The source-filter theory of whistle-like calls in marmosets: Acoustic analysis and simulation of helium-modulated voices

Hiroki Koda
Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
Isao T. Tokuda
Department of Mechanical Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
Masumi Wakita
Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
Tsuyoshi Ito
Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
Takeshi Nishimura
Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan

(Received 11 November 2014; revised 7 May 2015; accepted 12 May 2015)

Whistle-like high-pitched “phee” calls are often used as long-distance vocal advertisements by small-bodied marmosets and tamarins in the dense forests of South America. While the source-filter theory proposes that vibration of the vocal fold is modified independently from the resonance of the supralaryngeal vocal tract (SVT) in human speech, a source-filter coupling that constrains the vibration frequency to SVT resonance effectively produces loud tonal sounds in some musical instruments. Here, a combined approach of acoustic analyses and simulation with helium-modulated voices was used to show that phee calls are produced principally with the same mechanism as in human speech. The animal keeps the fundamental frequency \(f_0 \) close to the first formant \(F_1 \) of the SVT, to amplify \(f_0 \). Although \(f_0 \) and \(F_1 \) are primarily independent, the degree of their tuning can be strengthened further by a flexible source-filter interaction, the variable strength of which depends upon the cross-sectional area of the laryngeal cavity. The results highlight the evolutionary antiquity and universality of the source-filter model in primates, but the study can also explore the diversification of vocal physiology, including source-filter interaction and its anatomical basis in non-human primates. © 2015 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4921607]

I. INTRODUCTION

The source-filter theory well explains the acoustic and physiological mechanisms of human speech production (Chiba and Kajiyama, 1941; Fant, 1960; Titze, 1994). The sound source is generated by vibration of the bilateral vocal folds (VFs), the acoustic properties of which are characterized by the fundamental frequency \(f_0 \) and its higher harmonics. The supralaryngeal vocal tract (SVT) serves as a filter to amplify the harmonics of \(f_0 \) near the formants—the resonance frequencies of the SVT—and to suppress the others. The sound wave is radiated from the lips of the mouth and is partially reflected back to the glottis through the SVT (Titze, 1994, 2006). The source-filter theory of voice production has been applied successfully to human speech, in that the VF vibration is only weakly controlled by the SVT and \(f_0 \) is changeable independently from the SVT acoustics (Chiba and Kajiyama, 1941; Fant, 1960; Titze, 1994). By contrast, rigid source-filter interaction, as seen in some musical instruments (e.g., woodwinds), implies that the VF vibration is inevitably influenced by the SVT, whose resonances primarily determine \(f_0 \) (Fletcher and Rossing, 1998). Such a strong interaction (hereafter referred as source-filter coupling) prevents flexible and sophisticated modifications of the tone of the voice as seen in human speech.

The common marmoset, *Callithrix jacchus*, is a dwarfed species of New World monkeys (NWMs) inhabiting the dense tropical forests of the north-east of South America (Fleagle, 2013). Morphological and behavioural features in extant and fossil NWMs indicate that callitrichines—including marmosets and tamarins—are “phyletic dwarfs,” in that a general reduction in body size appeared in this group as a derived characteristic (Plavcan and Gomez, 1993; Kay, 1994). While not well known, they live in family groups that include a dominant breeding pair and their offspring and relatives, defending their home range against rival family groups (Hubrecht, 1985; Stevenson and Rylands, 1988). Despite having such a small body, callitrichines forage in larger areas than the other NWMs (Nunn and Barton, 2000).

Common marmosets often use varied calls. One of their long-distance calls, termed a “phee” call (a loud shrill or loud phee), is observed both in wild and captive animals,
probably contributing to territorial advertisements against antagonistic neighbouring families and/or cohesion of their own family members (Norcross et al., 1994; Bezerra and Souto, 2008; Roy et al., 2011). Such a long-distance call is often found in other non-human primates such as the “song" of gibbons inhabiting the dense forest canopies of South-East Asia (Marshall and Marshall, 1976; Geissmann, 2000). The phee calls are whistle-like, with few modulations in frequency and amplitude during a single utterance (Bezerra and Souto, 2008; Roy et al., 2011). f_0 of this call is stable at around 6000–8000 Hz and is greatly amplified, whereas the upper harmonics are strongly attenuated (Bezerra and Souto, 2008; Roy et al., 2011). This strongly suggests that the f_0 location is close to one of the formants (F_n)—probably F_2—if they use SVT resonance to produce such whistle-like calls, as seen in human soprano singers (Sundberg, 1975). Nevertheless, such a high F_1 value corresponds to f_0 for a simple tube of around 1.0 to 1.4 cm, which is much shorter than the SVT length in adult common marmosets (around 2.5 to 3 cm). Unfortunately, the acoustical study of such high-pitched calls recorded in normal atmospheres is limited to show SVT resonance and the degree of independence between the source and filter (Koda et al., 2012).

