and the diffusive term ∇2ϕ ensures the smoothness of

the level set function in the presented method. Further-

more, the value of the regularization parameter τ affects
the degree of this diffusivity, with larger values of τ pro-
viding increased diffusivity for the level set function.

Thus, an appropriately set value of τ can prevent the
generation of structures that have excessive geometri-
cal complexity, so that an optimized configuration that

has a desired degree of geometrical simplicity can be
obtained.

Upper and lower limits are imposed on the level
set function so that the smoothing effect only operates

on points that are close to the structural boundaries.
Therefore, this regularization term functions implicitly
as a kind of perimeter control. That is, the complex-

ity of the optimized configuration can be controlled by
adjusting the value of the regularization parameter τ .
For relatively small values of τ , relatively complex op-

timized configurations are obtained, and the converse
is true. The details are provided in the numerical ex-
amples. We note that adding the regularization term

to (10) to obtain (11) makes it currently difficult to
guarantee that the objective functional monotonically
decreases, although the advection velocity is rigorously

guaranteed to decrease in a descent direction in Allaire
et al. (2004). We hope to address this issue in future
research.

Setting appropriate boundary conditions for (11),

the following equations are obtained.
∂ϕ

∂t
= −K

(
F̄ ′ − τ∇2ϕ

)
in D

ϕ = 0 on ∂D.
(12)

We note that although boundary ∂D is defined for val-
ues of the level set function that are equal to zero, this
does not mean that ∂D represents structural bound-

aries. The use of this definition allows domains that
are close to the boundary of the design domain to re-
main unaffected by boundary settings. Other boundary

conditions might work fine. However, we use the Dirich-
let boundary condition ϕ = 0 on the boundary of the
design domain for simplicity on implementation. The

optimized configuration can now be obtained by solv-
ing the above time evolution problem.In this method,
topological derivative dtF̄ is used for the F̄ ′ term.

2.4 Optimization problem

Figure 3 shows the fixed design domain D and bound-

ary conditions for a mean compliance minimization prob-
lem. The displacement is fixed at boundary Γu and trac-
tion ti is applied at boundary Γt. The objective is to find

the optimum layout of the design space that minimizes
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Fig. 3 Fixed design domain D and boundary conditions.

the mean compliance under a given volume constraint.

The optimization problem is defined as

inf
ϕ

F =

∫
Γ

tiui dΓ (13)

s.t. G =

∫
Ω

dΩ − Vmax 6 0 (14)

div (Cijkluk,l) = 0 on Ω (15)

ui = ūi in Γu (16)

ti = t̄i in Γt , (17)

where Vmax is the upper limit of the volume constraint,
Cijkl is the elastic tensor, ui is the displacement and
ti = σijnj = Cijkluk,lnj is the traction. ūi and t̄i are

constant values that represent the given displacement
and traction, respectively.

Using Lagrange’s method of undetermined multipli-

ers, the above optimization problem is replaced with an
unconstrained optimization problem, using Lagrangian
F̄ , and Lagrange multiplier ũi and λ, as follows:

F̄ =

∫
Γ

tiui dΓ +

∫
Ω

ũidiv (Cijkluk,l) dΩ

+λ

(∫
Ω

dΩ − Vmax

)
. (18)

The second term on the right-hand side in the above
equation can be replaced using Green’s formula, as fol-
lows: .

F̄ =

∫
Γ

tiui dΓ +

∫
Γ

ũiti dΓ −
∫
Ω

ũi,jCijkluk,l dΩ

+λ

(∫
Ω

dΩ − Vmax

)
. (19)

2.5 Topological derivative

Figure 4 shows the concept of the topological derivative,

which is a measure of the influence when a hole Ωε with

radius ϵ is created at a certain point in the domain Ω.

Γϵ represents the boundary of the created hole. The
topological derivative dtF of objective functional F is
defined as

dtF := lim
ε→0

(F + δF )− F

meas(Ω \Ωε)−meas(Ω)
. (20)

The topological derivative for Lagrangian (19) is
given as follows.

dtF̄ = lim
ϵ→0

δF̄
4πϵ3

3

= ũ0
i,jAijklu

0
k,l − λ , (21)

where the superscript 0 indicates the value without cre-
ating holes, and Aijkl is defined as follows:

Aijkl =
3(1− ν)

2(1 + ν)(7− 5ν)

[
−(1− 14ν + 15ν2)E

(1− 2ν)2
δijδkl

1

1
+ 5E(δikδjl + δilδjk)

]
. (22)

The details for the derivation of topological derivative
are provided in Appendix B.

3 Implementation

3.1 Reaction-diffusion equation

We now present a scheme for implementing the reaction-

diffusion equation (Yamada et al. 2010). As discussed
above, the level set function is updated using a reaction
diffusion equation, and the diffusive term ∇2ϕ ensures
that the optimization has sufficient smoothness and nu-

merical stability.

