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We study the phase diagram of the Nambu-Jona-Lasinio model in the external magnetic field within the
mean-field approximation, taking into account the inhomogeneous chiral condensate. It is shown that there
appears a new type of the chiral condensate, endowed with two features of real kink crystal and dual chiral
density wave, in the magnetic field. We also show that there are first order phase transitions between
different inhomogeneous phases in the presence of magnetic field.
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I. INTRODUCTION

In the last decade, the possible appearance of the
inhomogeneous chiral phase in the QCD phase diagram
has been studied [1–27], where the quark condensate is
spatially modulated. For the analysis of the inhomogeneous
chiral phase, the chiral order parameter, MðxÞ ¼
−2G½hψ̄ψi þ ihψ̄ iγ5τ3ψi�, has been used. Using the effec-
tive models of QCD including the Nambu-Jona-Lasinio
model or the Schwinger-Dyson approach, there appears the
inhomogeneous chiral phase in the vicinity of the chiral
transition and its critical point is changed to be the Lifshitz
point [9]. The dual chiral density wave (DCDW) or the
real kink crystal (RKC) has been often used as a typical
condensate with one dimensional spatial modulation.
DCDW is a plane wave configuration, MðxÞ ¼ meiqz,
while RKC is a multisoliton configuration, MðxÞ ¼
2mν
1þ ffiffi

ν
p snð 2mz

1þ ffiffi
ν

p ; νÞ, without the phase degree of freedom.

In Ref. [8], it has been shown that one or two dimensional
modulation can be embedded in 1þ 3 dimensions by using
the Lorentz boost. The general solutions have been
obtained by using the NJL2 model in 1þ 1 dimensions
[10], which is called complex kink crystal. Higher dimen-
sional modulations has been also considered in some
studies [10,11,13,18,23].
In Refs. [4,8,9,14], it has been shown that the inhomo-

geneous chiral phase can appear at low temperature and
moderate density region as an intermediate phase prior to the
chiral transition. Such inhomogeneous phase has been also
studied in condensed matter physics, e.g., spin or charge
density wave and the Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) state of the superconductivity [28–31]. The appear-
ance of the inhomogeneous chiral phase in the QCD diagram
has been extensively studied by using the various
approaches, but there are few works about the external
field, isospin asymmetry, and current quark mass. These
effects should be very important in realistic situations,
especially for compact stars. The effect of the current quark
mass has been studied in some papers [8,19,20] and change
of the phase diagram has been figured out.

In this paper we consider the inhomogeneous chiral
phase in the presence of the external magnetic field to
figure out some magnetic properties. The effect of the
magnetic field is theoretically and phenomenologically
interesting and important, since quark matter is put into
the strong magnetic field in compact stars or in heavy-ion
collision process [32]. QCD in the external magnetic field
has recently attracted great attention [32–44], and it has
been shown that the magnetic field gives rise to various
phenomena such as chiral magnetic effect [33], magnetic
catalysis [34–38], magnetic inhibition [39–43]. Lattice
QCD simulations have been also performed to study the
properties of the QCD vacuum in response to the magnetic
field [39]; the effect of the magnetic field on the chiral
transition or deconfinement has been studied at chemical
potential μ ¼ 0.
The property of the inhomogeneous chiral condensate in

the magnetic field has been first studied by Frolov et al.
[24]. They have found that the DCDW phase develops in a
wide density region at T ¼ 0 under the magnetic field, and
that some peculiar behaviors of the amplitude and of the
wave vector can be seen due to the de Haas-van Alphen
effect [45,46]. However, they did not take into account the
possibility of the RKC suggested to be favored in the
absence of the magnetic field [8].
In this paper, we study the QCD phase diagram in the

Nambu-Jona-Lasinio (NJL) model [47–49] in the magnetic
field, taking into account both of the condensates. We
introduce a new type of the condensate called hybrid chiral
condensate (HCC), MðxÞ ¼ 2mν

1þ ffiffi
ν

p snð 2mz
1þ ffiffi

ν
p ; νÞeiqz, which

smoothly connects both DCDW and RKC by changing
the modulus ν or the wave vector q, and demonstrate that
the magnetic field favors the phase modulation: it is found
through the analysis of the thermodynamic potential that
the wave vector q takes a nonzero value in the presence of
the magnetic field, and thus DCDW and RKC coexist as
HCC in the weak magnetic field at moderate densities. We
shall see that the phase degree of freedom in HCC plays an
important role in the presence of the magnetic field. The
energy spectrum of the quark field becomes asymmetric in
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the presence of the magnetic field, which gives rise to
anomalous quark number [5]. Such spectral asymmetry is
closely connected with chiral anomaly and moves the
Lifshitz point to zero chemical potential μ ¼ 0.
We consider only the case of isospin symmetric matter

(μu ¼ μd) in the chiral limit(mc ¼ 0) for simplicity. In
Sec. II we briefly summarize the general framework to deal
with the inhomogeneous chiral phases in the presence of
the magnetic field. We introduce HCC in Sec. III. Spectral
asymmetry in the HCC phase and some topological
features are also discussed there. The phase diagram is
presented in Sec. IV in the B − μ plane. Section V is
devoted to concluding remarks. The proper-time regulari-
zation method is given in Appendix A. Some details about
spectral asymmetry are presented in Appendices B and C.
An expansion of the thermodynamic potential with respect
to B is given in Appendix D.