The physiological mechanisms of animal vocalization are often examined by the acoustics of voices recorded in a helium-enriched atmosphere: so-called “helium voices" (Nowicki, 1987; Rand and Dudley, 1993; Koda et al., 2012; Madsen et al., 2012). Under helium-enriched conditions, the sound velocity is increased. For vocalizers using SVT resonance when breathing helium, all formants of their voices inevitably shift upwards without any active control of muscle activities in SVT (Nowicki, 1987; Rand and Dudley, 1993; Koda et al., 2012). As a first hypothesis, high source-filter independence should keep the same f_0 value, whereas only the formants are shifted upward in the helium-enriched atmosphere. Because the relationship between f_0 and its formants is destroyed, the intensity of f_0 should be reduced significantly (Nowicki, 1987; Koda et al., 2012). In a second hypothesis, source-filter coupling should shift f_0 upward to a similar degree to the formants, preserving the relation between f_0 and formants in the helium-enriched conditions. In this case the intensities of f_0 harmonics should be maintained (Campbell and Murtagh, 1968). In fact, the acoustic analyses of helium voices demonstrated successfully that sophisticated tuning of both F_1 and f_0 produces the pure-tone-like voices of gibbons’ songs, which are regulated independently (Koda et al., 2012).

Here we examined the acoustics of phee calls for common marmosets in normal air and in helium-enriched atmospheres. We examined the location of f_0 and the intensities of f_0 and second harmonics ($2f_0$) from the mean power spectrum in both conditions. We also performed acoustic simulation using models of the marmoset SVT with varied topologies of the laryngeal vestibular cavity, to evaluate the degree of source-filter interactions in this call type. We discuss the physiological mechanisms and morphological contributions that produce these loud whistle-like voices in this dwarfed NWM.
recordings with sound clipping and a low signal-to-noise ratio. For a single phee call, we measured the location of f_0 using autocorrelation algorithms, and generated the mean power spectrum using the “ltas” method in PRAAT. We divided the mean power spectrum into 10-Hz bins, and quantified intensities of f_0 and $2f_0$, following the same procedures as used for analyses of bird and gibbon songs. To examine the effects of helium gas, we analysed the f_0 location and the intensity differences of f_0 and $2f_0$ (hereafter, f_0/$2f_0$ intensity difference) at concentrations of 0%–80% of helium. We performed regression analyses for these values against the helium concentration as an explanatory variable for each subject.

E. Simulation analysis

A computational model was constructed to simulate vocalization of the marmosets. To generate the formant tuning, f_0 was adjusted to the F_1. Here, the VF vibration was simulated by the two-mass model, whereas the SVT was realized by the wave-reflection model. Our model took into account the mutual interaction between VF vibration and SVT acoustics using Titze’s proposed formula (Titze, 2006, 2008) for human speech and singing.

Figure 1(a) shows a schematic representation of the two-mass model (Ishizaka and Flanagan, 1972; Steinecke and Herzel, 1995). The idea of this model is to divide the VF tissue into upper and lower portions of the masses m_1 and m_2, coupled by springs. Letting x_{1x} and x_{2x} be displacements of the lower and upper masses with the index denoting either left or right side ($x = l, r$), the equation of motion is

$$m_1\ddot{x}_{1x} + r_1\dot{x}_{1x} + k_1x_{1x} + \Theta(-a_1)c_1(a_1/2l) + k_c(x_{1x} - x_{2x}) = ld_1P_1,$$

$$m_2\ddot{x}_{2x} + r_2\dot{x}_{2x} + k_2x_{2x} + \Theta(-a_2)c_2(a_2/2l) + k_c(x_{2x} - x_{1x}) = ld_2P_2.$$

