
Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

Synthesis and functional evaluation of chiral dendrimer-triamine-coordinated Gd complexes with polyaminoalcohol end groups as highly sensitive MRI contrast agents

Leave this area blank for abstract info.

Yuka Miyake, Yu Kimura, Naomi Orito, Hirohiko Imai, Tetsuya Matsuda, Akio Toshimitsu and Teruyuki Kondo*

Synthesis and functional evaluation of chiral dendrimer-triamine-coordinated Gd complexes with polyaminoalcohol end groups as highly sensitive MRI contrast agents

Yuka Miyake^a, Yu Kimura^{a,b}, Naomi Orito^a, Hirohiko Imai^c, Tetsuya Matsuda^c, Akio Toshimitsu^{a,d} and Teruvuki Kondo^{a,e}*

^a Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan

^b Research and Educational Unit of Leaders for Integrated Medical System, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

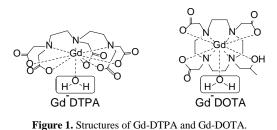
^c Graduate School of Informatics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan

^d Division of Multidisciplinary Chemistry, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011 Japan

^e Advanced Biomedical Engineering Research Unit, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Katsura, Nishikyoku, Kyoto 615-8510, Japan

ARTICLE INFO

ABSTRACT


Article history: Novel chiral dendrimer-triamine-coordinated Gd complexes with polyaminoalcohol end groups were synthesized and shown to have longitudinal relaxivity (r_1) values 5 times higher than that Received of clinically used Gd-DTPA. The affinities of Gd-4a and Gd-4b for bovine serum albumin Received in revised form (BSA), respectively, were estimated by a quartz crystal microbalance (QCM) measurement. The Accepted Available online amino groups of the dendrimer were then conjugated with PEG. This conjugation with PEG strongly affected its ability to attenuate signals in T1-weighted MRI. Keywords: 2009 Elsevier Ltd. All rights reserved. Chiral dendrimer MRI contrast agent Gadolinium Polyethylene glycol <This is an author version based on a template provided by Elsevier>

1. Introduction

Molecular imaging

Magnetic resonance imaging (MRI) has become a prominent non- or low-invasive imaging technique for disease diagnosis.^{1,2} Low-molecular-weight contrast agents (CAs), such as Gd-DTPA (DTPA = diethylenetriaminepentaacetic acid) and Gd-DOTA (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid), are widely used in the clinical diagnosis of tumors (Figure 1).³⁻⁸

However, the low contrast efficiency, non-specific retention and rapid clearance of these low-molecular-weight CAs in the

great physical strain and can lead to side effects in the patient, such as osmotic shock.^{9,10} The main reason for their low contrast efficiency is that up to eight of the nine coordination sites of Gd are firmly occupied with ionic chelating ligands, and only one site remains available for coordination with free water molecules, which can be observed by MRI. In addition, Gd metal could rotate quite rapidly at the center of small ligands, and enhancement of the image contrast would be reduced.

body necessitate a high dosage (ca. 0.5 M), which imposes a

Therefore, there is a strong need for the development of highly sensitive Gd-MRI CAs, and recently there has been growing worldwide interest in the development of Gd-MRI CAs that consist of Gd-functionalized dendrimers¹¹⁻¹⁵ and other macromolecules.¹⁶⁻¹⁹ Dendrimers²⁰⁻²³ are a unique category of macromolecules with well-controlled sizes, nanoscopic dimensions, and numerous peripheral chemical groups to which Gd chelates can be coupled. Gd-functionalized poly(amido-amine) (PAMAM)²⁴⁻²⁷ and poly(propyleneimine) (PPI)²⁸⁻³⁰ dendrimers have been reported and evaluated in animal models for high-resolution MRI, in which dendrimers were used as a core and Gd chelates were positioned in the periphery.³¹⁻³³

* Corresponding author. Tel.: +81-75-383-7055; fax: +81-75-383-2805; e-mail: teruyuki@scl.kyoto-u.ac.jp

Tetrahedron

Unfortunately, among the Gd-functionalized dendrimers that have been reported for use as contrast agents, dendrimers were only used to slow the molecular tumbling and rotation of Gd. The intravascular retention time is prolonged, but the principle of reducing the ¹H relaxation time of a water molecule is the same as that with low-molecular-weight contrast agents.

We previously reported the synthesis and functional evaluation of a chiral 2nd-generation dendrimer-triamine-coordinated Gd complex with polyol end groups as a highly sensitive CA for MRI (Figure 2).^{34, 35}

In that report, we synthesized chiral dendrimer-triaminecoordinated Gd-MRI CAs and clarified the pharmacokinetic differences between the optical isomers, Gd-**2a** and Gd-**2b**. The synthesized Gd-MRI CAs were shown to have longitudinal relaxivity (r_1) values 3 times higher than that of clinically used Gd-DTPA. The pharmacokinetic differences between optical isomers were estimated based on T1-weighted MR images of mice before and after the intravenous injection of Gd-**2a** and Gd-**2b**. As a result, Gd-**2a** is retained in the vasculature for a longer time after administration.

Although the conjugation of polyethylene glycol (PEG) and/or antibodies with CAs might be needed to achieve specific targetability *in vivo*, such as for cancers, polyol end groups in Gd-2a or Gd-2b did not seem to be suitable for conjugation under physiological conditions. In this paper, based on this preparation of 2nd-generation dendrimer-triamine-coordinated CAs, we tried to replace these hydroxyl end groups with amino end groups for the easy introduction of PEG and antibodies. We synthesized novel highly sensitive chiral and racemic dendrimertriamine-coordinated Gd complexes with polyaminoalcohol end

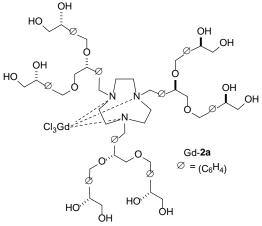


Figure 2. Structure of a chiral dendrimer-triamine-coordinated Gd-MRI CA with polyol end groups, Gd-2a.

