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We discuss the ghost freeness in the case when we add matter coupled to two metrics to the
ghost-free bigravity. In this paper we show that the Boulware-Deser ghost generally revives in the
presence of doubly coupled matter and that ghost freeness strongly restricts the model of kinetically
doubly coupled matter. This result may anticipate difficulties in the attempt to derive the ghost-free
bigravity as a low-energy effective theory, starting with a model applicable at high energies.

I. INTRODUCTION

Bigravity, the theory that has two dynamical metrics interacting with each other through non-derivative
interaction terms, has been investigated since the proposal in Ref. [1]. In the presence of the mass of graviton
which derives from the non-derivative interaction terms, however, it is known that an additional degree of
freedom generally appears and that it has a wrong-sign kinetic term. Such degree of freedom causes instability
at the quantum level and is called the Boulware-Deser (BD) ghost [2]. Recently, de Rham, Gabadadze and
Tolley discovered the unique ghost-free1 non-derivative interaction in the case with one non-dynamical fiducial
metric, which is called dRGT massive gravity [3, 4] (see also [5]). References [6–8] showed that dRGT massive
gravity is certainly ghost free and that the proof of ghost-freeness can be extended to the case where both
metrics are dynamical. Reference [6] also argued that the case in which a matter field couples to both metrics
is allowed, although such a matter field would in general violate the equivalence principle.
This finding makes it possible to study healthy bimetric theory [9]. Many works about the ghost-free bigravity

have been done, for example, in the cosmological context for the case where each matter couples only to either
metric [10–15] (see also [16]) and for the case where matter couples to both metrics [17–19]. In Refs. [11,
14, 15] they studied the nature of the cosmological solutions of the ghost-free bigravity and found that even
in the healthy branch where Higuchi ghost is absent, a gradient instability appears in the high energy regime
compared with the mass scale introduced in the Lagrangian in the matter-dominated or radiation-dominated
era. Therefore, if the ghost-free bigravity can describe the real universe, it should exceed the range of validity
in the high energy regime and it must be extended to some more fundamental theory there. Such an extension
of the ghost-free bigravity is attempted in Ref. [20], where the ghost free multigravity is related to higher
dimensional general relativity with a discrete extra dimension, and in Ref. [21], where the ghost-free bigravity
is embedded in the DGP 2-brane model. In this context, we can naturally consider matter that couples to both
metrics by introducing a five-dimensional matter field.
Despite the above discussion, in this paper we claim that the BD ghost generally appears when we add

matter coupled to both metrics by hand to the ghost-free bigravity. This is because, when the matter has
two kinetic terms which couple to respective metrics, the conjugate momentum of the matter field depends
on both lapse functions and the kinetic term written by the conjugate momentum becomes nonlinear in two
lapse functions. Considering perturbations on Friedmann and anisotropic background solutions, we investigate
in which case an extra degree of freedom is present and whether the extra degree of freedom is a ghost mode
or not. Consequently, when matter has two kinetic terms corresponding to two metrics, we find that an extra
degree of freedom appears and that there is no mechanism to avoid the mode to become a ghost mode in the
limit of Minkowski solution in the healthy branch.
This paper is organized as follows. In Sec. 2 we present a brief summary and a detailed follow-up calculation

of the proof that has been given by Hassan and Rosen [6–8]. Here we consider only the gravitational sector
and confirm that the ghost-free bigravity really has four Lagrange multipliers that remain unspecified by the
consistency conditions of the time evolution of the constraints, corresponding to the gauge degrees of freedom,

1 Here and in the following “ghost-free” strictly means that the model does not have the BD ghost, without excluding the possible
existence of another type of ghost.
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which was not explicitly shown in Refs. [6, 8] by the calculation of the Poisson brackets among the Hamiltonian
and momentum constraints. In Sec. 3, we consider the coupling to matter and investigate in which case the BD
ghost appears in doubly coupled matter models. Section. 4 is devoted to the summary of this paper.

II. GRAVITATIONAL SECTOR

In this section we give detailed calculations necessary in prooving that the Boulware-Deser ghost is really
absent in the so-called ghost-free bigravity. First, we introduce the setup of the model following the notation in
Refs. [6–8] and give a brief summary of the proof given in the above References. The action that we consider
is given by

S =

∫
d4x
√
−det g

[
M2

g

2
R(g) + 2m2M2

eff

4∑
n=0

cnen

(√
g−1f

)]
+

M2
f

2

∫
d4x
√
−detfR(f) , (II.1)

where gµν and fµν are, respectively, the physical and the hidden metrics. Mg is the 4 dimensional Planck mass
for gµν , Mf is that for fµν , and Meff is defined as

M2
eff =

(
1

M2
g

+
1

M2
f

)−1

. (II.2)

We also introduce m and cn (corresponding to βn in Ref. [6–8]) as model parameters. The interaction terms
between gµν and fµν are given by

e0 = 1 , e1 = [Y ] , e2 = [Y ]2 − [Y 2] , e3 = [Y ]3 − 3[Y ][Y 2] + 2[Y 3] ,

e4 = [Y ]4 − 6[Y ]2[Y 2] + 8[Y ][Y 3] + 3[Y 2]2 − 6[Y 4] , (II.3)

where we have introduced Y µ
ν =

√
gµαfαν and [Y n] = Tr(Y n).

