1	Sato and Sato: Temperature Predicts Cicada	10	*Author Correspondence: Yasuhiro Sato
2	Phenology	11	Center for Ecological Research,
3		12	Kyoto University, Hirano 2-509-3, Otsu,
4	Annals of the Entomological Society of	13	Shiga 520-2113, Japan
5	America	14	Phone: +81-77-549-8018;
6	Ecology and Population Biology	15	Fax: +81-77-549-8201
7		16	E-mail: yassato@ecology.kyoto-u.ac.jp
8		17	ORCID: 0000-0002-6466-723X
9		18	
19			
20	Spring Temperature Predicts the Long	-tern	n Molting Phenology of Two Cicadas,
21	Cryptotympana facialis and Graptopsa	altria	<i>nigrofuscata</i> (Hemiptera: Cicadidae)
22			
23	Yasuhiro Sato ^{1, 2*} and Shunsuke Sato ^{1, 3}		
24			
25	¹ Segi 170, Hokusei-cho, Inabe, Mie 511-0417	, Jap	an
26	² Center for Ecological Research, Kyoto Unive	ersity	r, Hirano 2-509-3, Otsu, Shiga 520-2113, Japan
27	³ Tatsuta Elementary School, Furuta 1618, Fuj	iwar	a-cho, Inabe, Mie 511-0521, Japan
28			
29			
30			
31			

Page 1 of 27

35 Abstract

36 To investigate how seasonal insects respond to changing environments, nymphal skins of the two 37 cicadas Cryptotympana facialis (Walker) and Graptopsaltria nigrofuscata (Motschulsky) 38(Hemiptera: Cicadidae) were monitored weekly from late July to August over 12 years in a 39 suburban habitat of central Japan. Based on over 8,000 skins collected from 1995 to 2006, we 40 estimated the period during which temperature or precipitation impacted skin abundance and 41 phenology. Adults of C. facialis tended to emerge earlier than those of G. nigrofuscata, for which 42total skin counts fluctuated up to sevenfold among years. The effective accumulated temperature 43from the previous 3.0-3.5 months to the most recent 1.0-1.5 months at a threshold of 44approximately >18°C showed the best fit to the cumulative skin counts within a season. 45Temperature explained 47% and 64% of the total variation in the skin counts for C. facialis and G. 46 *nigrofuscata*, respectively. The point at which temperature had this effect was consistent between 47male and female cicadas. Conversely, accumulated precipitation accounted for <16% of the 48variation in the skin counts for both species. In summary, our long-term study revealed that 49late-spring temperature plays a key role in predicting the molting phenology of C. facialis and G. 50*nigrofuscata* but does not necessarily explain a large amount of the abundance fluctuation. 5152Keywords: Cryptotympana facialis, Effective accumulated temperature, Graptopsaltria 53nigrofuscata, Phenology, Population fluctuation 545556575859

Page 2 of 27

60 Introduction

61 Understanding the responses of organisms to changing environments is important for 62 predicting how climate change threatens biodiversity and the ecosystem services provided by 63 particular species. Evidence has accumulated to suggest that recent climate warming has shifted 64 the phenology (Roy and Sparks 2000, Bale et al. 2002), distribution (Bale et al. 2002, Hagen et al. 65 2007, Harsch et al. 2009), and population dynamics (Jilliard et al. 2004, Kiritani 2006, Chaves et 66 al. 2012) of species based on their physiological constraints. Seasonal outbreaks are known to 67 occur in several insect taxa, such as mayflies (Harper and Peckarsky 2006), bush crickets 68 (Hochkirch and Damerau 2009), and winter moths (Hagen et al. 2007). The phenology of seasonal 69 organisms is considered an indicator of climatic impacts on local biodiversity (Roy and Sparks 70 2000, Gibbs and Breisch 2002, Ogawa-Onishi and Berry 2012). However, both snapshot 71abundance measurements and long-term presence/absence records are unable to disentangle the 72seasonality and increase/decrease of population size. Thus, a long-term survey considering both 73phenology and abundance is necessary to combine the physiological response of a species to the 74changing environment with its population fluctuation. 75Cicadas (Hemiptera: Cicadidae) provide an important ecosystem function, as they

76 transfer a significant flux of nutrients from belowground to aboveground (Karban 1982, 77Menninger et al. 2008). The black cicada, Cryptotympana facialis (Walker), and the large brown 78cicada, Graptopsaltria nigrofuscata (Motschulsky), are common species distributed across 79 western Japan. Unlike periodical cicadas, these Japanese cicadas emerge every summer (Dunn 80 2000). Cryptotympana facialis, is distributed more southerly and occurs intensively in urbanized 81 habitats. Conversely, G. nigrofuscata is usually observed in suburban and rural areas covered by 82 trees. Because of the gradual habitat partitioning between C. facialis and G. nigrofuscata, these 83 two cicadas are regarded as index species of urbanization (Shiyake 2008). Recently, C. facialis 84 has been shown to be increasing as G. nigrofuscata decreases across the most urbanized area of