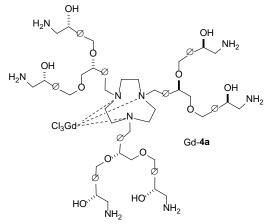


Figure 3. Structure of novel chiral dendrimer-triamine-coordinated Gd-MRI CA with polyaminoalcohol end groups, Gd-4a.

groups, Gd-**4a**, Gd-**4b** and Gd-**4** (racemic) (Figure 3), and evaluated their function as Gd-MRI CAs. The amino end groups of the dendrimer CAs were conjugated with a PEG chain, and the functions of the resulting complex were evaluated *in vitro*.

2. Results and discussions

2.1. Synthesis of chiral dendrimer-triamine-coordinated Gd-MRI CAs with polyaminoalcohol end groups, Gd-4a and Gd-4b

(*R*)- and (*S*)-chiral dendrimer-triamine ligands with polyol end groups were synthesized by the previously reported method.^{34, 35} According to Scheme 1, 2nd-generation dendrimer Gd-MRI CAs with polyaminoalcohol end groups, Gd-4a and Gd-4b, were synthesized. (*R*)- and (*S*)-chiral dendrimer-triamine ligands with polyol end groups, **2a** and **2b**, were epoxidated with trimethylsilyl chloride and trimethyl orthoacetate.³⁸ A ring-opening reaction of the epoxide groups with ammonium hydroxide was performed and novel chiral dendrimer-triamine-coordinated Gd complexes, Gd-4a and Gd-4b, were obtained after complexation with gadolinium trichloride (GdCl₃·6H₂O).

2.2. Synthesis of a racemic dendrimer-triamine-coordinated Gd-MRI CA with polyaminoalcohol end groups, Gd-4 (racemic)

According to Scheme 2, a racemic dendrimer Gd-MRI CA with polyaminoalcohol end groups Gd-4 (racemic) was synthesized. The dendron with olefin ends 8 was synthesized and the olefin was epoxidated with *meta*-chloroperoxybenzoic acid (*m*CPBA) to give 9. After the conjugation of dendron with epoxide end groups 9 was conjugated with 1,4,7-triazacyclononane (TACN) to give 10, a ring-opening reaction of the epoxide groups with ammonium hydroxide was performed to give 4 (racemic), and novel chiral dendrimer-triamine-coordinated Gd complexes Gd-4 (racemic) were obtained after complexation with GdCl₃·6H₂O.

2.3. Synthesis of Boc-protected dendrimer-triamine-coordinated Gd-MRI CA, Gd-4-Boc

The six amino groups of dendrimer ligand 4 (racemic) were protected with *tert*-butoxycarbonyl (Boc) groups and subsequent complexation with $GdCl_3$ · $6H_2O$ gave Gd-4-Boc.

2.4. Synthesis of PEG-dendrimer-triamine-coordinated Gd-MRI CA, Gd-4a-PEG

The conjugation of **4a** with PEG bearing an activated ester group (average molecular weight: 5,000) was carried out, and the reactant was purified by GPC. Subsequent complexation with $GdCl_{3}$ · $6H_2O$ gave Gd-**4a**-PEG.

2.5. Evaluation of synthesized Gd-MRI CAs, Gd-4 (racemic), Gd-4a, Gd-4b and Gd-4a-PEG

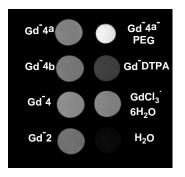


Figure 4. T1-weighted MR images of Gd-DTPA, GdCl₃· $6H_2O$, Gd-2a, Gd-4 (racemic), Gd-4a, Gd-4b, Gd-4a-PEG (0.25 mM) and water (Spin echo from TR/TE 200/6.2 ms, 7 T, 20 °C).

The longitudinal relaxivity (r_1) values of dendrimer CAs, GdCl₃·6H₂O, and Gd-DTPA were measured (Figure 4, Table 1).

Table 1. Longitudinal relaxivities (r_1) of Gd-DTPA, GdCl₃· $6H_2O$, Gd-4 (racemic), Gd-4a, Gd-4b, Gd-2a and Gd-4a-PEG.

Entry	$r_1 / \text{mM}^{-1}\text{s}^{-1}$
Gd-DTPA	3.9
$GdCl_3 \cdot 6H_2O$	15.3
Gd- 4 (racemic)	19.4
Gd- 4a	21.5
Gd- 4b	20.1
Gd- 2a	11.4
Gd-4a-PEG	52.6

The r_1 values of 2nd-generation dendrimer CAs with polyaminoalcohol end groups Gd-4 (racemic), Gd-4a and Gd-4b were 19.4 mM⁻¹s⁻¹, 21.5 mM⁻¹s⁻¹, and 20.1 mM⁻¹s⁻¹ respectively, which were approximately 5 times larger than that of Gd-DTPA $(r_1 = 3.9 \text{ mM}^{-1}\text{s}^{-1})$. Moreover, the r_1 values of 2nd-generation dendrimer CAs with polyaminoalcohol end groups Gd-4 (racemic). Gd-4a and Gd-4b were higher than that of 2ndgeneration dendrimer CA with polyol end groups Gd-2a ($r_1 =$ 11.4 mM⁻¹s⁻¹). As mentioned previously, established lowmolecular-weight Gd contrast agents such as Gd-DTPA and Gd-DOTA have ionic chelating ligands that strongly suppress eight of the nine coordination sites of Gd. On the other hand, the novel Gd complexes have a triamine ligand and three chloride ligands, which stably occupy six coordination sites of Gd. Accordingly, three coordination sites remain for water molecules, and thus the present Gd complexes show longitudinal relaxivity values that are 5 times higher than that of Gd-DTPA.