II. MODEL AND ENERGY SPECTRUM

Here we briefly summarize the general framework to get
the quark energy spectrum in the inhomogeneous chiral
phase in the presence of the magnetic field. First, we
consider the case of Nf ¼ Nc ¼ 1 for simplicity. The case
of three colors and two flavors is also calculated in the same
way. Taking the magnetic field B along, e.g., z axis, the
Lagrangian reads

L¼ ψ̄

�
−iγμDμ þ

1þ γ5

2
Mþ 1− γ5

2
M�
�
ψ −

jMj2
4G

; ð2:1Þ

within the mean-field approximation, where ψ is 4-
dimensional spinor, M is the order parameter of chiral
transition,MðxÞ ¼ −2G½hψ̄ψi þ ihψ̄iγ5τ3ψi�, Dμ is covar-
iant derivative Dμ ¼ ∂μ − ieAμ. We consider one dimen-
sional modulation along the z axis as well, MðxÞ ¼ MðzÞ.
It is assumed that magnetic field is uniform and parallel
to modulation of the order parameter. We shall see later
that this orientation should be most favorable due to the
topological aspects [5]. We combined Nickel’s method [8]
and Frolov’s method [24] for obtaining the energy
spectrum.
We choose the Landau gauge, Aμ ¼ ð0;AÞ;

A ¼ ð0; xB; 0Þ, and assume eB > 0. The Hamiltonian then
renders

HD ¼ α · Πþ γ0M
1þ γ5

2
þ γ0M� 1 − γ5

2
; ð2:2Þ

where Π is kinetic momentum, Πi ¼ −i∂i þ eAi.
The Hamiltonian satisfies the commutation relation,
½HD;−i∂y� ¼ ½HD;ðα⊥ ·Π⊥Þ2� ¼ 0, where α⊥ ¼ ðαx; αy; 0Þ
and Π⊥ ¼ ðΠx;Πy; 0Þ. The eigenspinor of −i∂y and
ðα⊥ · Π⊥Þ2 can be written as

ψn;k ¼
1ffiffiffiffiffiffi
2π

p ðeBÞ1=4eiky

0
BBB@

c1ðzÞun−1ðηÞ
ic2ðzÞunðηÞ
c3ðzÞun−1ðηÞ
ic4ðzÞunðηÞ

1
CCCA; ð2:3Þ

where η ¼ x
ffiffiffiffiffiffi
eB

p þ k=
ffiffiffiffiffiffi
eB

p
, unðηÞ is the Hermite function

[50] which satisfies ð ∂∂η þ iηÞunðηÞ ¼
ffiffiffiffiffiffi
2n

p
un−1ðηÞ and

ð ∂∂η − iηÞun−1ðηÞ ¼ −
ffiffiffiffiffiffi
2n

p
unðηÞ, and n ¼ 0; 1; 2;….

denotes the discrete Landau levels. Using this eigenspinor,
the Hartree-Fock equation HDψ ¼ Eψ is reduced to

0
BBBBB@

−i∂z 0 MðzÞ ffiffiffiffiffiffiffiffiffiffiffi
2eBn

p

0 i∂z

ffiffiffiffiffiffiffiffiffiffiffi
2eBn

p
M�ðzÞ

M�ðzÞ ffiffiffiffiffiffiffiffiffiffiffi
2eBn

p
i∂z 0ffiffiffiffiffiffiffiffiffiffiffi

2eBn
p

MðzÞ 0 −i∂z

1
CCCCCA

0
BBBBB@

c1ðzÞ
c2ðzÞ
c3ðzÞ
c4ðzÞ

1
CCCCCA

¼ E

0
BBBBB@

c1ðzÞ
c2ðzÞ
c3ðzÞ
c4ðzÞ

1
CCCCCA ð2:4Þ

for n ¼ 1; 2;…, and

�
i∂z M�ðzÞ
MðzÞ −i∂z

��
c2ðzÞ
c4ðzÞ

�
¼ E

�
c2ðzÞ
c4ðzÞ

�
ð2:5Þ

for n ¼ 0. The latter equation (2.5) resembles the
Bogoliubov-de Gennes (BdG) equation in 1þ 1
dimensions, while the former equation (2.4) is the same
form as the one without magnetic field. Thus the energy
spectrum for these equations can be obtained once the
corresponding one is given in the absence of the magnetic
field. The energy spectrum in the case of B ¼ 0 is simply
written as E ¼ λ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2⊥=λ2�

p
with the perpendicular

component of the momentum, p⊥ [8], where λþ is the
eigenenergy of the 1þ 1 dimensional Hartree-Fock
equation [10],

�
i∂z MðzÞ

MðzÞ� −i∂z

�
ψ ¼ λþψ ; ð2:6Þ

and λ− is defined as the eigenenergy for the complex
conjugate transformation: MðxÞ → MðxÞ�. Since Eq. (2.4)
has a similar form to the usual Dirac equation with
momentum p⊥, the eigenvalue can be simply obtained
by replacing p⊥ by

ffiffiffiffiffiffiffiffiffiffiffi
2eBn

p
. Thus we obtain the energy

spectrum for Eqs. (2.4) and (2.5);
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En;ζ ¼
8<
:

λζ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2eBn

λ2ζ

q
n ¼ 1; 2…:

λζ¼þ n ¼ 0;
ð2:7Þ

where λζ is asymmetric respect to λζ ¼ 0 if complex
conjugate symmetry is broken, MðxÞ ≠ MðxÞ� [5].
These results can be easily generalized to the case of

Nf ¼ 2. Assuming that the ground state is the charge
eigenstate,

M ¼ −2G½hψ̄ψi þ ihψ̄iγ5τ3ψi� ð2:8Þ

hψ̄iγ5τ1ψi ¼ hψ̄ iγ5τ2ψi ¼ 0; ð2:9Þ

the NJL Lagrangian with three colors and two flavors is
written as

L ¼ ψ̄

�
iγμDμ −M

1þ τ3γ5

2
−M� 1 − τ3γ5

2

�
ψ −

∣M∣2
4G

;

which is flavor diagonal, so that we can calculate the energy
spectrum for each flavor.