In this paper we count the number of degrees of freedom in the ghost-free bigravity defined by Eq. (II.1) using
Hamiltonian formulation. To do Hamiltonian analysis, we decompose the metrics discriminating temporal and
spatial components as

N−2 = −g00 , Ni = g0i , γij = gij ,

L−2 = −f00 , Li = f0i ,
3fij = fij . (II.4)

Using these variables, the Lagrangian of the ghost-free bigravity (II.1) becomes

L = M2
g

[
πij∂tγij +NR0

(g) +NiR
i
(g)

]
+ 2m2M2

eff

√
detγ N

4∑
n=0

cnen

(√
g−1f

)
+M2

f

[
pij∂t

3fij + LR0
(f) + LiR

i
(f)

]
, (II.5)

up to irrelevant total derivative terms, where πij and pij are the momenta canonically conjugate to γij and
3fij ,

respectively, and

R
(g)
0 =

√
detγ 3R(γ) +

1√
detγ

(
1

2
πi
iπ

j
j − πijπij

)
, (II.6)

R
(g)
i = 2

√
detγ γij∇(g)

k

(
πjk

√
detγ

)
. (II.7)

Here ∇(g)
i and 3R(γ) are the covariant differenciation and the Ricci scalar defined by γij , respectively. R

(f)
0 and

R
(f)
i are defined in the same way as R

(g)
0 and R

(g)
i using 3fij and pij instead of γij and πij .
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Obviously this Lagrangian is nonlinear in terms of the lapse functions N and L and the shift vectors N i and
Li, and it is difficult to count the number of degrees of freedom using these variables. In order to make the
Lagrangian linear in N , L and Li, Hassan and Rosen [6] defined a new shift-like vector ni as

N i − Li =
(
Lδij +NDi

j

)
nj , (II.8)

where N i = γijNj , L
i = 3f ijLj and the matrix D is determined by the condition,

√
xD =

√
(γ−1 −DnnTDT ) 3f , (II.9)

where,

x := 1− ni 3fijn
j . (II.10)

The condition that determines D imposes an important property,

fikD
k
j = fjkD

k
i . (II.11)

We often use this property in the following calculation without mentioning it.
Rewriting the shift vector N i using ni, the Lagrangian becomes

L = M2
gπ

ij∂tγij +M2
f p

ij∂t
3fij −H0 , (II.12)

where

H0 :=− Li
(
M2

gR
(g)
i +M2

fR
(f)
i

)
− L

(
M2

fR
0(f) +M2

gn
iR

(g)
i + 2m2M2

eff

√
det γ U

)
−N

(
M2

gR
0(g) +M2

gR
(g)
i Di

jn
j + 2m2M2

eff

√
det γ V

)
. (II.13)

U and V are defined as

U := c1
√
x+ c2

[√
x
2
Di

i + ni 3fijD
j
kn

k
]

+ c3

[√
x
(
Dl

ln
i 3fijD

j
kn

k −Di
ln

l 3fijD
j
kn

k
)
+

1

2

√
x
3
(
Di

iD
j
j −Di

jD
j
i

)]
+ c4

√
det 3f√
det γ

, (II.14)

V := c0 + c1
√
xDi

i +
1

2
c2
√
x
2
[
Di

iD
j
j −Di

jD
j
i

]
+

1

6
c3
√
x
3
[
Di

iD
j
jD

k
k − 3Di

iD
j
kD

k
j + 2Di

jD
j
kD

k
i

]
. (II.15)

Variation of the Lagrangian (II.12) with respect to nk leads to the equations of motion, which determines nk.
At this point the Lagrangian is already linear in N , L and Li. Calculating the derivatives of H0 and C with
respect to nk, we obtain

∂H0

∂nk
= LCk , (II.16)

∂C
∂nk

= Ci
∂
(
Di

jn
j
)

∂nk
, (II.17)

where

Ci :=R
(g)
i − 2m̃2

√
det γ

nl 3flj√
x

Ṽ j
i , (II.18)

Ṽ j
i :=

1√
x

∂V

∂Di
j

=c1δ
j
i + c2

√
x
[
δjiD

k
k −Dj

i

]
+ c3

√
x
2
[
1

2
(Dm

mDn
n −Dm

n Dn
m) δji +Dj

kD
k
i −Dj

iD
l
l

]
, (II.19)
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with M2
g m̃

2 := M2
effm

2 (Ṽ j
i is defined differently in [6]). Here we used

∂
(√

det γ V
)

∂nk
= −

√
det γ√
x

nlṼ m
l

3fmn

∂
(
Dn

j n
j
)

∂nk
, (II.20)

∂
(√

det γ U
)

∂nk
= −

√
det γ√
x

Ṽ i
k

3fijn
j . (II.21)

Therefore the equation of motion of nk becomes

∂L
∂nk

= Ci

[
Lδik +N

∂
(
Di

jn
j
)

∂nk

]
. (II.22)

The matrix in the square brackets in Eq. (II.22), which is the Jacobian of the transformation (II.8), is invertible
in general. Therefore the equations of motion of ni become

Ci = 0 . (II.23)

These are independent of N , L and Li (and pij), and hence we can solve these equations to describe ni in terms
of γij , π

ij and 3fij . Substituting ni
(
γij , π

ij , 3fij
)
to the Lagrangian (II.12), we find that the Lagrangian is still

linear in N , L, and Li. We obtain three primary constraints

C = M2
gR

0(g) +M2
gR

(g)
i Di

jn
j + 2m2M2

eff

√
det γ V , (II.24)

CL = M2
fR

(f)
0 +M2

gn
kR

(g)
k + 2m2M2

eff

√
det γ U , (II.25)

CL
i = M2

gR
(g)
i +M2

fR
(f)
i , (II.26)

by taking the variations of this Lagrangian with respect to N , L, and Li. With Eqs (II.23), Eqs. (II.16) and
(II.17) imply that the constraints C and CL vanish under the differentiation with respect to ni, and hence we
can treat ni as if it were fixed when we calculate the variations of the primary constraints.
In Ref. [6], it was claimed that in the case of dRGT massive gravity, where fµν is fixed and non-dynamical,

the variation of the Lagrangian with respect to N gives a constraint C = 0 and its consistency condition gives
another constraint, whose consistency condition determines the Lagrange multiplier N . Hence, there are two
constraints and Boulware-Deser ghost is absent. They also claimed that in the bigravity case this procedure
can be simply extended and these two constraints, along with four constraints CL and CL

i produced by the
variation with respect to L and Li, respectively, and four gauge fixing conditions, reduce 24 variables, γij , π

ij ,
3fij and pij , to 14 degrees of freedom. This counting is correct, but it is not confirmed whether all the Poisson
brackets of the primary constraints really vanish except for the one between C and CL. Although this might be
almost obvious due to the existence of general coordinate invariance in the ghost-free bigravity, we explicitly
calculate the Poisson brackets between the primary constraints to confirm that the proof of the absence of ghost
in dRGT massive gravity can be extended to bigravity.
In order to calculate the Poisson brackets, we have to calculate the partial differentiations of U and V with

respect to γij and 3fij as well as ni. For this purpose, the following relations as given in Eqs. (II.20) and (II.21)
for ni are useful:

∂
(√

det γ V
)

∂γab
= −

√
det γ√
x

[
nlṼ m

l
3fmn

∂
(
Dn

j n
j
)

∂γab
− 1

2

(√
xV γab − γal(D−1)ml Ṽ n

m
3fnkγ

kb
)]

, (II.27)

∂
(√

det γ V
)

∂ 3fab
= −

√
det γ√
x

[
nlṼ m

l
3fmn

∂
(
Dn

j n
j
)

∂ 3fab
− 1

2
xṼ a

l
3f lmDb

m

]
, (II.28)

nkγik
∂
(√

det γ U
)

∂γij
=

√
det γ

2
√
x

nl 3fliṼ
i
k

(
3fkj − nknj

)
, (II.29)

∂U

∂γij
γjk +

∂U

∂ 3fij
3fjk = − 1

2
√
x
niṼ m

k
3fmln

l . (II.30)
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We also use the Poisson brackets between R
(g)
0 and R

(g)
i .

M2
g {R

(g)
0 (x) , R

(g)
0 (y)} = −

[
Ri

(g)(x)
∂

∂xi
δ3(x− y)−Ri

(g)(y)
∂

∂yi
δ3(x− y)

]
, (II.31)

M2
g {R

(g)
0 (x) , R

(g)
i (y)} = −R0

(g)(y)
∂

∂xi
δ3(x− y) , (II.32)

M2
g {R

(g)
i (x) , R

(g)
j (y)} = −

[
R

(g)
j (x)

∂

∂xi
δ3(x− y)−R

(g)
i (y)

∂

∂yj
δ3(x− y)

]
. (II.33)

The same relations hold for R
(f)
0 and R

(f)
i with M2

g replaced with M2
f .

Next, we present the calculations of Poisson brackets between three primary constraints, {CL , CL},
{CL

i (x) , C(y)}, {CL
i , CL}, and {C , CL}. We do not show the other Poisson brackets, {C , C} and {CL

i , CL
j },

because {C , C} has been already confirmed to be proportional to C with the aid of Ci = 0 in Ref. [8] and
{CL

i , CL
j } is obviously proportional to the constraint CL

i itself by use of Eq. (II.33). Notice that we do not use

CL = 0 to confirm {C , C} = 0 and {CL
i , CL

j } = 0.

• {CL , CL}
Here, we should note that U depends on πij only through nk. Since nk can be treated as fixed in CL owing

to Ci = 0, the contribution of ∂
(√

det γ U
)
/∂πij vanishes. Therefore the term {R(g)

0 (x) ,
√
det γ U(y)},

which is proportional to δ3(x−y) because R
(g)
0 and U do not contain derivatives of πij and γij , is canceled

by its conjugate {
√
det γ U(x) , R

(g)
0 (y)}. As a result, we have

{CL(x) , CL(y)} = M4
f {R

(f)
0 (x) , R

(f)
0 (y)}+M4

gn
inj{R(g)

i (x) , R
(g)
j (y)}

−

[
2m2M2

eff ni ∂R
(g)
i

∂πmn

∂
(√

det γ U
)

∂γmn
− (x ↔ y)

]
. (II.34)

To proceed the calculation, we introduce localized smoothing functions F (x) and G(x) and take inner
products of the smoothing functions and CL as⟨

FCL
⟩
:=

∫
d3xF (x)CL(x) ,

⟨
GCL

⟩
:=

∫
d3y G(y)CL(y) . (II.35)

Then we compute,

{
⟨
FCL

⟩
,
⟨
GCL

⟩
} =

∫
d3x

∫
d3y F (x)G(y){CL(x) , CL(y)} , (II.36)

from which we can extract {CL(x) , CL(y)}. Using Eqs. (II.31) and (II.33), we find

{
⟨
FCL

⟩
,
⟨
GCL

⟩
} =

⟨(
−M2

fR
n (f) −M2

gn
nnjR

(g)
j − 4m̃2M2

gn
iγim

∂
(√

det γ U
)

∂γmn

)
F∂nG− (F ↔ G)

⟩

= M2
g

⟨(
3f ij − ninj

)(
R

(g)
j − 2m̃2

√
det γ√
x

Ṽ k
j

3fkln
l

)
(F∂iG)− (F ↔ G)

⟩
. (II.37)

Here we have used the constraint CL
i = 0 and Eq. (II.29) in the second equality. Therefore we can confirm

that under the constraint Cj = 0, {CL(x) , CL(y)} vanishes. Note that we have not used CL = 0 here.

• {CL
i , C}

We calculate

{CL
i (x) , C(y)} = M4

g

[
{R(g)

i (x) , R
(g)
0 (y)}+ {R(g)

i (x) , R
(g)
k Dk

l n
l(y)}+ {R(f)

i (x) , Dk
l n

l(y)}R(g)
k (y)

+2m̃2{R(g)
i (x) ,

√
det γ V (y)}+ 2m̃2{R(f)

i (x) ,
√
det γ V (y)}

]
,

(II.38)
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which should vanishes because CL
i is just the generator of the spatial translation and constraint C(y) is

satisfied over the whole spatial hypersurface. Introducing localized smoothing functions F i(x) and G(y),
we compute

{
⟨
F iCL

i

⟩
, ⟨G C⟩} = M2

g

⟨
−
(
F j∂jG

)
R

(g)
0 −

(
F j∇(g)

j

(
GDm

l nl
)
−
(
∇(g)

i Fm
)
GDi

ln
l
)
R(g)

m

+2G
(
∇(g)

i Fm
)
γmj

(
R

(g)
k

∂
(
Dk

l n
l
)

∂γij
+ 2m̃2 ∂

(√
det γ V

)
∂γij

)

+2G
(
∇(f)

i Fm
)

3fmj

(
R

(g)
k

∂
(
Dk

l n
l
)

∂3fij
+ 2m̃2 ∂

(√
det γ V

)
∂3fij

)⟩
= M2

g

⟨
−
(
F j∂jG

) (
R

(g)
0 +Dl

kn
kR

(g)
l

)
− F kGR

(g)
j ∇(g)

k

(
Dj

l n
l
)

