Near-infrared multi-wavelengths long persistent luminescence of Nd³ ion through persistent energy transfer in Ce³, Cr³ co-doped YAlGaO for the first and second bio-imaging windows

Xu, Jian; Tanabe, Setsuhisa; Sontakke, Atul D.; Ueda, Jumpei

Xu, Jian ...[et al]. Near-infrared multi-wavelengths long persistent luminescence of Nd³ ion through persistent energy transfer in Ce³, Cr³ co-doped YAlGaO for the first and second bio-imaging windows. Applied Physics Letters 2015, 107(8

2015-08-24

http://hdl.handle.net/2433/201852

© 2015 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.
Near-infrared multi-wavelengths long persistent luminescence of Nd3+ ion through persistent energy transfer in Ce3+, Cr3+ co-doped Y3Al2Ga3O12 for the first and second bio-imaging windows

Jian Xu, Setsuhisa Tanabe, Atul D. Sontakke, and Jumpei Ueda

Citation: Applied Physics Letters 107, 081903 (2015); doi: 10.1063/1.4929495
View online: http://dx.doi.org/10.1063/1.4929495
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/107/8?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Bright persistent ceramic phosphors of Ce3+-Cr3+-codoped garnet able to store by blue light

Formation probability of Cr-Nd pair and energy transfer from Cr to Nd in Y3Al5O12 ceramics codoped with Nd and Cr

Efficient energy transfer for Ce to Nd in Nd/Ce codoped yttrium aluminum garnet

Enhanced luminescence of Y 3 Al 5 O 12 : Ce 3 + nanophosphor for white light-emitting diodes

Vacuum ultraviolet and x-ray luminescence efficiencies of Y 3 Al 5 O 12 :Ce phosphor screens
J. Appl. Phys. 85, 6790 (1999); 10.1063/1.370195
Near-infrared multi-wavelengths long persistent luminescence of Nd$^{3+}$ ion through persistent energy transfer in Ce$^{3+}$, Cr$^{3+}$ co-doped Y$_3$Al$_2$Ga$_3$O$_{12}$ for the first and second bio-imaging windows

Jian Xu, Setsuhisa Tanabe, Atul D. Sontakke, and Jumpei Ueda
Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan

(Received 10 June 2015; accepted 8 August 2015; published online 24 August 2015)

We developed a persistent phosphor of Y$_3$Al$_2$Ga$_3$O$_{12}$ doped with Nd$^{3+}$, Ce$^{3+}$, Cr$^{3+}$ ions (YAGG:Nd-Ce-Cr) exhibiting long (>10 h) persistent luminescence at multi-wavelengths of around 880, 1064, and 1335 nm due to f-f transitions of Nd$^{3+}$ and at 505 nm due to Ce$^{3+}$:5d$_{1}$$\rightarrow$4f transition. The intense near-infrared (NIR) persistent luminescence bands from Nd$^{3+}$ match well with the first (650–950 nm) and second (1000–1400 nm) bio-imaging windows. The NIR persistent radiance of the YAGG:Nd-Ce-Cr phosphor (0.33 \times 10$^{-1}$ mW/Sr/m2) at 60 min after ceasing blue light illumination was over 2 times higher than that of the widely used ZnGa$_2$O$_4$:Cr$^{3+}$ red persistent phosphor (0.15 \times 10$^{-1}$ mW/Sr/m2). © 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4929495]

Recently, persistent phosphors (sometimes named as long-lasting phosphors) have attracted much attention for in vivo bio-imaging applications since these nano-particle phosphors charged by ultraviolet (UV) light (visible light in bio-imaging applications since these nano-particle in vivo long-lasting phosphors) have attracted much attention for their persistent durations are quite short (only up to few minutes), which limits their practical applications.1–3 However, only a few red/NIR long persistent phosphors have been reported so far, most of which are Cr$^{3+}$ doped gallate- or aluminate-based materials,9–14 and their emission regions are mostly located in the first bio-imaging window (NIR-I window, 650–950 nm). Combined with fast development and availability of InGaAs detectors, the second bio-imaging window (NIR-II window, 1000–1400 nm) has promising advantages owing to its lower autofluorescence, deeper tissue penetration, and thus potentially higher spatial and temporal resolution than the NIR-I window.15 Till now, although several types of optical probes for the NIR-II window have been developed such as single-walled carbon nanotubes16 and semiconductor quantum dots composed of highly toxic heavy metals, the development of nontoxic and biocompatible luminescent materials emitting in the NIR region, especially in the NIR-II window, still remains a challenge. Although persistent phosphors can be promising candidates for bio-imaging, only few of them are suitable for the NIR-II window and their persistent durations are quite short (only up to few minutes), which limits their practical applications.