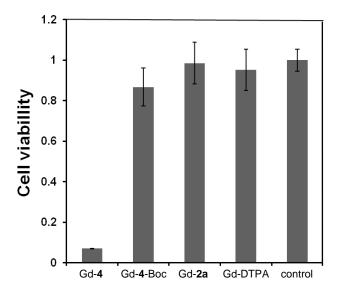
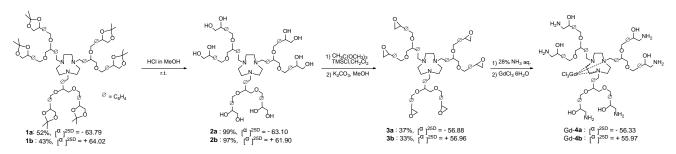
Figure 5 shows the cytotoxicities of Gd-4 (racemic), Gd-2a, and Gd-DTPA toward L929 cells.³⁹ The result indicated that dendrimer CAs with polyaminoalcohol end groups Gd-4 (racemic) were cytotoxic at a concentration at which dendrimer CA with polyol end groups Gd-2a and Gd-DTPA were not cytotoxic (0.25 mM). This cytotoxicity would be due to the primary amino end groups of the dendrimer. Therefore, Bocprotected 2nd-generation dendrimer CA Gd-4-Boc was synthesized and its cytotoxicity was evaluated. As a result, Bocprotected dendrimer CA Gd-4-Boc was not cytotoxic, similar to Gd-2a and Gd-DTPA. These observations suggest that the CAs conjugated with PEG would have low toxicity and high longitudinal relaxivity.

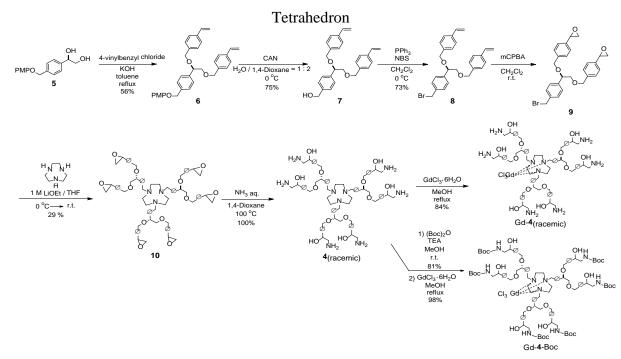
To anticipate the pharmacokinetic differences between optical

isomers, the affinities of Gd-**4a** and Gd-**4b** for bovine serum albumin (BSA), which is a model of plasma protein, were estimated by a quartz crystal microbalance (QCM) measurement. In sharp contrast to the results of Gd-**2a** and Gd-**2b**³⁵ the association constant K_a of Gd-**4a** ($1.08 \times 10^6 \text{ M}^{-1}$) was about 2 times higher than that of Gd-**4b** ($5.21 \times 10^5 \text{ M}^{-1}$), which means that Gd-**4a** is retained in the vasculature for a longer time after administration in a mouse body. This result was different than that with polyol CAs, probably due to the stronger interaction of amino groups in Gd-**4a** and Gd-**4b** with albumin, which also explain the cytotoxicity of Gd-**4** (racemic) (Figure 5, *vide infra*).

2.6. Evaluation of synthesized PEG-dendrimer Gd-MRI CA, Gd-4-PEG

The longitudinal relaxivity (r_1) value of PEG-dendrimer CA Gd-**4**-PEG was 52.6 mM⁻¹s⁻¹, which is approximately 13 times higher than that of Gd-DTPA and 2.5 times higher than that of Gd-**4a** (Table 1). In the case of the present PEG-dendrimer CAs, the slower molecular tumbling with an increase in molecular weight as a result of conjugation with PEG may be responsible for the stronger contrast enhancement.


Figure 5. Viabilities of L929 cells exposed Gd-DTPA, Gd-1a, Gd-4 (racemic) and Gd-4-Boc at 0.25 mM.

3. Conclusions

In conclusion, we have synthesized the first chiral dendrimertriamine-coordinated Gd contrast agents with polyaminoalcohol end groups, and then conjugated these contrast agents with PEG. The effects of the molecular weight of PEG on contrast and tumor targeting ability in MRI through the EPR (Enhanced and Permeability Retention) effect^{36,37} are now under investigation.

Scheme 1. Synthesis of chiral dendrimer-triamine-coordinated Gd complexes with polyaminoalcohol end groups, Gd-4a and Gd-4b

Scheme 2. Synthesis of racemic dendrimer-triamine-coordinated Gd complexes with polyaminoalcohol end groups, Gd-4 (racemic) and Boc-protected Gd complex, Gd-4-Boc

4. Experimental section

4.1. General Methods

4.1.1. Materials

All reagents were obtained commercially and used without further purification unless otherwise noted. CH₃CN (99.8%), CHCl₃ (99.9%), distilled water, acetone (99%), PPh₃ (97.0%), Nbromosuccinimide (NBS, 99.9%), meta-chloroperoxybenzoic acid (mCPBA, 75%), Ce(NH₄)₂(NO₃)₆ (CAN, 95%), GdCl₃·6H₂O, 1,4-dioxane (99.5%), hexane (99%), KOH (85%), K₂CO₃ (99.5%), MgSO₄ (99.0%), NaHCO₃ (99.5%), methanol (MeOH, 99.8%), Na₂CO₃ (99.8%), Na₂SO₃ (97.0%), Na₂SO₄ (99.0%), tetrahydrofuran (THF), triethylamine (TEA) (98.0%), and BSA were purchased from Nacalai Tesque Inc. (Kyoto, Japan). 1.0 M Lithium ethoxide in tetrahydrofuran (LiOEt in THF) and 4vinylbenzyl chloride (90%) were purchased from Sigma-Aldrich Japan K.K. (Tokyo, Japan). 1,4,7-Triazacyclononane (TACN, 98%), trimethylsilyl chloride (98%) and trimethyl orthoacetate (98%) were purchased from Tokyo Chemical Industry Co. Ltd. (Tokyo, Japan). Hydrochloric acid methanolic solution (HCl in MeOH, 0.50 mM), 28% NH₃ aqueous solution, and dimethyl sulfoxide dehydrated (DMSO; 99.0%) were purchased from Wako Pure Chemical Industries, Ltd. (Osaka, Japan). Methylene chloride (CH₂Cl₂) was purchased from Kishida Chemical Co., Ltd. (Osaka, Japan). Gd-DTPA was purchased from Bayer Holding Ltd. (Tokyo, Japan). Aluminum oxide 90 active neutral was purchased from Merck Chemical Inc. (Darmstadt, Germany). Silica gel 60N spherical for flash chromatography was purchased from Kanto Chemical Co. Inc. (Tokyo, Japan). The filter aid Celite Standard Super-gel was purchased from Alfa Aesar (Lancashire, UK). Di-tert-butyl dicarbonate was purchased from Peptide Institute (Osaka, Japan). NHS-PEG (SUNBRIGHT ME 050 AS, Mw 5000) was purchased from NOF Corporation (Tokyo, Japan).