First, we introduce a parameter C to normalize the
sensitivities so that the value of τ can be chosen regard-

less of the particular problem being solved. We then
replace (12) with dimensionless equations, as follows.

∂ϕ

∂t
= −

(
−CdtF̄ − τ∇2ϕ

)
in D

ϕ = 0 on ∂D.

(23)

Fig. 4 Concept of the topological derivative.
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Here, K in (12) is set to 1. The effect of this term is

explained in Yamada et al. (2010). We note that the
F̄ ′ term in (12) is replaced by −CdtF̄ . The opposite in
sign is due to the relationship between the definitions of

topological derivative and the sign of level set function.
C is defined so that

C =

∫
D
dΩ∫

D
| dtF | dΩ

. (24)

Using the finite difference approach, the equations in

(23) are discretized in the time direction as follows:
ϕ(t+∆t)

∆t
− τ∇2ϕ(t+∆t) = CdtF̄ +

ϕ(t)

∆t

ϕ = 0 on ∂D,
(25)

where∆t is the step for fictitious time t. Using the finite

element approach, the above equations are expressed in
weak form as follows:

∫
D

ϕ(t+∆t)
∆t ϕ̃dD +

∫
D
∇Tϕ(t+∆t)

(
τ∇ϕ̃

)
dD

=
∫
D

(
CdtF̄ + ϕ(t)

∆t

)
ϕ̃dD for ∀ϕ̃ ∈ Φ̃

ϕ = 0 on ∂D,

(26)

where Φ̃ is the functional space defined such that

Φ̃ = {ϕ(x)|ϕ(x) ∈ H1(D) with ϕ = 0 on ∂D}. (27)

Discretizing (26) using the finite element method, we
obtain the following:{

T Φ(t+∆t) = Y

ϕ = 0 on ∂D,
(28)

where Φ(t) is a vector that expresses the nodal value
of the level set function at time t. T and Y are now
described as

T =
N∪
e=1

∫
Ve

(
1

∆t
NTN+∇TNτ∇N

)
dVe (29)

Y =
N∪
e=1

∫
Ve

(
CdtF̄ +

ϕ(x, t)

∆t

)
NdVe , (30)

where N is the number of elements and Ve is the vol-
ume of an element.

∪N
e=1 represents the union set of

the elements, where e is the element number. N is the

interpolation function of the level set function.

After updating the level set function using (28), the
level set function is replaced based on the following rule,

so that the upper and lower limit constraints of the level
set function in (4) are satisfied.

if ∥ϕ∥ > 1 then ϕ = sign(ϕ). (31)

3.2 Volume constraint

The volume constraint is dealt with using the aug-
mented Lagrangian method, in which the Lagrange mul-

tiplier λ, is updated according to the following scheme.

λ =

∫
D
dtF dΩ∫
D

dΩ
exp[p(

G
Gmax

+d)], (32)

where p and d are parameters that adjust the posi-

tion of the curve. This scheme can be considered as a
modified version of the augmented Lagrangian method,
in which Lagrange multiplier λ is updated as λi+1 =

λi + cG, where c is a penalty parameter. We note that
the Maclaurin expansion of an exponential function is
expressed as ex = 1 + x + 1

2x
2 + · · · , so the standard

updating scheme can be considered as a first-order ex-
pansion of the above updating scheme when the volume
constraint is active, with the value of pλi used as the

penalty parameter c.

When the constraint is sufficiently satisfied, that
is, when the value of G is very small, the value of λ

in (32) approaches 0. The sensitivity of the constraint
functional then becomes relatively small compared with
that of the objective functional, in the sensitivity ex-

pression F ′ + λG′. In this way, the optimization is pri-
marily affected by the value of the objective functional.
On the other hand, when the constraint is far from be-

ing satisfied, the value of λ becomes very large, caus-
ing the sensitivity of the constraint functional to be-
come relatively large compared with that of the objec-

tive functional. When this occurs, the optimization is
primarily affected by the need to satisfy the constraint
functional. Although other methods can be applied to

satisfy the volume fraction, we use this scheme for its
simplicity.

When the volume fraction of an initial guess is greater

than the maximum allowable volume fraction Vmax, the
volume constraint is relaxed according to the following
formula, to stabilize the convergence.

