<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>題目</td>
<td>Semigroup ringのquotient ring</td>
</tr>
<tr>
<td>著者</td>
<td>石田 (正典)</td>
</tr>
<tr>
<td>引用</td>
<td>代数幾何学シンポジウム記録 有限体論におけるエントロピー理論</td>
</tr>
<tr>
<td>出版日</td>
<td>1977</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/201928</td>
</tr>
<tr>
<td>属する学部</td>
<td>理工部</td>
</tr>
<tr>
<td>文献種類</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>出版者</td>
<td>Kyushu University</td>
</tr>
</tbody>
</table>
Semigroup ring の quotient ring

石田正典

N を rank r > 0 の free Z-module, M をその dual すなわち Hom_Z(N, Z) とする。M を任意の体とするとき, M 上の affine torus embedding \(X_{\chi} (\dim X = r) \) は, cone \(\mathcal{N}_R (= N \otimes R) \) すなわち \(R_0 a_1 + \cdots + R_0 a_n \) \((a_1, \ldots, a_n \in N)\) により \(X_{\chi} = \text{Spec}(R[M \cap \chi]) \) と書ける。但し \(R_0 = \{ c \in R ; c > 0 \} \), \(M \cap \chi = \{ x ; \langle x, a \rangle \geq 0 \ \forall a \in \chi \} \) である。\(X_{\chi} \) には torus \(T = \text{Spec}(R[M]) \subset X_{\chi} \) が自然に作用している。\(\Pi(\chi) = \{ \text{faces of } \chi \} \) とおくと次の関係がある。

\[
\Psi \quad \sigma \quad \psi
\]

\[
\sigma \quad \rightarrow \quad S_\sigma = R[M[\pi \cap \sigma^+]] \quad \rightarrow \quad \text{Spec}(S_\sigma)
\]
但し $\sigma^+ = \{ x \in M \cap \theta \mid \langle x, a \rangle = 0 \quad \forall a \in \sigma \} \neq \emptyset$
ある。又 $\dim \sigma + \dim S_\sigma = 1 \quad (\forall \sigma \in \Gamma(\pi))$
となる。ている。

[定義] $\Gamma(\pi)$ の部分集合 Σ について

$\Sigma : \begin{cases}
\text{star closed} \quad \Sigma \ni \sigma, \; \Gamma(\pi) \ni \tau, \; \tau > \sigma \Rightarrow \Sigma \ni \tau \\
\text{star open} \quad \Sigma \ni \sigma, \; \Gamma(\pi) \ni \tau, \; \sigma > \tau \Rightarrow \Sigma \ni \tau
\end{cases}$

locally star closed $\Sigma \ni \rho, \; \Gamma(\pi) \ni \tau, \; \rho > \tau > \sigma \Rightarrow \Sigma \ni \tau$

このとき次の関係がある。

$(\text{star closed}) \iff (\text{reduced homog.}) \iff (\text{T-stable})$

$\Sigma \ni \sigma \Rightarrow S_\Sigma = k[\bigvee_{\sigma \in \Sigma} M_\sigma \cap \pi^\vee] \rightarrow \text{Spec}(S_\Sigma)$

[問題] S_Σ がいつ Cohen-Macaulay もうあらう
は Gorenstein となるか。
star closed subset \(\Sigma \subset \Gamma(\mathcal{X}) \) を fix し \(\Sigma = \bigcup \Sigma_i \), \(\Sigma_i = \{ \sigma \in \Sigma, \dim \sigma = i \} \) とする。

\[
K_i = \bigoplus_{\sigma \in \Sigma_i} K[M \wedge \pi^\mathcal{X} \wedge \sigma^+]
\quad (i = 0, \ldots, n)
\]

とおくと \(K^i \) は free \(\mathbb{Z} \)-module \(M \) に grade をもつ \(S_{\Sigma} \)-module である。 (boundary map \(\delta^i \) を

\[
\delta^i : K^i \rightarrow K^{i+1}
\]

により定義する。 但し \([\sigma, \tau] \) は各 \(\sigma \in \Gamma(\mathcal{X}) \) に一つの orientation を定めたときの結合係数 (±1 は 0) で \(Q_{\sigma}^\mathcal{X} \) は quotient map

\[
K[M \wedge \pi^\mathcal{X} \wedge \sigma^+] \rightarrow K[M \wedge \pi^\mathcal{X} \wedge \tau^+]
\]