¹H-NMR spectra were recorded at 400 MHz, and 13C-NMR spectra were recorded at 100 MHz with a JEOL EX400. ESI TOF mass spectra were obtained by micrOTOF focus (Bruker Daltonics Co., Billerica, MA). The average molecular weight of PEG-conjugated CA was determined by gel permeation

chromatography (ChromNAV, JASCO Co., Tokyo Japan). The concentration of gadolinium was determined by atomic absorption spectrometry (AAS Z-2710, Hitachi Ltd., Tokyo, Japan) using a gadolinium standard solution (1,000 ppm, analytical grade, Wako). Clinically-used Gd-DTPA (gadopentetate meglumine) was used as a control for MR measurements of the synthesized CAs.

4.1.2. Relaxation Time Measurements

Longitudinal relaxivity (r_1) was calculated from the relaxation time of water proton (T_1) with four different concentrations of CAs at 20 °C on a Biospec 7.0 T/ 20 USR (Bruker Biospin Inc., Billerica, MA) with a 72 mm i.d. Quadrature resonator.

4.1.3. Cytotoxicity Assay

Murine L929 fibroblast cells were plated into each well of 96multiwell cell culture plates (Corning Inc., Lowell, MA) with growth medium (Dulbecco's modified minimum essential medium (DMEM; Life Technologies Japan Ltd., Tokyo, Japan) containing 10% of fetal bovine serum (FBS; Sanko Pure Chemical Co., Tokyo, Japan), 100 units/ml of penicillin and 0.1 mg/ml of streptomycin (Sigma-Aldrich Japan K.K., Tokyo, Japan) at a density of 1×10^4 cells/cm². After incubation for 24 h at 37 °C and 5% CO₂ - 95% air at atmospheric pressure, the medium was replaced by fresh growth medium containing 0.25 mM of CAs. After incubation for 48 h under the same condition, the cell number was evaluated. After Cell Count Reagent SF (10 μ L, Nacalai Tesque, Kyoto, Japan) was added to each well, plates were incubated for 60 min. The absorbance at 450 nm was then measured by a spectrophotometer (Versa max, Molecular Devices Inc., Union City, CA). The absorbance was normalized by that in cells incubated with growth medium without CA and expressed as a cell viability ratio.

4.1.4. Quartz Crystal Microbalance Analysis

The ability of CAs to bind to BSA was evaluated with an Affinix-QN Pro[®] system (Initium Inc., Tokyo Japan) according to the manufacturer's instructions. The dissociation rate constant (K_d) was estimated by a global fitting analysis of the saturated adsorption amount at each concentration, and the association rate constant (K_a) was calculated as $1/K_d$.

4.2. Synthesis

Synthesis of 2nd-Generation Dendrimer-triamine-4.2.1. coordinated Gd-MRI CA with Polyaminoalcohol End Groups (Scheme 1)

4.2.1.1. 2nd-Generation chiral acetonide-triamine dendrimer (**1***a*)

A solution of a LiOEt in THF (1.0 M, 6.0 mL) was added dropwise to a solution of TACN (80 mg, 0.62 mmol) in THF (10 mL) and stirred at 0 °C under Ar. After 10 min, a solution of 2ndgeneration dendron (1.00 g, 1.64 mmol) was added dropwise at 0 °C, and the mixture was stirred at room temperature for 12 h. The mixture was then diluted with 2×50 mL of ethyl acetate and dried over MgSO₄. The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography (SiO₂, CHCl₃ : MeOH = 9 : 1) to give 560 mg (0.325 mmol, 52%) of **1a** as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 1.48, 1.54 (d, 36H); 2.90 (br, 12H); 3.53-3.56 (q, 3H); 3.65-3.74 (m, 15H); 4.26-4.30 (m, 6H); 4.35, 4.38 (d, 3H); 4.45-4.61 (m, 12H); 5.03-5.07 (t, 6H); 7.24-7.33 (m, 36H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 25.6, 26.2, 70.0, 71.2, 72.5, 74.4, 77.3, 80.0, 109.2, 125.8, 127.2, 127.4, 129.0, 137.8, 137.8, 138.0, 138.1. ESI TOF MS: m/z [M+H]⁺ calcd. for 1721.9377, found 1721.9919. Elemental analysis calcd. for C105H129N3O18·6H2O: C 68.94, H 7.77, N 2.30, O 20.99; found: C 69.24, H 7.53, N 2.45, O 20.78.

4.2.1.2. 2nd-Generation chiral 12-ol-triamine dendrimer (2a)

A solution of 1a (559 mg, 0.325 mmol) in 0.50 mM HCl/MeOH solution (20 mL) was stirred at room temperature for 4 h. The reaction was monitored by ESI TOF MS. After the reaction was completed, the solvent was removed under reduced pressure to give 478 mg (0.324 mmol, 99%) of 2a as a yellow solid. ¹H NMR (400 MHz, CD₃OD) δ (ppm): 2.81 (br, 12H); 3.53-3.74 (m 12H); 3.68 (s, 6H); 4.31-4.43 (m, 8H); 4.62-4.64 (m, 6H); 7.14-7.46 (m, 36H). ¹³C NMR (100 MHz, CD₃OD) δ (ppm): 50.2, 60.6, 68.7, 71.8, 74.0, 75.4, 75.6, 81.4, 127.4, 128.6, 128.9, 131.6, 136.1, 138.7, 141.6, 142.7. ESI TOF MS: m/z [M+H]+ calcd. for 1480.7466, found 1480.7818.