Here, k_i and r_i stand for stiffness and damping of the lower and upper masses ($i = 1, 2$), respectively, whereas k_c stands for mutual coupling between the two masses. Lower and upper glottal areas are given by $a_i = a_{0l} + l(x_{1x} + x_{2x})$, where a_{0l} represents the prephonatory area and l corresponds to the vocal fold length, and c_i describes the collision force activated during glottal closure, where the activation function is defined with $\Theta(x) = 1 (x > 0), 0 (x \geq 0)$. For simplicity, symmetrical motion between the left and right vocal folds has been assumed ($x_{1x} = x_{1r}, x_{2x} = x_{2r}$). Under the assumption that the flow inside the glottis obeys the Bernoulli principle below the narrowest part of the glottis, the pressure that acts

![Figure 1. Models of vocal fold vibration and SVT for acoustic simulation. (a) Schematic illustration of the two-mass model. The left and right vocal folds have a symmetrical configuration. Each vocal fold is composed of upper and lower masses coupled theoretically by linear springs. The airflow coming from the lungs is described by Bernoulli’s principle below the narrowest part of the glottis. (b) Mid-sagittal computed tomography of the head for a male common marmoset, Callithrix jaccus, PRICT-1232. (c) The cross-sectional area functions representing whole shape of the supraglottal vocal tract with a simple uniform tube. The dotted line shows the case of strong source-filter interaction with a wide laryngeal cavity, and the solid line shows the case of weak source-filter interaction with a narrow laryngeal cavity. The open area of the mouth was used as a control parameter to change the formant frequencies. (d) Dependence of the first formant, F_1, on the opening area of the mouth, varying from 50 to 77 mm². The dotted line shows the case of strong source-filter interaction for supraglottal entry area (diameter 2 mm) and the solid line shows the case of weak source-filter interaction (diameter 1.1 mm).](https://repository.kulib.kyoto-u.ac.jp/kyubib rep/0000/000003070.png)
on each mass is determined as \(P_1 = P_s + (P_s - P_c) (a_1/a_{\text{min}})^2 \),
\(P_2 = P_c \), where \(P_s \) and \(P_c \) stand for sub- and supraglottal pressures and \(a_{\text{min}} = \min(a_1, a_2) \).

The tension parameter \(Q \) was introduced to control the mass size and the stiffness as \(m_i = m_i' / Q \), \(k_i = Q k_i' \) \((i = 1, 2)\), where \(Q \) controls the \(f_0 \) value of the two-mass model linearly (Ishizaka and Flanagan, 1972). The parameter values were set as \(m_1' = 1.25 \text{ mg} \), \(m_2' = 0.25 \text{ mg} \), \(k_1' = 80 \text{ kg/m s}^2 \), \(k_2' = 8 \text{ kg/m s}^2 \), \(k_c = 25 \text{ kg/m s}^2 \), \(c_1 = 3k_1' \), \(c_2 = 3k_2' \), \(a_1 = 1 \text{ mm} \), \(d_2 = 0.2 \text{ mm} \), \(a_{01} = a_{02} = 0.2 \text{ mm}^2 \), \(l = 3 \text{ mm} \), while the damping constants were set as \(r_i = 2(\zeta m_i k_i)^{1/2} \) using a damping ratio of \(\zeta = 0.01 \). These parameters were adjusted from the standard settings widely applied to human as well as animal vocalizations (Ishizaka and Flanagan, 1972; Amador et al., 2008). The simulation results were not particularly sensitive to the parameter settings because essentially the same results were obtained within a given parameter range.

The sub- and supraglottal systems were described using the wave-reflection model (Kelly and Lochbaum, 1962; Liljencrants, 1985; Story, 1995; Titze, 2008), which is a time-domain model of the propagation of one-dimensional planar acoustic waves through a collection of uniform cylindrical tubes. The subglottal system was modelled as a simple uniform tube (diameter = 5 mm) divided into 50 cylindrical sections. The cross-sectional area function for the supraglottal tract, divided into 32 cylindrical sections, was designed to form a simple divergent shape imitating a typical vocalization of the marmoset phee call (Fig. 2). In both sub- and supraglottal systems, the section length \(\Delta z \) was set to 0.8 mm. The attenuation factor for the resonators was approximated as \(a_k = 1 - 0.007(\pi / A_k)^{1/2} \) \((A_k: k\text{th cylinder area})\). Radiation resistance and radiation inertance values at the lip were \(R_r = 128 p c l / (9 \pi^2 A_l) \) and \(I_r = 8 p l / (3 \pi^{1/2} A_l^{1/2}) \), respectively, where the lip area \(A_l \) corresponds to the last section of the supraglottis. The value \(p = 1.13 \text{ mg/cm}^2 \) represents the air density constant and \(c = 0.35 \text{ m/ms} \) stands for the sound velocity.