Page 3 of 27

85	western Japan, Osaka City (Kitamoto 1997, Shiyake 2012). Several previous studies have
86	attributed this compositional shift of the cicada community to the heat island phenomenon
87	(Moriyama and Numata 2011) or to habitat fragmentation combined with avian predation
88	(Takakura and Yamazaki 2007).
89	The physiological responses of C. facialis and G. nigrofuscata have been well-studied in
90	terms of local climate change in urbanized areas. For example, temperature determines the timing
91	and rate of egg hatching, and the eggs of both C. facialis and G. nigrofuscata exhibit some degree
92	of cold tolerance (Moriyama and Numata 2008, 2009). In the field, adults of C. facialis are known
93	to emerge earlier as temperature increases (Shiyake 2012). Humidity is also important for the
94	hatching rate of C. facialis and G. nigrofuscata (Moriyama and Numata 2010). Thus, in
95	conjunction with the desiccation dependence of egg hatching, warming influences cicada fitness
96	by synchronizing the hatching phenology of C. facialis (Moriyama and Numata 2011). However,
97	the extent to which these climate variables explain long-term phenology and population
98	fluctuation remains insufficiently understood.
99	In this study, we employed a 12-year field survey and statistical modeling to estimate
100	how abiotic factors influence the molting phenology and abundance of the two species of
101	Japanese cicada. Specifically, three questions were addressed in this study: Which abiotic factor,
102	temperature or precipitation, influences the molting phenology of C. facialis and G. nigrofuscata
103	to a greater degree? Do the duration and degree of change for this factor necessary to influence
104	molting phenology differ between C. facialis or G. nigrofuscata? Finally, to what extent do these
105	environmental factors explain the variation in cicada abundance? Based on the present results and
106	other previously documented evidence, we discuss the factors responsible for long-term variation
107	in the phenology and abundance of cicada populations.
108	

109 Materials & Methods

Page 4 of 27

110	Study site. We conducted the study at a suburban site located in Hokusei-cho, Mie
111	Prefecture, central Japan (34°09'N, 136°31'E, approximately 100 m in altitude). The study site
112	consisted of 208 m ² of shady area near a small park surrounded by residential houses. The ground
113	was covered with gravel in which a few weeds grew. Twenty-one trees of ten species were planted
114	sparsely within the study area. These trees consisted of the evergreen magnolia Magnolia
115	grandiflora L. ($n = 1$, diameter at breast height = 18 cm), the empress tree Paulownia tomentosa
116	(Thunb.) Steud. ($n = 1$, DBH = 32 cm), the chinaberry <i>Melia azedarach</i> L. ($n = 1$, DBH = 51 cm),
117	Acer palmatum Thunb. ($n = 1$, DBH = 51 cm), the hemp palm Trachycarpus fortunei (Hook.)
118	H.Wendl. ($n = 1$, DBH = 11 cm), the Japanese cypress <i>Chamaecyparis obtusa</i> (Siebold et Zucc.)
119	Endl. ($n = 1$, DBH = 46 cm), the Japanese persimmon tree <i>Diospyros kaki</i> Thunb. ($n = 1$, DBH =
120	51 cm), the wild cherry tree <i>Cerasus jamasakura</i> (Siebold ex Koidz.) H. Ohba ($n = 2$, DBH = 50,
121	50 m), <i>Camellia</i> sp. ($n = 2$, DBH = 13, 22 cm), and <i>Podocarpus macrophyllus</i> (Thunb.) Sweet (n
122	= 10, DBH $= 10$ cm for all individuals). The Japanese persimmon tree died in 1999, and the
123	magnolia and empress tree were cut in 2006 due to the development of the nearby area.
124	Collection of cicada skins. Cryptotympana facialis and Graptopsaltria nigrofuscata
125	individuals spend a nymphal period of several years on tree roots belowground. When the final
126	instar is ready to molt, it emerges from the ground and sheds its skin on a nearby tree or artificial
127	structure. The adult cicada flies away after molting, while its exuvia remains for several weeks.
128	The two species in this study can be distinguished by these skins based on the width, darkness,
129	and color pattern of the abdomen. Thus, skin number is an excellent predictor of cicada
130	abundance within a site.

We visited the site and collected all cicada skins at least weekly from late July to the
end of August for 12 years, from 1995 to 2006. The cicada skins were collected by hand from the
ground, tree surfaces, and artificial structures (such as fences and poles) within the site. We also
used an insect net (4 m in length) to collect skins attached to elevated places (up to approximately
Page 5 of 27

6 m in height). The skins were taken to the laboratory and counted. From 2001 to 2006, sexes were also identified from the cicada skins based on the presence/absence of an ovipositor on the tip of the abdomen. From 1997 to 2000, the number of holes on the ground was also counted; the holes were buried after each survey to avoid counting them repeatedly. The surveys were conducted on sunny or cloudy days. Skins were collected during the morning, because the nymphal cicadas emerged during the evening and molted during the night. Detailed survey dates and skin counts are available in the supplementary material (Supp. Table S1).

142Weather data. Data were downloaded from the website of the Japan Meteorological 143Agency (http://www.data.jma.go.jp/gmd/risk/obsdl/index.php). The weather stations nearest to the 144study site were selected for temperature (Kuwana, Mie Prefecture: 35°03'N, 136°41'E, 3 m in 145 altitude) and precipitation data (Hokusei-cho, Mie Prefecture: 35°08'N, 136°32'E, 125 m in 146 altitude). Daily mean and maximum temperatures, as well as daily total precipitation, were 147 compiled from 1994 to 2006. Several time points were not available (one point for temperature 148and three points for precipitation) from the database; these values were estimated using the 149average of the neighboring two days. To improve the presentation of data in the figure, the daily 150temperature was smoothed using a spline method. We used the smooth.spline function 151implemented in R version 3.0.1 (R Core Team 2013).