Thermodynamic potential is now written as

Ω½μ; T; B;ΔðzÞ� ¼ hjΔðzÞj2i
4G

− TNc

X
f

jefBj
2π

X
n;ζ

X
λζ

ln

2
642 cosh

0
B@λζ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2jefBjn

λ2ζ

r
− μ

2T

1
CA
3
75

¼ hjΔðzÞj2i
4G

− TNc

X
f

jefBj
2π

X
n;ζ

Z
dλ

�X
λζ

δðλ − λζÞ
�
ln

2
642 cosh

0
B@λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2jefBjn

λ2

q
− μ

2T

1
CA
3
75 ð2:10Þ

¼ hjΔðzÞj2i
4G

− TNc

X
f

jefBj
2π

X
n;ζ

Z
dλρζðλÞ ln

2
642 cosh

0
B@λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2jefBjn

λ2

q
− μ

2T

1
CA
3
75; ð2:11Þ

where ρζðλÞ is the density of states, ρζðλÞ ¼
P

λζ
δðλ − λζÞ.

III. HYBRID CHIRAL CONDENSATE IN THE
EXTERNAL MAGNETIC FIELD

We introduce the hybrid chiral condensate (HCC)
which has the properties of both of DCDW and
RKC,

MðzÞ ¼ 2mν

1þ ffiffiffi
ν

p sn

�
2mz

1þ ffiffiffi
ν

p ; ν

�
eiqz; ð3:1Þ

and is characterized by three parameters;m; q; ν. It is reduced
to the pureDCDWin one limit, ν → 1, while to the pureRKC
in the other limit, q → 0. Thus HCC is the minimum
configuration which includes both of DCDW and RKC.
The profile of HCC is represented schematically in Fig. 1.
Note that HCC is simply given by the product of the two types
of the condensate, but it satisfies the BdG equation within
the NJL2 model. In Refs. [10,11], Basar et al. have found
the general form of the condensate in 1þ 1 dimensions,

MðzÞ ¼ −meiqzA
σðmAzþ iK0 − iθ=2Þ
σðmAzþ iK0Þσðiθ=2Þ exp ½imAzð−iζðiθ=2Þ þ insðiθ=2ÞÞ þ iθη3=2� ð3:2Þ

characterized by four parameters; m; q; ν; θ, where
A ¼ Aðθ; νÞ ¼ −2iscðiθ=4; νÞndðiθ=4; νÞ, and σ and ζ

are Weierstrass sigma and zeta functions, and
η3 ¼ ζðiK0Þ. When θ ¼ 2K0ðνÞ, this condensate becomes
HCC. It can be easily seen that the energy spectrum in the
HCC phase λζ is uniformly shifted by ζq=2 from the RKC

one, λζ → λζ − ζq=2. Accordingly, the density of states is

given as

ρζðλÞ¼ρRKCðλ−ζq=2Þ

¼1

π

jðλ−ζq=2Þ2þm2cjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððλ−ζq=2Þ2−m2Þððλ−ζq=2Þ2−m2ν0Þ

p ; ð3:3Þ

by using the density of states for RKC, ρRKCðλÞ given
in [10], where c ¼ ð1 − ν − 2EðνÞ=KðνÞÞ=ð1þ ffiffiffi

ν
p Þ2,

ν0 ¼ ð1 − ffiffiffi
ν

p Þ2=ð1þ ffiffiffi
ν

p Þ2 and EðνÞ;KðνÞ are the com-
plete elliptic integrals.
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Putting the density of states (3.3) in Eq. (2.11), we have the thermodynamic potential, which is decomposed into the
vacuum contribution, the medium contribution and the thermal contribution:

Ω½μ; T; B;m; ν; q� ¼ m2

4G

�
1 −

EðνÞ
KðνÞ

�
þΩvac þΩμ þ ΩT ð3:4Þ

Ωvac ¼ −
1

2
Nc

X
f

jefBj
2π

X
n;ζ

Z
dλρζðλÞ

����λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2jefBjn

λ2

r ���� ð3:5Þ

Ωμ ¼ −
1

2
Nc

X
f

jefBj
2π

X
n;ζ

Z
dλρζðλÞ

�����λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2jefBjn

λ2

r
− μ

����−
����λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2jefBjn

λ2

r ����
�

ð3:6Þ

ΩT ¼ −TNc

X
f

jefBj
2π

X
n;ζ

Z
dλρζðλÞ ln

"
1þ exp

 
−
jλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2jefBjn

λ2

q
− μj

T

!#
: ð3:7Þ

Here the vacuum contribution Ωvac is divergent, so that we use the proper time regularization.