[定理] \(K^* = (\cdots \rightarrow 0 \rightarrow K^0 \xrightarrow{\delta^0} K^1 \rightarrow \cdots \xrightarrow{\delta^{n-1}} K^n \rightarrow 0 \rightarrow \cdots) \)

は \(S_{\Sigma} \) の dualizing complex である。
dualizing complexについてくわしくはR. Hartshorne [Residues and Duality]参照。少なくとも体上essentially of finite typeの環には存在し、noetherian ring AがSpec A connected で R'が Aのdualizing complexとするとき、

\[A : \text{C. M.} \iff \exists d, \; H^i(R') = 0 \; i \not= d \]

\[A : \text{Gorenstein} \iff \exists d, \; H^i(R') = 0 \; i \not= d \]

\[H^d(R') \text{: rank 1 proj. } A \text{-module} \]

\[H^i(K') \text{が } M \text{-graded } S_\Sigma \text{-moduleであることに注意すると次の系を得る。} \]

[系I]

\[S_\Sigma : \text{C. M.} \iff \exists d, \; H^i(K') = 0 \; i \not= d \]

\[S_\Sigma : \text{Gorenstein} \iff \exists d, \; H^i(K') = 0 \; i \not= d \]

\[H^d(K') \cong S_\Sigma \]

locally star closed subset \(\Pi \) の \(\Phi = \bigcup_i \Phi_i \), \(\Phi_i = \{ \xi \in \Phi; \dim \xi = i \} \) に対して

\[C^i(\Phi, R) = \bigoplus \xi \in \Phi_i R[\xi] \]

238
とおき

\[C^i(\mathfrak{m}, k) \xrightarrow{\delta^i} C^{i+1}(\mathfrak{m}, k) \]

\[\Sigma [\alpha, r] [\tau] \]

で \(k \)-linear homomorphism \(\delta^i \) を定義すると

\(C^i(\mathfrak{m}, k) \) は complex となることが証明できる。

\(\Sigma \ni p \) に対して \(\Sigma p = \{ \sigma \in \Sigma ; \ p > \sigma \} \) とおくと \(\Sigma p \) は \(\Gamma(\pi) \) の locally star closed subset である。

さて \(K^i \) は \(M \)-graded \(S_\Sigma \)-module と \(\delta^i : K^i \rightarrow K^{i+1} \) は degree 0 の homomorphism であるから各 \(m \leq M \) に対して complex \(K^i \) の \(m \)-factor \(K^i_m \) を考えることができる。

[命題] \(m \leq M \wedge \pi \) 又は \(m \leq M \wedge \pi \geq \) \(p = \pi \wedge m^+ \in \Sigma \) であれば \(K^i_m \) は 0-complex であり \(m \leq M \wedge \pi \) かつ \(p = \pi \wedge m^+ \in \Sigma \) であれば \(K^i_m \) は \(C^i(\Sigma p, k) \) と同型である。

これにより系 1 の \(S_\Sigma : C.M. \) の条件は、次
のようになることが考えられる。

【系2】 S_{Σ} が Cohen-Macaulay であるための必要かつ十分条件は ある整数 d があり，$H^i(\Sigma \rho, K) = 0$ がすべての $i \neq d$ 及び $\rho \in \Sigma$ に対して成立することである。

Σ が non-regular すなわち $[M \cap \pi]$ が長上不分数の多項式環のとき，この系2は
Gerald A. Reiner の [Cohen-Macaulay quotients of polynomial rings] の結果と同じである。

Gorenstein 性については次のことがいえる。

【系3】 ある整数 d があって $\forall \rho \in \Sigma$ に対し

$$\dim_K H^i(\Sigma \rho, K) = \begin{cases} 1 & i = d \\ 0 & i \neq d \end{cases}$$

であれば S_{Σ} は Gorenstein である。また Σ のすべての minimal face を含む Σ の元が π だけであるとき逆も成り立つ。

240
例1] $\Sigma = \Gamma(\pi)$ とおけば $S_{\Sigma} = R[M(\pi)]$
であり，系列2の条件を満たすことがわかるので，$R[M(\pi)]$ の Cohen-Macaulay 性がいえる。
これは M. Hochster [1] で最初に証明された事実である。

【例2】 $\Sigma = \Gamma(\pi) \setminus \{ \pi \}$ とおくと系列3の条件を満たすことが要易にわかるので S_{Σ} は
Gorenstein となる。 Spec $(S_{\Sigma}) = X_{\pi} \setminus T$ であるから，
tors embedding から tors を除いたところが Gorenstein であることがわかる。