152**Data analysis.** We estimated the period during which the temperature or precipitation 153impacted the skin counts. The response variable was the cumulative number of skins during one 154season (which was $\ln(y+1)$ transformed to improve normality). The explanatory variable was the 155effective accumulated temperature or precipitation, which was calculated using daily mean 156temperature (°C) or daily total precipitation (mm). The effective accumulated temperature or 157precipitation was modeled as follows: $E = \Sigma [t = t_0 \rightarrow t_1] (x_t - th) \{ \text{if } (x_t - th) > 0, \text{ otherwise } 0 \}$. The 158effective accumulated temperature or precipitation E represents the sum of the precipitation or 159temperature x at day t, higher than the threshold value th, from the past t_0 to the most recent t_1

Page 6 of 27

160	days. The effect of <i>E</i> was analyzed using the linear regression $\ln(y+1) = a \times \ln(E) + b$. We then
161	determined the unknown parameters a , b , t_0 , t_1 , and th that minimized the ordinary least-squares of
162	the cumulative skin counts. The coefficient a and slope b were estimated on an exponential scale
163	to obtain positive values (i.e., $a = \exp(a)$, $b = \exp(b)$). For the least-square optimization, we used
164	the simulated-annealing method (Belisle 1992) and the Nelder-Mead method (Nelder and Mead
165	1965) because of their applicability to nondifferentiable functions (implemented in the optim
166	function in the R software). To avoid local optima, we first applied the simulated-annealing
167	method (which is robust for the initial parameters but requires a long calculation time) with the
168	following initial parameters: $t_0 = 90$; $t_1 = 30$; $th = 15$ (for temperature) and 5 (for precipitation); $a =$
169	exp(0) = 1; and $b = exp(0) = 1$. We then utilized the Nelder-Mead method (which requires less
170	calculation time than the simulated-annealing method) after the parameters obtained from the
171	previous calculation were set as the initial parameters. This Nelder-Mead optimization was
172	repeated until the algorithm converged. Model fitting was evaluated by the proportion of the
173	explained sum of squares (representing the coefficient of determination, R^2 : Kvålseth 1985), and
174	statistical significances were examined by F-tests for the mean squares of the explained and
175	residual sums of squares ($dfl = no.$ of parameters – 1, and $df2 = sample size - dfl$). These
176	analyses were performed for the two cicada species and two climate variables (temperature and
177	precipitation). Temperature and precipitation were separately fitted to avoid multicollinearity. The
178	best-fitted temperature and precipitation were further analyzed using multiple regressions to test
179	their combined effects on the skin counts. Two additional analyses were also conducted to confirm
180	the robustness of the parameter estimation. First, we repeated the temperature analysis using the
181	daily maxima instead of the means. Second, for the data from 2001 to 2006, we separately
182	analyzed male and female skins for C. facialis and G. nigrofuscata. The R code and input data
183	files are provided as supplementary materials (Supp. Appendix 1 and 2 for the code and input data
184	files, respectively).

Page 7 of 27

186 **Results**

187 Patterns of molting phenology. Skins of *C. facialis* were observed earlier than those of 188G. nigrofuscata (Fig. 1). Total skin counts fluctuated up to sevenfold among the study years. The yearly total counts fluctuated at a similar level between C. facialis and G. nigrofuscata (coefficient 189 190 of variation = SD/Mean = 0.55 and 0.60, respectively). The total number of ground holes roughly 191 corresponded with the total skin count for each year (1349, 960, 683, and 550 holes for 1997, 1921998, 1999, and 2000, respectively). From 2001 to 2006, male cicadas emerged earlier than 193females for both C. facialis and G. nigrofuscata (Fig. 1). Two other cicada species, Platypleura 194kaempferi (Fabricius) and Meimuna opalifera (Walker), were also observed at the site, but their 195abundances were much lower than those of C. facialis and G. nigrofuscata (at most, eight skins 196 per day; see Supp. Table S1). In total, 8,216 skins of the four species were collected across 12 197 years. During the study years, daily mean temperature ranged from approximately 0° C to 30° C 198near the study site (Fig. 2). Daily precipitation tended to increase with temperature (Fig. 2).

199 **Climatic effects on phenology.** The accumulated temperatures >17.9°C and >18.9°C 200 over the previous 101 and 109 days best fit the observed patterns for the cumulative skin counts of 201C. facialis and G. nigrofuscata within a season, respectively (parameters t_0 and th, respectively): 202Table 1). The points until which temperature was accumulated, t_1 , were approximately 38 and 44 203 days in the two respective species (Table 1). The accumulated temperature explained 47% and 204 64% of the total variation in the cumulative skin counts of C. facialis and G. nigrofuscata, 205respectively (Table 1; Fig. 3). Temperature was also analyzed using daily maxima, but similar results were obtained ($t_0 = 102$ and 107, $t_1 = 37$ and 29, $t_h = 23$ and 23, $R^2 = 0.40$ and 0.51 for C. 206 207 facialis and G. nigrofuscata, respectively). Regarding the sexes of the two cicada species, to was 208 estimated at 88 and 92 days, while the threshold temperatures were 17.4°C and 21.3°C, 209 respectively (Table 1). The parameter t_1 ranged from 28 to 37 days among the sexes and species.

Page 8 of 27

210	R^2 varied from 30% to 74% (Table 1). In contrast, the effective accumulated precipitation
211	explained at most 16% of the variation in the cumulative skin counts of C. facialis and G.
212	nigrofuscata (Table 2). The variation explained by precipitation was at most 8% for male and
213	female cicada skin counts (Table 2). We also performed multiple regressions using the best-fitted
214	temperature and precipitation. However, the models including the temperature, precipitation, and
215	interaction term did not considerably improve the variation explained (<i>C. facialis</i> , $R^2 = 0.48$; <i>G.</i>
216	<i>nigrofuscata</i> , $R^2 = 0.69$), indicating weak combined effects of the two climatic factors.
217	

219 **Discussion**

220 Our long-term survey and quantitative analysis uncovered several characteristics of the 221 molting phenology of C. facialis and G. nigrofuscata. First, the effective accumulated temperature 222explained significantly more of the variation in the cumulative skin counts than did precipitation. 223Second, the time over which past temperature had an effect was consistent from the past 3.0–3.5 224months to the most recent 1.0–1.5 months. Conversely, the threshold temperature ranged from 22518°C to 23°C depending on the species, temperature criterion (daily mean or maximum), and sex. 226 These results indicate that the accumulated temperature during late spring is a key predictor for 227the molting phenology of both cicada species, whereas the current year's precipitation is likely a 228less influential factor. Third, temperature accounted for 17% more of the variation of the 229 cumulative skin counts in G. nigrofuscata compared to C. facialis. Physiological and other 230possible factors are therefore discussed in to the following section regarding the temporal 231fluctuation of skin counts within and among years.