G=

∫
D

χϕdΩ−Vmax−(V0−Vmax)max

(
0, 1− i

nvol

)
60 ,

(33)

where i is the current iteration number and V0 is the
volume fraction of the initial guess. The first term rep-

resents the volume of the configuration at the current it-
eration. The third term in the right-hand side of (33) is
added to the primal volume constraint to relax the up-

per limit of the volume constraint so that the constraint
is gradually tightened during nvol iterations. After nvol

iterations, the constraint functional (33) represents the

original volume constraint.
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4 Matlab code

The simple Matlab code for the mean compliance mini-
mization problem is provided in Appendix A. The pro-

gram consists of four parts: parameter definitions (lines
3–13), finite element analysis preparation (lines 14–40),
loads and boundary settings (lines 41–53), and the main

loop (lines 54–88). Figure 5 shows the design domain
and boundary conditions of the problem. Displacement
is fixed at the left boundary and a downward force is

applied at the center of the right boundary. The design
domain is discretized using a rectangular mesh. The
numbers of elements are nelx in the horizontal direc-
tion and nely in the vertical direction.

The Matlab code is evoked with the following call:

levelset88(nelx,nely,Vmax,tau),

where Vmax is the upper limit of the volume fraction
and tau is the regularization parameter τ .

4.1 Parameter definition: lines 3–13

Explanations for the various parameters are given in
Table 1. E0, Emin, and nu are parameters used for analy-

sis, Young’s modulus in the material and void domains,
and Poisson’s ratio, respectively. nvol corresponds to
the iteration number for the volume constraint, nvol in

(33). When the initial volume is greater than the up-
per limit of the volume constraint Vmax, the volume
constraint is relaxed, and then it is gradually tight-

ened during the iterations prescribed by nvol. dt, d,
and p are optimization parameters. dt corresponds to
the fictitious time step ∆t in (29) and (30). d and p

are parameters used in the updating scheme applied
to Lagrange multiplier λ for the volume constraint in
the augmented Lagrangian method formulated in (32).

Fig. 5 Fixed design domain and boundary conditions of de-
sign model 1.

Table 1 Parameter definition

parameter meaning

nelx∗ number of elements in x direction

nely∗ number of elements in y direction

Vmax∗ maximum allowable volume

tau∗ regularization parameter

E0 Young’s modulus in material domain

Emin Young’s modulus in void domain

nu Poisson’s ratio

nvol iteration number for volume constraint

dt step size for fictitious time t

d, p parameter for augmented Lagrangian method

∗: set according to the user’s function call.

phi and str represent the level set function ϕ, and the
material distribution, respectively.

4.2 Preparation of finite element analysis: lines 14–40

These lines of code define the preparation for solving
the displacement field and reaction diffusion equation,

and computing the topological derivative. This code fol-
lows the same procedure for computing the global stiff-
ness matrix as that of Andreassen et al. (2013), where

assembly of the global stiffness matrix is efficiently per-
formed using the sparse function in Matlab. This pro-
cedure is advantageous from the standpoint of compu-

tation time because it avoids the use of for loops. Lines
16–19 define the components of the element stiffness
matrix KE for the displacement field and these are as-

sembled to create the global stiffness matrix K at each
iteration.

Due to the similarity in the formulation of the topo-

logical derivative ũ0
i,jAijklu

0
k,l defined in (22), and the

mutual strain energy density ũi,jKijkluk,l (Nishiwaki
et al. 1998; Howell 2001), the topological derivative can

be computed using the same procedure as that for com-
puting the mutual strain energy density, by replacing
Young’s modulus E and Poisson’s ratio ν as follows:

E → 4A2
2

A1 + 2A2
, (34)

ν → A1

A1 + 2A2
, (35)

where

A1 = − 3(1− ν)(1− 14ν + 15ν2)

2(1 + ν)(7− 5ν)(1− 2ν)2
E , (36)

A2 =
15E(1− ν)

2(1 + ν)(7− 5ν)
. (37)

The detailed derivation of this relationship is provided
in Appendix C. a1 and a2 in the code correspond to

A1 and A2 in the above equation, respectively, and A
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corresponds to Aijkl. We note that when the given dis-

placement at boundary Γu is set to ū = 0 as in Fig. 5,
the adjoint problem (46)-(48) is equivalent to the state
problem (15)-(17). Therefore the optimization problem

becomes self-adjoint problem and ũi,j = ui,j .

nodenrs is a matrix that indicates the node number

for all elements and edofVec is a vector representing
the first DOF index for all elements. The i-th column
of edofMat consists of the node number of the i-th el-

ement. iK and jK are index vectors used when assem-
bling the global stiffness matrix using the element stiff-
ness matricies. Details of this procedure are given in
Andreassen et al. (2011).

Next, lines 30 through 40 compute the global ma-
trices NTN, ∇NT∇N for the reaction-diffusion equa-

tion. NN and NNdif respectively correspond to NTN
and ∇NT∇N defined in (29). Although the number of
variables defined for each node is different for the dis-

placement field (two variables: u, v) and the level set
function (one variable: ϕ), the procedure for comput-
ing NN and NNdif is same as that for computing global

stiffness matrix K.