+G
(
∇(g)

i Fm
)[

Di
ln

lR(g)
m + 2m̃2

√
det γ√
x

(
−Ṽ n

m

(
D−1

)
l
n

3fljγ
ij +

√
x
2
Ṽ l
mDi

l

)]
+G

(
∇(g)

m Fm
)
2m̃2

√
det γ V − 2m̃2GδΓm

ikF
k
√
det γ

√
x Ṽ l

mDi
l

⟩
. (II.39)

In the second equality, we have used the relations (II.27), (II.28) and the constraint Ck = 0, and rewrote
∇(f) to ∇(g) using the difference of the connections associated with the two metrics,

δΓm
ik := Γm

(g)ik − Γm
(f)ik . (II.40)

The quantity in the square brackets in the final expression of Eq. (II.39) vanishes using the relation

−
(
D−1

)
l
m

3fljγ
ij +

√
x
2
Di

m = −3fmln
lDi

kn
k , (II.41)

which is derived from the definition of the matrix D and x, with the aid of the constraint Cm = 0. One
can argue that the remainig terms also cancel with each other by the following discussion. Integrating by

parts the fourth term in the final expression of Eq. (II.39) produces the term in which ∇(g)
m operates on

G, which cancels the first term with the aid of the constraint C = 0, and the one in which ∇(g)
m operates

on V , which is rewritten as

∇(g)
m V =

∂V

∂ (
√
xDa

b )
∇(g)

m

√
xDa

b ,

= −
√
xṼ i

j D
j
kδΓ

k
im − 1√

x
Ṽ i
j

3fikn
k∇(g)

m

(
Dj

l n
l
)
, (II.42)

where we used

∇(g)
a

3fij =
(
∇(g)

a −∇(f)
a

)
3fij = −2 3fl(iδΓ

l
j)a . (II.43)

Substituting Eq. (II.42) into Eq. (II.39), the last term in Eq. (II.39) is canceled by the first term in
Eq. (II.42), and the second term in Eq. (II.39) is combined with the second term in Eq. (II.42) to be zero
owing to the constraint Cj = 0. Therefore all terms in Eq. (II.39) are canceled and {CL

i (x) , C(y)} = 0 is
proved. Here we have not used CL = 0 as in the case of {CL , CL}.

• {CL
i , CL}



7

Here we also introduce localized smoothing functions F i(x) and G(y) and compute

{
⟨
F iCL

i

⟩
,
⟨
GCL

⟩
} =

⟨
−M2

f

(
F k∇(f)

k G
)
R

(f)
0 −M2

g

(
F k∇(g)

k

(
Gnj

)
−
(
∇(g)

k F j
)
Gnk

)
R

(g)
j

+4m̃2M2
g

[
G
(
∇(g)

i Fm
)
γmj

∂
(√

det γ U
)

∂γij
+G

(
∇(f)

i Fm
)

3fmj

∂
(√

det γ U
)

∂ 3fij

]⟩
,

= 2m̃2

⟨(
F k∇(f)

k G
)√

det γ U −
{
F k∇(g)

k nj −
(
∇(g)

k F j
)
nk
}
G

√
det γ√
x

Ṽ n
j

3fnln
l

+G
(
∇(g)

i Fm
)√

det γ

[
δimU − 1√

x
niṼ l

m
3flkn

k

]
− 2GδΓm

ikF
k 3fmj

∂U

∂ 3fij

⟩
,

(II.44)

which is also expected to vanish as in the case of {CL
i (x) , C(y)}. Here we have used the constraints Cj = 0

and CL = 0 and the relation (II.30) in the second equality. We find that the second term in the braces
and the second term in the square brackets cancel each other. The first term can be integrated by parts
as ⟨(

F j∇(g)
j G

)√
det γ U

⟩
= −G

(
∇(g)

j F j
)√

det γ U −GF j
(
∇(g)

j ni
) ∂

(√
det γ U

)
∂ni

−GF j
(
∇(g)

j
3fab

) ∂
(√

det γ U
)

∂ 3fab

= −G
(
∇(g)

j F j
)√

det γ U +GF j
(
∇(g)

j ni
) √

det γ√
x

Ṽ k
i

3fkln
l + 2

√
det γ GF j 3flaδΓ

l
bj

∂U

∂ 3fab
, (II.45)

where we used the relation (II.21) and the definition of the connection δΓ, (II.40). From this equation
(II.44), we find that three terms in Eq. (II.45) are canceled by the first term in the square brackets, the

terms proportional to Ṽ and the last term in Eq. (II.44), respectively. Hence, the Poisson bracket between
CL

i and CL is confirmed to vanish. Notice that we used CL = 0 here, unlike the previous calculations.

• {C , CL}
Finally we give an explicit expression for {C , CL}. As before, we compute

{⟨FC⟩ ,
⟨
GCL

⟩
}

= M2
g

⟨
njR

(g)
j G∇(g)

i

(
Di

kn
kF
)
+ 4m̃2 ∂

√
det γ U

∂γmn
γimG∇(g)

n

(
Di

kn
kF
)

+ 2m̃2

√
det γ√
x

(
D−1

)k
l
Ṽ m
k

3fmjγ
jnF∇(g)

n

(
nlG

)
−m̃2

[
2√
det γ

∂
√
det γ U

∂γmn
(πγmn − 2πmn) +

√
det γ√
det 3f

√
xṼ m

l
3f lkDn

k

(
p 3fmn − 2pmn

)]
FG

⟩
. (II.46)

Here we have used the constraints Ci = 0 and C = 0. The last term includes no derivative and is linear
in pmn, which appears only in the squared or differentiated form in all constraints. Therefore this term
cannot be removed and hence {C , CL} never becomes zero.

Hence, we conclude that all the Poisson brackets among the primary constraints C, CL, and CL
i are zero,

except for {C , CL}, as is expected from the calculation in Ref. [6]. We stress that we used CL = 0 only to show
{CL

i , CL} = 0, which allows us to simplify the calculation in the presence of a doubly coupled matter, which
will be discussed in Sec. 3.