Several previous studies have suggested that warming can shift the first singing day or
date of peak abundance in Japanese cicadas (Shiyake 2008, Kamitani 2010, Ogawa-Onishi and
Berry 2012). Our quantitative results support the potential impact of temperature on molting
Page 9 of 27

235phenology. In addition, the physiological evidence reported to date has shown that temperatures 236ranging from 10° C to 30° C strongly affect the timing and rate of egg hatching (Moriyama and 237 Numata 2008), whereas low temperature has a relatively weak impact on the egg mortality of C. 238facialis and G. nigrofuscata (Moriyama and Numata 2009). Thus, the nymphs of the two cicadas 239are likely more sensitive to moderate temperatures during late spring than to winter coldness. In 240 contrast, we found limited evidence regarding the impact of precipitation on the molting 241phenology of C. facialis and G. nigrofuscata, although rainfall is known to be critical for egg 242hatching in Japanese cicadas (Hirose 1977; Moriyama and Numata 2010, 2011). As the rainy season often ends in mid-July (known as the "Baiu" period in Japan), the limited effect of 243244precipitation may be due to the emergence of final-instar nymphs of C. facialis and G. 245*nigrofuscata* in late July or early August, allowing them to avoid the direct impacts of the rainy 246period. Additionally, we sampled the nymphal skins on days with no rain, which may have 247prevented us from detecting the influence of precipitation on skin counts. Further investigations 248are required to evaluate the relative importance of temperature and precipitation throughout the 249cicada life cycle, including egg hatching and adult emergence.

250Our results should be interpreted carefully regarding the confounding effects of the 251distribution of peak abundance within the study season. The proportion of explained variation 252tended to increase as the time point of peak abundance became later in the season (i.e., descending 253order of male C. facialis, female C. facialis, male G. nigrofuscata, and female G. nigrofuscata: 254Table 1; Fig. 1). In addition to these sexual differences, the start dates of our survey were too late 255to follow the phenology of *C. facialis*, particularly when abundance peaked earlier than usual (e.g., 2561998 and 2004: Fig. 1). Therefore, the differences in predictability between the species and sexes 257might reflect the differences of the observed abundance peaks. To deal with these potential 258limitations, multiple populations should be compared in the future.

259

In Japanese cicadas, an abundance fluctuation of approximately threefold is considered

260 moderate, as documented for *Platypleura kaempferi* (Hirose 1977). Despite the significant 261predictability of temperature for the phenological pattern, the actual variations in yearly 262abundance (up to sevenfold) were often larger or smaller than those predicted by the temperature. 263 Thus, we believe that temperature is unlikely a regulator of cicada abundance among years. 264Regarding factors other than climate that regulate cicada populations, predation and intraspecific 265competition can be hypothesized as ecological mechanisms. While resource competition has 266 rarely been reported for cicadas, several studies have suggested the importance of predation in 267 their population fluctuations (e.g., Karban 1982, Williams and Simon 1995, Koenig and Liebhold 2682005). For example, Takakura and Yamazaki (2007) revealed that avian predation on G269nigrofuscata was moderate in a dense plantation because adult cicadas were able to hide from 270predators. As the suburban habitat in the present study was covered with secondary forest, the 271higher predictability of G. nigrofuscata abundance could be explained by this relatively moderate 272avian predation. Furthermore, the total number of ground holes was similar to the yearly skin 273count, suggesting that predation (such as ant predation on aboveground nymphs) was unlikely 274pivotal during molting. If predation were involved, we hypothesize that the population fluctuation 275of skin abundance may be attributed to avian predation or other belowground agents.

276In summary, our study revealed that late spring temperature is a key predictor for the 277 summer outbreaks of two Japanese cicadas. We also found that the duration over which 278temperature was influential was consistent between the species and their sexes. These quantitative 279results provide critical insight into how seasonal insects respond to changing environments. 280Furthermore, the long-term abundance data posed a further question regarding the population 281stability of seasonal insects, i.e., what factors regulate yearly abundance? Another factor, such as 282 predation, must be evaluated carefully to obtain a comprehensive understanding of the fluctuation 283of C. facialis and G. nigrofuscata populations.

284

Page 11 of 27

285	Acknowledgements – The authors thank all members of the Inabe River Association of Natural
286	History for their fieldwork advice; Satomi Sato for assistance with inputting the data; and
287	Masuhisa Sato for help with counting cicadas. Thanks are also given to two anonymous reviewers
288	for their comments on the manuscript.
289	
290	
291	References
292	Bale, J. S., Masters, G. J., Hodkinson, I. D., Awmack, C., Bezemer, T. M., Brown, V. K.,
293	Butterfield, J. et al. 2002. Herbivory in global climate change research: direct effects
294	of rising temperature on insect herbivores. Glob. Change Biol. 8: 1-16.
295	Belisle, C. J. P. 1992. Convergence theorems for a class of simulated annealing algorithms on \mathbb{R}^d .
296	J. Applied Probability 29: 885-895.
297	Chaves, L. F., Morrison, A. C., Kitron, U. D., and Scott, T. W. 2012. Nonlinear impacts of
298	climatic variability on the density-dependent regulation of an insect vector of disease.
299	Glob. Change Biol. 18: 457-468.
300	Dunn, R. R. 2000. Poetic entomology: insects in Japanese haiku. Am. Entomol. 46: 70-72.
301	Gibbs, J. P., and Breisch, A. R. 2001. Climate warming and calling phenology of frogs near
302	Ithaca, New York, 1900-1999. Conserv. Biol. 15: 1175-1178.
303	Hagen, S. B., Jepsen, J. U., Ims, R. A., and Yoccoz, N. G. 2007. Shifting altitudinal distribution
304	of outbreak zones of winter moth Operophtera brumata in sub-arctic birch forest: a
305	response to recent climate warming? Ecography 30: 299-307.
306	Harper, M. P., and Peckarsky, B. L. 2006. Emergence cues of a mayfly in a high-altitude stream
307	ecosystem: potential response to climate change. Ecol. Appl. 16: 612-621.
308	Harsch, M. A., Hulme, P. E., McGlone, M. S., and Duncan, R. P. 2009. Are treelines
309	advancing? a global meta-analysis of treeline response to climate warming. Ecol. Lett.
310	12: 1040-1049.
311	Hirose, Y. 1977. Annual population fluctuation of <i>Platypleura kaempferi</i> (Fabricius) (Homoptera,
312	Cicadidae) Kontyû 45: 314-319.
313	Hochkirch, A., and Damerau, M. 2009. Rapid range expansion of a wing-dimorphic
314	bush-cricket after the 2003 climatic anomaly. Biol. J. Linn. Soc. 97: 118-127.
315	Julliard, R., Jiguet, F., and Couvet, D. 2004. Evidence for the impact of global warming on the
	Page 12 of 27