4.3 Loads and boundary settings: lines 41–53

Lines 42–48 define the boundary conditions for the dis-

placement field. Line 45 defines the load vector that
is applied at the center of right-hand boundary. The
length of the line where the load is applied is 1/16th

that of the entire length of the right-hand boundary.
Line 49 defines the stiffness matrix T shown in (29)
for the reaction-diffusion equation. The load vector Y

shown in (30) for the reaction-diffusion equation is de-
fined in the main loop, since it includes the level set
function that varies during optimization. Lines 49–53

define the boundary conditions for the reaction-diffusion
equation.

4.4 Optimization loop: lines 54–88

The optimization loop consists of four parts: finite ele-
ment analysis and sensitivity computation, convergence
check, computation of Lagrange multiplier λ for the vol-

ume constraint, and the level set function update.

4.4.1 Finite element analysis and sensitivity

computation

sK is a vector that is created by reshaping the element
stiffness matrix, and global stiffness matrix K is con-
structed using the sparse function. SED and TD are

the strain energy density and topological derivative,

respectively. TD describes the value of the topological

derivative in each element and these values are mapped
onto nodes. TDN is the value of the topological deriva-
tive used on the nodes. In line 65 and 66, the objective

functional, objective, and the volume of the current
configuration, vol, are calculated. Lines 67–70 print the
optimization results and plot the material distribution

str.

4.4.2 Convergence check

Lines 72–75 are for the convergence check of the algo-

rithm. The convergence check is performed after nvol
iterations. The optimization terminates if both of the
following conditions are satisfied: the volume is within

0.005 of the required value, Vmax, and the five previous
values of the objective functional differ by less than 1%.

4.4.3 Updating the Lagrange multiplier for the volume

constraint

ex corresponds the second and third terms in (33), and

indicates the relaxed upper limit of the volume con-
straint so that the constraint will be gradually tight-
ened during nvol iterations. lambda corresponds to the

Lagrange multiplier λ defined in (32). Line 79 computes
the normalization parameter C defined in (24). And g2

in line 80 expresses the nodal topological derivative in

vector notation.

4.4.4 Updating the level set function

Matrix Y is computed based on the Lagrange multiplier
lambda (line 82) and the level set function phi obtained
during the previous iteration. The level set function phi

is then updated by solving the reaction-diffusion equa-
tion (line 83). The updated level set function may not
satisfy the upper and lower limit constraints of the level

set function. To ensure that these constraints are sat-
isfied, the level set function is replaced based on the
rule described in (31) (line 84 in the code). Nodal level

set function phin is mapped onto the elements. An up-
dated structure is obtained using the elemental level
set function phie. The process then returns to the first

step of the optimization loop.

5 Numerical examples

5.1 Mesh independency

First, we examine three cases whose degree of discretiza-
tion is subject to the following mesh parameters: 80×64,

160×128, and 320×256. The regularization parameter



Matlab code for a level set-based topology optimization method using a reaction diffusion equation 9

τ is set to 2×10−4 and a volume fraction upper limit of

0.5 is used in all cases. The Matlab code calls for these
three cases are respectively:
levelset88(80,64,0.5,2e-4),

levelset88(160,128,0.5,2e-4), and
levelset88(320,256,0.5,2e-4).

Figure 6 shows the optimized configurations for each

case. The results indicate that the optimized configu-
ration has minimal dependency on the mesh discretiza-
tion.

5.2 Effect of the regularization parameter τ

Next, we examine three cases in which different degrees
of diffusivity are imposed by setting parameter τ to the
following values: τ = 2×10−4, 6×10−4, and 1× 10−2. A

mesh discretization of 320× 256 and a volume fraction
upper limit of 0.5 is used in all cases. Figure 7 shows
the optimized configurations for each case. The results

show that relatively complex optimized configurations
are obtained when τ is set to smaller values, and vice
versa. We note that in stiffness maximization problems

for cantilever structures, a structure with an infinite
number of infinitely thin members is known to be op-
timal. Therefore, as the regularization parameter is set

to smaller values, the optimized configuration becomes
more complex and correspondingly better values of the
objective functional are obtained. The results indicate

that essentially any desired degree of geometrical com-
plexity in the optimized configuration can be obtained,
by setting the regularization parameter τ to an appro-

priate value.

5.3 Other boundary conditions

Last, we offer an additional example in which different

boundary conditions are used. Figure 8 shows the anal-
ysis domain and boundary conditions. A load is applied
at the bottom center of the analysis domain. Vertical

and horizontal displacements at the bottom left corner
of the analysis domain are fixed, as is the horizontal
displacement at the bottom right corner of the analy-

sis domain. The design domain is symmetric along the
y-axis and a roller constraint is imposed on the bound-
ary at the bottom right corner, so only the right half

of the design domain is considered in the optimization
problem.