Ωvac ¼ Nc

X
f;ζ

jefBj
16π3=2

Z
∞

1

dτ

τ3=2
cothðτjefBjÞ

Z
dλρζðλÞ exp ð−τλ2Þ

IV. SPECTRAL ASYMMETRY AND ANOMALOUS
QUARK NUMBER DENSITY

The fermion number is given by

NB ¼ −
1

2
ηH þ VNc

X
f

jefBj
2π

X
n;ζ

Z
dλρζðλÞ

×

�
θðEÞ

1þ eðE−μÞ=T
þ θð−EÞ
1þ e−ðE−μÞ=T

�
; ð4:1Þ

where the first term is the fermion number from spectral
asymmetry [51] characterized by the Atiyah-Patodi-Singer
η-invariant [51,52] which is written as

ηH ¼ VNc

X
f

jefBj
2π

�X
λ>0

1 −
X
λ<0

1

�

¼ VNc

X
f

jefBj
2π

lim
s→þ0

Z
∞

−∞
dλρþðλÞsignðλÞjλj−s; ð4:2Þ

in our case. Here, we have used the fact that spectral
asymmetry appears only in the spectrum of the lowest
Landau level (n ¼ 0), and the higher Landau levels (n ≠ 0)
have no contribution to spectral asymmetry. Note that the
spectrum becomes symmetric without magnetic field. The
second term in Eq. (4.1) counts the number of states for
the given μ with the Fermi-Dirac distribution functions and
is usual number density: all the Landau levels contribute to
this term. Considering quark number density is related to

the thermodynamic potential through the thermodynamic
relation (3.4): NB=V ¼ −∂Ω=∂μ, we can explicitly verify
that this derivative of thermodynamic potential and
Eq. (4.1) are equivalent by using Eq. (3.4).
The density of states of the lowest Landau level (LLL)

is schematically shown in Fig. 2. When the Hamiltonian
is symmetric for complex conjugation operation
MðxÞ → MðxÞ�, the spectrum is symmetric. So in the case
of RKC or homogeneous condensate, number density
becomes usual number density. In the case of HCC or
DCDW, the contribution of η-invariant is nonzero in the
presence of the magnetic field. The η-invariant has been
evaluated to give

ηH ¼ −VNc

X
f

jefBj
2π

q
π

ð4:3Þ

for DCDW in the case of −mþ q=2 < 0 [5]. It has a
topological origin, and is equal to the expression given by
chiral anomaly [53] (see Appendix B). It is straightforward
to evaluate the η-invariant for the case of HCC
(Appendix C),

FIG. 1 (color online). Profile of HCC on the base manifold,
which is the direct product of the horizontal z axis and the vertical
chiral circle given by the scalar and pseudoscalar condensates.
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ηH ¼ −VNc

X
f

jefBj
2π

�
q
π
− Nmidgap

�
; ð4:4Þ

for the case of −mþ q=2 < 0, where the second term is the
contribution from the midgap states. In particular, for
m > q=2 > mν0, it equals to the number of nodes of
HCC, Nnodes ¼ m=½ð1þ ffiffiffi

ν
p ÞKðνÞ�, independent of q.

Note that this is the same form as in the DCDW phase,
except the number of nodes of the condensates. For the
general case, the η-invariant can be written as

ηH ¼ VNc
P

f
jefBj
2π ½− q

π þ 2m
π ReðFðq=2; ν0Þ þ cFðq=2; ν0Þ−

Eðq=2; ν0ÞÞ�, where Fðx; ν0Þ andEðx; ν0Þ are the incomplete
elliptic integrals of first and second kind. Note that ηH is
reduced to the DCDWone (4.3) as q → 0, where the energy
spectrum is reduced to the one of RKC and symmetric
about zero.
For low chemical potential, mþ q=2 > μ, usual number

density is zero, and the inhomogeneous phase is forbidden
by the Lorentz symmetry of the vacuum. On the other hand,
spectral asymmetry gives nonzero number density, and the
appearance of the inhomogeneous phase is allowed in the
presence of the magnetic field. The contribution of spectral
asymmetry is taken in the thermodynamic potential as the
term, μηH=2. Since this term includes the linear term in q
and the order parameters are determined by the stationary
conditions for the thermodynamical potential, q ¼ 0 is
never the optimal point. In other words the RKC phase
itself does not appear in the QCD phase diagram in the
magnetic field.
In [5], spectral asymmetry has been also calculated using

the derivative expansion and ηH ¼ Nc
P

fjefjB · q=2 has
been obtained for DCDW. Consequently the q ·B term
should appear in the thermodynamic potential by way of
the thermodynamic relation, and q is favored to be parallel
to B. For HCC, the derivative expansion cannot be directly
applied because the condensate has nodes and the premise
that the amplitude is much larger than the wave vector
breaks down. However, we can manage to evaluate the
η-invariant by separating the small nodal region to find

ηH ¼ Nc
P

f jefjB · q=2þ Nnodes for mν0 < q=2, which
suggests q is most favored to be parallel to B as well in
the HCC phase.

V. PHASE DIAGRAM

For obtaining the phase diagram, we numerically search
the minima of the thermodynamic potential with respect to
the order parameters; m, q and ν for given values of the
magnetic field B and chemical potential μ. In this paper,
we show the phase diagram at zero temperature. We use
GΛ2 ¼ 6.35 and Λ ¼ 660 MeV which reproduce fπ ¼
93 MeV and the constituent quark mass ≃330 MeV in
the vacuum.