To couple the sub- and supraglottal systems to the VF model, an interactive source-filter interaction was applied
according to Titze (2006, 2008). In this formula, the glottal flow is given by

\[u_k = \frac{a_{\text{min}}}{k} \left\{ -\left(\frac{a_{\text{min}}}{A^*} \right)^2 \pm \left[\left(\frac{a_{\text{min}}}{A^*} \right)^2 + \frac{2k}{\rho c^2} \left(P_1 + 2P_x^* - 2P_y^* \right) \right]^{1/2} \right\}, \]

where \(A^* = A_x A_y/(A_x + A_y) \), with \(A_x \) and \(A_y \) being the subglottal and supraglottal entry areas, which were set to be equal to that of the last section of the subglottal system and that of the initial section of the supraglottal system, respectively. \(k \) is a transglottal pressure coefficient set as 1. \(P_1 \) stands for the lung pressure, whereas \(P_x^* \) and \(P_y^* \) represent the incident partial wave pressures in the subglottis and supraglottis (the symbol “+” denotes movement toward the mouth, whereas “−” denotes movement in the opposite direction). The sub- and supraglottal pressures are given by \(P_s = P_1 + P_x^* + P_y^* \) and \(P_y = P_x^* + P_y^* \). The lung pressure was set as \(P_1 = 1 \text{kPa} \). To obtain the output acoustic signal, the glottal flow waveform \(u_k \) was convolved with the transmission impulse response of the supraglottal system given by the transmission line model (Sondhi and Schroeter, 1987; Story et al., 2000).

The SVT topology was modelled based on computed tomographic (CT) surveys of embalmed cadavers of common marmosets [Fig. 1(b)]; the size of each segment was determined from the scans by using the osiriX software (Rossetti et al., 2004). The CT scans used here have been deposited and are available at the webpage of the Digital Morphology Museum, KUPRI (dmn.kyoto-u.ac.jp/archives/), under PRCT Nos. 1229–1232. The trachea, termed the subglottal system, was modelled as a simple uniform tube, whereas the SVT was designed to form a simple uniform tube of the laryngeal cavity with a length of 8.8 mm and a divergent shape with a length of 16.8 mm that imitated a typical marmoset vocalization [Fig. 1(c)]. The opening area of the mouth was controlled to change the formant frequencies [Fig. 1(d)]. To examine the effect of source-filter interaction, two settings were considered for the area of the laryngeal cavity, termed the supraglottal entry area (\(A_y \)). Since the laryngeal cavity directly connects the vocal fold vibration to the vocal tract acoustics, its area determines the strength of source-filter interaction (Titze, 2006, 2008). Namely, the smaller area narrows the connecting channel and thus weakens source-filter interaction. As a case of strong interaction, a diameter of 2 mm was used for the supraglottal entry area [Fig. 1(c): \(A_y = \pi \text{ mm}^2 \)], whereas, as a case of weak interaction, a smaller diameter of 1.1 mm was used [Fig. 1(c): \(A_y = 0.3025 \pi \text{ mm}^2 \)]. The two settings were determined based upon the CT scan data.

Vocalization of the helium-breathing condition was simulated as follows. Under the normal air condition, the formant tuning was assumed. Namely, with respect to the first formant \(F_1 \) of the SVT, the tension parameter \(Q \) was tuned in such a way that \(f_0 \) was located close to \(F_1 \) and that the intensity difference between \(f_0 \) and 2\(f_0 \) (hereafter, \(f_0-2f_0 \) intensity difference) was maximized. Next, to model the helium-enriched conditions, the sound velocity \(c \) was multiplied by 1.3 for a low helium concentration and by 1.75 for a high helium concentration (almost a final helium condition). The other parameters, including the tension parameter \(Q \), were fixed to those tuned for the normal air condition. Insertion of helium primarily shifted the SVT acoustics, whereas the VF vibration frequency was also affected indirectly. A spectral analysis of the output signal simulated with such mistuned states gave the \(f_0-2f_0 \) intensity difference in the helium-enriched conditions.

