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Abstract: We propose an improved method for hierarchical-matrices (H-matrices) using adaptive cross approxima-
tion (ACA) as the low-rank approximation. The improvement consists of a kind of normalization and a new stopping
criterion for the ACA. By using the proposed method, we can avoid the trouble that ranks of approximated matrices
increase rapidly as the matrix size increases when the conventional H-matrices with ACA are employed to an integral
equation whose kernel function has high-order singularities. In particular, application of the proposed method enables
us to perform large-scale simulations such that the conventional H-matrices with ACA fail to construct the low-rank
approximation. Applicability of the proposed method is confirmed through numerical experiments on an earthquake
cycle simulation.
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1. Introduction

The integral equation method represented by the boundary-
element method (BEM) is one of the important numerical meth-
ods applied widely to scientific analyses. Naı̈ve application of the
BEM yields linear equation systems with dense coefficient matri-
ces. This requires a memory footprint proportional to n2 and a
computational effort of O(n2) or O(n3), where n is the number
of unknowns. The same issues also arise in the n-body problem.
In recent years, large-scale BEM analyses have been conducted
thanks to advanced computer technology or the use of approxi-
mation techniques for dense coefficient matrices.

A number of approximation techniques for the above prob-
lem have been proposed including hierarchical-matrices (H-
matrices) [1], [2], [3], fast multi-pole [4], [5], [6], and tree [7]
methods. All these methods assume that the kernel function
of the integral operator has singularities of the form g(x, y) =
|x − y|−p,where p > 0, or g(x, y) = log |x − y|, and are based on
the same idea that the kernel function for remote two points x, y

can be approximated by a degenerate kernel. That is, the kernel
function g(x, y) is possibly expanded as g(x, y) �

∑k
ν=1 g

ν
1(x)gν2(y)

for a positive integer k, so that integration with respect to the x-
variable can be separated from that with respect to the y-variable.
Most of these techniques require knowledge of the concrete form
of the kernel function, and this mathematical computation must
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Fig. 1 H-matrices derived from a quasi-dynamic equilibrium equation in the
earthquake cycle simulation. Each cell shows a sub-matrix, with the
number representing the rank of the approximated sub-matrix [11].

be done by hand. It is sometimes difficult or very complicated
to obtain the form of such a degenerate kernel. For these prob-
lems, skeleton approximation [8] or adaptive cross approximation
(ACA) [9], [10] are available. These methods perform an alge-
braic approximation corresponding to the quadrature of the de-
generate kernel; i.e., only the original entries in the coefficient
matrix are used in this approximation. ACA and H-matrices have
an affinity with each other. In H-matrices, the approximation
mentioned above is expressed as low-rank sub-matrices. By us-
ing a cluster tree with some geometrical criterion, H-matrices
find a suitable permutation and partition such that numerous
rather large sub-matrices become low-rank matrices. Figure 1,
transcribed from Ref. [11], shows visualization examples of H-
matrices. ACA is utilized to approximate each low-rank sub-
matrix.

H-matrices with ACA have been proven to be very effective
when applied to practical applications [9], [11], [12], [13]. How-
ever, as pointed out in Ref. [14], the stopping criterion generally

c© 2015 Information Processing Society of Japan 366



Journal of Information Processing Vol.23 No.3 366–372 (May 2015)

used in ACA is not efficient; that is, it is unnecessarily strict
when the kernel function has higher-order singularities. Further-
more, as reported by Ohtani et al. [11], the computational time
and memory usage increase rapidly as the matrix size n increases
when an H-matrix with ACA is applied to an earthquake cy-
cle simulation, owing to the fact that the ranks of the far-off-
diagonal sub-matrices are increased. In the example shown in
Fig. 1, we can see that rank 17 of the upper-outermost sub-matrix
for n = 128,000 jumps to 98 for n = 288,000. It is expected that
in the case of a much larger n, ACA would fail to construct ef-
ficient approximations. This is a bottleneck for very large-sized
simulations. To remedy this inconvenience, Ohtani et al. [11]
introduced an upper-limit on the ranks of approximated sub-
matrices by ACA, and searched for a sufficient range of the upper-
limit. They successfully completed the simulation without losing
simulation accuracy with the upper-limit set to 20, despite the
ACA not satisfying the stopping criterion.a However, it is gen-
erally difficult to determine the upper-limit accurately because it
depends on various conditions such as the matrix size n, structure
of the H-matrix, boundary elements, and physical parameters.