4.2.1.3 2nd-Generation chiral epoxide-triamine dendrimer (3a)

Trimethylsilyl chloride (5.0 mL, 40 mmol) was added to a solution of 2a (300 mg, 0.203 mmol) and trimethyl orthoacetate (3.0 mL, 24 mmol) in CH₂C1₂ (3.0 mL) at 0 °C. The solution was stirred for 60 min, and then evaporated to obtain crude product. It was dissolved in dry methanol (10 mL), and K₂CO₃ (1.00 g, 7.25 mmol) was added. The suspension was stirred vigorously for 2 h, and then filtered and the residue was washed with CH₂Cl₂. The filtrate was extracted with CH₂Cl₂ and the organic layer was washed with water and brine, dried over MgSO4, and concentrated by an evaporator. The residue was purified by flash column chromatography (Al₂O₃, CHCl₃: MeOH = 30 : 1) to obtain **3a** as a yellow oil (103.4 mg, 75 μ mol, 37 %). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 2.76-2.79 (q, 6H); 2.83(s, 12H); 3.12-3.14 (q, 6H); 3.53-3.56(q, 3H); 3.57 (s, 6H); 3.61-3.75 (q, 3H); 3.83-3.85 (q, 6H); 4.35-4.38 (d, 2H); 4.47-4.59 (m, 12H); 7.21-7.32 (m, 36H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 51.2, 52.2, 55.4, 62.7, 70.3, 73.0, 74.9, 80.6, 125.5, 126.9, 127.7, 127.8, 129.1, 136.8, 137.6, 138.5, 138.6, 140.3. ESI TOF MS: m/z [M+H]⁺ calcd. for 1372.6832, found 1372.6850.

4.2.1.4. 2nd-Generation chiral aminoalcohol-triamine dendrimer (**4***a*)

A mixture of 28% NH₃ aqueous solution (15.0 mL), 1,4dioxane (5.0 mL), and **3a** (50.0 mg, 36.5 μ mol) was placed in a

5

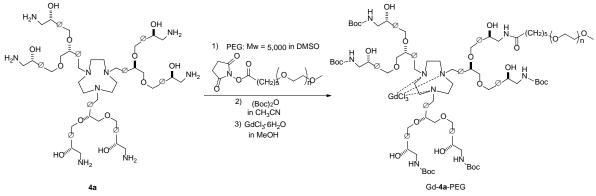
20 mL reaction vial in an Initiator 2.50 microwave reactor at 200 W, 100 °C, and 14 bar for 60 min. The solvent was removed under reduced pressure to give 30 mg (20.3 μ mol, 56%) of 4a as a yellow solid. ¹H NMR (400 MHz, CD₃OD) δ (ppm): 2.79-3.01 (m, 18H); 3.03-3.05 (m, 6H); 3.44-3.89 (m, 15H); 4.19-4.57 (m, 18H); 7.03-7.38 (m, 36H). 13 C NMR (100 MHz, CD₃OD) δ (ppm): 47.3, 58.1, 64.4, 70.7, 71.7, 73.9, 75.5, 81.5, 127.0, 128.5, 129.0, 131.7, 136.3, 139.6, 141.3, 141.8. ESI TOF MS: m/z [M+H]⁺ calcd. for 1474.8425, found 1474.8333.

4.2.1.5. 2nd-Generation chiral aminoalcohol-triamine dendrimer gadolinium complex (Gd-4a)

A solution of GdCl₃·6H₂O (82 mg, 225 µmol) in MeOH (2.0 mL) was added dropwise to a solution of 4a (130 mg, 226 μ mol) in MeOH (3.0 mL), and the mixture was refluxed under argon for 48 h. The solvent was removed under reduced pressure to give 160 mg (190 μ mol) of Gd-4a as a yellow solid. ESI TOF MS: m/z [M-Cl]⁺1701.7327.

4.2.2. Synthesis of 2nd-generation Dendrimer-triaminecoordinated Gd-MRI CA with Polyaminoalcohol End Groups (Scheme 2)

4.2.2.1. 2nd-Generation dendron of bis(olefin)ether (6)


To a reaction apparatus equipped with a Dean-Stark tube and a reflux cooling tube was added 5 (5.00 g, 18.2 mmol), and the inside air was replaced with argon. Subsequently, 4-vinylbenzyl chloride (7.5 mL, 56.3 mmol) and 250 mL of toluene were added to the reactor under a flow of argon. The mixture was heated and stirred for approximately 30 min to make a uniform solution. To the resulting uniform solution was added 6.38 g of KOH to make an orange-colored cloudy solution. Thereafter, the solution was heated under reflux for 5 h, and then stirred at 100 °C for 12 h. After the reaction was completed, the solvent was removed under reduced pressure. The crude product was dissolved in CH₂Cl₂ and suction filtration to give a yellow-colored uniform solution. The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography (SiO2, CHCl3) to give 5.13 g (10.2 mmol, 56%) of 6 as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 3.43-3.47 (m, 1H); 3.57-3.65 (m, 4H); 4.24, 4.27 (d, 1H); 4.36-4.52 (m, 4H); 4.87 (s, 2H); 5.09, 5.11 (d, 2H); 5.59, 5.63 (d, 2H); 6.54-6.62 (m, 2H); 6.69-6.81 (dd, 4H); 7.12-7.31 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 55.5, 70.3, 72.9, 74.6, 80.2, 113.5, 114.5, 115.7, 126.0, 127.2, 127.6, 127.8, 136.5, 136.7, 137.0, 137.8, 138.9, 152.8, 153.9. ESI TOF MS: m/z [M+Na]⁺ calcd. for 529.2349, found 529.2450.