To enable different load and boundary conditions

for this optimization problem, lines 44, 45, 49 and 50
of the code are changed, as follows.

Line 44:

Fig. 8 Fixed design domain and boundary conditions of de-
sign model 2

F(2*(nely+1):2*(nely+1):2*(nely+1)*

(round(nelx/32)+1),1) = 1;

Line 45:

fixeddofs = [1:2:2*(nely+1) 2*(nely+1)*

(nelx+1-round(nelx/32)):2*(nely+1):2*

(nely+1)*(nelx+1)];

line 49, 50:
fixeddofs phi = [];

Figure 9 shows the optimization results obtained using
two different settings for the regularization parameter

τ . A mesh discretization of 120× 120 (half model) and
a volume fraction upper limit of 0.5 is used in both
cases. We can confirm that the optimization obtained

appropriate optimized configurations.

6 Conclusions

This paper presented Matlab code for a level set-based

topology optimization method that uses a reaction dif-
fusion equation to update the level set function. A rig-
orous derivation of the topological derivative for a com-

pliance minimization problem was provided. Although
the term representing the effect of boundary conditions
when a hole is created in the design domain was ig-

nored in previous research (Yamada et al. 2010), this
effect was considered in the method presented here.

We hope that dissemination of this code will enable

readers to more easily understand the operation of this
topology optimization method and also allow them to
compare results obtained when using different topol-

ogy optimization methods. We believe that this code
is very compact, comprehensible, and computationally
efficient. It employs the loop vectorization and memory

preallocation detailed in Andreassen et al. (2011).
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Mesh

80-64

(a)

Mesh

160-128

(b)

Mesh

320-258

(c)

Fig. 6 Optimized configurations for design model 1 obtained using different meshes: (a) 80×64; (b) 160×128; (c) 320×256.

tau

1e-4

(a)

tau

3e-4

(b)

tau

3e-3

(c)

Fig. 7 Optimized configurations for design model 1 obtained using different regularization parameter τ settings: (a) 2×10−4;
(b) 6× 10−4; (c) 1× 10−2.

tau

(a)

tau

(b)

Fig. 9 Optimized configurations for design model 2 obtained using different values for the regularization parameter τ : (a)
2× 10−4; (b) 6× 10−4.
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A Matlab code

1 % Matlab code for topology optimization using a reaction diffusion equation

2 function [str,phi] = levelset88(nelx,nely,Vmax,tau)

3 %% Parameter definition

4 E0 = 1;

5 Emin = 1e-4;

6 nu = 0.3;

7 nvol = 100;

8 dt = 0.1;

9 d = -0.02;

10 p = 4;

11 phi = ones((nely+1)*(nelx+1),1);

12 str = ones(nely,nelx);

13 volInit = sum(str(:))/(nelx*nely);

14 %% Finite element analysis preparation

15 % For displacement field

16 A11 = [12 3 -6 -3; 3 12 3 0; -6 3 12 -3; -3 0 -3 12];

17 A12 = [-6 -3 0 3; -3 -6 -3 -6; 0 -3 -6 3; 3 -6 3 -6];

18 B11 = [-4 3 -2 9; 3 -4 -9 4; -2 -9 -4 -3; 9 4 -3 -4];

19 B12 = [ 2 -3 4 -9; -3 2 9 -2; 4 9 2 3; -9 -2 3 2];

20 KE = 1/(1-nu^2)/24*([A11 A12;A12’ A11]+nu*[B11 B12;B12’ B11]);

21 % For topological derivative

22 a1 = 3*(1-nu)/(2*(1+nu)*(7-5*nu))*(-(1-14*nu+15*nu^2)*E0)/(1-2*nu)^2;

23 a2 = 3*(1-nu)/(2*(1+nu)*(7-5*nu))*5*E0;

24 A = (a1+2*a2)/24*([A11 A12;A12’ A11]+(a1/(a1+2*a2))*[B11 B12;B12’ B11]);

25 nodenrs = reshape(1:(1+nelx)*(1+nely),1+nely,1+nelx);

26 edofVec = reshape(2*nodenrs(1:end-1,1:end-1)+1,nelx*nely,1);

27 edofMat = repmat(edofVec,1,8)+repmat([0 1 2*nely+[2 3 0 1] -2 -1],nelx*nely,1);

28 iK = reshape(kron(edofMat,ones(8,1))’,64*nelx*nely,1);

29 jK = reshape(kron(edofMat,ones(1,8))’,64*nelx*nely,1);