A. RKC phase in the magnetic field

First, we consider the effect of the magnetic field on the
RKC phase. Without the magnetic field, the RKC phase is
energetically more favorable than the DCDW phase in the
framework of the NJL model [8]. For RKC, the order
parameter MðzÞ is real and there appears no spectral
asymmetry.
The phase diagram of the RKC phase is essentially

unchanged, while, as we shall see later, that of the DCDW
phase is significantly changed in the presence of the
magnetic field. Since the chiral condensate is neutral,
one may expect that there is little effect of the magnetic
field on the inhomogeneous chiral phase. Although it holds
for the RKC phase, some anomalous effect coming from
spectral asymmetry plays an important role in the DCDW
phase. Figure 3 shows the phase diagram of the RKC phase
in the presence of the magnetic field. We can see some
oscillation of the phase boundary with respect to the
magnetic field, which comes from the Landau quantization
and related to the de Haas-van Alphen effect [45,46]. This
oscillation is also observed in the case of the homogeneous
chiral condensate within the NJL model [54].
Figure 4 shows the order parameters as functions of

chemical potential in different magnetic fields. At

(a) (b) (c)

FIG. 2 (color online). The behavior of ρþðλÞ. E1 ¼ −mþ q=2, E2 ¼ −mν0 þ q=2, E3 ¼ mν0 þ q=2, E4 ¼ mþ q=2. DCDW has the
gap between λ ¼ −mþ q=2 and λ ¼ mþ q=2, and has no midgap states. The spectrum of DCDW is asymmetric with respect to 0. The
spectrum of RKC is symmetric and has the midgap states. In the case of HCC, spectrum is asymmetric and has the midgap states.
(a) DCDW ðm ¼ 0.5; ν ¼ 1; q ¼ 0.4Þ, (b) RKC ðm ¼ 0.5; ν ¼ 0.3; q ¼ 0Þ, and (c) HCC ðm ¼ 0.5; ν ¼ 0.3; q ¼ 0.4Þ.
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ffiffiffiffiffiffi
eB

p ¼ 60 MeV, the order parameters behave like con-
tinuous functions of the chemical potential, and are very
similar to those in the absence of the magnetic field. Atffiffiffiffiffiffi
eB

p ¼ 120 MeV, the order parameters exhibit some
discontinuous jumps, since the thermodynamic potential
has some local minima as a function of m and ν in this
region.

B. HCC phase in the magnetic field

Here, we consider the phase diagram by introducing the
HCC, which includes both features of DCDW and RKC,
and use the following approximation instead of fully
evaluating the thermodynamic potential. When the mag-
netic field is much weak, the approximation

ΩðBÞ≃ ΩðB ¼ 0Þ þ eBΩð1Þ ð5:1Þ

is valid, where the first order correction is written in

eBΩð1Þ ¼ 1=2ðΩLLL;q − ΩLLL;−qÞ ð5:2Þ

(See Appendix D). This term is an odd function of q, and
vanishes at q ¼ 0, so that this term does not appear in the
thermodynamic potential for the RKC phase. Only LLL
contributes to Ωð1Þ, while the higher Landau levels (n ≠ 0)
and LLL contribute to the second and higher order terms.
We checked the validity of this expansion for some eB
by comparing the numerical results with Eq. (5.1) and
the full expression Eq. (3.4). Consequently we have
found that the phase structure is almost unchanged forffiffiffiffiffiffi
eB

p
< 0.2Λ≃ 120 MeV.

The magnetic properties of the DCDW phase in the
external magnetic field has been studied by Frolov et al.
[24]. They have shown that the DCDW phase is always
favorable than that of the homogeneous chiral condensate
in the presence of B. As is already stated in the previous
section, it is shown that the mechanism of superiority of the
DCDW phase is related to spectral asymmetry of LLL
states.
The phase diagram is shown in Fig. 5. In this figure, A

denotes the weak DCDW phase, B the HCC phase, C the
strong DCDW phase, and D the chiral-restored phase. The
triple points appear at ðμ; ffiffiffiffiffiffi

eB
p Þ ∼ ð320 MeV; 110 MeVÞ

and ðμ; ffiffiffiffiffiffi
eB

p Þ∼ ð350MeV;30MeVÞ. For the limit eB → 0,
the weak DCDW phase is reduced to the homogeneously
chiral-broken phase and the HCC phase to the RKC phase.
In the eB ≠ 0 region, the order parameter is always finite,
and there is no homogeneously chiral-broken phase nor the
RKC phase if the magnetic field has nonzero strength. The
phase boundary between the chiral-broken and restored
phases moves to higher μ as the magnetic field becomes
stronger. Thus the magnetic field expands the chiral-broken
phase mainly due to the phase degree of freedom.
Figure 6 shows the energy surface of the thermodynamic

potential in the ξ − q plane, wherem is set to be the optimal
value for given ξ; q with ξ ¼ 16ð1−1=νÞ. Without the
magnetic field, there are two local minima corresponding
to DCDW and RKC in the energy surface of the thermo-
dynamic potential; RKC is energetically more favored than

(a) (b)

FIG. 4 (color online). Order parameters as functions of chemical potential in different magnetic field, where k is the wave vector of
RKC: k ¼ 2m=½ð1þ ffiffiffi

ν
p ÞKðνÞ�. (a) ffiffiffiffiffiffi

eB
p ¼ 60 MeV and (b)

ffiffiffiffiffiffi
eB

p ¼ 120 MeV.
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FIG. 3. Phase diagram for the RKC phase.
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DCDW. The minimum with the homogeneous chiral
condensate is smoothly changed to that of RKC, so this
phase transition is of the second order. There is a com-
petition between RKC and DCDW, and there appears no
phase in which both phase and amplitude modulations are
large. Once turning on the magnetic field, both minima of
RKC and DCDW move to the larger q direction, which is
caused by spectral asymmetry.
It has been discussed that the mechanism of emergence

of the inhomogeneous chiral phase is the Fermi surface
nesting [4]. Complete nesting is realized in 1þ 1 dimen-
sions, when the wave number of condensate kc and the
Fermi wave number kF have the relation 2kF ¼ kc. In 1þ 3
dimensions, the nesting effect is incomplete, but its
reminiscence is left in the DCDW phase [4]: kc is large,
kc ∼Oð2kFÞ. The situation is a little changed in the HCC
phase. Using an approximation MðzÞ≃m cosðkzÞeiqz,
we can decompose the order parameter into two
different components: MðzÞ ¼ m