316	long-term population dynamics of common birds. Proc. R. Soc. B 271: S490-S492.
317	Kamitani, S. 2010. First appearances and first singing days, pp. 108-120. In K. Kiritani and J.
318	Yukawa (eds.), Effects of Global Warming on Insects. Japan Rural Education
319	Association, Tokyo, Japan (in Japanese)
320	Karban, R. 1982. Increased reproductive success at high densities and predator satiation for
321	periodical cicadas. Ecology 63: 321-328.
322	Kiritani, K. 2006. Predicting impacts of global warming on population dynamics and distribution
323	of arthropods in Japan. Popul. Ecol. 48: 5-12.
324	Kitamoto, T. 1997. Cicada fauna in Nishi-Yodogawa, Osaka, dominated by Japanese black cicada.
325	Nature Study 43: 65-69. (in Japanese)
326	Koenig, W. D., and Liebhold, A. M. 2005. Effects of periodical cicada emergences on abundance
327	and synchrony of avian populations. Ecology 86: 1873-1882.
328	Kvålseth, T. O. 1985. Cautionary note about <i>R</i> ² . Am. Stat. 39: 279-285.
329	Menninger, H. L., Palmer, M. A., Craig, L. S., and Richardson, D. C. 2008. Periodical cicada
330	detritus impacts stream ecosystem metabolism. Ecosystems 11: 1306-1317.
331	Moriyama, M., and Numata, H. 2008. Diapause and prolonged development in the embryo and
332	their ecological significance in two cicadas, Cryptotympana facialis and
333	Graptopsaltria nigrofuscata. J. Insect Physiol. 54: 1487-1494.
334	Moriyama, M., and Numata, H. 2010. Desiccation tolerance in fully developed embryos of two
335	cicadas, Cryptotympana facialis and Graptopsaltria nigrofuscata. Entomol. Sci. 13:
336	68-74.
337	Moriyama, M., and Numata, H. 2009. Comparison of cold tolerance in eggs of two cicadas,
338	Cryptotympana facialis and Graptopsaltria nigrofuscata, in relation to climate
339	warming. Entomol. Sci. 12: 162-170.
340	Moriyama, M., and Numata, H. 2011. A cicada that ensures its fitness during climate warming
341	by synchronizing its hatching time with the rainy season. Zool. Sci. 28: 875-881.
342	Nelder, J. A., and Mead, R. 1965. A simplex method for function minimization. Comput. J. 7:
343	308-313.
344	Ogawa-Onishi, Y., and Berry, P. M. 2013. Ecological impacts of climate change in Japan: The
345	importance of integrating local and international publications. Biol. Conserv. 157:
346	361-371.
347	R Core Team 2013. R: a language and environment for statistical computing. R Foundation for

348	Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
349	Roy, D. B., and Sparks, T. H. 2000. Phenology of British butterflies and climate change. Glob.
350	Change Biol. 6: 407-416.
351	Shiyake, S. 2008. Global warming and change in cicada distributions. The Nature and Insects 43:
352	6-10. (in Japanese)
353	Shiyake, S. 2012. Estimation of annual population fluctuation of <i>Cryptotympana facialis</i> (Walker)
354	(Hemiptera: Cicadidae) in Osaka City for 36 years. Jpn. J. Entmol. 15: 205-211. (in
355	Japanese)
356	Takakura, K. I., and Yamazaki, K. 2007. Cover dependence of predation avoidance alters the
357	effect of habitat fragmentation on two cicadas (Hemiptera: Cicadidae). Ann. Entomol.
358	Soc. Am. 100: 729-735.
359	Williams, K. S., and Simon, C. 1995. The ecology, behavior, and evolution of periodical cicadas.
360	Annu. Rev. Entomol. 40: 269-295.
361	
362	
363	
000	
364	
365	
366	
367	
368	
369	
370	
371	
071	
372	
373	
374	
375	

Page 14 of 27

facialis and Graptopsaltria nigrofuscata within a season.											
Species	Species Pa				arameters estimated						
	а	b	t_0	t_1	th						
C. facialis	1.26	0.14	101	38	17.9	97.9	0.47				
G. nigrofuscata	1.29	0.01	109	44	18.9	112.0	0.64				
C. facialis M	1.09	0.12	92	28	17.4	54.1	0.30				
C. facialis F	0.98	1.24	88	35	21.3	57.6	0.53				
G. nigrofuscata M	0.98	0.91	91	37	21.2	28.7	0.68				
G. nigrofuscata F	1.16	0.00	91	35	21.3	39.6	0.74				