30 % For reaction diffusion equation

31 NNdif e = 1/6*[ 4 -1 -2 -1;-1 4 -1 -2;-2 -1 4 -1;-1 -2 -1 4];

32 NN e = 1/36*[ 4 2 1 2;2 4 2 1;1 2 4 2;2 1 2 4];

33 edofVec2= reshape(nodenrs(1:end-1,1:end-1)+1,nelx*nely,1);

34 edofMat2= repmat(edofVec2,1,4)+repmat([0 nely+1 nely -1],nelx*nely,1);

35 iN = reshape(kron(edofMat2,ones(4,1))’,16*nelx*nely,1);

36 jN = reshape(kron(edofMat2,ones(1,4))’,16*nelx*nely,1);

37 sNN = reshape(NN e(:)*ones(1,nely*nelx),16*nelx*nely,1);

38 NN = sparse(iN,jN,sNN);

39 sNNdif = reshape(NNdif e(:)*ones(1,nely*nelx),16*nelx*nely,1);

40 NNdif = sparse(iN,jN,sNNdif);

41 %% Loads and boundary settings

42 F = sparse(2*(nely+1)*(nelx+1),1);

43 U = zeros(2*(nely+1)*(nelx+1),1);

44 F((nely+1)*(nelx)*2+nely+2*(-round(nely/32)+1):2:(nely+1)*(nelx)*2+nely+2*(round(nely/32)+1),1) = 1;

45 fixeddofs = 1:2*(nely+1);

46 alldofs = 1:2*(nely+1)*(nelx+1);

47 freedofs = setdiff(alldofs,fixeddofs);

48 T = NN/dt + tau*(nely*nelx)*NNdif;

49 fixeddofs phi = sort([1:nely+1 nely+2:nely+1:(nely+1)*(nelx) 2*(nely+1):nely+1:(nely+1)*(nelx) ...

50 (nely+1)*nelx+1:(nely+1)*(nelx+1)]);

51 phi(fixeddofs phi) = 0;

52 alldofs phi = 1:(nely+1)*(nelx+1);

53 freedofs phi = setdiff(alldofs phi,fixeddofs phi);

54 %% Main loop

55 for iterNum = 1:200

56 % FE-analysis, calculate sensitivities

57 sK = reshape(KE(:)*(Emin+str(:)’*(E0-Emin)),64*nelx*nely,1);

58 K = sparse(iK,jK,sK);

59 K = (K+K’)/2;

60 U(freedofs) = K(freedofs,freedofs) \ F(freedofs);

61 SED = (Emin+str*(E0-Emin)).*reshape(sum((U(edofMat)*KE).*U(edofMat),2),nely,nelx);

62 TD = (1e-4+str*(1-1e-4)).*reshape(sum((U(edofMat)*A).*U(edofMat),2),nely,nelx);

63 td2=[TD(1,1) TD(1,:) TD(1,end); TD(:,1) TD TD(:,end) ; TD(end,1) TD(end,:) TD(end,end)];

64 TDN = 0.25*(td2(1:end-1,1:end-1)+td2(2:end,1:end-1)+td2(1:end-1,2:end)+td2(2:end,2:end));
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65 objective(iterNum) = sum(SED(:));

66 vol = sum(str(:))/(nelx*nely);

67 % Print results

68 disp([’It.: ’ num2str(iterNum) ’ Compl.: ’ sprintf(’%10.4e’,objective(iterNum)/((nelx*nely)))...

69 ’ Vol.: ’ sprintf(’%6.2f’ ,vol)])

70 colormap(gray); imagesc(-str,[-1,0]); axis equal; axis tight; axis off; drawnow;

71 % Check for convergence

72 if iterNum>nvol && (abs(vol-Vmax)<0.005) && all(abs(objective(end)- ...

73 objective(end-5:end-1))< 0.01*abs(objective(end)))

74 return;

75 end

76 % Set augmented Lagrangian parameters

77 ex = Vmax+(volInit-Vmax)*max(0,1-iterNum/nvol);

78 lambda = sum(sum(TDN))/((nely+1)*(nelx+1))*exp(p*((vol-ex)/ex+d));

79 C = 1/sum(abs(TDN(:)))*(nely*nelx);

80 g2 = reshape(TDN,(nely+1)*(nelx+1),1);

81 % Update level set function

82 Y = NN*(C*(g2-lambda*ones(size(g2)))+phi/dt);

83 phi(freedofs phi,:) = T(freedofs phi,freedofs phi) \ Y(freedofs phi,:);

84 phi = min(1,max(-1,phi));

85 phin = reshape(phi,nely+1,nelx+1);

86 phie = 0.25*(phin(1:end-1,1:end-1)+phin(2:end,1:end-1)+phin(1:end-1,2:end)+phin(2:end,2:end));

87 str(:,:) = (phie(:,:)>0);

88 end
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B Topological derivative derivation

The boundary value problem for a created hole can be de-
scribed as

div (Cijkl (uk,l + δuk,l)) = 0 in Ω \Ωε (38)

ui + δui = ūi on Γu (39)

ti + δti = t̄i on Γt (40)

ti + δti = 0 on Γϵ . (41)

We note that the boundary conditions expressed in (39) and
(40) indicate that the displacement and traction after creating
a hole must satisfy the original displacement and traction
constraints, respectively. (41) represents the free surface on
the boundary of the created hole.