III. RESULTS

A. Helium experiments

We recorded 834 phee calls from three marmosets (Cj190, 386 calls; Cj195, 125 calls; Cj196, 323 calls) in normal and helium-enriched conditions. We found that the spectral power of \(f_0 \) was amplified distinctively from the upper harmonics in normal conditions, independently of variations in \(f_0 \), in all marmosets. The mean intensity of \(f_0 \) was greater than that of 2\(f_0 \) in normal air [Figs. 2(a) and 3; Cj190, \(n = 78 \), mean 22.54 dB, standard error \(\pm 1.46 \) dB; Cj195, \(n = 43 \), 33.12 \(\pm 0.63 \) dB; Cj196, \(n = 54 \), 39.79 \(\pm 0.95 \) dB].

Regardless of differences in the \(f_0-2f_0 \) intensity difference among the three subjects, such significant intensity differences between \(f_0 \) and 2\(f_0 \) are greater than the theoretical prediction that the attenuations of harmonics in the laryngeal acoustics with radiation characteristics can cause a maximum difference of 12 dB between \(f_0 \) and 2\(f_0 \) (Fant, 1960). The \(f_0-2f_0 \) intensity difference decreased significantly as the helium concentration increased for all marmosets [Figs. 2(b) and 3; Cj190, \(F_{1.384} = 148.4, p < 0.001; \) Cj195, \(F_{1.123} = 246.9, p < 0.001; \) Cj196, \(F_{1.123} = 595.5, p < 0.001 \)]. \(f_0 \) shifted up significantly as the helium concentration increased [Cj190, \(F_{1.384} = 4.87, p = 0.028; \) Cj195, \(F_{1.123} = 146.2, p < 0.001; \) Cj196, \(F_{1.321} = 84.97, p < 0.001 \)], whereas the \(f_0 \) shift was small in Cj190 compared with the other two subjects (Fig. 3). The \(f_0 \) location was 6927.02 \(\pm 18.94 \) Hz for Cj190 \((n = 78) \), 7635.38 \(\pm 20.43 \) Hz for Cj195 \((n = 43) \), and 7648.68 \(\pm 20.74 \) Hz for Cj196 \((n = 54) \) in normal air (Fig. 3). The \(f_0 \) location increased on average only by 1.05 times in the helium condition even for the two subjects Cj195 and Cj196, and such increases were much smaller than that of sound velocity, which increased by 1.75 times.

B. Mathematical simulation

The mathematical model was simulated to reproduce the increases in \(f_0 \) location and the decreases in \(f_0-2f_0 \) intensity differences observed in the helium-enriched conditions. The results are summarized in Fig. 4. The opening area of the mouth varied slightly from 50 to 77 mm\(^2\), so that \(F_1 \) increased from 5600 to 6100 Hz in the normal conditions (Fig. 4). The \(f_0-2f_0 \) intensity difference, which was maximized by the formant tuning, was significantly reduced in the helium-enriched conditions. This is because the helium condition shifted the \(F_1 \) and thus broke the tuning between \(f_0 \) and \(F_1 \). Comparing the high with the low helium conditions, the reduction was greater in the former (Fig. 4). This is
FIG. 3. Dot-plots of f_0 and $f_0 - 2f_0$ intensity differences plotted against helium gas concentration for subjects (a) Cj190, (b) Cj195, and (c) Cj196.

FIG. 4. Simulation of formant tuning and the effect of helium concentration. Low and high F_1 values are realized with changes in the opening area of the mouth (dotted line: low F_1, solid line: high F_1). (a) Case of strong source-filter interaction (diameter = 2 mm for supraglottal entry area); and (b) Case of weak source-filter interaction (diameter = 1.1 mm for supraglottal entry area).
because the higher helium concentration shifts \(F_1 \) to a higher frequency region, induces a larger mistuning between \(f_0 \) and \(F_1 \), and thus lowers the \(f_0-2f_0 \) intensity difference.