2
ðeiðqþkÞz þ eiðq−kÞzÞ ¼

m
2
ðeiqþz þ eiq−zÞ. The qþ and q− cannot satisfy the nesting

relation simultaneously if k ≠ 0 and q ≠ 0. Thus HCC
cannot satisfy the nesting relation, and there is no HCC
phase without the magnetic field. In the magnetic field,
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FIG. 6 (color online). Energy surface of thermodynamic potential at different eB and different μ. (a)
ffiffiffiffiffiffi
eB

p ¼ 0; μ ¼ 0.48Λ,
(b)

ffiffiffiffiffiffi
eB

p ¼ 0; μ ¼ 0.485Λ, (c)
ffiffiffiffiffiffi
eB

p ¼ 0; μ ¼ 0.49Λ, (d)
ffiffiffiffiffiffi
eB

p ¼ 0; μ ¼ 0.5Λ, (e)
ffiffiffiffiffiffi
eB

p ¼ 0.18Λ; μ ¼ 0.48Λ,
(f)

ffiffiffiffiffiffi
eB

p ¼ 0.18Λ; μ ¼ 0.485Λ, (g)
ffiffiffiffiffiffi
eB

p ¼ 0.18Λ; μ ¼ 0.49Λ, and (h)
ffiffiffiffiffiffi
eB

p ¼ 0.18Λ; μ ¼ 0.5Λ.
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FIG. 5 (color online). Phase diagram at T ¼ 0. A: Weak DCDW
phase B: HCC phase C: Strong DCDW phase D: Chiral-restored
phase. When eB → 0, the weak DCDW phase becomes the
homogeneously chiral-broken phase smoothly, and the HCC
phase becomes the RKC phase. The filled circles represent triple
points.
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spectral asymmetry contributes to the emergence of the
HCC phase. Note that nonzero value of q is favored by
some topological effects in this case, different from the
nesting effect.
The order parameters are shown as functions of chemical

potential in Fig. 7. Under no magnetic fields q is zero
everywhere, so that there are the homogeneously chiral-
broken phase (ξ ¼ 0), the RKC phase (ξ ≠ 0), and the
chiral-restored phase (ξ ¼ 1) whose result is consistent
with Nickel’s result.
With increasing the magnetic field the DCDW phase

(ξ ¼ 0; q ≠ 0), the HCC phase (ξ ≠ 0; q ≠ 0) and the
chiral-restored phase (ξ ¼ 1) appear. In the low μ region,
q is small compared to other order parameters, so we call
the DCDW phase in the low μ region “weak DCDW
phase.” We call the DCDW phase in the high μ region
“strong DCDW phase,” which is similar to the usual
DCDW phase with the wave vector q being sufficiently
large. In other words we may say that the weak DCDW
phase is driven by the topological effect due to spectral
asymmetry, while the strong DCDW phase by the nesting
effect. We can see the second order phase transition
between the weak DCDW phase to the HCC phase, where
the order parameters are continuously changed. At the
phase transition between the HCC phase to the strong
DCDW phase, the order parameters change discontinu-
ously. Thus this phase transition is of the first order.
As we have already seen in the RKC phase, the order

parameters should exhibit the de Haas-van Alphen effect

[45,46] as a function of the magnetic field. In our results,
the corresponding effect cannot be seen, since we have
discarded the contribution of the higher Landau levels in
our approximation. If full order contributions of the
magnetic field is taken into account, the de Haas-van
Alphen effect can appear. Anyway, the oscillation of the
order parameter should be very small at the weak B region,
where one may expect the HCC phase. On the other hand,
only the DCDW phase appears in the high B region, and the
phase diagram becomes the same with Frolov’s results [24].

VI. SUMMARY AND CONCLUDING REMARKS

In this paper, we have studied chiral phase transition in
the external magnetic field B, taking account of a new type
of the inhomogeneous condensate called hybrid chiral
condensate (HCC). HCC is then a self-consistent solution
within the NJL model under the mean-field approximation,
and exhibits both features of DCDW and RKC. We have
seen that the quark energy spectrum becomes asymmetric
about zero due to the phase degree of freedom of DCDW,
and there appear the midgap states due to the solitonic
property of RKC. Generally speaking, spectral asymmetry
plays very important roles for appearance of inhomo-
geneous phase in the magnetic field [5]. In some case,
the contribution of spectral asymmetry is equivalent to
manifestation of chiral anomaly. We have explicitly evalu-
ated the Atiyah-Patodi-Singer η-invariant for the case of
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FIG. 7 (color online). Order parameters as functions of chemical potential in different magnetic field. From left to right: (a) eB ¼ 0