In this paper, we discuss an improvement for H-matrices using
ACA to avoid the inconvenience mentioned above. In Section
2, we formulate the linear equation system derived from integral
equations with a singular kernel and apply H-matrices to the co-
efficient matrix of the linear equation system. In Section 3, we
discuss the controversial points of conventional H-matrices with
ACA, and propose an improved method for it. Numerical experi-
ments of an earthquake cycle simulation are presented in Section
4. The last section is devoted to the conclusion.

2. Linear Equation System Derived from Inte-
gral Equations with Singular Kernels

Let H be a Hilbert space of functions on a (d − 1)-dimensional
domain Ω ⊂ Rd and H′ the dual space of H. For u ∈ H, f ∈ H′

and a kernel function of a convolution operator g : Rd × Ω → R,
we consider the integral equation∫

Ω

g(x, y)u(y)dy = f . (1)

To calculate Eq. (1) numerically, we divide domain Ω into ele-
ments Ωh = {ω j : j ∈ J}, where J is an index set. When us-
ing weighted residual methods such as the Ritz-Galerkin method
and the collocation method, function u is approximated from an
n-dimensional subspace Hh ⊂ H. Given a basis (ϕi)i∈� of Hh

for an index set � := {1, · · · , n}, the approximant uh ∈ Hh to u

can be written using a coefficient vector φ = (φi)i∈� satisfying
uh =

∑
i∈� φiϕi. We note that supports of the basis Ωh

ϕi
:=supp ϕi

are assembled from sets ω j. Equation (1) is reduced to the fol-
lowing linear equation system:

aφ = b. (2)

In the case of the Ritz-Galerkin method, entries of a and b are
given by

ai j =

∫
Ω

ϕi(x)
∫
Ω

g(x, y)ϕ j(y)dydx for all i, j ∈ �, (3)

bi =

∫
Ω

ϕi(x) f dx for all i ∈ �. (4)

When the kernel function g on the left-hand side of Eq. (1) has a
local support, coefficient matrix a ∈ R�×� will be sparse. How-
ever, we have to deal with dense matrices for coefficient matrix
a when the kernel functions are written in the form g(x, y) =
|x − y|−p,where p > 0. Support for this type of kernel function is
the whole of domain Ω. Such kernel functions appear in a num-
ber of scientific applications, for example, electric field analyses,
mechanical analyses, and earthquake cycle simulation.

Though coefficient matrix a has no explicit structure such as a
band or block structure, we can find implicit structures under the
following assumption. Hereafter, we assume that kernel function
g(x, y) is a singular kernel satisfying

g(x, y) ∈ span({|x − y|−p, p > 0}), (5)

where span(·) means the set of all finite linear combinations. We
now suppose two subsets (clusters) s, t ⊂ � and their correspond-
ing domains defined as

Ωh
s :=
⋃
i∈s

supp ϕi, Ω
h
t :=
⋃
i∈t

supp ϕi. (6)

We refer to the cluster pair (s, t) as ‘admissible’, if

min{diam(Ωh
s), diam(Ωh

t )} ≤ ηdist(Ωh
s ,Ω

h
t ), (7)

where diam(·) is the Euclidean diameter of a set and dist(·) de-
notes the Euclidean distance between two sets and η > 0 is a
parameter determined by the singularities of the problem. On
a domain corresponding to admissible cluster pairs, the kernel
function can be approximated with a certain degree of accuracy
by a degenerate kernel such as g(x, y) �

∑k
ν=1 g

ν
1(x)gν2(y), where k

is a positive number. Then the corresponding sub-matrix a|s×t has
a low-rank if we construct a|s×t by gathering those columns and
rows in coefficient matrix a with ordinal numbers belonging to
sets s and t. Under our assumptions, it is possible to find a permu-
tation and a partition of index set � such that there are numerous
low-rank sub-matrices with fairly large sizes. These manipula-
tions, the permutation, and the partition, are called ‘clustering’.
It is known that clustering is efficiently performed by construct-
ing a cluster tree,T�, based on the distance between the clusters
and the size of the corresponding supports. The cluster tree in-
duces the block cluster tree, T�×�, whose leaves L(T�×�) form a
partition of �×�. An H-matrix is defined using the block cluster
tree T�×� [3].

Next we consider approximating coefficient matrix a by the
leaves of H-matrices with a low-rank approximation method.
Hereafter, we assume that proper clustering of index set �, which
is induced by cluster tree T� and block cluster tree T�×�, is
performed; that is, coefficient matrix a ∈ R�×� has a structure
comprising sub-matrices as shown in Fig. 1. The sub-matrices
a|s×t, (s, t) ∈ L(T�×�) are divided into two groups based on
whether the corresponding cluster pair is admissible. We write
the approximated coefficient matrix ã ∈ R�×� as

ã|s×t =

⎧⎪⎪⎨⎪⎪⎩ ãs,t
ks,t

if (s, t) is admissible,

a|s×t otherwise,
for all (s, t) ∈ L(T�×�),

(8)
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where ãs,t
ks,t
∈ Rs×t represents the approximated sub-matrix of a|s×t

with rank ks,t; i.e.,

ãs,t
ks,t
= VWT =

ks,t∑
ν=1

vν(wν)T , (9)

where V ∈ Rs×ks,t ,W ∈ Rt×ks,t , vν ∈ R|s| and wν ∈ R|t|. Then, the
number of entries Nã in the approximated coefficient matrix ã is
described by using the sizes of sub-matrices and ranks thereof :

Nã =
∑

(s,t)∈L(T�×�)

Nã|s×t ,

where Nã|s×t =

⎧⎪⎪⎨⎪⎪⎩ ks,t(#s + #t) if (s, t) is admissible,
#s#t otherwise.

(10)

The computational effort for arithmetic in the use of H-matrices,
such as a construction of an H-matrix and a multiplication of an
H-matrix and a vector, depends on the number of entries Nã.

The singular value decomposition might give the approximated
sub-matrix ãs,t

ks,t
in the form of Eq. (9) with the lowest rank. How-

ever, it is too expensive in terms of computational cost and re-
quires all the entries of ã|s×t. As an efficient alternative, Goreinov
et al. [8] proposed the method which only requires pivot columns
and pivot rows of ã|s×t. They showed the following existence the-
orem for ãs,t

ks,t
.

Theorem 1 Let a|s×t,R ∈ Rs×t be matrices with ||a|s×t − R|| ≤ ε̂
and rank(R) ≤ k̂. Then there exist a subset s∗ ⊂ s of pivot rows, a

subset t∗ ⊂ t of columns, and a matrix S ∈ Rs∗×t∗ with

||a|s×t − ãs,t
ks,t
||2 ≤ ε̂(1+2

√
k(
√

#s+
√

#t)), ãs,t
ks,t
= a|s×t∗ ·S ·a|s∗×t.

All the methods based on Theorem 1 are collectively called the
‘Cross Approximation’. There are some variants of the cross
approximation, such as ACA and ACA+. These variants differ
in the strategy for selecting the sets of pivot rows s∗ and pivot
columns t∗ and the stopping criterion of the algorithm. In most
of ACA and its variants, a pivot column and a pivot row is alter-
nately selected one vector by one vector until the stopping cri-
terion is satisfied. Then, #s∗ = #t∗ = ks,t and the matrix S in
Theorem1 can be written as S = a|t∗×s∗

−1, i.e., ãs,t
ks,t
= UWT =

a|s×t∗ · a|t∗×s∗
−1 · a|s∗×t. On the other hand, the inequality in Theo-

rem 1 will be used in the next section to evaluate the error caused
by the approximation for a|s×t by ãs,t

ks,t
.