The Lagrangian that includes the created hole is given as

F̄ + δF̄ =

∫
Γu∪Γt

(tiui + tiδui + δtiui) dΓ

+

∫
Γu∪Γt

ũi(ti + δti) dΓ +

∫
Γε

ũi(ti + δti) dΓ

−
∫
Ω\Ωε

ũi,jCijkl(uk,l + δuk,l) dΩ

+λ

(∫
Ω\Ωε

dΩ − Vmax

)
. (42)

When the boundary condition (41) is inserted into (42), the
third term on the right-hand side becomes zero. Subtracting
the Lagrangian (19) from the Lagrangian (42), the variation
δF̄ of the Lagrangian then becomes

δF̄ =

∫
Γu∪Γt

(tiδui + δtiui) dΓ +

∫
Γu∪Γt

ũiδti dΓ

−
∫
Ω\Ωε

ũi,jCijklδuk,l dΩ +

∫
Ωε

ũi,jCijkluk,l dΩ

−λ

∫
Ωε

dΩ. (43)

The third term on the right-hand side in the above equation
can be replaced using Green’s formula, as follows:∫

Ω\Ωε

ũi,jCijklδuk,l dΩ =

∫
Γu∪Γt

t̃iδui dΓ (44)

+

∫
Γε

Cijklũi,jnlδuk dΓ −
∫
Ω\Ωε

div (Cijklũk,l) δui dΩ,

where t̃i is the derivative of Lagrange multiplier ũi in the
normal direction and nl is the normal vector at boundary Γϵ.
Substituting the above equation into (43) and considering the
conditions, δui = 0 on Γu and δti = 0 on Γt, the variation of
the Lagrangian is then given as

δF̄ =

∫
Ω\Ωε

div (Cijklũk,l) δui dΩ +

∫
Γt

(ti − t̃i)δui dΓ

+

∫
Γu

(ui + ũi)δti dΓ+

∫
Ωε

ũi,jCijkluk,l dΩ

−
∫
Γε

Cijklũi,jnlδuk dΓ−λ

∫
Ωε

dΩ. (45)

The adjoint equation is now defined so that the integrals of
the term that includes δui or δti are canceled out, as follows:

div (Cijklũk,l) = 0 in Ω (46)

ũi = −ui on Γu (47)

t̃i = ti on Γt . (48)

The variation of the Lagrangian can be obtained as follows,
using the adjoint variable obtained by solving the above ad-
joint field.

δF̄ =

∫
Ωε

ũi,jCijkluk,ldΩ−
∫
Γε

Cijklũi,jnlδukdΓ−λ

∫
Ωε

dΩ.

(49)

The first term on the right-hand side of the above equation
represents state variable ui and adjoint variable ũi, which
are known values. On the other hand, the value of δui in the
second term is unknown. We note that this second term was
ignored in previous research (Yamada et al. 2010), so that the
method did not consider the effect of boundary condition Γϵ

that arises when a hole is created in the design domain.
By subtracting the boundary value problem (15)-(17) from

the boundary value problem (38)-(41), we obtain the follow-
ing boundary value problem by which the unknown value δu
is governed.

div (Cijklδuk,l) = 0 in Ω \Ωε (50)

δui = 0 on Γu (51)

δti = 0 on Γt (52)

δti = −ti on Γϵ . (53)

In the above problem, since the radius of the hole ϵ is suf-
ficiently small, the effect of boundaries Γu and Γt can be
ignored for solving δui on Γϵ. δui is then a solution of the
following boundary value problem.

div (Cijklδuk,l) = 0 in Ω \Ωε (54)

δti = −σ0
ijnj +O(ϵ) on Γϵ , (55)

where the superscript 0 indicates the value without creating
holes, and σij = Cijkluk,l. The solution of this boundary
value problem in sphere Γϵ is given (Guzina and Bonnet 2004;
Lurie and Belyaev 2005) as:

δui = −
ε

µ

(
4− 5µ

7− 5µ
σ0
ijnj−

3− 5µ

4(7− 5µ)
σ0
jjnj+O(ε)

)
. (56)

The variation of Lagrangian F̄ is then given by:

δF̄ =
4πε3

3

{
3(1− ν)

2(1 + ν)(7− 5ν)

[
−(1− 14ν + 15ν2)E

(1− 2ν)2
δijδkl

1

1
+ 5E(δikδjl + δilδjk)