Because of source-filter interaction implemented in the model, the \(f_0 \) location also shifted from the normal to the helium-enriched conditions. The present model explains that the \(F_1 \) shift influenced \(f_0 \) as follows. Under the formant tuning assumed in the normal air condition, the negative reactance (compliance) of the SVT acoustic load, which is slightly above \(F_1 \), inhibits oscillation of the VF (Story et al., 2000). As a result, \(f_0 \) was suppressed and stayed below \(F_1 \) (Adachi and Yu, 2005; Titze, 2008). Once the location of the negative reactance had been shifted to a higher frequency region by the helium, the suppressed \(f_0 \) was released and increased its value. The effect of helium on the \(f_0 \) location depended upon the strength of source-filter interaction (Fig. 4). Under strong interaction, the amount of \(f_0 \) increase was to some extent proportional to the helium concentration [Fig. 4(b)]. In the cases of low and high helium concentrations, \(f_0 \) increases were \(3.5 \pm 0.4\% \) and \(4.8 \pm 0.1\% \), respectively, which are in a similar range (average of 5\%) observed in the experiments. These simulation results of the decreased \(f_0-2f_0 \) intensity difference as well as the \(f_0 \) upward shift agree quite well with the helium experiments for subjects Cj195 and Cj196 [Fig. 3(b), 3(c)]. On the other hand, under weak interaction, the \(f_0 \) location was not increased by the helium, because \(f_0 \) was nearly independent of \(F_1 \) [Fig. 4(a)]. Because helium shifted \(F_1 \) but not \(f_0 \), the tuning between \(F_1 \) and \(f_0 \) was broken so the \(f_0-2f_0 \) intensity difference was reduced. This well elucidates the experimental data for subject Cj190 [Fig. 3(a)].

IV. DISCUSSION

These acoustic analyses of helium voices showed that SVT resonance plays a key role in producing the phee calls in marmosets. Although \(f_0 \) shifted up slightly in the helium-enriched conditions, its shift was considerably less than that expected for formants influenced by increased helium concentrations. By contrast, the \(f_0-2f_0 \) intensity difference was greater and monotonically decreased by an increase in the helium concentration. This finding indicates that marmosets normally keep \(F_1 \) close to the \(f_0 \) location to amplify \(f_0 \) exclusively. The acoustic simulation was successful in elucidating that the decreased \(f_0-2f_0 \) intensity difference was caused by mistuning between \(f_0 \) and \(F_1 \). Whereas \(f_0 \) was only weakly affected, \(F_1 \) was strongly shifted and separated from \(f_0 \) under helium-enriched conditions. In the sense that the magnitude of the shift was significantly different between \(f_0 \) and \(F_1 \), our study supports the view that the whistle-like phee calls are principally produced with a high degree of source-filter independence as seen in human speech, and not with a strong source-filter coupling.

Phee calls, intended as long-distance vocalizations, require effective sound transmission to attract attention from conspecific individuals widely ranging in their natural habitat: namely, dense forest with poor visibility (Bezerra and Souto, 2008; Roy et al., 2011). \(f_0 \) is more powerful than any harmonic, so that its amplification with \(F_1 \) is a most reasonable solution to achieve this requirement of long-distance transmission. This physiological mechanism is basically the same as that used by the human soprano singers (Sundberg, 1975) or birds (Nowicki, 1987), and is used by gibbons to produce their loud songs (Koda et al., 2012). The marmosets held the VF vibration frequency and SVT topology stable during a single utterance, keeping \(f_0 \) and \(F_1 \) tuned with each other to produce their stable phee voice. This manipulation is different from gibbons, which probably modify the VF vibration actively in co-ordination with the SVT modifications even during a single utterance (Koda et al., 2012). Whereas such a simple way of manipulation could be attributed to any restrictions in neural regulation of the vocal apparatus’ motions or in the cognitive ability to perceive their own audio signals in marmosets, the stable calls are a reasonable solution for a high-pitched voice. High audio frequencies are more susceptible to attenuation in dense forest (Marten et al., 1977; Waser and Brown, 1986; Hauser, 1993), where the frequency modifications in high-pitched voices do not always reach the receivers correctly. Alternatively, marmosets might modify the timing of repetitions, duration of a single utterance, or pitch \((f_0) \) to convey relevant social and cognitive information. Such a high \(f_0 \) is inevitable for this dwarfed animal (Hauser, 1993; Fitch, 1997), in contrast to medium-sized gibbons that have an \(f_0 \) value ranging from 500 to 1200 Hz. Thus, stable whistle-like calls were probably derived along with the phyletic dwarfism occurring in dense forest among common marmosets and their relatives. Even though similar ecological habitats brought about the same vocal physiology for the two phyletically distant species to produce loud and pure-tone-like voices, the difference in body size produced clear distinctions in vocal structure: stable phee calls in marmosets and melodious songs in gibbons.