Since the above discussion on coefficient matrix a depends on
the kernel function and localization of the base functions, these
hold if we use weighted residual methods other than the Ritz-
Galerkin method.

3. Proposed Method

The aim of this section is to propose a method for calculat-
ing Eq. (2) with the approximated coefficient matrix described
by Eq. (8) without the trouble mentioned in Section 1. We first
discuss the controversial points of conventional H-matrices with
ACA. Our ideas for improvement of the conventional method are
explained along with the discussion. In the end, we propose the
improved method.

As mentioned in Section 1, the rank of the approximated ma-
trix ks,t increases rapidly as the size of the problem n increases,

when conventional H-matrices with ACA are applied to the earth-
quake cycle simulation [11] with a third order singular kernel. We
contrived the method to prevent rank ks,t from increasing rapidly,
under suppositions that such a problem could arise for the follow-
ing two reasons:
(i) The stopping criterion of ACA is uniform over the whole

matrix.
(ii) There is a large difference in the absolute value of entries

between rows.
First, we consider (i). Most numerical simulations require that

the approximated matrix ã satisfies

||a − ã||F
||a||F ≤ ε or

||a − ã||2
||a||2 ≤ ε, (11)

where ε ∈ R>0 is the given error tolerance and || · ||F denotes the
Frobenius norm. Furthermore, in the case that the sub-matrices
a|s×t are approximated by ACA, the following inequality is con-
ventionally used as the stopping criterion of the algorithm,

||a|s×t − ã|s×t ||F
||a|s×t ||F ≤ ε. (12)

We can easily prove that Eq. (11) is satisfied if Eq. (12) holds.
Criterion Eq. (12) is uniform over the whole matrix; i.e., it does
not depend on the location of the sub-matrix. The denominator
on the left-hand side of Eq. (12), ||a|s×t ||F , is expected to be much
smaller for far-off-diagonal sub-matrices than for on-diagonal
ones of matrices arising from the singular kernel Eq. (5), espe-
cially one with high-order singularities. Criterion Eq. (12) re-
quires a greater accuracy for far-off-diagonal sub-matrices than
for on-diagonal ones. The approximation errors do not arise from
on-diagonal or near-diagonal sub-matrices considering Eq. (8).
For the whole matrix comprising approximated sub-matrices with
criterion Eq. (12), the left-hand side of Eq. (11) is possibly much
smaller than tolerance ε. Moreover, since it is rare that ||a|s×t ||F is
calculated exactly in Eq. (12), ||ã|s×t ||F is used instead in practical
applications. According to the expression in Theorem 1, this re-
placement causes the error, which is including the square root of
the sub-matrix size.

Next, we discuss condition (ii). We suppose this situation oc-
curs if the element sizes are not uniform. Let g̃(x, y) be an ap-
proximation function of kernel function g(x, y) in Eq. (1). For a
given tolerance ε̃ ∈ R>0 and any σ, τ ⊆ Ω, we assume that g̃(x, y)
satisfies

|g(x, y) − g̃(x, y)| ≤ ε̃ for all x ∈ σ, y ∈ τ. (13)

Börm et al. [3] presented the following two theorems given this
assumption.
Theorem 2 Let μmax ∈ R>0 be a constant satisfying

||u||2Hh ≤ μmax||u||22 for all t ∈ T� and u ∈ Rt.

Moreover, let s, t ∈ T� be clusters satisfying Ωh
s ⊆ σ and Ωh

t ⊆ τ.
Then we have

||a|s×t − ãs,t ||2 ≤ μmaxε̃

√
|Ωh

s ||Ωh
t |. (14)

Theorem 3 Let Cov ∈ N be a constant satisfying
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#{i ∈ � : ϕi(x) � 0} ≤ Cov for all x ∈ Ωh.

For matrix a and its approximation ã satisfying Eq. (8), we have

||a − ã||2 ≤ Covμmax|Ωh|ε̃, (15)

where | · | denotes the support size.