III. DOUBLY COUPLED MATTER

Next, we examine the existence of the BD ghost in the presence of a doubly coupled matter field. The proof
in Sec. 2 can be easily extended to the case in which there is matter that couples to either metric, but not to
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both. This is because the matter contribution can be totally absorbed by the redefinition of R
(g)
0 and R

(g)
i (or

R
(f)
0 and R

(f)
i ) in all constraints and the fundamental Poisson brackets (II.31)-(II.33) hold without any change.

If we consider the case in which there is a matter field which is coupled to both metrics, however, the proof
will in general break down. In this case, it is impossible to define such a new shift-like vector which makes the
Lagrangian linear in the both lapse functions. Hence, we will not have the constraint that corresponds to C in
this case, and hence the model will possess the BD ghost. One particular example of a ghost-free theory with
a matter field which couples to both metrics is

S =

∫
d4x

√
−g

[
M2

gR
(g)

2
+ 2m2M2

eff

∑
n

cnen

(√
gµν(fµν + α∂µϕ∂νϕ)

)]

+

∫
d4x
√
−f

[
M2

fR
(f)

2
− 1

2
fµν∂µϕ∂νϕ

]
, (III.1)

where α is a constant. This model is free from the BD ghost because we can rewrite the action into the one
with no coupling to the metric gµν , making a field redefinition as

fµν → f̃µν − α∂µϕ∂νϕ . (III.2)

In the remaining kinetic term, higher temporal derivative terms do not arise after the replacement (III.2), for
the same reason why the temporal derivatives of the lapse and shift can be removed by integrating by parts in
the Einstein-Hilbert action. This possibility seems the natural and ghost-free extension of the model proposed
in [22] (see also [23]) to the bigravity case.

A. Seeking for models with doubly coupled matter which have no ghost

We have introduced some models that have no BD ghost. In this section we want to show that, as soon as
we further extend the proposed ghost-free action, the ghost will appear. To prove the existence of the ghost, it
will suffice to give a proof of its existence on some reasonable background.
Let us analyze then the Lagrangian

L ∋
√
−g P (X,ϕ) +

√
−f P̃ (X̃, ϕ) , (III.3)

where with P and P̃ are arbitrary functions of {ϕ, X} and {ϕ, X̃}, respectively, with

X = −1

2
gαβ∂αϕ∂βϕ , X̃ = −1

2
fαβ∂αϕ∂βϕ . (III.4)

1. The Friedmann background

As a first step, let us study scalar-type linear perturbations around the FLRW background. We fix the gauge
so that the metrics are given by

ds2 = −a2(1 + 2α) dt2 − 2∂iχdtdxi + a2δijdx
idxj ,

ds̃2 = −c̃2ã2(1 + 2α̃) dt2 − 2∂iχ̃ dtdxi + ã2[δij(1 + 2Φ̃) + 2∂i∂j γ̃] dx
idxj ,

and the scalar field by

ϕ = ϕ̄+ δϕ . (III.5)

Therefore, in total, we have seven scalar variables describing the three-dimensional scalar-sector of the perturba-
tion fields. Following the standard way of reducing the action for the perturbation variables, we first eliminate
the lapse and shift perturbations α, χ, α̃, and χ̃, using the Hamiltonian and momentum constraints. If the BD
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ghost is present, we will be left with three scalar variables with none of them being a Lagrange multiplier. In
other words, we can see whether the BD ghost is present or not, by evaluating the determinant of the kinetic
matrix Aij (after integrating out the auxiliary fields α, χ, α̃, and χ̃).
We will find that this determinant does not vanish in general. If it does not vanish, we can conclude that the

BD ghost is present. However, there might be a subclass of theories for which the ghost is absent: at least we
should see the disappearance of the ghost in the case P̃ (X̃, ϕ) = P̃ (ϕ).
After some algebra, we find

det(Aij) ∝ ȧ2 ˙̄ϕ2(6 ξ2c3 + 4 ξ c2 + c1) (P,X + 2XP,XX )
(
P̃,X̃ + 2X̃P̃,X̃X̃

)
, (III.6)

where ξ := ã/a. First of all, det(Aij) vanishes when the background solution satisfies Γ ≡ c1+4 ξ c2+6 ξ2c3 = 0
2, or for the following sub-classes of theories

P,X + 2XP,XX = 0 , or P̃,X̃ + 2X̃P̃,X̃X̃ = 0 . (III.7)

One solution for Eq. (III.7) is provided by the case P̃ (X̃, ϕ) = P̃ (ϕ). However, we realize that there could also
be another possibility, that is

P = P (X,ϕ) , P̃ = F1(ϕ)
√
X̃ + F2(ϕ) , with F1 ̸= 0 . (III.8)

Notice that the roles of P and P̃ can be exchanged.
This result implies that on the FLRW background, at least, at linear level in the perturbation fields, the BD

ghost is absent not only for the known case P̃ (X̃, ϕ) = P̃ (ϕ), but also for the more general class of models
defined in (III.8). This result, at first sight, seems to contradict our previous calculations. However, even if
the BD ghost is absent on the FLRW background (at linear level in the perturbation fields), we still need to
check if the BD ghost remains absent for this new class of models (III.8) as we change the background. In fact,
in the succeeding section we will discuss perturbation in an anisotropic background for the models (III.8) as a
counterexample, for which the BD ghost is present.

2. The anisotropic background

As we have already seen, the study on the FLRW background has already sufficiently restricted the possibilities

for the choice of function P̃ to the case P̃ = F1(ϕ)
√
X̃+F2(ϕ). In order to understand whether this model does

possess the BD ghost (or not) on other general backgrounds, we found it convenient to focus on the simplest
example of an anisotropic background.
Focusing on a particular anisotropic Bianchi-I type manifold with residual axial symmetry, we will consider

a sub-case where we have F1 = constant and F2 = 0 in (III.8). The field profile compatible with the Bianchi I
symmetry can be written then as

ϕ = v0

∫ t c̃(η)

f̃1(η)
dη + v1x+ δϕ , (III.9)

where we have chosen the time-profile for the field ϕ, leaving g00 = −N(t)2 as a free variable to be determined
by the equations of motion. We have also introduced a possible non-trivial x-profile v1x for the field, which is