Recently, a garnet persistent phosphor of Ce$^{3+}$, Cr$^{3+}$ co-doped Y$_3$Al$_5$Ga$_3$O$_{12}$ (YAGG:Ce-Cr) has been developed by our group.17–20 In this material, Cr$^{3+}$ acts as an electron trap with ideal trap depth at x = 3 for persistent luminescence of Ce$^{3+}$ working at room temperature (RT). Based on our previous work, we developed a persistent phosphor of Y$_3$Al$_2$Ga$_3$O$_{12}$:Nd$^{3+}$, Ce$^{3+}$, Cr$^{3+}$ (YAGG:Nd-Ce-Cr). This material can be excited by blue light (460 nm) and emit green persistent luminescence due to Ce$^{3+}$:4f electronic transitions, matching well with the NIR-I and NIR-II windows. A persistent phosphor with such a wide emission range (green to NIR) and long (>10 h) persistent duration has never been reported before and we thus state as a discovery.

YAGG:Nd-Ce-Cr and YAGG:Nd phosphors emitted in the range of 400–1600 nm by pumping with 442 nm laser diode (NDHB510APA-E, Nichia Co. Ltd.) excitation. The PL spectra were measured by the same experimental procedure was used as a reference sample.

The diffuse reflectance spectra of the ceramic samples were measured by a spectrophotometer (UV3600, Shimadzu) equipped with an integrating sphere. Photoluminescence (PL) spectra of the YAGG:Ce-Cr and YAGG:Nd-Ce-Cr samples were recorded in the range of 400–1600 nm by pumping with a 442 nm laser diode (NDHB510APA-E, Nichia Co. Ltd.) excitation. The PL spectra were measured by a monochromator (G250, Nikon), a Si photodiode (PD) detector (S-025-H, Electro-Optical System Inc.) from 400 to 800 nm and an InGaAs PD detector (IGA-030-H, Electro-Optical System Inc.) from 800 to 1600 nm.

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 130.54.110.32 On: Tue, 24 Nov 2015 01:58:34
System Inc.) from 800 to 1600 nm. All the PL spectra were calibrated by using a standard halogen lamp (SCL-600, Labsphere). Persistent luminescence (PersL) spectra of the two samples were measured by a Si CCD spectrometer (QE65-Pro, Ocean Optics) from 400 to 1000 nm and an InGaAs CCD spectrometer (NIR 512, Ocean Optics) from 1000 to 1600 nm connected with an optical fiber. All the PersL spectra were calibrated using the same halogen lamp. A 300 W Xe lamp (MAX-302, Asahi Spectra) with UV mirror module (250–400 nm) was used as the excitation source for thermoluminescence (TL) measurements. The ceramic sample was set in a cryostat (Helitran LT3, Advanced Research Systems) to control temperatures and first illuminated by the UV light at 150 K for 10 min, then heated up to 550 K at a rate of 10 K/min at 10 min after ceasing the illumination, and the TL signals were recorded by the Si PD (spectral sensitivity covers from 300 to 1200 nm). The Si CCD spectrometer was operated simultaneously with the TL measurement to always monitor the TL spectra at different temperatures. All persistent luminescent decay curves of the samples after being excited for 5 min by the Xe lamp with a 460 nm band-pass filter were measured at 25 °C using the Si PD. In order to monitor the Ce3+ emission, the Si PD was covered with a short-cut filter (<475 nm) and a long-cut filter (>650 nm) to filter out all but the Ce3+ luminescence. Then the decay curves were calibrated to the absolute luminescence (in units of mcd/m2) using a radiance meter (Glacier X, B&W Tek Inc.). In order to monitor the Nd3+ luminescence, the Si PD was covered with an 800 nm short-cut filter to filter out all but the Nd3+ luminescence. Then the decay curves were calibrated to the absolute radiance (in units of mW/Sr/m2) using the same radiance meter. Photographs of the samples were taken by a digital camera (EOS kiss X5, Canon), and the settings remained constant: exposure time ~5 s, ISO value = 1600, and aperture value (F value) = 5.0.