(b)
ffiffiffiffiffiffi
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p ¼ 060 MeV (c)
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HCC. The energy spectrum has a gap and ηH is given by the
sum of the one given by the states above and below the gap
and the one given by the midgap states; the former does not
depend on the modulus parameter in HCC to give the same
form as in the DCDW case, and the latter is related to the
number of nodes of HCC.
We have studied the phase diagram of the inhomo-

geneous chiral phase in the μ − B plane at T ¼ 0 for two
cases. First we have explored the pure RKC phase and
found that the phase diagram is little affected by the
magnetic field, while some oscillation due to the de
Haas-van Alphen effect can be slightly observed. Next,
we have discussed the full phase diagram, taking into
account HCC. Since spectral asymmetry implies that the
phase modulation is always favored in the magnetic field,
independent of μ, the phase diagram consists of three
regions besides the chiral-restored phase: the strong
DCDW phase, the weak DCDW phase, and the HCC
phase. The strong DCDW phase resembles the pure DCDW
phase, but the appearance of the weak DCDW phase is
attributed to the anomalous quark number caused by
spectral asymmetry; actually they disappear as the mag-
netic field is turned off. Note that pure RKC phase never
appears once the magnetic field is turned on, and is
replaced by the HCC phase.
In this paper, we have considered only the flavor

symmetric case, μu ¼ μd for simplicity, while u and d
quarks should have different number in a realistic situation
due to different electric charge. Actually cold catalyzed
matter develops inside neutron stars, where charge neutral-
ity and chemical equilibrium should be established. Thus
nonzero isospin chemical potential (μI ≡ μu − μd ≠ 0) is
very important in the magnetic field. In Refs. [21,22,25,26],
they have studied the phase diagram taking into account
isospin chemical potential in the absence of the mag-
netic field.
We have also considered cold quark matter (T ¼ 0),

while it may be interesting to study how thermal effect
modifies our findings. Actually it has been recently dis-
cussed that the external magnetic field suppresses chiral
condensates at finite temperature [39,40,42]. This subject is
to be discussed elsewhere.
We have discussed the phase diagram of the inhomo-

geneous chiral phase in the chiral limit mc ¼ 0, while it is
known that the current quark mass mc suppresses the
inhomogeneous phase [8,19,20,23]. For the case with the

magnetic field it has been supposed that the effect of current
quark mass defeats the effect of spectral asymmetry and
that chiral condensate is homogeneous at low μ and low B
region [5].
Finally it should be worth mentioning that HCCmay have

some implications in the context of the FFLO state of
superconductivity [30,31]. Very recently an evidence of the
LO state has been reported, and the Andreev bound states are
emphasized as a hallmark [55]. Usually this subject has been
separately discussed for the FF state or the LO state. Since it
has been shown that there is a duality relation between
superconductivity and spontaneous breaking of chiral sym-
metry in 1þ 1 dimensions [27,56], the FFLO state with one
dimensional modulation may be similarly treated to our
subject; the Andreev bound states then correspond to the
midgap states. Note that HCC satisfies the BdG equation and
can give the pairing function connecting the LO and FF
states smoothly. The coexistence of the FF and LO states in
the quasi-one dimensional system has been discussed as an
appearance of time crystal phase in which time translation
symmetry is spontaneously broken [57].

ACKNOWLEDGMENTS

We thank N. Yamanaka and R. Yoshiike and T.-G. Lee
for useful discussions. This work is partially supported by
Grants-in-Aid for Scientific Research on Innovative Areas
through No. 24105008 provided by MEXT.

APPENDIX A: REGULARIZATION OF Ωvac

Since Ωvac is divergent, we apply the proper time
regularization for Ωvac. At μ ¼ T ¼ 0, thermodynamic
potential is written in

Ωvac ¼ −
1

2
Nc

X
f

jefBj
2π

X
n;ζ

Z
dp4

Z
dλρζðλÞ ln ðE2 þ p2

4Þ:

For ReA > 0 the equation,

1

Ax ¼
1

ðx − 1Þ!
Z

∞

0

dττx−1e−τA; ðA1Þ

holds.
Thermodynamic potential then becomes

Ωvac ¼ Nc

X
f

X
n;ζ

jefBj
8π3=2

Z
∞

−∞
dλρζðλÞ

Z
∞

0

dτ

τ3=2
exp ½−τðλ2 þ 2jefBjnÞ�

→ Nc

X
f

X
n;ζ

jefBj
8π3=2

Z
∞

−∞
dλρζðλÞ

Z
∞

1=Λ2

dτ

τ3=2
exp ½−τðλ2 þ 2jefBjnÞ�

¼ Nc

X
f;ζ

jefBj
16π3=2

Z
∞

1=Λ2

dτ

τ3=2
cothðτjefBjÞ

Z
∞

−∞
dλρζðλÞ exp ð−τλ2Þ:
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APPENDIX B: SOME REMARKS ON
SPECTRAL ASYMMETRY

Spectral asymmetry is closely related to axial anomaly in
the specific case [5]. In the effective theory of mesons,
anomalous contribution coming from the Wess-Zumino-
Witten (WZW) term is given by [53]

SWZW ¼ e
4π2fπ

Z
d4xμB · ∇π0

fπ ¼ σ2 þ ðπ0Þ2 ðB1Þ

in the presence of magnetic field and chemical potential.
Our DCDW configuration may correspond to

σ þ iπ0 ¼ fπeiqx;

in this context. For this configuration, the WZW term reads

SWZW ¼ eμ
4π2

Z
d4xB · q ðB2Þ

Accordingly the anomalous number density is given by

n ¼ e
4π2

B · q; ðB3Þ

which is the same form as Eq. (4.3). This implies that B∥q
is always favorable.