2 We will not discuss here this solution, for two reasons. First, it is a constraint on the choice of the background ξ, rather than a
condition that is identically satisfied by a given model. This implies that we cannot be sure whether or not the BD ghost would
be absent on different backgrounds even for the same model. Second, this choice of the background ξ is known to be pathological
in the sense that many modes (not only the BD scalar) are absent in the quadratic action, and hence we do not consider this
case in the following discussion.
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still consistent with the symmetry of the background, as we have imposed ∂P̃/∂ϕ = 0. Indeed this background-
profile for ϕ implies that

X̃ =
4v21
f̃2
1

, (III.10)

where, for simplicity, we have also fixed v0 = 3v1. Finally we further restrict our attention to the case with the
simplest linear functions P (X), so that, in total, the contribution of this scalar field to the Lagrangian reads

L ∋
√
−g C1X +

√
−g̃C̃1

√
X̃ , (III.11)

where C1 and C̃1 are numerical constants. If the BD ghost is present for this simple example, it will also be
present for the general class of theories defined in (III.8).
For ghost-free models on this axial-symmetric Bianchi-I background, we should have in total only 3 odd

(vectors under 2d rotations) modes and 5 even (scalars under 2d rotations) modes. We consider the even
modes. With an appropriate choice of gauge, the two metrics can be written as

ds2 = −N2(1 + α1)dt
2 + 2∂xχ1 dtdx+ 2∂iη1dtdy

i + f2
1 (1 + β1)dx

2 + f2
2 δijdy

idyj , (III.12)

ds̃2 = −c̃2(1 + α2)dt
2 + 2∂xχ2 dtdx+ 2∂iη2dtdy

i + 2(∂x∂iζ2) dxdy
i

+ f̃2
1 (1 + β2)dx

2 + f̃2
2 [δ(1 + Φ2) + ∂i∂jγ2] dy

idyj , (III.13)

where {y1, y2} ≡ {y, z}.
Next, in order to reduce the action, we need to integrate out all the known auxiliary fields, which are the six

lapse and shifts, α1, χ1, η1, α2, χ2, η2. After integrating out the auxiliary fields in the even modes, we are left
with 12 − 6 = 6 even modes (whereas, as for the odd sector, as already mentioned, the gauge fixing removes
one mode and the momentum constraint other two, so that only 3 odd modes remain). In total (for the even
and odd sectors) we are left with nine propagating modes. However, if the BD ghost were absent, we would
find that the determinant of the kinetic matrix for the even modes should vanish, i.e. one of the six even modes
should reduce to a Lagrange multiplier.
To simplify the analysis we focus on a background which is an exact solution of the equations of motion,

defined by

f̃2(t) = (ξ + wξ̄2) f2(t) , (III.14)

f̃1(t) = ξ f1(t) , (III.15)

c̃(t) = (ξ + wξ̄0) , (III.16)

N(t) = 1 , (III.17)

f1(t) = 1 , (III.18)

f2(t) = ewt , (III.19)

where ξ, ξ̄0, ξ̄2, and w are all constants. These constants, together with the parameters of the theory c0, c1, c2,
c3, c4, C1, and C̃1are constrained to solve the six independent equations of motion. We solve the six independent
equations of motion for the variables C̃1, c0, c1, c3, c4, and C1 in terms of v1, ξ, ξ̄0, ξ̄2, w and κ := M2

f /M
2
g .

Notice that the background has a Minkowski limit, that is w → 0, in which the quantity

Γ = c1 + 4c2ξ + 6c3ξ
3 ≈

2ξM2
g (1 + κξ2)(4ξ̄0 + 5ξ̄2)

ξ̄20(ξ̄0 − ξ̄2)m2M2
eff

+O(w) (III.20)

does not necessarily vanish. This shows that this Minkowski limit does not, in general, belong to the unhealthy
branch of the FLRW background, defined by the condition Γ = 0.
Although it is not necessary in this context, we will fix the parameters imposing

(4ξ̄0 + 5ξ̄2)(ξ̄0 − ξ̄2) > 0 , (III.21)
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(to have a positive Γ for the stability of the background). In this Minkowski limit, using the constraint equations,
we also find

C1 ≈ ξ3

4v21
|C̃1v1| , (III.22)

|C̃1v1| ≈
4M2

g (1 + κξ2)

ξ2ξ̄0
w , (III.23)

so that w/ξ̄0 > 0.
As already mentioned earlier, in order to see whether the BD ghost is absent or not, we need to study the

six by six kinetic matrix for the even modes which remain after having integrated out the auxiliary variables.
We study the eigenvalues of such a kinetic matrix in the large momenta limit (i.e. for large k and q), where all

variables are supposed to be expanded by the Fourier mode e−i(kx+q1y+q2z) with q =
√

q21 + q22 .
We find that the kinetic matrix K has in general a non-zero determinant, i.e. the BD ghost will be present

in general. To make it evident, we expand the determinant (around w → 0) to find

det(K) = − 5

4096

k2q8M12
g (1 + κξ2)2κ3ξ5w

4v21(2k
2 + q2)2ξ̄30

< 0 . (III.24)

To be more precise, we have studied the sign of all six eigenvalues and checked that only one of them is negative
in this limit, which makes the determinant negative. Therefore, on axial symmetric anisotropic Bianchi-I

manifolds, we can conclude that the case P̃ ∝
√
X̃ has 1) one more degree of freedom than models which are

free from the BD ghost, and 2) the extra mode is indeed a ghost, at least on the Minkowski limit of such an
anisotropic solution.
Finally, from the analysis of perturbations around the FLRW and anisotropic backgrounds, we conclude that

only P̃ = P̃ (ϕ) is the possibility to avoid the BD ghost in the class of models defined by (III.8).