Table 1 Effects of daily mean temperature (°C) on cumulative skin counts of *Cryptotympana*

Shown are the estimated parameters for the time over which daily mean temperature had an effect (from the past t_0 days to the most recent t_1 days), the threshold (th) of effective accumulated temperature, and the slope coefficient (a) and intercept (b) of the linear regression for temperature. Sum of squares (SS) and coefficient of determination (R^2) values are listed to the right of the parameters. The estimated results for male (M) and female (F) skins of the two species (from 2001 to 2006) are also listed below the table. Bold values of R^2 indicate <5% significance according to the *F*-test.

and Graptopsaltria nigrofuscata within a season. R^2 **Species** Parameters estimated SS b th а t_0 t_1 C. facialis 0.88 0.34 71 33 0.0 163.7 0.12 G. nigrofuscata 0.85 0.00 70 34 9.4 258.5 0.16 C. facialis M 0.10 4.37 82 27 20.0 75.8 0.02 *C. facialis* F 49 0.0 0.64 0.43 88 117.0 0.05 G. nigrofuscata M 74 49 83.1 0.08 0.34 2.42 36.3 G. nigrofuscata F 98 27 3.0 0.00 0.00 3.13 151.5

394 **Table 2** Effects of daily precipitation (mm) on cumulative skin counts of *Cryptotympana facialis*

396 Shown are the estimated parameters for the time over which daily mean temperature had an effect

397 (from the past t_0 days to the most recent t_1 days), the threshold (*th*) of effective accumulated

398 precipitation, and the slope coefficient (*a*) and intercept (*b*) of the linear regression. Bold values of

399 R^2 indicate <5% significance according to the *F*-test. The interpretation follows that of Table 1.

400

395

- 401
- 402
- 403
- 404
- 405
- 406
- 407
- 408
- 409
- 410
- 411

Page 16 of 27

412 Figure legends	
--------------------	--

414	Figure 1 Molting phenology of Cryptotympana facialis (black line) and Graptopsaltria
415	nigrofuscata (grey line) over 12 years at the study site. The upper figure shows the skin counts of
416	the two species at each survey date over the entire study period, while the lower two figures
417	present the number of male (solid line) and female (dashed line) skins collected from 2001 to
418	2006 for the two species.
419	
420	Figure 2 Temporal variation in daily mean temperature (°C: solid line) and daily precipitation
421	(mm: vertical bars) from 1994 to 2006 around the study site (northern Mie Prefecture, central
422	Japan). Daily mean temperature was smoothed using a spline method for legibility.
423	
424	Figure 3 Observed (circles) and predicted (vertical bars) values of the cumulative skin counts of
425	Cryptotympana facialis (closed: upper figure) and Graptopsaltria nigrofuscata (open: lower
426	figure). Predictions were made based on the effective accumulated temperature according to the
427	estimated parameters in Table 1. Dashed lines indicate intervals between the study years. The skin
428	counts are shown on a ln-scale.
429	
430	
431	
432	
433	
434	
435	
436	

Page 17 of 27

- - - -

Page 18 of 27

Page 19 of 27

Page 20 of 27

482 **Supplemental Table S1.** Detailed survey dates and numbers of skins collected for four cicada

483 species. Cf, Cryptotympana facialis; Gn, Graptopsaltria nigrofuscata; Pk, Platypleura kaempferi;

484 Mo, Meimuna opalifera. Sex information (M, Male; F, Female) are not available from 1995 to

Year	Month	Date	Cf	Cf_M	Cf_F	Gn	Gn_M	Gn_F	Pk	Pk_M	Pk_F	Mo	Mo_M	Mo_F
1995	7	26	1	NA	NA	0	NA	NA	0	NA	NA	0	NA	NA
1995	7	29	12	NA	NA	2	NA	NA	1	NA	NA	0	NA	NA
1995	8	3	44	NA	NA	52	NA	NA	0	NA	NA	0	NA	NA
1995	8	5	69	NA	NA	33	NA	NA	0	NA	NA	1	NA	NA
1995	8	7	33	NA	NA	117	NA	NA	0	NA	NA	0	NA	NA
1995	8	10	15	NA	NA	46	NA	NA	0	NA	NA	0	NA	NA
1995	8	16	13	NA	NA	31	NA	NA	0	NA	NA	2	NA	NA
1995	8	18	14	NA	NA	65	NA	NA	0	NA	NA	3	NA	NA
1995	8	21	2	NA	NA	10	NA	NA	0	NA	NA	3	NA	NA
1995	8	23	2	NA	NA	11	NA	NA	0	NA	NA	0	NA	NA
1996	7	24	8	NA	NA	0	NA	NA	0	NA	NA	0	NA	NA
1996	7	26	6	NA	NA	0	NA	NA	1	NA	NA	0	NA	NA
1996	7	27	36	NA	NA	0	NA	NA	2	NA	NA	0	NA	NA
1996	7	29	56	NA	NA	4	NA	NA	0	NA	NA	1	NA	NA
1996	7	31	70	NA	NA	12	NA	NA	0	NA	NA	0	NA	NA
1996	8	5	44	NA	NA	26	NA	NA	0	NA	NA	1	NA	NA
1996	8	7	7	NA	NA	4	NA	NA	0	NA	NA	2	NA	NA
1996	8	8	10	NA	NA	6	NA	NA	0	NA	NA	1	NA	NA
1996	8	11	3	NA	NA	6	NA	NA	0	NA	NA	0	NA	NA
1996	8	13	6	NA	NA	9	NA	NA	0	NA	NA	2	NA	NA
1996	8	16	1	NA	NA	6	NA	NA	0	NA	NA	0	NA	NA
1996	8	19	0	NA	NA	8	NA	NA	0	NA	NA	0	NA	NA
1996	8	22	3	NA	NA	4	NA	NA	0	NA	NA	3	NA	NA
1996	8	23	1	NA	NA	1	NA	NA	0	NA	NA	2	NA	NA
1997	7	20	17	NA	NA	3	NA	NA	0	NA	NA	0	NA	NA
1997	7	23	64	NA	NA	32	NA	NA	0	NA	NA	0	NA	NA

485 2000 (indicated by "NA").