4.2.2.2. 2nd-Generation dendron of bis(olefin)benzyl alcohol (7)

A solution of 6 (5.13g, 10.2 mmol) in 1,4-dioxane (40 mL) was stirred at 0 °C, and an aqueous solution of CAN (7.35 g, 13.4 mmol) in 20 mL of water was added dropwise. After the addition was completed, the resulting mixture was stirred for 30 min and cooled. 150 mL of water was added to stop the reaction. The resulting mixture was transferred to a separating funnel and the water layer was extracted three times with ethyl acetate. The organic layer was collected and washed twice with a 5% K₂CO₃ aqueous solution. The washing solution was again washed twice with ethyl acetate. The organic layers were all collected and washed with a 10% Na₂SO₃ aqueous solution and then with a 5% K₂CO₃ aqueous solution, dehydrated with brine and MgSO₄, and concentrated by an evaporator. The residue was purified by column chromatography (SiO₂, 100% CHCl₃ to 100% ethyl acetate) to give 3.06 g (7.65 mmol, 75%) of 7 as an orange oil. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 2.27 (br, 1H); 3.42-3.46 (m, 1H); 3.59-3.88 (m, 1H); 4.23, 4.26 (d, 1H); 4.36-4.48 (m, 4H); 4.51 (s, 2H); 5.10, 5.12 (d, 2H); 5.59, 5.64 (d, 2H); 6.54-6.62 (m,

6

Tetrahedron

Scheme 3. Synthesis of PEG-conjugated Gd complex, Gd-4a-PEG

2H); 7.13-7.26 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 64.7, 70.3, 72.9, 74.6, 80.2, 113.6, 126.0, 127.2, 127.6, 127.8, 136.4, 136.7, 137.8, 138.4, 140.7. ESI TOF MS: m/z [M+Na]⁺ calcd. for 423.1931, found 423.2087.

4.2.2.3. 2nd-Generation dendron of bis(olefin)benzyl bromide (8)

7 (3.06 g, 7.65 mmol) and 10 mL of CH₂Cl₂ were added to a reactor filled with argon. The reactor was immersed in a cooling bath and cooled to 0 °C. PPh₃ (2.21 g, 8.42 mmol) and NBS (1.50 g, 8.42 mmol) were added under a flow of argon, and then the mixture was stirred for 12 h. After the reaction was completed, to the reaction mixture were added 10 mL of diethyl ether and 20 mL of saturated Na₂CO₃ aqueous solution. After the solution was separated, the organic layer was dehydrated with brine and MgSO₄. The resulting organic layer was concentrated by an evaporator, and the residue was purified by column chromatography (SiO₂, ethyl acetate: hexane = 1:3) to give 2.58 g (5.58 mmol, 73%) of 8 as an orange oil. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 3.45-3.48 (m, 1H); 3.63-3.68 (m, 1H); 4.27-4.30 (d, 1H); 4.41-4.53 (m, 6H); 5.13, 5.16 (d, 2H); 5.63, 5.67 (d, 2H); 6.58-6.66 (m, 2H); 7.14-7.31 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 33.2, 70.5, 73.0, 74.5, 80.1, 113.7, 126.1, 127.5, 127.7, 129.1, 136.5, 136.9, 137.4, 137.8, 139.7. ESI TOF MS: m/z [M+Na]⁺ calcd. for 485.1087, 487.1070, found 485.1381, 487.1363.

4.2.2.4. 2nd-Generation dendron of bis(epoxide)benzyl bromide (9)

A solution of mCPBA (2.41 g, 14.0 mmol) in CH₂Cl₂ (2 mL) was added dropwise to a solution of 8 (2.58 g, 5.58 mmol) in CH₂Cl₂ (10 mL) at 0 °C, and the mixture was stirred at room temperature for 12 h. A saturated Na₂SO₂ aqueous solution (10 mL) and a saturated NaHCO3 aqueous solution (10 mL) were added to stop the reaction. The mixture was then diluted with 2 \times 10 mL of CH2Cl2 and dried over MgSO4. The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography (SiO₂, CHCl₃) to give 772 mg (1.56 mmol, 28%) of 9 as a yellow oil. ¹H NMR (400 MHz, $CDCl_3$) δ (ppm): 2.77-2.79 (m, 2H); 3.12-3.15 (m, 2H); 3.52-3.56 (m, 1H); 3.69-3.73 (m, 1H); 3.83-3.86 (m, 2H); 4.36, 4.39 (d, 1H); 4.48-4.61 (m, 6H); 7.23-7.39 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 33.2, 51.2, 52.2, 70.5, 73.0, 74.6, 80.3, 125.5, 127.5, 127.9, 129.2, 136.9, 137.5, 138.3, 139.7. ESI TOF MS: m/z [M+Na]⁺ calcd. for 517.0985, 519.0969, found 517.0993, 519.0976.

4.2.2.5. 2nd-Generation epoxide-triamine dendrimer (10)

A solution of a LiOEt in THF (1.0 M, 2.0 mL) was added dropwise to a solution of TACN (201 mg, 1.56 mmol) in THF (20 mL), and stirred at 0 $^{\circ}$ C under argon. After 10 min, a solution

of **9** (772 mg, 1.56 mmol) was added dropwise at 0 °C, and the mixture was stirred at room temperature for 12 h. The mixture was then diluted with 2 × 50 mL of ethyl acetate and dried over MgSO₄. The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography (Al₂O₃, CHCl₃) to give 620 mg (0.452 mmol, 29%) of **10** as a white solid. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 2.76-2.79 (q, 6H); 2.83 (s, 12H); 3.12-3.14 (q, 6H); 3.53-3.56 (q, 3H); 3.57 (s, 6H); 3.61-3.75 (q, 3H); 3.83-3.85 (q, 6H); 4.35-4.38 (d, 2H); 4.47-4.59 (m, 12H); 7.21-7.32 (m, 36H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 51.2, 52.2, 55.4, 62.7, 70.3, 73.0, 74.9, 80.6, 125.5, 126.9, 127.7, 127.8, 129.1, 136.8, 137.6, 138.5, 138.6, 140.3. ESI TOF MS: m/z [M+H]⁺ calcd. for 1372.6832, found 1372.6834.