Börm et al. [3] remarked that the optimal choice for constant Cov

is given by the number of base functions associated with the
element. For piecewise constant functions we have Cov = 1,
whereas piecewise linear basis functions on triangles in R3 lead
to the choice Cov = 3. In the proof of Theorem 3, the inequality∑

(s,t)∈L(T�×�)

√
|Ωh

s ||Ωh
t | ≤ Cov|Ωh| is used in addition to Theorem

2. We derive the error upper bound of the whole coefficient ma-
trix approximation from the assumption for the kernel function
via the error upper bound of the sub-matrix approximation. In-
spired by these theorems, we here introduce an inequality:

||a|s×t − ãs,t
ks,t
|| ≤
√
|Ωh

s ||Ωh
t |

Cov|Ωh| ε. (16)

When Eq. (16) holds, ||a − ã||2 ≤ ε is satisfied as follows:

||a − ã||2 ≤
√ ∑

(s,t)∈L(T�×�)

||a|s×t − ãs,t
ks,t
||22

≤ ε

Cov|Ωh|
∑

(s,t)∈L(T�×�)

√
|Ωh

s ||Ωh
t |

≤ ε. (17)

Inequality Eq. (16) implies a relation between the element sizes
and approximation accuracy of the sub-matrix. On the other
hand, element sizes do not appear in criterion Eq. (12). Criterion
Eq. (12) requires a greater accuracy for sub-matrices correspond-
ing to basis supports that include large sized elements than for
ones with small sized elements.

Criterion Eq. (12) is more suitable than Eq. (12) for the prob-
lem formulated in Section 2. Our idea is the use of inequality
Eq. (16) for the stopping criterion of ACA instead of the conven-
tional criterion Eq. (12). However, it is inconvenient to directly
apply the criterion Eq. (16) to ACA in practical applications for
the following three reasons.
(I) We have to handle element sizes corresponding to the basis

supports.
(II) It is expensive to compute the 2-norm, but not the Frobe-

nius norm.
(III) We may have to investigate physical quantities to deter-

mine tolerance ε because the criterion Eq. (16) is not given
in the form of a relative error.

To overcome the above three problems, we here try to simu-
late the criterion Eq. (16) by normalization and the use of sizes of
(sub-)matrices easy to handle more than element sizes. We here
introduce the normalization of Eq. (2) using the diagonal and the
size of the coefficient matrix as follows:

AΦ = B, (18)

A = D−T
n aD−1

n ,Φ = Dnφ and B = D−T
n b

for Dn = diag
(√

a11√
n
,
√

a22√
n
, · · · ,

√
ann√

n

)
.

(19)

The problem (I) is dealt with by the normalization. In many prac-
tical simulations, the absolute values of diagonal entries aii are
proportional to the element sizes if the kernel function g(x, y) is a
function of distance |x−y| only. Then, the support sizes |Ωh

s |, |Ωh
t |,

and |Ωh| can be replaced by the number of bases in clusters #s, #t,

and n, respectively, after the normalization. The second problem
is addressed by simply replacing the kind of norm. This replace-
ment does not change the criterion much. Its influence is slight
considering formula || · ||2 ≤ || · ||F ≤

√
k|| · ||2 because rank k is

supposed to be a small number [15]. Then, the criterion Eq. (16)
corresponding to the normalized equation can be written as

||A|s×t − Ãs,t
ks,t
||F ≤

√
#s#t

Covn
ε. (20)

Finally, we confirm that the problem (III) is also already dealt
with. It is shown that criterion Eq. (11) is satisfied.

||A − Ã||2F ≤
∑

(s,t)∈L(T�×�)

||A|s×t − Ãs,t
ks,t
||2F

≤ ε2

∑
(s,t)∈L(T�×�) #s#t

C2
ovn2

≤ ε2 = ε2||D||2F ≤ ε2||A||2F
⇒ ||A − Ã||F

||A||F ≤ ε. (21)