Page 21 of 27

1997	7	25	112	NA	NA	48	NA	NA	0	NA	NA	1	NA	NA
1997	7	28	172	NA	NA	92	NA	NA	0	NA	NA	0	NA	NA
1997	7	31	100	NA	NA	68	NA	NA	2	NA	NA	0	NA	NA
1997	8	2	39	NA	NA	58	NA	NA	0	NA	NA	0	NA	NA
1997	8	5	72	NA	NA	100	NA	NA	4	NA	NA	0	NA	NA
1997	8	8	22	NA	NA	56	NA	NA	4	NA	NA	0	NA	NA
1997	8	11	20	NA	NA	48	NA	NA	3	NA	NA	0	NA	NA
1997	8	15	12	NA	NA	36	NA	NA	6	NA	NA	0	NA	NA
1997	8	17	11	NA	NA	26	NA	NA	6	NA	NA	0	NA	NA
1997	8	20	3	NA	NA	16	NA	NA	8	NA	NA	0	NA	NA
1997	8	23	3	NA	NA	10	NA	NA	6	NA	NA	0	NA	NA
1998	7	19	330	NA	NA	27	NA	NA	0	NA	NA	0	NA	NA
1998	7	22	165	NA	NA	52	NA	NA	0	NA	NA	0	NA	NA
1998	7	26	133	NA	NA	83	NA	NA	0	NA	NA	1	NA	NA
1998	7	29	24	NA	NA	62	NA	NA	0	NA	NA	0	NA	NA
1998	7	31	4	NA	NA	21	NA	NA	0	NA	NA	0	NA	NA
1998	8	4	8	NA	NA	9	NA	NA	0	NA	NA	0	NA	NA
1998	8	8	6	NA	NA	16	NA	NA	0	NA	NA	0	NA	NA
1998	8	13	7	NA	NA	7	NA	NA	0	NA	NA	0	NA	NA
1998	8	16	1	NA	NA	9	NA	NA	0	NA	NA	0	NA	NA
1998	8	22	0	NA	NA	5	NA	NA	0	NA	NA	0	NA	NA
1999	7	20	5	NA	NA	1	NA	NA	0	NA	NA	0	NA	NA
1999	7	25	53	NA	NA	11	NA	NA	0	NA	NA	2	NA	NA
1999	7	29	75	NA	NA	41	NA	NA	0	NA	NA	2	NA	NA
1999	8	2	54	NA	NA	56	NA	NA	0	NA	NA	1	NA	NA
1999	8	7	44	NA	NA	57	NA	NA	0	NA	NA	0	NA	NA
1999	8	13	19	NA	NA	70	NA	NA	3	NA	NA	0	NA	NA
1999	8	19	4	NA	NA	35	NA	NA	5	NA	NA	0	NA	NA
1999	8	24	1	NA	NA	6	NA	NA	3	NA	NA	0	NA	NA
2000	7	22	84	NA	NA	4	NA	NA	0	NA	NA	3	NA	NA
2000	7	26	35	NA	NA	10	NA	NA	0	NA	NA	1	NA	NA
2000	7	30	35	NA	NA	33	NA	NA	0	NA	NA	1	NA	NA

2000	8	3	9	NA	NA	30	NA	NA	0	NA	NA	0	NA	NA
2000	8	5	4	NA	NA	11	NA	NA	0	NA	NA	1	NA	NA
2000	8	10	6	NA	NA	42	NA	NA	1	NA	NA	0	NA	NA
2000	8	14	2	NA	NA	25	NA	NA	3	NA	NA	0	NA	NA
2000	8	20	0	NA	NA	3	NA	NA	1	NA	NA	0	NA	NA
2000	8	23	0	NA	NA	34	NA	NA	0	NA	NA	0	NA	NA
2001	7	14	33	31	2	2	2	0	0	0	0	0	0	0
2001	7	20	184	128	56	7	7	0	0	0	0	1	1	0
2001	7	24	189	99	90	32	30	2	0	0	0	0	0	0
2001	7	30	188	69	119	146	93	53	0	0	0	2	2	0
2001	8	5	37	13	24	112	58	54	0	0	0	0	0	0
2001	8	13	11	5	6	54	19	35	0	0	0	0	0	0
2001	8	18	14	6	8	54	19	35	0	0	0	0	0	0
2001	8	23	6	3	3	25	7	18	4	3	1	0	0	0
2002	7	20	57	54	3	2	2	0	0	0	0	0	0	0
2002	7	25	227	167	60	11	10	1	1	1	0	0	0	0
2002	7	31	228	132	96	69	53	16	1	1	0	0	0	0
2002	8	6	36	15	21	63	39	24	4	3	1	0	0	0
2002	8	10	21	4	17	32	16	16	1	1	0	0	0	0
2002	8	15	6	3	3	11	4	7	1	0	1	0	0	0
2002	8	21	13	8	5	3	0	3	1	1	0	0	0	0
2002	8	25	9	6	3	8	1	7	0	0	0	0	0	0
2003	7	20	1	1	0	0	0	0	0	0	0	1	1	0
2003	7	26	20	20	0	2	2	0	0	0	0	0	0	0
2003	7	31	121	99	22	40	39	1	0	0	0	0	0	0
2003	8	6	287	151	136	111	89	22	0	0	0	0	0	0
2003	8	13	133	41	92	153	87	66	0	0	0	0	0	0
2003	8	19	49	13	36	114	40	74	3	1	2	0	0	0
2003	8	21	13	8	5	3	0	3	1	1	0	0	0	0
2003	8	25	9	2	7	44	9	35	1	1	0	0	0	0
2004	7	22	300	182	118	34	29	5	0	0	0	1	1	0
2004	7	27	24	8	16	36	23	13	0	0	0	0	0	0