IV. PROOF OF THE ABSENCE OF GHOST IN THE CASE P̃ = P̃ (ϕ)

In this section we give a proof of the absence of ghost in the case P̃ = P̃ (ϕ). We consider a k-essence scalar
field ϕ which couples to both metrics, but whose kinetic term contains only the physical metric gµν . Namely,
the Lagrangian of the scalar field is

Lm =
√
−g P (X, ϕ) +

√
−f P̃ (ϕ) . (IV.1)

The case in which the kinetic term of matter contains only the hidden metric can be also treated in the same
way. The conjugate momentum of ϕ is derived from this action as

πϕ = N−1
√
det γ

(
∂P

∂X

)
ϕ

(
∂tϕ−N i∂iϕ

)
, (IV.2)

where the subscript ϕ indicates that the partial differentiation is taken with ϕ fixed. Using the definition of X,
π2
ϕ is written as

π2
ϕ = detγ

(
∂P

∂X

)2

ϕ

[
2X + γij∂iϕ∂jϕ

]
. (IV.3)

This implies that X can be expressed by γij , ϕ and πϕ without using N , N i and ∂tϕ. Therefore we find that
the matter Hamiltonian becomes

Hm = NCm +N iπϕ∂iϕ+ L
√
det 3f P̃ , (IV.4)
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where

Cm :=
√

det γ

[(
∂P

∂X

)
ϕ

(
2X + γij∂iϕ∂jϕ

)
− P

]
. (IV.5)

This matter Hamiltonian Hm is linear in N , N i and L. Cm depends on γij , ϕ and πϕ, but πϕ appears in Cm

only through X, i.e. Cm = Cm

(
γij , ϕ, X

(
γij , ϕ, πϕ

))
. After rewriting the shift vector N i using Eq. (II.8), the

total Lagrangian becomes

Ltotal =πij∂tγij + pij∂t
3fij + πϕ∂tϕ

+ Li
[
M2

gR
(g)
i − πϕ∂iϕ+M2

fR
(f)
i

]
+ L

[
M2

fR
0(f) + ni

(
M2

gR
(g)
i − πϕ∂iϕ

)
+ 2m2M2

eff

√
det γ U −

√
det 3f P̃

]
+N

[
M2

gR
0(g) − Cm +Di

jn
j
(
M2

gR
(g)
i − πϕ∂iϕ

)
+ 2m2M2

eff

√
det γ V

]
. (IV.6)

We redefine the constraints C, CL and CL
i as the coefficient of N , L and Li in Eq. (IV.6), respectively. We also

redefine the constraint Ci to the one obtained from the variation of Ltotal with respect to ni as

Ci := M2
gR

(g)
i − πϕ∂iϕ− 2m̃2M2

g

√
det γ

nl 3flj√
x

Ṽ j
i . (IV.7)

Let us confirm that all the Poisson brackets of three constraints C, CL and CL
i vanish except {C, CL}.

We introduce R
(g)′
0 := R

(g)
0 −M−2

g Cm and R
(g)′
i := R

(g)
i −M−2

g πϕ∂iϕ, then the constraints C, Ci, CL
i takes

the same forms as (II.24), (II.18), (II.26) with R
(g)
0 and R

(g)
i replaced with R

(g)′
0 and R

(g)′
i . We find that R

(g)′
0

and R
(g)′
i satisfy the same relations as Eqs. (II.31), (II.32) and (II.33), as is shown below.

In order to show these relations, we have to evaluate the partial differentiations of Cm with respect to ϕ, πϕ,
and γmn. First, we have (

∂Cm

∂X

)
ϕ

=
√
det γ A , (IV.8)

where

A :=

(
∂2P

∂X2

)
ϕ

(
2X + γij∂iϕ∂jϕ

)
+

(
∂P

∂X

)
ϕ

. (IV.9)

Using Eq. (IV.3), we find(
∂X

∂ϕ

)
πϕ, γij

= −A−1

[(
∂P

∂X

)
ϕ

∂iϕ
∂ (∂iϕ)

∂ϕ
+

∂2P

∂X∂ϕ

(
2X + γij∂iϕ∂jϕ

)]
, (IV.10)

(
∂X

∂πϕ

)
ϕ, γij

=

(
detγ A

(
∂P

∂X

)
ϕ

)−1

πϕ . (IV.11)

Solving Eq. (IV.3) for X, we find X depends on γij only through the form
πϕ√
det γ

and γij∂iϕ∂jϕ. Therefore the

partial differentiations of X with respect to γmn is(
∂X

∂γmn

)
ϕ, πϕ

=
1

2
A−1

[(
∂P

∂X

)
ϕ

∂mϕ∂nϕ−
π2
ϕ

det γ

(
∂P

∂X

)−1

ϕ

γmn

]
. (IV.12)



13

Using the above relations, we obtain the partial differentiations of Cm with respect to ϕ as(
∂Cm

∂ϕ

)
πϕ, γij

=

(
∂Cm

∂X

)
ϕ, γij

(
∂X

∂ϕ

)
πϕ, γij

+
√
det γ

[
2

(
∂P

∂X

)
ϕ

∂iϕ
∂ (∂iϕ)

∂ϕ
+

∂2P

∂X∂ϕ

(
2X + γij∂iϕ∂jϕ

)
−
(
∂P

∂ϕ

)
X

]
,

=
√
det γ

[(
∂P

∂X

)
ϕ

∂iϕ
∂ (∂iϕ)

∂ϕ
−
(
∂P

∂ϕ

)
X

]
, (IV.13)

and the one with respect to πϕ as (
∂Cm

∂πϕ

)
ϕ, γij

=
√

det γ

(
∂P

∂X

)−1

ϕ

πϕ . (IV.14)

The partial differentiations of Cm with respect to γmn is written as(
∂Cm

∂γmn

)
ϕ, πϕ

=
Cm

2
γmn −

√
detγ

(
∂P

∂X

)
ϕ

∂mϕ∂nϕ+

(
∂Cm

∂X

)
ϕ

(
∂X

∂γmn

)
ϕ, πϕ

,

= −

(√
det γ

2
Pγmn +

(
∂P

∂X

)
ϕ

∂mϕ∂nϕ

)
. (IV.15)

Now, we confirm that the same relations as Eqs. (II.32) and (II.33) hold for R
(g)′
0 and R

(g)′
i . Using Eqs. (IV.13)

and (IV.14), the Poisson bracket between R
(g)′
0 and itself becomes{⟨

FM2
gR

(g)′
0

⟩
,
⟨
GM2

gR
(g)′
0

⟩}
=
⟨[

M2
gR

i ′
(g) (G∂iF )

]
− [F ↔ G]

⟩
. (IV.16)

Here, among the contribution from Cm, only the term containing ∂(∂iϕ)
∂ϕ in Eq. (IV.13) escapes from the cance-

lation with its conjugate.