Note that D = diag(A) and ||D||F = 1. For more convenient use
of the criterion Eq. (19) in ACA, we rewrite the left hand side of
Eq. (20):

||vks,t ||2||wks,t ||2 ≤
√

#s#t
Covn

ε, (22)

where vks,t and wks,t are the latest vectors of sequences vν, wν, re-
spectively, generated in the ACA as Ãs,t

ks,t
=
∑ks,t

ν=1 v
ν(wν)T . This

displacement depends on the following heuristic used usually in
ACA.

||A|s×t − Ãs,t
ks,t
||F ≤ ||A|s×t − Ãs,t

ks,t−1||F
≈ ||Ãs,t

ks,t
− Ãs,t

ks,t−1||F
= ||vks,t (wks,t )T ||2
= ||vks,t ||2||wks,t ||2. (23)

We also expect that normalization Eq. (19) reduces the condition
number of the coefficient matrix. Multiplying ||φ||2 to the numera-
tor and the denominator of the left hand side of inequality Eq. (11)
and using the relation ãφ = a(φ + δφ) gives the following evalua-
tions with condition number κ(a),

||δφ||2
||φ||2 ≤ ε||a

−1||2||a||2 = εκ(a), (24)

||aδφ||2
||aφ||2 ≤ εκ(a)2. (25)

These equations imply a relation between the condition number
and the influence of the matrix approximation on vector φ. If
we require φ or aφ to be within a certain degree of accuracy, the
larger the condition number is, the smaller the tolerance ε we
need to set.

Summarizing the discussion above, we propose a method for
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calculating Eq. (2) with the approximated coefficient matrix de-
scribed by Eq. (8). If we can easily obtain information about the
sizes of the basis supports and determine the tolerance for the 2-
norm error of matrix approximation, the approximated coefficient
matrices ãs,t

ks,t
are computed using ACA with the stopping criterion

Eq. (16). If this is not the case, the matrix approximation is per-
formed according to the following steps.
(A) Normalize Eq. (2) using Eqs. (18) and (19).
(B) Perform correctly clustering, e.g., according to the manner

given in Ref. [3].
(C) Compute the approximated sub-matrices Ãs,t

ks,t
using ACA

with the stopping criterion Eq. (22).

4. Numerical Experiments

We applied the proposed method and conventional H-matrices
to the linear equation system derived from the quasi-dynamic
equilibrium equation (QDEE) [16]. ACA+ is used as the low-
rank approximation in both methods. The normalized Eq. (18)
and stopping criterion Eq. (22) are adopted in our proposed
method. Then, the constant Cov is given by 1, since we use piece-
wise constant functions as base functions. For conventional H-
matrices, we use the original Eq. (2) and the stopping criterion
||vks,t ||2||wks,t ||2 ≤ ε||ã|s×t ||F , where the heuristic Eq. (23) and the re-
placement of ||a|s×t || to ||ã|s×t || are used for the criterion Eq. (12).
In the earthquake cycle simulation, the QDEE is utilized to cal-
culate the stress shear from the physical quantities such as the
slip, slip rate, and plate velocity of the continent [11]. The QDEE
can be written in the form of Eq. (1) where the main term is an
integral operator with the kernel function in the form of Eq. (5).
The largest order of singularity of the kernel function is propor-
tional to |x−y|−3. As reported in Ref. [11], the computational time
and memory usage increase rapidly as matrix size n increases
when conventional H-matrices are applied to the QDEE. These
increases are due to increasing the rank of the far-off-diagonal
sub-matrix. The aim of the numerical experiments is to confirm
that our proposed method can prevent the increase in rank.