Fig. 1(a) shows the PL spectra of the YAGG:Ce-Cr and YAGG:Nd-Ce-Cr samples under blue laser (442 nm) excitation. The YAGG:Ce-Cr sample exhibits an intense emission band centered at 505 nm, corresponding to the f-d transition from the lowest 5d energy level (5d1) to the 4f ground state of Ce3+. Besides, a weak emission band at around 690 nm is assigned to the 2E→4A2 transition (R-line) of Cr3+. Comparing the PL spectrum of the YAGG:Ce-Cr sample with the diffuse reflectance of the Nd3+ singly doped YAGG sample (YAGG:Nd), the absorption bands (χ4I9/2→3G2, χ4G7/2, χ2G5/2) of Nd3+ are overlapped with the emission range of Ce3+ indicating that the ET process from Ce3+ to Nd3+ can efficiently occur. This is confirmed by the decrease of Ce3+ emission intensity in the visible range and the presence of several sharp emission bands at around 880 nm, 1064 nm, and 1335 nm owing to the f-f transitions of Nd3+: 4F3/2→4I15/2, 4F11/2, and 4I13/2, respectively, in the YAGG:Nd-Ce-Cr sample.

The PersL spectra of the YAGG:Nd-Ce-Cr sample recorded at different times after ceasing blue illumination are shown in Fig. 1(b). The persistent emissions bands exhibit not only a broad band located at around 500 nm due to Ce3+→5d1→4f transition but also intense sharp bands located at the NIR region (around 880 nm, 1064 nm, and 1335 nm) due to the f-f transitions of Nd3+, which match well with the NIR-I and NIR-II windows. The identical shape of its PL and PersL spectra suggests that the emission centers are the same under and after excitation. Since the ET process from Ce3+ to Nd3+ occurs in PL, we assume that the similar energy transfer process called persistent energy transfer (persistent ET) also occurs in the YAGG:Nd-Ce-Cr phosphor after ceasing the excitation source. The phenomenon of the persistent ET has been confirmed previously in CaAl2O4:Tb3+, Eu3+ (Refs. 28 and 29) and Sr3Al2O6:Cr3+, Eu2+, Dy3+ (Ref. 30) persistent phosphors.

The persistent luminescent decay curve monitoring Ce3+ emission (475–650 nm) of the YAGG:Nd-Ce-Cr sample after ceasing blue light illumination is shown in Fig. 2(a), in which the decay curves of the standard YAGG:Ce-Cr ceramic phosphor and a compacted ceramic pellet made of the well-known SrAl2O4:Eu2+,Dy3+ (SAO:Eu-Dy) commercial phosphor (LumiNova- GLL300FFS, Nemoto & Co. Ltd.) under the same experimental condition are also plotted as references.22 The luminescence values at 60 min after ceasing the excitation are 11 mcd/m2 for YAGG: Nd-Ce-Cr, 30 mcd/m2 for YAGG:Ce-Cr, and 25 mcd/m2 for SAO:Eu-Dy, respectively (see the photographs of the two ceramics under and after blue LED illumination in Fig. 2(d)). Persistent luminescence durations to reach a luminance of 0.32 mcd/m2 in the YAGG:Nd-Ce-Cr ceramic is around 688 min, which is comparable with but slightly shorter than that of

![FIG. 1. (a) PL spectra of the YAGG:Ce-Cr and YAGG:Nd-Ce-Cr ceramics as well as the diffuse reflectance of the YAGG:Nd ceramic and (b) PersL spectra of the YAGG:Ce-Cr and YAGG:Nd-Ce-Cr ceramics (integrating time: 10 s).](https://repository.kulib.kyoto-u.ac.jp/081903-2)
YAGG:Ce-Cr (about 808 min) ceramic, due to quenching of visible Ce$^{3+}$ emission by the ET to Nd$^{3+}$. Note that the luminance value 0.32 mcd/m2 is the minimum value commonly used by the safety signage industry (about 100 times the sensitivity of the dark-adapted eye). Because of this long green persistent luminescence at wavelengths very sensitive to the human’s photopic vision, the YAGG:Nd-Ce-Cr nano-sized phosphor synthesized by nano-technical methods can act as a fluorescence marker convenient for surgeons to roughly confirm or even trace the marked tissues directly by human eyes without any electronic detectors in the difficult conditions typical of surgery dissection.

The persistent luminescent decay curve monitoring Nd$^{3+}$ emission (>800 nm) of the YAGG:Nd-Ce-Cr sample after ceasing the same illumination is shown in Fig. 2(b), in which the decay curve of the standard ZnGa$_2$O$_4$:Cr$^{3+}$ (ZGO:Cr) ceramic under the same experimental condition is also plotted as a reference. The NIR radiance value of the tri-doped sample at 60 min after ceasing the blue excitation (0.33×10^{-1} mW/Sr/m2) is over 2 times higher than that of the widely used red persistent phosphor, ZGO:Cr (0.15×10^{-1} mW/Sr/m2), indicating that this phosphor exhibits superior persistent luminescence both in the visible (Ce$^{3+}$ emission) and NIR (Nd$^{3+}$ emission) ranges.