APPENDIX C: SPECTRAL
ASYMMETRY FOR HCC

Consider the LLL. The η invariant is then given by

ηH ¼ VNc

X
f

jefBj
2π

lim
s→þ0

Z
∞

−∞
dλρþðλÞsignðλÞjλj−s; ðC1Þ

with the density of states Eq. (3.3).
For the case, q=2 < m, for simplicity, the integral (C1) is

divided into two parts:

�Z
E1

−∞
þ
Z

E3−q=2

E2−q=2
þ
Z

∞

E4

�
dλρþðλÞsignðλÞjλj−s ¼ m

Z
∞

1

dx
1

π

x2 þ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 − 1Þðx2 − ν0Þ

p ��
mxþ q

2

�
−s

−
�
mx −

q
2

�
−s
�
:

þ Nmidgap: ðC2Þ

The second integral in Eq. (C2) is the contribution of the midgap states,

Nmidgap ¼
Z

E3

E2

dλρþðλÞsignðλÞ:

For mν0 < q=2, Nmidgap is equal to the number of nodes of HCC: Nnodes ¼ m=½ð1þ ffiffiffi
ν

p ÞKðνÞ�. Using the incomplete
elliptic integrals, Nmidgap is written in 2m

π ReðFðq=2;ν0ÞþcFðq=2;ν0Þ−Eðq=2;ν0ÞÞ for mν0 > q=2.
In the following, we consider the first term. Expanding it with respect to q, we have

−2m
Z

∞

1

dx
1

π

x2 þ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 − 1Þðx2 − ν0Þ

p �
sðmxÞ−ðsþ1Þ q

2
þ 1

6
sðsþ 1Þðsþ 2ÞðmxÞ−ðsþ3Þ

�
q
2

�
2

þOðq5Þ
�
: ðC3Þ

Since other terms become zero as s → 0, we, hereafter, evaluate only the first term,

−sqm−s
Z

∞

1

dx
1

π

x2 þ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 − 1Þðx2 − ν0Þ

p x−ðsþ1Þ: ðC4Þ

Transforming the integration variable x by t ¼ x−2, we have

− sqm−s 1

2π

Z
1

0

dtts=2−1ð1 − tÞ−1=2ð1 − ν0tÞ−1=2ð1þ ctÞ

¼ −sqm−s 1

2π

Γðs=2ÞΓð1=2Þ
Γðð1þ sÞ=2Þ Fð1=2; s=2; ð1þ sÞ=2; ν0Þ

þ ðregular terms in sÞ; ðC5Þ

in terms of the Gauss hypergeometric function F. Using the
relation, Γðs=2Þ ¼ 2=sΓðs=2þ 1Þ, and taking the limit
s → 0, we have

−
q
π
Fð1=2; 0; 1=2; ν0Þ ¼ −

q
π
: ðC6Þ

Thus the η invariant can be given as

ηH ¼ −VNc

X
f

jefBj
2π

�
q
π
− Nmidgap

�
; ðC7Þ
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for the case, q=2 < m. It is easy to evaluate the η-invariant
for q=2 > m.
Figure 8 shows the behavior of the number of the

occupied states in LLL, NLLL, which consists of the normal
baryon number density and η-invariant. For DCDW, the

value of NLLL in the plateau is independent ofm. For HCC,
the value of NLLL in the plateau depends onm and ν. When
the number of nodes is fixed, the value of NLLL in the
plateau depends on only q.

APPENDIX D: EXPANSION OF THERMODYNAMIC POTENTIAL WITH
RESPECT TO THE MAGNETIC FIELD

Before summation over the Matsubara frequencies, ωl ¼ ð2nþ 1ÞπT, the thermodynamic potential can be written as

Ω1p ¼ −
1

2
TNc

X
f

jefBj
2π

X
l;n;ζ

Z
dλρζðλÞ ln

�
ω2
l þ

�
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2jefBjn

λ2

r
− μ

�
2
�

¼ −
1

2
TNc

X
f

jefBj
2π

X
l;n;ζ

Z
dλρζðλÞ

�
1 −

1

2
δn;0

�
ln ½ðωl − iμÞ2 þ λ2 þ 2jefBjn�

−
1

4
TNc

X
f

jefBj
2π

X
l

Z
dλ½ρþðλÞ − ρ−ðλÞ� ln ½ω2

l þ ðλ − μÞ2�

¼ Ωeven þ Ωodd: ðD1Þ

Only LLL contributes to Ωodd that is the first order term of q.

Ωeven ¼ −
1

2
TNc

X
f

jefBj
2π

X
l;n;ζ

Z
dλρζðλÞ

�
1 −

1

2
δn;0

�
ln ½ðωl − iμÞ2 þ λ2 þ 2jefBjn�

¼ −
1

2
TNc

X
f

jefBj
2π

X
l;n;ζ

Z
dλρζðλÞ

�
1 −

1

2
δn;0

�Z
∞

0

dτ
τ
e−τ½ðωl−iμÞ2þλ2þ2jefBjn� ðD2Þ

¼ −
1

2
TNc

X
f

jefBj
2π

X
l;ζ

Z
dλρζðλÞ

Z
∞

0

dτ
τ
coth ð−τjefBjÞe−τ½ðωl−iμÞ2þλ2�: ðD3Þ

Since x cothðxÞ is the even function of x, Ωeven contains only even order terms of B.
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FIG. 8 (color online). The behavior of NLLL=V as a function of μ for different conditions. (a) DCDW ðq ¼ const.Þ and (b) HCC (the
number of nodes is fixed).
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