As a preliminary step, we measure the relative error εH for the
approximated matrix when setting tolerance εACA+ for the stop-
ping criterion of ACA+. Then, εH =

||a−ã||F
||a||F for conventional

H-matrices, while εH =
||A−Ã||F
||A||F for our proposed method. The

results with εACA+ = 10−3, 10−4, 10−5 and matrix size n = 11,520
and 2,880 are given in Table 1. All the calculations in Table 1 are
carried out by using serial computing on Fujitsu FX10 at The Uni-
versity of Tokyo, which consists of SPARC64TM IXfx and 32 GB
memory in a node. From the point of view of controlling the ac-
curacy of matrix approximation, it is optimal that εH = εACA+. As
the second best option, εH should be smaller than εACA+. In both
methods, the measured errors are much smaller than the given
tolerances. Moreover, εH by conventional H-matrices decrease
in proportion to εACA+, while εH by our proposed method does
not do in proportion. There is room for the improvement on con-
trolling the accuracy. The calculated error εH by our proposed
method is closer to εACA+(the setting value) than that by conven-
tional H-matrices. The difference between them is about an order
of 10 in all cases.

Table 1 Relative errors by our proposed method and conventional
H-matrices.

εACA+ n=11,520 n=2,880

Conventional Our proposed Conventional Our proposed

H-matrices method H-matrices method

εH =
||a−ã||F
||a||F εH =

||A−Ã||F
||A||F εH =

||a−ã||F
||a||F εH =

||A−Ã||F
||A||F

1.0E-3 6.2779E-7 8.0841E-06 5.2231E-07 3.7407E-06

1.0E-4 6.0116E-8 2.1486E-07 7.1935E-08 7.1034E-07

1.0E-5 6.1812E-9 2.5731E-07 8.3662E-09 4.4681E-07

Fig. 2 Maximum rank kmax of all the ranks of approximated sub-matrices
as a function of matrix size n. Although kmax increases rapidly as the
matrix size increases when using conventional H-matrices, such an
increase is not observed when using our proposed method.

We now investigate the behavior of the maximum rank kmax

when varying matrix size n. Here, maximum rank kmax means
the maximum of all the ranks of sub-matrices approximated by
ACA+. In Fig. 2, the calculated kmax values by both methods are
plotted as a function of matrix size n. Considering the above
preliminary step, we suppose the εH by our proposed method
is 10 times greater than that by conventional H-matrices in our
examples. Therefore, we set εACA+ = 10−3, 10−4, 10−5 for con-
ventional H-matrices and εACA+ = 10−4, 10−5, 10−6 for our pro-
posed method. For all cases using conventional H-matrices, we
can see a rapid increase in the maximum rank kmax. Accordingly,
the computational time and memory usage also increase. Even
if we set a relatively large tolerance εACA+ = 10−3 in the con-
ventional method, a similar increase in kmax is observed when
the matrix size n is greater than about 10,000. Furthermore,
the rate of increase accelerates as εACA+ becomes smaller. With
n = 288,000, ACA+ in conventional H-matrices fails to create
approximated sub-matrices within rank k = 150. For a much
larger n, ACA+ needs a very large rank k to satisfy the stopping
criterion. This means that enormous memory usage and unreal-
istic computational time are required to perform the simulation
using the conventional method. On the other hand, when using
our proposed method, the rapid increase in kmax is not observed
in any case with matrix size n less than 460,000. The rate of in-
crease is very slow compared with the cases using conventional
H-matrices. The increase in kmax is only about 6 when decreas-
ing εACA+ to one tenth, independently of the matrix size. Even
with n = 288,000, the ACA+ in our proposed method creates ap-
proximated sub-matrices within rank k = 50. Moreover, we can
execute the simulation maintaining the benefits of H-matrices, but
decreasing both the memory usage and the computational time.

Our main issue in this paper is to propose a remedy for the
problem such that the conventional H-matrices with ACA fail to
construct approximation by a rapid increase in kmax. It is also an
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Table 2 Memory usage and computational time when constructing an H-
matrix by using our proposed method and conventional H-matrices.

matrix size Conventional H-matrices Our proposed method

n kmax memory time kmax memory time

(MB) (s) (MB) (s)