]
ũ0
i,ju

0
k,l−λ

}
, (57)

where δij is Kronecker’s delta function. Finally, the topolog-
ical derivative of the Lagrangian is given as

dtF̄ = lim
ϵ→0

δF̄
4πϵ3

3

= ũ0
i,jAijklu

0
k,l−λ , (58)

where Aijkl is defined as follows:

Aijkl =
3(1− ν)

2(1 + ν)(7− 5ν)

[
−(1− 14ν + 15ν2)E

(1− 2ν)2
δijδkl

1

1
+ 5E(δikδjl + δilδjk)

]
. (59)
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C Topological derivative implementation

First, for simplicity, we reformulate the tensor Aijkl defined in (22) as follows:

Aijkl := A1δijδkl +A2(δikδjl + δilδjk) . (60)

Namely,

A1 = −
3(1− ν)(1− 14ν + 15ν2)

2(1 + ν)(7− 5ν)(1− 2ν)2
E, A2 =

15E(1− ν)

2(1 + ν)(7− 5ν)
. (61)

The first term on the right-hand side in (21) can then be given as follows:

ũi,jAijkluk,l = ũi,j {A1δijδkl +A2(δikδjl + δilδjk)}uk.l (62)

= A1(ũ1,1 + ũ2,2 + ũ3,3)(u1,1 + u2,2 + u3,3)

+A2(ũ1,1u1,1+ũ1,2u1,2 + ũ1,3u1,3 + ũ2,1u2,1 + ũ2,2u2,2 + ũ2,3u2,3 + ũ3,1u3,1 + ũ3,2u3,2 + ũ3,3u3,3)

+A2(ũ1,1u1,1+ũ1,2u2,1 + ũ1,3u3,1 + ũ2,1u1,2 + ũ2,2u2,2 + ũ2,3u3,2 + ũ3,1u1,3 + ũ3,2u2,3 + ũ3,3u3,3) (63)

= (A1 + 2A2)ũ1,1u1,1 + (A1 + 2A2)ũ2,2u2,2 + (A1 + 2A2)ũ3,3u3,3

+A1(ũ1,1u2,2 + ũ2,2u1,1 + ũ2,2u3,3 + ũ3,3u2,2 + ũ3,3u1,1 + ũ1,1u3,3)

+A2[(ũ1,2 + ũ2,1)(u1,2 + u2,1) + (ũ2,3 + ũ3,2)(u2,3 + u3,2) + (ũ3,1 + ũ1,3)(u3,1 + u1,3)] . (64)

In the above formulation, we use u0
i,j instead of ui,j for simplicity. Now, using the following definition of strains, ϵii =ui,i ,

and τij =ui,j + uj,i , the above equation is transformed as follows:

ũi,jAijkluk,l = (A1 + 2A2)ϵ̃11ϵ11 + (A1 + 2A2)ϵ̃22ϵ22 + (A1 + 2A2)ϵ̃33ϵ33

+A1(ϵ̃11ϵ22 + ϵ̃22ϵ11 + ϵ̃22ϵ33 + ϵ̃33ϵ22 + ϵ̃33ϵ11 + ϵ̃11ϵ33) +A2(τ̃12τ12 + τ̃23τ23 + τ̃31τ31) (65)

=
[
ϵ̃11 ϵ̃22 ϵ̃33 τ̃12 τ̃23 τ̃31

]

A1 + 2A2 A1 A1 0 0 0

A1 A1 + 2A2 A1 0 0 0
A1 A1 A1 + 2A2 0 0 0
0 0 0 A2 0 0
0 0 0 0 A2 0
0 0 0 0 0 A2




ϵ11
ϵ22
ϵ33
τ12
τ23
τ31

 . (66)

Similarly, for the plane stress problem, we have

ũi,jAijkluk,l =
[
ϵ̃11 ϵ̃22 τ̃12

] A1 + 2A2 A1 0
A1 A1 + 2A2 0
0 0 A2 0

ϵ11ϵ22
τ12

 = (A1 + 2A2)
[
ϵ̃11 ϵ̃22 τ̃12

] 1 c 0
c 1 0
0 0 1−c

2

ϵ11ϵ22
τ12

 , (67)

where c = A1

A1+2A2
. Compare this with the following formulation of the mutual strain energy density:

ũi,jEijkluk,l =
E

(1− ν)2

[
ϵ̃11 ϵ̃22 τ̃12

] 1 ν 0
ν 1 0
0 0 1−ν

2

ϵ11ϵ22
τ12

 . (68)

The topological derivative can be therefore computed by substituting A1, A2 into E, ν in the procedure for computing the
mutual strain energy density, as follows:

E → (A1 + 2A2)(1− c)2, ν → c. (69)