4.2.2.6. 2nd-Generation- aminoalcohol-triamine dendrimer (4 (racemic))

A mixture of 28% NH₃ aqueous solution (3.0 mL), 1,4dioxane (1.0 mL) and **10** (119 mg, 225 μ mol) was placed in a 2 mL reaction vial in an Initiator 2.50 microwave reactor at 200 W, 120 °C, and 12 bar for 60 min. The solvent was removed under reduced pressure to give 130 mg (225 μ mol, 99%) of **4** (racemic) as a yellow solid. ¹H NMR (400 MHz, CD₃OD) δ (ppm): 2.79-3.01 (m, 18H); 3.03-3.05 (m, 6H); 3.44-3.89 (m, 15H); 4.19-4.57 (m, 18H); 7.03-7.38 (m, 36H). ¹³C NMR (100 MHz, CD₃OD) δ (ppm): 47.3, 58.1, 64.4, 70.7, 71.7, 73.9, 75.5, 81.5, 127.0, 128.5, 129.0, 131.7, 136.3, 139.6, 141.3, 141.8. ESI TOF MS: m/z [M+H]⁺ calcd. for 1474.8425, found 1475.7655.

4.2.2.7. 2nd Generation aminoalcohol-triamine dendrimer gadolinium complex (Gd-4 (racemic))

A solution of GdCl₃·6H₂O (82 mg, 225 μ mol) in MeOH (2.0 mL) was added dropwise to a solution of **4** (racemic) (130 mg, 226 μ mol) in MeOH (3.0 mL), and the mixture was refluxed under argon for 48 h. The solvent was removed under reduced pressure to give 160 mg (190 μ mol) of Gd-**4** (racemic) as a yellow solid.

4.2.3. Synthesis of Boc-Protected Dendrimer-triaminecoordinated Gd-MRI CA (Gd-4-Boc) (Scheme 3)

(Boc)₂O (39.8 mg, 42 μ L, 181 μ mol) and TEA (14.5 mg, 20 μ L, 143 μ mol) was added dropwise to a solution of **4** (racemic) (47.0 mg, 31.9 μ mol) in MeOH (10 mL), and the mixture was stirred at room temperature for 2 h. The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography (SiO₂, CHCl₃ : MeOH = 10 : 1) to give 54.0 mg (26.0 μ mol, 81%) of **4**-Boc (racemic) as a yellow solid. ESI TOF MS: m/z [M+H]⁺ calcd. for 2075.5980, found 2076.7795. A solution of GdCl₃·6H₂O (9.60 mg, 26.0 μ mol) in MeOH (2.0 mL) was added dropwise to a solution of **4**-Boc (54.0 mg, 26.0 μ mol) in MeOH (3.0 mL), and the mixture was refluxed

under argon for 48 h. The solvent was removed under reduced pressure to give 60.4 mg (25.6 μ mol, 98%) of Gd-**4**-Boc as a yellow solid. ESI TOF MS: m/z [M+H]⁺ calcd. for 2339.1980, found 2339.6185.

4.2.4. Synthesis of PEG-Dendrimer-triamine-coordinated Gd-MRI CA (Gd-4a-PEG) (Scheme 3)

A solution of **4a** (30.0 mg, 20.4 μ mol) and NHS-PEG (Mw 5,000, 10 mg, 2.0 μ mol) in DMSO (1 mL) was stirred at room temperature for 24 h. The residue was subjected to GPC (SB-803HQ, eluent: ultrapure water, current speed: 1.0 mL/min, column temperature: 40 °C). The solvent was removed by lyophilization to give a white solid. This white solid and (Boc)₂O (1.3 mg, 6.0 μ mol) in CH₃CN (5.0 mL) were stirred at room temperature for 24 h. The solvent was removed under reduced pressure, ultrapure water was added and the precipitate was removed by filter. To filtrate, GdCl₃·6H₂O (4.00 mg, 11.0 μ mol) and MeOH (2.0 mL) were added and refluxed under argon for 48 h. The solvent was removed under reduced pressure to give 6.9 mg (0.63 μ mol) of Gd-**4a**-PEG as a white solid.

Acknowledgments

This work was partly supported by the Creation of Innovation Centers for Advanced Interdisciplinary Research Areas Program "Innovative Techno-Hub for Integrated Medical Bio-imaging" from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. YM acknowledges a fellowship from the Japan Society for the Promotion of Science (JSPS) and financial support from Grant-in-Aid for JSPS Fellows Number 25:5096. YK acknowledges financial support from JSPS KAKENHI Grant Number 25870359. TK acknowledges financial support from JSPS KAKENHI Grant Number 15K01819, 15H01403, the Princess Takamatsu Cancer Research Fund, Magnetic Health Science Foundation, and SEI Group CSR Foundation.