2004	7	31	17	8	9	34	15	19	0	0	0	0	0	0
2004	8	5	6	2	4	20	4	16	0	0	0	0	0	0
2004	8	9	6	3	3	8	7	1	0	0	0	0	0	0
2004	8	15	4	1	3	16	3	13	0	0	0	0	0	0
2004	8	21	6	4	2	4	1	3	1	0	1	0	0	0
2004	8	25	4	1	3	2	0	2	0	0	0	0	0	0
2005	7	22	61	51	10	6	6	0	0	0	0	0	0	0
2005	7	26	37	6	31	30	15	15	0	0	0	0	0	0
2005	8	4	28	6	22	97	55	42	0	0	0	0	0	0
2005	8	10	3	2	1	57	29	28	0	0	0	0	0	0
2005	8	16	7	2	5	36	8	28	1	1	0	0	0	0
2005	8	22	2	0	2	9	2	7	0	0	0	0	0	0
2005	8	26	2	1	1	14	5	9	2	1	1	0	0	0
2006	7	23	1	1	0	2	2	0	0	0	0	1	0	1
2006	7	30	9	8	1	5	4	1	0	0	0	0	0	0
2006	8	4	39	19	20	13	13	0	0	0	0	1	0	1
2006	8	10	13	5	8	25	7	18	0	0	0	0	0	0
2006	8	16	6	0	6	34	16	18	0	0	0	0	0	0
2006	8	21	1	1	0	7	1	6	0	0	0	0	0	0
2006	8	26	4	2	2	15	4	11	3	1	2	0	0	0
486	3													
487	7													
488	3													
489)													
490)													
491	L													
492	2													
493	}													
494	1													
	Pa	oe 24 of	f 27											
	1 a	8 - T U												

495	Appendix 1 R code for the parameter estimation
496	********************************
497	#Sato&Sato: Cicada Phenology, R code##
498	*********************************
499	
500	#Note: This is an example for the temperature analysis of C. facialis skins
501	#For the other response variables, please change "Cf.Cum" into "Gn.Cum", "Cf.CumM", "Cf.CumF",
502	"Gn.CumM", or "Gn.CumF".
503	
504	#Load data
505	#CicadaMie = read.csv("cicadaSkinMF.csv", header=T) # for Male-Female data
506	CicadaMie = read.csv("cicadaSkin.csv", header=T)
507	ClimateData = read.csv("MieClimate.csv", header=T)
508	
509	#ClimateData[,4]:Daily Mean Temp; [,5]: Daily Max Temp; [,6]: Precip
510	calc.CumTemp = function(t0, t1, th) {
511	CumTemp = c()
512	for (k in 1:nrow(CicadaMie)) {
513	t.point = subset(ClimateData, Year==CicadaMie[k,1]&DaysFromNewYear==CicadaMie[k,4])\$rowID
514	$ThH = (ClimateData[,4][(t.point-t0):(t.point-t0+t1)]>th) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
515	CumTemp = c(CumTemp, sum(((ClimateData[,4][(t.point-t0):(t.point-t0+t1)]-th)*ThH))) #Note: ThH
516	is a TRUE or FALSE vector
517	}
518	return(CumTemp+1) #+1 to prevent log(0)
519	}
520	
521	#Define a target function
522	SS = function(x) {
523	a = exp(x[1]); b = exp(x[2]); t0 = x[3]; t1 = x[4]; th = x[5] #a and b are exponential to range >0
524	Temp = calc.CumTemp(t0, t1, th)
525	$SS = sum((log(CicadaMie CfCum+1)-(a*log(Temp)+b))^2)$
526	return(SS)

Page 25 of 27

527	}
528	
529	#Parameter optimization
530	par = c(0,0,90,30,15) #Initial values
531	
532	#First step: Simulated-annealing
533	res = optim(par,SS, method="SANN")
534	
535	#Second step: Nelder-Mead method, repeat until convergence as "res3 = optim(res2\$par[1:5], SS)"
536	res2 = optim(res\$par[1:5],SS, method="Nelder-Mead")
537	
538	#Calclating R2 value
539	$SSnull = sum((log(CicadaMie\$CfCum+1)-mean(log(CicadaMie\$CfCum+1)))^{2})$
540	print(1-(res2\$value/SSnull))
541	
542	#F-test
543	df.param = length(res2\$par)-1; MSg = ((SSnull-res2\$value)/df.param)
544	df.resi = length(CicadaMie\$CfCum)-df.param; MSr = (SSnull/df.resi)
545	Fval = MSg/MSr; pf(Fval,df.param,df.resi,lower.tail=F)
546	
547	#Observed vs. Prediction plot
548	plot(exp(res2\$par[1])*log(calc.CumTemp(res2\$par[3],res2\$par[4],res2\$par[5]))+exp(res2\$par[2])),ty=0
549	pe="h",lwd=3,col="grey",las=1,ylab="Cumulative shell no.",log="y")
550	points(CicadaMie\$CfCum+1,pch=1)
551	abline(v=cumsum(c(10,14,13,10,8,9,8,8,8,7,7))+0.5,lty=2,col="grey")
552	
553	
554	
555	
556	

557 Appendix 2 Input data files for R analyses (SatoSato_Appendix2_inputFiles.xls)

558

- 559 Download URL
- 560 \rightarrow (https://drive.google.com/file/d/0B8lD2dRmBfQdb3RmWGxXMzhhUkU/view?usp=sharing)
- 561