32,000 18 309 373 20 318 428

128,000 73 1,630 1,966 25 1,753 2,286

288,000
more than — more than

29 4,636 6,019
1,000 72,000

important issue that memory usage and the computational time
of our proposed method are compared with ones of conventional
H-matrices. The computational effort in the use of H-matrices
depends on the number of entries Nã. As known by the expres-
sion Eq. (10) for Nã, the higher number of maximum rank kmax

does not always result in the higher computational cost. If the
size of sub-matrix with kmax is small, the influence on the to-
tal computational effort would not be significant. However, as
mentioned in Section 1, the sub-matrix with kmax often appear
at far-off-diagonal part when using the conventional H-matrices.
The sub-matrix at far-off-diagonal part is ordinarily the largest
sub-matrix, therefore the higher number of kmax can bring the big
impact to the total computational effort. In addition to the inves-
tigation for kmax above, we examine the memory usage and the
execution time when constructing an H-matrix by using our pro-
posed and conventional H-matrices methods. We vary the matrix
size by letting n = 32,000, 128,000, 288,000, and use εACA+ =

10−3 in both approximation methods. The results are shown in
Table 2. All the calculations in Table 2 are carried out by us-
ing serial computing on a computational node of CRAY XC30 at
Kyoto University, which is equipped with Xeon E5TM and 64 GB
memory. In the cases that conventional H-matrices work rela-
tively well (n = 32,000, 128,000), the memory usage and the
execution time of both methods are in the same order. However,
in the case of n = 288,000, conventional H-matrices cannot con-
struct an approximated matrix within 72,000 seconds, while our
proposed method complete it in 6,019 seconds. Then, ranks of
some sub-matrices at far-diagonal part exceed 1,000 when using
conventional H-matrices. Such a rapid increase in ranks brings
great influence to the memory usage and the execution time.

Finally we confirm whether the earthquake cycle simulation is
suitably performed when the matrix in the QDEE is approximated
by both our proposed method and conventional H-matrices. The
slip velocity histories are computed using the above two approxi-
mation methods and the non-approximated original dense matrix.
Matrix size n = 32,000 and tolerance εACA+ = 10−4 are used in
both approximation methods. The results are plotted as a function
of time in Fig. 3. Each sharp peak in the slip velocity denotes the
occurrence of an earthquake. We can see that the lines almost
overlap and that all instances of earthquakes are in agreement.

5. Conclusion

In this paper, we presented a method for calculating vast lin-
ear equation systems derived from integral equations whose ker-
nel functions have singularities, especially high-order ones. The
BEM is used in this case for discretizing the integral equation.
The proposed method is based on H-matrices with ACA, which

Fig. 3 Simulated slip velocity histories using our proposed method, conven-
tional H-matrices, and the non-approximated original dense matrix
with n = 32,000 and εACA+ = 10−4. We plot each slip velocity his-
tory in the stable cyclic periods obtained after a few initial irregular
cycles, and adjust the start time in the plot when a large instability
occurs in each case. The lines almost overlap in all cases.

is known as one of the fastest techniques for such problems. In
our proposed method, we introduced a kind of normalization for
the linear equation system and a new stopping criterion for ACA
used as the low-rank approximation of sub-matrices induced by
H-matrices. These modifications were carried out to avoid the
issue encountered by conventional H-matrices, whereby the max-
imum rank over all the ranks of approximated sub-matrices in-
creases rapidly as the matrix size increases. Suppressing the rank
of sub-matrices leads to reduced computational time and memory
usage. We anticipate that our proposed method prevents the same
issue caused by the non-uniformity of boundary element sizes.
Although we began the formulation from an integral equation in
this paper, our proposed method could be applied, as is, to the
n-body problem.

As an example, our proposed method was applied to the lin-
ear equation system derived from a QDEE in an earthquake cy-
cle simulation. It was shown that the earthquake cycle simu-
lation could be suitably performed if the coefficient matrix was
approximated by either our proposed method or conventional H-
matrices. Furthermore, we confirmed that sub-matrices induced
by H-matrices with our proposed method can be approximated,
while at the same time suppressing the maximum rank in all
cases where the matrix size n is less than 460,000. Our proposed
method enables us to compute the huge data in an earthquake cy-
cle simulation.
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