References and notes

- Boros, E.; Gale M. E.; Caravan, P. Dalton Trans. 2015, 44, 4804-4818.
- Skendzel, J. G.; Jacobson, J. A.; Carpenter, J. E.; Miller, B. S. *AJR* 2011, *196*, 942-948.
- 3. Werner, E. J.; Datta, A.; Jocher, C. J.; Raymond, K. N. Angew. Chem. Int. Ed. 2008, 47, 8568-8580.
- Hermann, P.; Kotek, J.; Kubíček, V.; Lukeš, I. Dalton Trans. 2008, 3027-3047.
- Bottrill, M.; Knok, L.; Long, N. J. Chem. Soc. Rev. 2006, 35, 557-571.
- 6. Caravan, P. Chem. Soc. Rev. 2006, 35, 512-523.
- 7. Caravan, P.; Ellison, J. J.; McMurry, T. J.; Lauffer, R. B. Chem. Rev. **1999**, 99, 2293-2352.
- 8. Goenka, A. H.; Flamm, S. D.; Tex Heart. Inst. J. 2014, 41, 7-20.
- 9. Perazella, M. A. Clin. J. Am. Soc. Nephrol. 2009, 4, 461-469.
- 10. Perazella, M. A. Clin. J. Am. Soc. Nephrol. 2008, 3, 649-651.
- 11. Villaraza, A. J. L.; Bumb, A.; Brechbiel, M. W. Chem. Rev. 2010, 110, 2921-2959.
- 12. Bunb, A.; Brechbiel, M. W.; Choyke, P. Acta Radiol. 2010, 51, 751-767.
- Langereis, S.; Dirksen, A.; Hackeng, T. M.; van Genderen, M. H. P.; Meijer, E. W. New J. Chem. 2007, 31, 1152-1160.
- 14. Kobayashi, H.; Brechbiel, M. W. Adv. Drug Deliv. Rev. 2005, 57, 2271-2286.
- Longmire, M. R.; Ogawa, M.; Choyke, P. L.; Kobayashi, H. WIREs Nanomed Nanobiotechnol 2014, 6, 155-162.
- Tang, J.; Sheng, Y.; Hu, H.; Shen, Y. Prog. Polym. Sci. 2013, 38, 462-502.
- Zhu, D.; Liu, F.; Ma, L.; Liu, D.; Wang, Z. Int. J. Mol. Sci. 2013, 14, 10591-10607.
- 18. Botta, M.; Tei, L. Eur. J. Inorg. Chem. 2012, 1945-1960.

- Vögtle, F.; Richardt, G.; Werner, N. *Dendrimer Chemistry*, Wiley-VCH: Weinheim, 2009.
- Campagna, S.; Ceroni, P.; Puntoriero, F.; *Designing Dendrimers*, John Wiley & Sons: New Jersey, 2012.
- Astruc, D.; Boisselier, E.; Ornelas, C. Chem. Rev. 2010, 110, 1857-1959.
- Cheng, Y.; Zhao, L.; Li, Y.; Xu, T. Chem. Soc. Rev. 2011, 40, 2673-2703.
- Wiener, E. C.; Brechbiel, M. W.; Brothers, H.; Magin, R. L.; Gansow, O. A.; Tomalia, D. A.; Lauterbur, P. C. Magn. Reson. Med. 1994, 31, 1-8.
- Bryant Jr., L. H.; Brechbiel, M. W.; Wu, C.; Bulte, J. W. M.; Herynek, V.; Frank, J. A. J. Magn. Reson. Imaging 1999, 9, 348-352.
- 26. Labieniec, M.; Watala, C. Cent. Eur. J. Biol. 2009, 4, 434-451.
- Kojima, C.; Turkbey, B.; Ogawa, M.; Bernardo, M.; Regino, C. A. S.; Bryant Jr., L. H.; Choyke, P. L.; Kono, K.; Kobayashi, H. *Nanomedicine* **2011**, *7*, 1001-1008.
- Kobayashi, H.; Kawamoto, S.; Jo, S.-K.; Bryant Jr., H. L.; Brechbiel, M. W.; Star, R. A. *Bioconjugate Chem.* 2003, 14, 388-394.
- Langereis, S.; de Lussanet, Q. G.; van Genderen, M. H. P.; Backes, W. H.; Meijer, E. W. *Macromolecules* 2004, *37*, 3084-3091.
- KuKowska-Latallo, J. F.; Candido, K. A.; Cao, Z.; Nigavekar, S. S.; Majoros, I. J.; Thomas, T. P.; Balogh, L. P.; Khan, M. K.; Baker Jr., J. R. *Cancer Res.* 2005, *65*, 5317-5324.
- Wiener, E. C.; Auteri, F. P.; Chen, J. W.; Brechbiel, M. W.; Gansow, O. A.; Schneider, D. S.; Belford, R. L.; Clarkson, R. B.; Lauterbur, P. C. J. Am. Chem. Soc. **1996**, 118, 7774-7782.
- Cyran, C. C.; Fu, Y.; Raatschen, H. J.; Rogut, V.; Chaopathomkul, B.; Shames, D. M.; Wendland, M. F.; Yeh, B. M.; Brasch, R. C. J. *Magn. Reson. Imag.* 2008, 27, 581-589.
- Misselwitz, B.; Schmitt-Willich, H.; Ebert, W.; Frenzel, T.; Weinmann, H-J. Magma. 2001, 12, 128–134.
- Kondo, T., Tsujita, H., Siddique, Z. A., Miura, H., Tochio, H., Matsuda, T., Narazaki, M., Tsuzuki, H., Kuge, K., Tomida, Y., Yoshimura, K., Yano, T., PCT Int. Appl. WO 2009069833 A1 2009.
- Miyake, Y., Kimura, Y., Ishikawa, S., Tsujita, H., Miura, H., Narazaki, M., Matsuda, T., Tabata, Y., Yano T., Toshimitsu, A., Kondo, T., *Tetrahedron Lett.* 2012, *53*, 4580-4583.
- 36. Chen, F.; Cai, W. Small 2014, 10, 1887-1893.
- Turrin, C.-O.; Caminade, A.-M. In *Dedndrimer*; John Wiley & Sons: Chichester, UK, 2012; pp 437-461.
- 38. Kolb, H.C.; Sharpless, K.B. *Tetrahedron* **1992**, *48*, 10515–10530.
- Malic, N.; Wiwattanapatapee, R.; Klopsch, R.; Lorenz, K.; Frey, H.; Weener, J. W.; Meijer, E. W.; Paulus, W.; Duncan, R. J. Control. Release 2000, 65, 133-148.