It should be noted that the helium experiments demonstrated that the \(f_0 \) location was also significantly shifted upward in the helium-enriched condition in two of three subjects studied. If \(f_0 \) and \(F_1 \) were completely independent, the shift in \(F_1 \) would not have altered \(f_0 \) location. This slight increase of \(f_0 \), which was 5\% on average, is within the range of \(f_0 \) fluctuation in normal air, indicating that this animal can also make such a small increase by modifying source characteristics. Given that marmosets have been shown to be sensitive to modified feedback of their own voices, there is a possibility that this 5\% upward shift just reflects an arousal state increased by the change in their voices in the helium-enriched conditions. Further, despite such a slight increase, this shift might be actively made by their vocal motor control. We cannot exclude these hypotheses. The present simulation, however, implied an alternative possibility that the slight shift observed in \(f_0 \) was due to source-filter interaction, the strength of which depends upon the area of the laryngeal cavity within the SVT. This interaction of the source and filter might tightly connect \(f_0 \) and \(F_1 \) and thus strengthen the effect of the formant tuning. This mode of source-filter interaction is often involved in some forms of human vocalizations, consistent with the source-filter theory—such as high-pitched speech or singing—whereas it differs from the strong mode of source-filter coupling as seen in some musical instruments (Titze, 2006, 2008). Our analyses further
imply that the strength of source-filter interaction can be variable among individuals and among the phonation conditions, for a given single species of non-human primates. Although further empirical evidence from more subjects is needed to establish this hypothesis, such a physiological difference could in part contribute to inter-individual and interspecific variations in the effectiveness of this long-distance vocal advertising in marmosets and their relatives. This study has provided a combined acoustic analysis and simulation of helium voices to evaluate the degree of source-filter interaction. It is known that the anatomy of the laryngeal region influences the strength of source-filter interaction (Titze, 2006, 2008). The present simulations elucidated well that anatomical modifications in the laryngeal region contribute to the varying degrees of source-filter interactions in common marmosets. The laryngeal region is probably static in topology during vocalizations in non-hominoid anthropoids including marmosets, while it is changeable and might be dynamic in hominoids. In fact, whereas the laryngeal skeleton is tightly linked to the hyoid bone in the former primates (Nishimura, 2003; Nishimura et al., 2003, 2006; Nishimura et al., 2008), the elements are loosely interconnected by flexible ligaments and membranes in the latter group (Nishimura, 2003; Nishimura et al., 2008). Such anatomical restrictions do not allow for highly independent movements of each component and thus for topological modifications of the laryngeal cavity (Nishimura, 2003), whereas the pharyngeal configuration is rather flexibly modified for varying vocalizations in several mammals including marmosets (Fitch, 2000; Fitch and Reby, 2001; Riede et al., 2005). This suggests that the degree of source-filter interaction tends to be fixed in non-human anthropoids and dynamic in hominoids including humans. Thus, the present study does not just emphasize the evolutionary antiquity and universality of the source-filter theory in non-human primates, but it also provides an approach that allows us to explore the diversifications of vocal physiology among non-human primates—including source-filter interaction and its anatomical basis. Such an approach is expected to provide a new insight into the evolution of human speech physiology and anatomy.

ACKNOWLEDGMENTS

We greatly appreciate Katsuki Nakamura, Akihiro Izumi, Takumi Kunieda, and Akemi Kato for their help with animal experiments, and the staff of the Cognitive Neuroscience section and the Center of Human Evolution Model Researches of KUPRI for daily care of the animals used here. We also thank W. Tecumseh Fitch and Nobuo Masataka for many valuable comments on this study. This study was supported in part by JSPS Grants-in-Aids for Scientific Research (Grant No. 24687030 to T.N., Grant No. 22330200 to H.K., Grant Nos. 23360047, 25540074 to I.T.T.), by a JSPS Strategic Young Researcher Overseas Visits Program for Accelerating Brain Circulation (to KUPRI, T.N.), and by the SPIRITS program from Kyoto University (to T.N.).