Using Eq. (IV.13), (IV.14), (IV.15), we obtain the Poisson bracket between R
(g)′
0 and R

(g)′
i as{⟨

F iM2
gR

(g)′
i

⟩
,
⟨
GM2

gR
(g)′
0

⟩}
=

⟨
−M2

gR
(g)
0 F i∂iG− 2γmi

∂Cm

∂γmn
G∇(g)

n F i + CmF i∂iG−
√
detγ PG∇(g)

i F i −
√
detγ ∂iϕ∂

nϕ

(
∂P

∂X

)
ϕ

G∇(g)
n F i

⟩
,

= −
⟨
M2

gR
(g)′
0 F i∂iG

⟩
. (IV.17)

{R(g)′
i , R

(g)′
j } is easily found to satisfy

M2
g {R

(g)′
i (x) , R

(g)′
j (y)} = −

[
R

(g)′
j (x)

∂

∂xi
δ3(x− y)−R

(g)′
i (y)

∂

∂yj
δ3(x− y)

]
. (IV.18)

From the above calculations, we find that the same relations as Eqs. (II.31), (II.32) and (II.33) hold for R
(g)′
0

and R
(g)′
i . Recall that CL was not used to discuss the Poisson brackets among the constraints C and CL

i . Hence,

the calculations about C and CL
i in Sec. 2 do not change under the replacements R

(g)
0 → R

(g)′
0 and R

(g)
i → R

(g)′
i .

By contrast, when doubly coupled matter is present, CL becomes different from the one in Sec. 2 by the term√
det 3f P̃ even after these replacements. This prohibits us simply applying the discussion in Sec. 2 to the

Poisson brackets related to CL.

Now, let us look at the calculations of the Poisson brackets between C, CL, CL
i , one by one.

• {C , C}, {CL
i , C} and {CL

i , CL
j }

In the calculation of these Poisson brackets in Sec. 2, we did not use the constraints CL = 0, hence these

brackets are proved to be zero just by replacing R
(g)
0 and R

(g)
i with R

(g)′
0 and R

(g)′
i , respectively.
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• {CL , CL}
We can easily find that all the contribution of

√
det 3f P̃ (ϕ) cancels with its conjugate, because√

det 3f P̃ (ϕ) does not depend on the derivatives of the variables. Therefore
√
det 3fP̃ does not affect the

calculation of {CL, CL} and we obtain {CL, CL} = 0 in the same way as in Sec. 2, using the replacements

R
(g)
0 → R

(g)′
0 and R

(g)
i → R

(g)′
i .

• {CL
i , CL}

Focusing on
√
det 3f P̃ (ϕ) in CL, we calculate{⟨

F i
(
M2

fR
(f)
i +M2

gR
(g)′
i

)⟩
,
⟨
G
√
det 3fP̃ (ϕ)

⟩}
=

⟨√
det 3fP̃G∇(f)

i F i + ∂iϕ
√
det 3f

∂P̃

∂ϕ
F iG

⟩
= −

⟨√
det 3fP̃F i∂iG

⟩
. (IV.19)

This compensates the modification in CL = 0 used in the second equality of Eq. (II.44). The rest of

calculations can be done in the same way as in Sec. 2 just by replacing R
(g)
0 and R

(g)
i with R

(g)′
0 and R

(g)′
i ,

respectively, to obtain {CL
i , CL} = 0.

From the above calculations, we have proven that the bigravity model has no BD ghost even in the presence
of a doubly-coupled field matter whose Lagrangian is given by Eq. (IV.1).

V. SUMMARY

In this paper, we have shown that doubly coupled matter generally brings the BD ghost. As a first step,
we have presented the detailed proof of ghost-freeness using the Hamiltonian analysis in the bigravity model
obtained as an extension of dRGT massive gravity. The proof has been already given in Refs. [6–8], but we
have explicitly shown that four Lagrange multipliers remain unspecified after all the Poisson brackets among
the constraints close, which is requested by the general covariance, using Hamiltonian formulation.
Next, we extended the above proof to the case with matter. The extension of the proof of ghost-freeness to the

case with matter can follow in the same way as in GR as long as matter only couples to either metric. However,
we found that the BD ghost is present when matter couples to both metrics through the kinetic terms of the
matter. To prove the appearance of the BD ghost, we have considered linear perturbations on the Friedmann
and Bianchi-I backgrounds. We found that there really exists an extra degree of freedom and, at least, one mode
becomes ghost in the Minkowski limit of an anisotropic solution. Furthermore, we show that the BD ghost is
absent when either of the two metrics is coupled only through the potential term using Hamiltonian analysis.
Therefore, the form of doubly coupled matter is considerably restricted not only by experiments of the

equivalence principle, but also by the condition to avoid the BD ghost,. The result seems inconsistent with
the idea to embed the ghost-free bigravity into compactified higher dimensional models [20, 21]. As long as we
consider the healthy branch of bigravity, we cannot trace back the evolution of the universe beyond the energy
scale determined by the bare graviton mass m [11, 14, 15]. Hence, in order to take a ghost-free bigravity model
as a realistic model of our universe, we need to find a way to derive such a model at low energies starting with
a more complete model which is valid even at high energies. One possibile completion might be obtained by
considering braneworld models. If we can realize a situation in which only two gravitons among the modes
in the Kaluza-Klein tower survive at low energies, bi-gravity models may arise. In the braneworld setup, it
would be easy to add a bulk scalar field to the models in such a way that only a single scalar mode effectively
remains at low energies. However, in this case, the kinetic term of this low-energy scalar field will necessarily
contain both metrics corresponding to the two low-energy gravitons. By construction, the braneworld models
seem to avoid the appearance of ghost. However, the result in the present paper tells that the generic form
of the kinetic term of a scalar field leads to the appearance of the BD ghost. This may suggest that there is
a crucial difficulty in realizing the idea that a completion of ghost-free bigravity models might be obtained by
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extending it to the braneworld setup. However, the actual coupling between the low-energy scalar and gravitons
in the model derived from the braneworld setup can be more complicated than the one we have discussed in
this paper. Hence, we may find an alternative way of coupling between matter and two metrics that avoids the
appearance of the BD ghost.
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