The decay profiles of the Ce$^{3+}$ and Nd$^{3+}$ are quite similar in Figs. 2(a) and 2(b). The persistent radiance ratio (Nd$^{3+}$/Ce$^{3+}$) is plotted against the monitoring time of the whole decay curve as shown in Fig. 2(c). The result clearly suggests that the ratio remains almost constant (around 112%–114%) with time, which supports that the persistent luminescence from both ions originates from common electron trapping and de-trapping processes, where the NIR persistent luminescence of Nd$^{3+}$ is due to the persistent ET process from Ce$^{3+}$ to Nd$^{3+}$ in the garnet host.

Fig. 3 shows the two-dimensional (2D) mappings of TL glow curves of the YAGG:Ce-Cr and YAGG:Nd-Ce-Cr samples in order to see what kind of emission contributes to the TL glow peak at different temperatures. From the contour plot of the YAGG:Ce-Cr sample in Fig. 3(a), it can be seen that at increased temperatures, the TL spectrum is simply composed of two emission bands from Ce$^{3+}$ and Cr$^{3+}$. While in the YAGG:Nd-Ce-Cr sample (see Fig. 3(b)), the NIR emission of Nd$^{3+}$ appears at the same time due to the persistent ET process, which agrees well with its PersL.
The persistent luminescence mechanism of the YAGG:Nd-Ce-Cr phosphor is briefly explained by constructing the vacuum referred binding energy (VRBE) diagram, composed of Ce\(^{3+}\), Nd\(^{3+}\), Cr\(^{3+}\), CB, and valence band energy levels in the Y\(_3\)Al\(_2\)Ga\(_3\)O\(_{12}\) host (see Fig. 4). When the YAGG:Nd-Ce-Cr sample is charged by blue light, Ce\(^{3+}\) is promoted from the ground state \((2F_{5/2})\) to the excited state of the lowest 5d energy level \((5d_1)\), and the excited electron can “jump” into CB with thermal activation and then be trapped by the electron trapping center \((Cr^{3+})\). At that time, Ce\(^{3+}\) is photo-oxidized into Ce\(^{4+}\) or \((Ce^{3+} + h^+)\) and Cr\(^{3+}\) is formed to be Cr\(^{2+}\) or \((Cr^{3+} + e^-)\) after capturing an electron (process ③).

Then the de-trapping process takes place with thermal release of the captured electron from the Cr\(^{2+}\) \((Cr^{3+} + e^-)\) trap, and finally the excited state of the Ce ion, \((Ce^{3+})\), appears after capturing the released electron in the recombination process (process ③). The radiative relaxation gives a broad band emission of Ce\(^{3+}\): \(5d_1 \rightarrow 2F_{5/2}, 2F_{7/2}\), and the resonant ET occurs at the same time to Nd\(^{3+}\) ion (process ③), which is followed by rapid multi-phonon relaxation down to the \(2F_{5/2}\) excited level, and then finally induces the sharp luminescence bands of Nd\(^{3+}\): \(F_{2} \rightarrow I_{8/2}, I_{11/2}\), and \(I_{13/2}\).

In summary, we developed a persistent phosphor \((Y_{3}Al_{2}Ga_{3}O_{12}:Nd^{3+}, Ce^{3+}, Cr^{3+})\) with multi-wavelengths (green light to NIR) and long (>10 h) persistent luminescence, which can be effectively excited by blue light illumination. The persistent radiance of the YAGG:Nd-Ce-Cr phosphor is over 2 times higher in the NIR region than that of the widely used ZnGa\(_2\)O\(_4\):Cr\(^{3+}\) red persistent phosphor at 60 min after ceasing the excitation due to an efficient persistent energy transfer from Ce\(^{3+}\) to Nd\(^{3+}\). Since its NIR persistent luminescence bands match well with the NIR-I and NIR-II bio-imaging windows, multi-functional applications not only in the in vivo bio-imaging but also in the drug delivery and cancerous chemotheraphy can be expected in the near future by using this material as a nano-sized bio-probe with surface modification connected with functional organic radical groups.

We would like to acknowledge Professor Bruno Viana who stayed at Kyoto University as a visiting professor for fruitful discussion on persistent phosphors and bio-imaging.